WorldWideScience

Sample records for improves tumor control

  1. TU-CD-304-06: Using FFF Beams Improves Tumor Control in Radiotherapy of Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, O [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Wang, H [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Electron disequilibrium at the lung-tumor interface results in an under-dosage of tumor regions close to its surface. This under-dosage is known to be significant and can compromise tumor control. Previous studies have shown that in FFF beams, disequilibrium effects are less pronounced, which is manifested in an increased skin dose. In this study we investigate the improvement in tumor dose coverage that can be achieved with FFF beams. The significance of this improvement is evaluated by comparing tumor control probabilities of FFF beams and conventional flattened beams. Methods: The dosimetric coverage was investigated in a virtual phantom representing the chest wall, lung tissue and the tumor. A range of tumor sizes was investigated, and two tumor locations – central and adjacent to the chest wall. Calculations were performed with BEAMnrc Monte Carlo code. Parallel-opposed and multiple coplanar 6-MV beams were simulated. The tumor control probabilities were calculated using the logistic model with parameters derived from clinical data for non-small lung cancer patients. Results: FFF beams were not entirely immune to disequilibrium effects. They nevertheless consistently delivered more uniform dose distribution throughout the volume of the tumor, and eliminated up to ∼15% of under-dosage in the most affected by disequilibrium 1-mm thick surface region of the tumor. A voxel-by-voxel comparison of tumor control probabilities between FFF and conventional flattened beams showed an advantage of FFF beams that, depending on the set up, was from a few to ∼9 percent. Conclusion: A modest improvement in tumor control probability on the order of a few percent can be achieved by replacing conventional flattened beams with FFF beams. However, given the large number of lung cancer patients undergoing radiotherapy, these few percent can potentially prevent local tumor recurrence for a significant number of patients.

  2. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    International Nuclear Information System (INIS)

    Helbig, Linda; Koi, Lydia; Brüchner, Kerstin; Gurtner, Kristin; Hess-Stumpp, Holger; Unterschemmann, Kerstin; Pruschy, Martin

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD 50 ) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P 50 , with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD 50 . Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of radiation response. Whether this mechanism contributes to the improved outcome of fractionated chemoradiation therapy warrants further investigation

  3. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  4. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  5. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  6. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    International Nuclear Information System (INIS)

    Huang, Z; Feng, Y; Lo, S; Grecula, J; Mayr, N; Yuh, W

    2015-01-01

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  7. Radiolabeled anti-EGFR-antibody improves local tumor control after external beam radiotherapy and offers theragnostic potential

    International Nuclear Information System (INIS)

    Koi, Lydia; Bergmann, Ralf; Brüchner, Kerstin; Pietzsch, Jens; Pietzsch, Hans-Jürgen; Krause, Mechthild

    2014-01-01

    Purpose: The effect of radioimmunotherapy (RIT) using the therapeutic radionuclide Y-90 bound to the anti-EGFR antibody cetuximab combined with external beam irradiation (EBRT) (EBRIT) on permanent local tumor control in vivo was examined. Methods: Growth delay was evaluated in three human squamous cell carcinoma models after RIT with [ 90 Y]Y-(CHX-A′′-DTPA) 4 -cetuximab (Y-90-cetuximab). The EBRT dose required to cure 50% of the tumors (TCD 50 ) for EBRT alone or EBRIT was evaluated in one RIT-responder (FaDu) and one RIT-non-responder (UT-SCC-5). EGFR expression and microenvironmental parameters were evaluated in untreated tumors, bioavailability was visualized by PET using ([ 86 Y]Y-(CHX-A′′-DTPA) 4 -cetuximab (Y-86-cetuximab) and biodistribution using Y-90-cetuximab. Results: In UT-SCC-8 and FaDu but not in UT-SCC-5 radiolabeled cetuximab led to significant tumor growth delay. TCD 50 after EBRT was significantly decreased by EGFR-targeted RIT in FaDu but not in UT-SCC-5. In contrast to EGFR expression, parameters of the tumor micromilieu and in particular the Y-90-cetuximab biodistribution or Y-86-cetuximab visualization in PET correlated with the responsiveness to RIT or EBRIT. Conclusion: EGFR-targeted EBRIT can improve permanent local tumor control compared to EBRT alone. PET imaging of bioavailability of labeled cetuximab appears to be a suitable predictor for response to EBRIT. This theragnostic approach should be further explored for clinical translation

  8. Tumor control probability after a radiation of animal tumors

    International Nuclear Information System (INIS)

    Urano, Muneyasu; Ando, Koichi; Koike, Sachiko; Nesumi, Naofumi

    1975-01-01

    Tumor control and regrowth probability of animal tumors irradiated with a single x-ray dose were determined, using a spontaneous C3H mouse mammary carcinoma. Cellular radiation sensitivity of tumor cells and tumor control probability of the tumor were examined by the TD 50 and TCD 50 assays respectively. Tumor growth kinetics were measured by counting the percentage of labelled mitosis and by measuring the growth curve. A mathematical analysis of tumor control probability was made from these results. A formula proposed, accounted for cell population kinetics or division probability model, cell sensitivity to radiation and number of tumor cells. (auth.)

  9. Neurofeedback to improve neurocognitive functioning of children treated for a brain tumor: design of a randomized controlled double-blind trial

    International Nuclear Information System (INIS)

    Ruiter, Marieke A de; Meeteren, Antoinette YN Schouten-Van; Mourik, Rosa van; Janssen, Tieme WP; Greidanus, Juliette EM; Oosterlaan, Jaap; Grootenhuis, Martha A

    2012-01-01

    Neurotoxicity caused by treatment for a brain tumor is a major cause of neurocognitive decline in survivors. Studies have shown that neurofeedback may enhance neurocognitive functioning. This paper describes the protocol of the PRISMA study, a randomized controlled trial to investigate the efficacy of neurofeedback to improve neurocognitive functioning in children treated for a brain tumor. Efficacy of neurofeedback will be compared to placebo training in a randomized controlled double-blind trial. A total of 70 brain tumor survivors in the age range of 8 to 18 years will be recruited. Inclusion also requires caregiver-reported neurocognitive problems and being off treatment for more than two years. A group of 35 healthy siblings will be included as the control group. On the basis of a qEEG patients will be assigned to one of three treatment protocols. Thereafter patients will be randomized to receive either neurofeedback training (n=35) or placebo training (n=35). Neurocognitive tests, and questionnaires administered to the patient, caregivers, and teacher, will be used to evaluate pre- and post-intervention functioning, as well as at 6-month follow-up. Siblings will be administered the same tests and questionnaires once. If neurofeedback proves to be effective for pediatric brain tumor survivors, this can be a valuable addition to the scarce interventions available to improve neurocognitive and psychosocial functioning. ClinicalTrials.gov NCT00961922

  10. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  11. Neurofeedback to improve neurocognitive functioning of children treated for a brain tumor: design of a randomized controlled double-blind trial

    Directory of Open Access Journals (Sweden)

    de Ruiter Marieke A

    2012-12-01

    Full Text Available Abstract Background Neurotoxicity caused by treatment for a brain tumor is a major cause of neurocognitive decline in survivors. Studies have shown that neurofeedback may enhance neurocognitive functioning. This paper describes the protocol of the PRISMA study, a randomized controlled trial to investigate the efficacy of neurofeedback to improve neurocognitive functioning in children treated for a brain tumor. Methods/Design Efficacy of neurofeedback will be compared to placebo training in a randomized controlled double-blind trial. A total of 70 brain tumor survivors in the age range of 8 to 18 years will be recruited. Inclusion also requires caregiver-reported neurocognitive problems and being off treatment for more than two years. A group of 35 healthy siblings will be included as the control group. On the basis of a qEEG patients will be assigned to one of three treatment protocols. Thereafter patients will be randomized to receive either neurofeedback training (n=35 or placebo training (n=35. Neurocognitive tests, and questionnaires administered to the patient, caregivers, and teacher, will be used to evaluate pre- and post-intervention functioning, as well as at 6-month follow-up. Siblings will be administered the same tests and questionnaires once. Discussion If neurofeedback proves to be effective for pediatric brain tumor survivors, this can be a valuable addition to the scarce interventions available to improve neurocognitive and psychosocial functioning. Trial registration ClinicalTrials.gov NCT00961922.

  12. Combining polyamine depletion with radiation therapy for rapidly dividing head and neck tumors: Strategies for improved locoregional control

    International Nuclear Information System (INIS)

    Petereit, D.G.; Harari, P.M.; Contreras, L.; Pickart, M.A.; Verma, A.K.; Kinsella, T.J.; Gerner, E.W.

    1994-01-01

    Locoregional control is adversely affected as clonogens from rapidly proliferating tumors repopulate during a course of radiation therapy. The cytostatic agent α-difluoromethylornithine (DFMO) was investigated for its capacity to slow proliferation kinetics in human squamous cell carcinomas (SSC) of the head and neck (H ampersand N), with the ultimate objective of improving locoregional control in rapidly dividing tumors treated with radiation therapy. Three human SSC cell lines established from primary H ampersand N tumors were evaluated in vitro (cell culture) and in vivo (SSC tumor xenografts in athymic mice) for the capacity of DFMO to induce growth inhibition. Flow cytometry analysis of SCC tumor growth kinetics and quantitative assessment of polyamine biosynthesis inhibition was performed to verify DFMO activity. DFMO effects on in vitro SSC radiosensitivity using clonogenic survival were also studied. A noncytotoxic exposure to DFMO (5mM x 72 hours) induced pronounced growth inhibition in all three SSC cell lines (70-90% at 7 days), and induced a 2-3 fold delay in volume doubling time for SCC tumor xenografts when administered orally in the drinking water (1.5%) to athymic mice. Kinetic analysis via flow cytometry confirmed that DFMO produced a lengthening of SCC cell cycle times, but did not alter in vitro radiosensitivity. Inhibition of ornithine decarboxylase (ODC) activity and depletion of endogenous polyamines (putrescine and spermidine), were confirmed in normal tissue (mouse skin) and in human SSC tumor xenografts of athymic mice receiving continuous oral DFMO. These data indicate that antiproliferative agents, such as DFMO, are capable of altering human SSC growth kinetics without altering intrinsic radiosensitivity. Such kinetic modulation may therefore provide a strategy to reduce the adverse impact of tumor cell proliferation during a radiotherapy treatment course for rapidly dividing tumors such as those in the H ampersand N. 33 refs., 5 figs

  13. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  14. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  15. Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Tang, Weiliang; Deater, Matthew; Phan, Ngoc; Marcogliese, Andrea N; Li, Hui; Al-Dhalimy, Muhsen; Major, Angela; Olson, Susan; Monnat, Raymond J; Grompe, Markus

    2016-12-15

    Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2 -/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2 -/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2 -/- Trp53 +/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells. © 2016 by The American Society of Hematology.

  16. A randomized control intervention trial to improve social skills and quality of life in pediatric brain tumor survivors.

    Science.gov (United States)

    Barrera, Maru; Atenafu, Eshetu G; Sung, Lillian; Bartels, Ute; Schulte, Fiona; Chung, Joanna; Cataudella, Danielle; Hancock, Kelly; Janzen, Laura; Saleh, Amani; Strother, Douglas; Downie, Andrea; Zelcer, Shayna; Hukin, Juliette; McConnell, Dina

    2018-01-01

    To determine if a group social skills intervention program improves social competence and quality of life (QOL) in pediatric brain tumor survivors (PBTS). We conducted a randomized control trial in which PBTS (8-16 years old, off therapy for over 3 months) were allocated to receive social skills training (eg, cooperation, assertion, using social cognitive problem solving strategies, role playing, games, and arts and crafts) in 8 weekly 2-hour sessions, or an attention placebo control (games and arts and crafts only). Outcomes were self-reported, proxy-reported (caregiver), and teacher-reported using the Social Skills Rating System (SSRS), to measure social competence, and the Pediatric Quality of Life (PedsQL4.0, generic) to measure QOL at baseline, after intervention, and at 6 months follow-up. At baseline, SSRS were stratified into low and high scores and included as a covariate in the analysis. Compared to controls (n = 48), PBTS in the intervention group (n = 43) reported significantly better total and empathy SSRS scores, with improvements persisting at follow-up. The PBTS in the intervention group who had low scores at baseline reported the greatest improvements. Proxy and teacher reports showed no intervention effect. Participating in group social skills intervention can improve self-reported social competence that persisted to follow up. The PBTS should be given the opportunity to participate in social skills groups to improve social competence. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  18. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice

    International Nuclear Information System (INIS)

    Zips, Daniel; Hessel, Franziska; Krause, Mechthild; Schiefer, Yvonne; Hoinkis, Cordelia; Thames, Howard D.; Haberey, Martin; Baumann, Michael

    2005-01-01

    Purpose: Previous experiments have shown that adjuvant inhibition of the vascular endothelial growth factor receptor after fractionated irradiation prolonged tumor growth delay and may also improve local tumor control. To test the latter hypothesis, local tumor control experiments were performed. Methods and materials: Human FaDu and UT-SCC-14 squamous cell carcinomas were studied in nude mice. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (50 mg/kg body weight b.i.d.) was administered for 75 days after irradiation with 30 fractions within 6 weeks. Tumor growth time and tumor control dose 50% (TCD 50 ) were determined and compared to controls (carrier without PTK787/ZK222584). Results: Adjuvant administration of PTK787/ZK222584 significantly prolonged tumor growth time to reach 5 times the volume at start of drug treatment by an average of 11 days (95% confidence interval 0.06;22) in FaDu tumors and 29 days (0.6;58) in UT-SCC-14 tumors. In both tumor models, TCD 50 values were not statistically significantly different between the groups treated with PTK787/ZK222584 compared to controls. Conclusions: Long-term inhibition of angiogenesis after radiotherapy significantly reduced the growth rate of local recurrences but did not improve local tumor control. This indicates that recurrences after irradiation depend on vascular endothelial growth factor-driven angiogenesis, but surviving tumor cells retain their clonogenic potential during adjuvant antiangiogenic treatment with PTK787/ZK222584

  19. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    -treated with sHH-inhibitor led to a 90% lifespan extension in animals that received a single cycle of the combined regimen, and a 200% extension in animals receiving 3-cycles of treatment, compared to control animals or those receiving either of the agents alone. We surmise that direct or indirect modulation of tumor vasculature can provide new opportunities for combination therapies that could improve delivery and efficacy of both small- and large- molecular weight agents in treatment-resistant solid tumors.

  20. Improved tumor localization with (strept)avidin and labeled biotin as a substitute for antibody

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Fritz, B.; Virzi, F.; Mardirossian, G.; Rusckowski, M.

    1993-01-01

    We have investigated tumor localization with labeled biotin administered subsequent to unlabeled and unconjugated streptavidin. Nude mice bearing anti-CEA tumors (LS174T) received 10 μg of 111 In-labeled anti-CEA antibody (C110) or 111 In-labeled streptavidin with sacrifice 5 h later. In an examination of pretargeting, other animals received 50 μg of unlabeled streptavidin followed 3 h later with 1 μg of 111 In-labeled biotin (EB 1 ) and sacrifice 2 h later. The biodistribution of labeled streptavidin was similar to that of labeled specific antibody except for lower blood and higher kidney levels. Tumor levels were also lower with labeled streptavidin but, because of still lower levels in liver and blood, the tumor/normal tissue ratios were improved. When unlabeled streptavidin was administered and followed by labeled biotin (pretargeting), tumor levels were further reduced modestly; however, normal tissue levels were greatly reduced such that the tumor/blood and tumor/liver ratios were 10.6 and 2.2 vs 1.5 and 0.5 for the specific antibody. Improvements were seen in all tissues sampled with the exception of kidney and muscle. A further control of labeled biotin alone showed minimal accumulation in all tissues with the exception of kidneys. In conclusion, the accumulation of (strept)avidin by passive diffusion in tumor may be comparable, at early times, to the accumulation of specific antibody. By combining the administration of unlabeled (strept)avidin with labeled biotin, tumor targeting may potentially be improved. (author)

  1. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    cell loss due to irradiation, the log-kill model, therefore, predicts that incomplete treatment of a kinetically heterogeneous tumor will yield a more proliferative tumor. The probability of tumor control in such a simulation may be obtained from the nadir in tumor cell number. If the nadir is not sufficiently low to yield a high probability of tumor control, then the tumor will re-grow. Since tumors in each sub-population are assumed lost at the same rate, cells comprising the sub-population with the shortest potential doubling time will re-grow the fastest, yielding a recurrent tumor that is more proliferative. A number of assumptions and simplifications are both implicitly and explicitly made in converting absorbed dose to tumor control probability. The modeling analyses described above must, therefore, be viewed in terms of understanding and evaluating different treatment approaches with the goal of treatment optimization rather than outcome prediction

  2. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  3. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  4. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improved tumor localization with (strept)avidin and labeled biotin as a substitute for antibody

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Fritz, B.; Virzi, F.; Mardirossian, G.; Rusckowski, M.

    1993-01-01

    We have investigated tumor localization with labeled biotin administered subsequent to unlabeled and unconjugated streptavidin. Nude mice bearing anti-CEA tumors (LS174T) received 10 μg of 111 In-labeled anti-CEA antibody (C110) or 111 In-labeled streptavidin with sacrifice 5 h later. In an examination of pretargeting, other animals received 50 μg of unlabeled streptavidin followed 3 h later with 1 μg of 111 In-labeled biotin (EB 1 ) and sacrifice 2 h later. The biodistribution of labeled streptavidin was similar to that of labeled specific antibody except for lower blood and higher kidney levels. Tumor levels were also lower with labeled streptavidin but, because of still lower levels in liver and blood, the tumor/normal tissue ratios were improved. When unlabeled streptavidin was administered and followed by labeled biotin (pretargeting), tumor levels were further reduced modestly; however, normal tissue levels were greatly reduced such that the tumor/blood and tumor/liver ratios were 10.6 and 2.2 vs 1.5 and 0.5 for the specific antibody. Improvements were seen in all tissues sampled with the exception of kidney and muscle. A further control of labeled biotin alone (without the preinjection of streptavidin) showed minimal accumulations in all tissues with the exception of kidneys. In conclusion, the accumulation of (strept)avidin by passive diffusion in tumor may be comparable, at early times, to the accumulation of specific antibody. (author)

  6. Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes

    International Nuclear Information System (INIS)

    Hussain, Aamir; Brown, Paul D.; Stafford, Scott L.; Pollock, Bruce E.

    2007-01-01

    Purpose: Patients with brainstem metastases have limited treatment options. In this study, we reviewed outcomes after stereotactic radiosurgery (SRS) in the management of patients with brainstem metastases. Methods and Materials: Records were reviewed of 22 consecutive patients presenting with brainstem metastases who underwent SRS. The most frequent primary malignancy was the lung (n = 11), followed by breast (n = 3) and kidney (n = 2). Three patients (14%) also underwent whole-brain radiation therapy (WBRT). The median tumor volume was 0.9 mL (range, 0.1-3.3 mL); the median tumor margin dose was 16 Gy (range, 14-23 Gy). Results: Median survival time after SRS was 8.5 months. Although local tumor control was achieved in all patients with imaging follow-up (n = 19), 5 patients died from development and progression of new brain metastases. Two patients (9%) had symptom improvement after SRS, whereas 1 patient (5%) developed a new hemiparesis after SRS. Conclusions: Radiosurgery is safe and provides a high local tumor control rate for patients with small brainstem metastases. Patients with limited systemic disease and good performance status should be strongly considered for SRS

  7. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  8. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models.

    Science.gov (United States)

    Shao, Haibo; Zhang, Jian; Sun, Ziping; Chen, Feng; Dai, Xu; Li, Yaming; Ni, Yicheng; Xu, Ke

    2015-06-10

    A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.

  9. Combined modality treatment improves tumor control and overall survival in patients with early stage Hodgkin's lymphoma: a systematic review

    DEFF Research Database (Denmark)

    Herbst, Christine; Rehan, Fareed A; Brillant, Corinne

    2010-01-01

    as well as conference proceedings from January 1980 to February 2009 for randomized controlled trials comparing chemotherapy alone versus the same chemotherapy regimen plus radiotherapy. Progression free survival and similar outcomes were analyzed together as tumor control. Effect measures used were......Combined modality treatment (CMT) of chemotherapy followed by localized radiotherapy is standard treatment for patients with early stage Hodgkin's lymphoma. However, the role of radiotherapy has been questioned recently and some clinical study groups advocate chemotherapy only for this indication....... We thus performed a systematic review with meta-analysis of randomized controlled trials comparing chemotherapy alone with CMT in patients with early stage Hodgkin's lymphoma with respect to response rate, tumor control and overall survival (OS). We searched Medline, EMBASE and the Cochrane Library...

  10. Hyperfractionation in carcinoma of the cervix: tumor control and late bowel complications

    International Nuclear Information System (INIS)

    Viswanathan, Faith Rangad; Varghese, Cherian; Peedicayil, Abraham; Lakshmanan, Jeyaseelan; Narayan, Viswanathan Perungulam

    1999-01-01

    Purpose: Hyperfractionation has been advocated to improve local tumor control by increasing radiation dose without increasing late normal tissue complications. The aim of this study was to determine if hyperfractionation decreased late bowel complications. Methods and Materials: Thirty patients with Stage II and III cervical cancer were randomized to receive either hyperfractionation or conventional fractionation. Patients were followed for 5 years and monitored for tumor control, recurrence, and bowel complications. The relative risks of tumor control and bowel complications were computed at 1 year and 5 years of follow-up. Kaplan-Meier survival curves were plotted to determine probabilities of being tumor-free and bowel complication-free. Results: There were 15 patients in each group. At 1 year of follow-up, 2 patients in the hyperfractionation group (13%) and 7 patients in the conventional treatment group (45%) had tumor (relative risk [RR] 0.3; 95% confidence interval [CI] 0.1, 1.1; p = 0.054). Delayed bowel complications were seen in 8 patients in the hyperfractionation group and 1 patient in the conventional treatment group (RR 7.5; 95% CI 1.1, 52; p = 0.014). At 5 years, 2 patients in the hyperfractionation group and 8 patients in the conventional treatment group had tumor (RR 0.3; 95% CI 0.1, 1.1; p = 0.04). Delayed bowel complications (Grades 2 and 3) occurred in 9 women in the hyperfractionation group and 2 patients in the conventional group (RR 5.4; 95% CI 1.5, 19.5; p 0.0006). Kaplan-Meier analysis showed that the hyperfractionation group had significantly more bowel complications over the 5 years of follow-up (p 0.024). Conclusion: Hyperfractionation may result in better tumor control both at 1 year and at 5 years following treatment of cervical cancer. However, hyperfractionation could lead to increased late bowel complications and must be used judiciously in the treatment of cervical cancer

  11. Tumor blood flow, pO2, and radioresponse are improved by mild temperature hyperthermia

    International Nuclear Information System (INIS)

    Shakil, Abdus; Griffin, Robert J.; Song, Chang W.

    1997-01-01

    Purpose/Objective: The purpose of this study was to elucidate the changes in tumor blood flow, tumor pO 2 and the radiation response of the tumors caused by mild temperature hyperthermia (MTH). Materials And Methods: Experiments were carried out using the R3230 Adenocarcinoma (R3230 AC tumor), grown subcutaneously in the right hind limbs of male Fischer rats. Tumors were heated once at 40.5 deg.to 43.5 deg.C for 30 or 60 min, or twice at a 24 hr interval. Tumor blood flow and tumor pO 2 were measured immediately after the hyperthermic treatments or after 24 hr using a radioactive microsphere method and by an Eppendorf pO 2 Histograph, respectively. The influence of MTH on the effect of X-irradiation (250 kVp) on this tumor was investigated with tumor growth delay and the in vivo/in vitro excision assay for surviving tumor cell fraction. Results: Tumor blood flow and pO 2 increased upon heating for 30 min at 40.5 deg.C to 43.5 deg.C, but following 60 min heating, the pO 2 was similar to that in control tumors. The tumor blood flow increased about 1.4-fold and the tumor pO 2 increased more than 3 times after 30 min heating at 42.5 deg.C. Therefore, the in vivo/in vitro assay and the growth delay were carried out following treatment with 42.5 deg.C for 30 min. As shown in Table 1, the reduction in surviving fraction by MTH before radiation was markedly greater than that by MTH after radiation. Table 1 also shows that MTH alone caused no growth delay compared to control and while heat after radiation increased the growth delay by 2 days, MTH before radiation increased the growth delay by 5 days compared to radiation alone. Conclusion: The results indicate that MTH is effective in increasing tumor blood flow and oxygenation and that MTH for 30 min at 42.5 deg.C, applied before radiation, significantly improves the radiation response of R3230 AC tumors

  12. Radiation complications and tumor control after 125I plaque brachytherapy for ocular melanoma

    International Nuclear Information System (INIS)

    Jensen, Ashley W.; Petersen, Ivy A.; Kline, Robert W.; Stafford, Scott L.; Schomberg, Paula J.; Robertson, Dennis M.

    2005-01-01

    Purpose: To determine the outcome of 125 I plaque brachytherapy at our institution and identify the risk factors associated with the development of radiation complications, tumor recurrence, and metastasis. Patients and Methods: From 1986 to 2000, 156 patients underwent 125 I episcleral plaque (COMS design) application for the treatment of ocular melanoma. Chart analysis of follow-up ophthalmologic appointments assessed the incidence of ocular side effects after therapy. Statistical analysis assessed outcomes and significant influencing factors. Results: With a median follow-up of 6.2 years, the 5-year overall survival was 83%. The 5-year disease-specific survival was 91%. Initial local control at 5 years was 92%, with 100% ultimate local control after secondary therapy that included 9 enucleations. The risk of metastasis was 10% at 5 years and 27% at 10 years. Vision stayed the same or improved in 25% of patients, and 44% of patients maintained visual acuity better than 20/200. Thirteen percent of patients experienced chronic pain or discomfort in the treated eye. Dose rates to the tumor apex greater than 90 to 100 cGy/h were associated with increased systemic control but worse radiation toxicity. Conclusion: Patients in our series experienced excellent local tumor control. Higher dose rates to the tumor apex were associated with reduced rates of distant metastases but worse ocular function

  13. Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery.

    Science.gov (United States)

    Tuominen, Juho; Yrjänä, Sanna; Ukkonen, Anssi; Koivukangas, John

    2013-10-01

    Results of awake craniotomy are compared to results of resections done under general anesthesia in patients operated with IMRI control. We hypothesized that stimulation of the cortex and white matter during awake surgery supplements IMRI control allowing for safer resection of eloquent brain area tumors. The study group consisted of 20 consecutive patients undergoing awake craniotomy with IMRI control. Resection outcome of these patients was compared to a control group of 20 patients operated in the same IMRI suite but under general anesthesia without cortical stimulation. The control group was composed of those patients whose age, sex, tumor location, recurrence and histology best matched to patients in study group. Cortical stimulation identified functional cortex in eight patients (40 %). Postoperatively the neurological condition in 16 patients (80 %) in the study group was unchanged or improved compared with 13 patients (65 %) in the control group. In both groups, three patients (15 %) had transient impairment symptoms. There was one patient (5 %) with permanent neurological impairment in the study group compared to four patients (20 %) in the control group. These differences between groups were not statistically significant. There was no surgical mortality in either group and the overall infection rate was 5 %. Mean operation time was 4 h 45 min in the study group and 3 h 15 min in the control group. The study consisted of a limited patient series, but it implies that awake craniotomy with bipolar cortical stimulation may help to reduce the risk of postoperative impairment following resection of tumors located in or near speech and motor areas also under IMRI control.

  14. Tumor Hypoxia is Independent of Hemoglobin and Prognostic for Loco-regional Tumor Control after Primary Radiotherapy in Advanced Head and Neck Cancer

    International Nuclear Information System (INIS)

    Nordsmark, Marianne; Overgaard, Jens

    2004-01-01

    There is evidence that tumor hypoxia adversely affects loco-regional tumor control and survival in head and neck cancer. The aim of the current study was to compare pretreatment tumor oxygenation measured by Eppendorf pO2 electrodes with known prognostic factors in advanced head and neck tumors after definitive radiotherapy, and to evaluate the prognostic significance of these parameters on loco-regional tumor control. Sixty-seven patients, median age 56 years (22-82), all with primary stage III-IV squamous cell carcinoma were available for survival analysis. Tumor oxygenation was described as the fraction of pO2 values=2.5 mmHg (HP2.5) and the median tumor pO2. By regression analysis HP2.5 was independent of known prognostic factors including stage, pretreatment hemoglobin (Hb) and the largest tumor diameter at the site of pO2 measurement. By Kaplan-Meier analysis loco-regional tumor control at 5 years was in favor of less hypoxic tumors using either HP2.5 or median tumor pO2 as descriptors and stratifying by the median values. Also, Hb was prognostic of loco-regional tumor control at 5 years using the median value as cut off. HP2.5 as continuous parameter was highly significant for loco-regional tumor control in a multivariate analysis. In conclusion both HP2.5 and total Hb were prognostic for loco-regional tumor control, but HP2.5 as continuous variable was independently the strongest prognostic indicator for loco-regional tumor control after definitive primary radiotherapy in advanced head and neck tumors

  15. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Danny [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Ludbrook, Joanna; Arm, Jameen; Hunter, Perry [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Pollock, Sean; Makhija, Kuldeep; O' brien, Ricky T. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia)

    2016-03-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  16. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    International Nuclear Information System (INIS)

    Lee, Danny; Greer, Peter B.; Ludbrook, Joanna; Arm, Jameen; Hunter, Perry; Pollock, Sean; Makhija, Kuldeep; O'brien, Ricky T.; Kim, Taeho; Keall, Paul

    2016-01-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  17. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  18. Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.

    Science.gov (United States)

    Waldow, S M; Russell, G E; Wallner, P E

    1992-01-01

    Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.

  19. Radiobiological research for improving tumor radiotherapy - an Indian perspective

    International Nuclear Information System (INIS)

    Jain, Viney

    1990-01-01

    Radiation-induced damage to normal tissues within the non-target volume is a major limitation of tumor radiotherapy. Physical methods to obtain superior spatial dose distributions use sophisticated technology and are expensive. Large scale applications of these technologies in a developing country like India, with a large number of cancer patients, poor instrumental facilities and inadequate infrastructure face several problems. Radiobiological research aiming at developing simple, inexpensive and effective methods to increase the differential response between tumor and normal tissues should be, therefore, strengthened. Biological end-points are determined not only by the molecular lesions produced due to the absorption of the radiation energy but also by the cellular repair processes, which become operative in response to lesions in the living system. Therefore, enhancement of repair processes in the normal tissues and inhibition of the same in tumors should considerably improve the therapeutic index of radiation treatment. A combination of agents which can suitably alter the spectrum of important molecular lesions with modifiers of cellular repair could be an effective strategy. Initial experiments using halopyrimidines to increase repairable DNA lesions produced by sparsely ionizing radiations in combination with 2-deoxy-D-glucose to modulate differentially the repair and fixation processes in the tumor and normal tissues have provided promising results. Further research work is warranted since this strategy appears to have great potential for improving tumor radiotherapy. (author). 46 refs., 4 figs., 1 tab

  20. Improving the accuracy of brain tumor surgery via Raman-based technology.

    Science.gov (United States)

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W; Sunney Xie, X; Orringer, Daniel A

    2016-03-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors.

  1. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  2. An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.

    Science.gov (United States)

    Liang, Ying; Liao, Bo; Zhu, Wen

    2017-01-01

    Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.

  3. Central nervous system tumors

    International Nuclear Information System (INIS)

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  4. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment.

    Science.gov (United States)

    Hu, Jiwen; Ding, Yajun; Qian, Shengyou; Tang, Xiangde

    2013-01-01

    The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the intervening healthy tissue with a desired temperature elevation. The objective of this research is to present a robust and feasible method to control the temperature distribution and the temperature elevation in treatment region within the prescribed time, which can improve the curative effect and decrease the treatment time for heating large tumor (≥2.0cm in diameter). An adaptive self-tuning-regulator (STR) controller has been introduced into this control method by adding a time factor with a recursive algorithm, and the speed of sound and absorption coefficient of the medium is considered as a function of temperature during heating. The presented control method is tested for a self-focused concave spherical transducer (0.5MHz, 9cm aperture, 8.0cm focal length) through numerical simulations with three control temperatures of 43°C, 50°C and 55°C. The results suggest that this control system has adaptive ability for variable parameters and has a rapid response to the temperature and acoustic power output in the prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no oscillation after reaching the desired temperatures. It is found that the same results can be obtained for different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation region, which is meaningful for the treatment of large tumor. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  6. The bivariate probit model of uncomplicated control of tumor: a heuristic exposition of the methodology

    International Nuclear Information System (INIS)

    Herbert, Donald

    1997-01-01

    Purpose: To describe the concept, models, and methods for the construction of estimates of joint probability of uncomplicated control of tumors in radiation oncology. Interpolations using this model can lead to the identification of more efficient treatment regimens for an individual patient. The requirement to find the treatment regimen that will maximize the joint probability of uncomplicated control of tumors suggests a new class of evolutionary experimental designs--Response Surface Methods--for clinical trials in radiation oncology. Methods and Materials: The software developed by Lesaffre and Molenberghs is used to construct bivariate probit models of the joint probability of uncomplicated control of cancer of the oropharynx from a set of 45 patients for each of whom the presence/absence of recurrent tumor (the binary event E-bar 1 /E 1 ) and the presence/absence of necrosis (the binary event E 2 /E-bar 2 ) of the normal tissues of the target volume is recorded, together with the treatment variables dose, time, and fractionation. Results: The bivariate probit model can be used to select a treatment regime that will give a specified probability, say P(S) = 0.60, of uncomplicated control of tumor by interpolation within a set of treatment regimes with known outcomes of recurrence and necrosis. The bivariate probit model can be used to guide a sequence of clinical trials to find the maximum probability of uncomplicated control of tumor for patients in a given prognostic stratum using Response Surface methods by extrapolation from an initial set of treatment regimens. Conclusions: The design of treatments for individual patients and the design of clinical trials might be improved by use of a bivariate probit model and Response Surface Methods

  7. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh; Saleh, Syed Shayon; Kashef-Haghighi, Dorna; Khavari, David; Newburger, Daniel E.; West, Robert B.; Sidow, Arend; Batzoglou, Serafim

    2013-01-01

    multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple

  8. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. State-Dependent Impulsive Control Strategies for a Tumor-Immune Model

    Directory of Open Access Journals (Sweden)

    Kwang Su Kim

    2016-01-01

    Full Text Available Controlling the number of tumor cells leads us to expect more efficient strategies for treatment of tumor. Towards this goal, a tumor-immune model with state-dependent impulsive treatments is established. This model may give an efficient treatment schedule to control tumor’s abnormal growth. By using the Poincaré map and analogue of Poincaré criterion, some conditions for the existence and stability of a positive order-1 periodic solution of this model are obtained. Moreover, we carry out numerical simulations to illustrate the feasibility of our main results and compare fixed-time impulsive treatment effects with state-dependent impulsive treatment effects. The results of our simulations say that, in determining optimal treatment timing, the model with state-dependent impulsive control is more efficient than that with fixed-time impulsive control.

  10. Visual Outcome and Tumor Control After Conformal Radiotherapy for Patients With Optic Nerve Sheath Meningioma

    International Nuclear Information System (INIS)

    Arvold, Nils D.; Lessell, Simmons; Bussiere, Marc; Beaudette, Kevin; Rizzo, Joseph F.; Loeffler, Jay S.; Shih, Helen A.

    2009-01-01

    Purpose: Optic nerve sheath meningioma (ONSM) is a rare tumor that almost uniformly leads to visual dysfunction and even blindness without intervention. Because surgical extirpation carries a high risk of postoperative blindness, vision-sparing treatment strategies are desirable. Methods and Materials: We retrospectively reviewed the outcomes of 25 patients (25 optic nerves) with ONSM, treated at a single institution with conformal fractionated radiotherapy by either stereotactic photon or proton radiation. Primary endpoints were local control and visual acuity. Results: The patients presented with symptoms of visual loss (21) or orbital pain (3) or were incidentally diagnosed by imaging (3). The mean age was 44 years, and 64% were female patients. The indication for treatment was the development or progression of symptoms. Of the patients, 13 were treated with photons, 9 were treated with protons, and 3 received a combination of photons and protons. The median dose delivered was 50.4 gray equivalents (range, 45-59.4 gray equivalents). Median follow-up after radiotherapy was 30 months (range, 3-168 months), with 3 patients lost to follow-up. At most recent follow-up, 21 of 22 patients (95%) had improved (14) or stable (7) visual acuity. One patient had worsened visual acuity after initial postirradiation improvement. Of the 22 patients, 20 (95%) had no radiographic progression. Three patients had evidence of asymptomatic, limited retinopathy on ophthalmologic examination, and one had recurrent ONSM 11 years after treatment. Conclusions: Highly conformal, fractionated radiation therapy for symptomatic primary ONSM provides tumor control and improvement in visual function in most cases, with minimal treatment-induced morbidity. Longer follow-up is needed to assess the durability of tumor control and treatment-related late effects.

  11. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment for Improved Drug Delivery.

    Science.gov (United States)

    Dolor, Aaron; Szoka, Francis C

    2018-06-04

    Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.

  12. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  13. Improved radioimaging and tumor localization with monoclonal F(ab')2

    International Nuclear Information System (INIS)

    Wahl, R.L.; Parker, C.W.; Philpott, G.W.

    1983-01-01

    Monoclonal anti-tumor antibodies have great promise for radioimmunodetection and localization of tumors. Fab and F(ab')2 fragments, which lack the Fc fragment of antibody (Ab), are cleared more rapidly from the circulation and may have less nonspecific tissue binding than intact Ab. In radioimaging studies using a murine monoclonal antibody to carcinoembryonic antigen in a human colon carcinoma xenografted into hamsters, F(ab')2 fragments were shown superior to Fab fragments and intact antibody for scintiscanning. In double-label experiments with anti-CEA antibody and control monoclonal IgG, F(ab')2 fragments were found to give better and more rapid specific tumor localization than intact antibody or Fab fragments. F(ab')2 fragments offer significant promise for tumor imaging and possibly therapy

  14. Influence of dose distribution homogeneity on the tumor control probability in heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Wen Xiaoqiong; Li Qiang; Zhou Guangming; Li Wenjian; Wei Zengquan

    2001-01-01

    In order to estimate the influence of the un-uniform dose distribution on the clinical treatment result, the Influence of dose distribution homogeneity on the tumor control probability was investigated. Basing on the formula deduced previously for survival fraction of cells irradiated by the un-uniform heavy-ion irradiation field and the theory of tumor control probability, the tumor control probability was calculated for a tumor mode exposed to different dose distribution homogeneity. The results show that the tumor control probability responding to the same total dose will decrease if the dose distribution homogeneity gets worse. In clinical treatment, the dose distribution homogeneity should be better than 95%

  15. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Makhija, K; Keall, P; Greer, P; Arm, J; Hunter, P; Kim, T

    2014-01-01

    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures

  16. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Makhija, K; Keall, P [The University of Sydney, Camperdown, NSW (Australia); Greer, P [The University of Newcastle, Newcastle, NSW (Australia); Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Arm, J; Hunter, P [Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Kim, T [The University of Sydney, Camperdown, NSW (Australia); University of Virginia Health System, Charlottesville, VA (United States)

    2014-06-01

    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures.

  17. An Automatic Occlusion Device for Remote Control of Tumor Tissue Ischemia

    Science.gov (United States)

    El-Dahdah, Hamid; Wang, Bei; He, Guanglong; Xu, Ronald X.

    2015-01-01

    We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multi-modal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics. PMID:20082532

  18. Local control of extra-abdominal desmoid tumors: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Michelle A. Ghert

    2013-02-01

    Full Text Available The local control of desmoid tumors constitutes a continuing treatment dilemma due to its high recurrence rates. The purpose of this systematic review was to critically examine the current treatment of these rare tumors and to specifically evaluate the local failure and response rates of surgery, radiation and systemic therapy. We comprehensively searched the literature for relevant studies across Cinahl, Embase, Medline and the Cochrane databases. Articles were categorized as surgery, radiation, surgery + radiation and systemic therapy (including cytotoxic and non cytotoxic. Methodological quality of included studies was assessed using the Newcastle-Ottawa Scale. Pooled odd ratios (OR for comparative studies and weighted proportions with 95% confidence intervals (CI are reported. Thirty-five articles were included in the final analysis. Weighted mean local failure rates were 22% [95% CI (16-28%], 35% [95% CI (26-44%] and 28% [95% CI (18-39%] for radiation alone, surgery alone and surgery + radiation respectively. In the analysis of comparative studies, surgery and radiation in combination had lower local failure rates than radiation alone [OR 0.7 (0.4, 1.2] and surgery alone [OR 0.7 (0.4, 1.0]. Weighted mean stable disease rates were 91% [95% CI (85-96%] and 52% [95% CI (38-65%] for non cytotoxic and cytotoxic chemotherapy respectively. The current evidence suggests that surgery alone has a consistently high rate of local recurrence in managing extra-abdominal desmoid tumors. Radiation therapy in combination with surgery improves local control rates. However, the limited data on systemic therapy for this rare tumor suggests the benefit of using both cytotoxic and non cytotoxic chemotherapy to achieve stable disease.

  19. Novel radiosensitizers for locally advanced epithelial tumors: inhibition of the PI3K/Akt survival pathway in tumor cells and in tumor-associated endothelial cells as a novel treatment strategy?

    International Nuclear Information System (INIS)

    Riesterer, Oliver; Tenzer, Angela; Zingg, Daniel; Hofstetter, Barbara; Vuong, Van; Pruschy, Martin; Bodis, Stephan

    2004-01-01

    In locally advanced epithelial malignancies, local control can be achieved with high doses of radiotherapy (RT). Concurrent chemoradiotherapy can improve tumor control in selected solid epithelial adult tumors; however, treatment-related toxicity is of major concern and the therapeutic window often small. Therefore, novel pharmacologic radiosensitizers with a tumor-specific molecular target and a broad therapeutic window are attractive. Because of clonal heterogeneity and the high mutation rate of these tumors, combined treatment with single molecular target radiosensitizers and RT are unlikely to improve sustained local tumor control substantially. Therefore, radiosensitizers modulating entire tumor cell survival pathways in epithelial tumors are of potential clinical use. We discuss the preclinical efficacy and the mechanism of three different, potential radiosensitizers targeting the PTEN/PI3K/Akt survival pathway. These compounds were initially thought to act as single-target agents against growth factor receptors (PKI 166 and PTK 787) or protein kinase C isoforms (PKC 412). We describe an additional target for these compounds. PKI 166 (an epidermal growth factor [EGF] receptor inhibitor) and PKC 412, target the PTEN/PI3K/Akt pathway mainly in tumor cells, and PTK 787 (a vascular endothelial growth factor [VEGF] receptor inhibitor) in endothelial cells. Even for these broader range molecular radiosensitizers, the benefit could be restricted to human epithelial tumor cell clones with a distinct molecular profile. Therefore, these potential radiosensitizers have to be carefully tested in specific model systems before introduction in early clinical trials

  20. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    Science.gov (United States)

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improved automated production of 18F-FMISO and its tumor hypoxia imaging by Micro-PET/CT

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yongping; Zheng Yujia; Bao Xiao; Zheng Yingjian

    2013-01-01

    Background: 1-H-1-(3-[ 18 F]fluoro-2-hydroxypropyl)-2-nitroimidazole ( 18 F-FMISO) is a specific molecular imaging probe for tumor hypoxia imaging, and its PET/CT imaging has an important clinical value for planning cancer radiotherapy target volume. Purpose: This study aimed to develop an improved, automated production of 18 F-FMISO and to perform Micro-PET/CT imaging of tumor hypoxia. Methods: Based on the labeling precursor NITTP and a simple 'one-pot' method, an upgraded Explora GN module together with Explora LC was adopted to run radiofluorination (NITTP (10 mg), MeCN (1.0 mL), 120℃, 5.0 min), hydrolysis (HCI (1.0 mol/L, 1.0 mL), 130℃, 8.0 min) and high performance liquid chromatography (HPLC) purification to produce 18 F-FMISO automatically. Moreover, Radio-HPLC and Radio-TLC were applied for the quality control, and Micro-PET/CT scanner for hypoxia imaging of SW1990 pancreatic tumor-bearing mice. Results: As results, 18 F-FMISO was obtained with the synthesis time for about 65 min, the radiochemical yield of (30±5.0)% (no decay corrected, n=20), the radiochemical purity of above 99%, the specific activity of (2.04±0.17)x10 11 Bq·μmol -1 , plus with the enhanced chemical purity. Moreover, MicroPET/CT imaging showed that 18 F-FMISO presented whole-body distribution in SW1990 tumor-bearing mice, and the optimized time point for tumor hypoxia imaging was 3 h post injection with the uptake ratios of tumor-to-muscle of 3.00±0.08. Conclusion: In sum, we developed an improved, automated production of 18 F-FMISO with high performance liquid chromatography purification, high radiochemical yield, high specific activity and high reliability , and also verified its MicroPET/CT imaging of tumor hypoxia for providing experimental reference data. (authors)

  2. Therapeutic profile of single-fraction radiosurgery of vestibular schwannoma: unrelated malignancy predicts tumor control

    Science.gov (United States)

    Wowra, Berndt; Muacevic, Alexander; Fürweger, Christoph; Schichor, Christian; Tonn, Jörg-Christian

    2012-01-01

    Radiosurgery has become an accepted treatment option for vestibular schwannomas. Nevertheless, predictors of tumor control and treatment toxicity in current radiosurgery of vestibular schwannomas are not well understood. To generate new information on predictors of tumor control and cranial nerve toxicity of single-fraction radiosurgery of vestibular schwannomas, we conducted a single-institution long-term observational study of radiosurgery for sporadic vestibular schwannomas. Minimum follow-up was 3 years. Investigated as potential predictors of tumor control and cranial nerve toxicity were treatment technology; tumor resection preceding radiosurgery; tumor size; gender; patient age; history of cancer, vascular disease, or metabolic disease; tumor volume; radiosurgical prescription dose; and isodose line. Three hundred eighty-six patients met inclusion criteria. Treatment failure was observed in 27 patients. History of unrelated cancer (strongest predictor) and prescription dose significantly predicted tumor control. The cumulative incidence of treatment failure was 30% after 6.5 years in patients with unrelated malignancy and 10% after ≥15 years in patients without such cancer (P making in ambiguous cases. PMID:22561798

  3. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  4. Linear-quadratic model predictions for tumor control probability

    International Nuclear Information System (INIS)

    Yaes, R.J.

    1987-01-01

    Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

  5. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study

    International Nuclear Information System (INIS)

    Kong, F.-M.; Haken, Randall K. ten; Schipper, Matthew J.; Sullivan, Molly A.; Chen, Ming; Lopez, Carlos; Kalemkerian, Gregory P.; Hayman, James A.

    2005-01-01

    Purpose: To determine whether high-dose radiation leads to improved outcomes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included 106 patients with newly diagnosed or recurrent Stages I-III NSCLC, treated with 63-103 Gy in 2.1-Gy fractions, using three-dimensional conformal radiation therapy (3D-CRT) per a dose escalation trial. Targets included the primary tumor and any lymph nodes ≥1 cm, without intentionally including negative nodal regions. Nineteen percent of patients (20/106) received neoadjuvant chemotherapy. Patient, tumor, and treatment factors were evaluated for association with outcomes. Estimated median follow-up was 8.5 years. Results: Median survival was 19 months, and 5-year overall survival (OS) was 13%. Multivariate analysis revealed weight loss (p = 0.011) and radiation dose (p = 0.0006) were significant predictors for OS. The 5-year OS was 4%, 22%, and 28% for patients receiving 63-69, 74-84, and 92-103 Gy, respectively. Although presence of nodal disease was negatively associated with locoregional control under univariate analysis, radiation dose was the only significant predictor when multiple variables were included (p = 0.015). The 5-year control rate was 12%, 35%, and 49% for 63-69, 74-84, and 92-103 Gy, respectively. Conclusions: Higher dose radiation is associated with improved outcomes in patients with NSCLC treated in the range of 63-103 Gy

  6. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Improvement of nutritional support strategies after surgery for benign liver tumor through nutritional risk screening: a prospective, randomized, controlled, single-blind clinical study.

    Science.gov (United States)

    Lu, Xin; Li, Ying; Yang, Huayu; Sang, Xinting; Zhao, Haitao; Xu, Haifeng; Du, Shunda; Xu, Yiyao; Chi, Tianyi; Zhong, Shouxian; Yu, Kang; Mao, Yilei

    2013-02-01

    The rising of individualized therapy requires nutritional risk screening has become a major topic for each particular disease, yet most of the screenings were for malignancies, less for benign diseases. There is no report on the screening of patients with benign liver tumors postoperatively. We aim to evaluate the nutritional support strategies post operation for benign liver tumors through nutritional risk screening. In this prospective, randomized, controlled study, 95 patients who underwent hepatectomy for benign tumors were divided into two groups. Fifty patients in the control group were given routine permissive underfeeding nutritional supply (75 kJ/kg/d), and 45 patients in the experimental group were given lower energy (42 kJ/kg/d) in accordance of their surgical trauma. Routine blood tests, liver/kidney function were monitored before surgery and at the day 1, 3, 5, 9 after surgery, patients were observed for the time of flatus, complications, length of hospitalization (LOH), nutrition-related costs, and other clinical parameters. This completed study is registered with Clinicaltrials.gov, number NCT01292330. The nutrition-related expenses (494.0±181.0 vs. 1,514.4±348.4 RMB, Pgroup were significantly lower than those in the control group. Meanwhile, the lowered energy supply after the surgeries did not have adverse effects on clinical parameters, complications, and LOH. Patient with benign liver tumors can adopt an even lower postoperative nutritional supply that close to that for mild non-surgical conditions, and lower than the postoperative permissive underfeeding standard.

  8. Downsizing Treatment with Tyrosine Kinase Inhibitors in Patients with Advanced Gastrointestinal Stromal Tumors Improved Resectability

    Science.gov (United States)

    Sjölund, Katarina; Andersson, Anna; Nilsson, Erik; Nilsson, Ola; Ahlman, Håkan

    2010-01-01

    Background Gastrointestinal stromal tumors (GISTs) express the receptor tyrosine kinase KIT. Most GISTs have mutations in the KIT or PDGFRA gene, causing activation of tyrosine kinase. Imatinib, a tyrosine kinase inhibitor (TKI), is the first-line palliative treatment for advanced GISTs. Sunitinib was introduced for patients with mutations not responsive to imatinib. The aim was to compare the survival of patients with high-risk resected GISTs treated with TKI prior to surgery with historical controls and to determine if organ-preserving surgery was facilitated. Methods Ten high-risk GIST-patients had downsizing/adjuvant TKI treatment: nine with imatinib and one with sunitinib. The patients were matched with historical controls (n = 89) treated with surgery alone, from our population-based series (n = 259). Mutational analysis of KIT and PDGFRA was performed in all cases. The progression-free survival was calculated. Results The primary tumors decreased in mean diameter from 20.4 cm to 10.5 cm on downsizing imatinib. Four patients with R0 resection and a period of adjuvant imatinib had no recurrences versus 67% in the historical control group. Four patients with residual liver metastases have stable disease on continuous imatinib treatment after surgery. One patient has undergone reoperation with liver resection. The downsizing treatment led to organ-preserving surgery in nine patients and improved preoperative nutritional status in one patient. Conclusions Downsizing TKI is recommended for patients with bulky tumors with invasion of adjacent organs. Sunitinib can be used for patients in case of imatinib resistance (e.g., wild-type GISTs), underlining the importance of mutational analysis for optimal surgical planning. PMID:20512492

  9. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.

    2016-01-01

    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  10. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  11. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  12. Radiation-induced autologous in situ tumor vaccines

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Radiation therapy (RT) has been used as a definitive treatment for many solid tumors. While tumoricidal properties of RT are instrumental for standard clinical application, irradiated tumors can potentially serve as a source of tumor antigens in vivo, where dying tumor cells would release tumor antigens and danger signals and serve as autologous in situ tumor vaccines. Using murine tumor models of prostate, metastatic lung cancer and melanoma, we have demonstrated evidence of radiation-enhanced tumor-specific immune response that resulted in improved primary tumor control and reduction in systemic metastasis and cure. We will discuss the immunogenic properties of RT and determine how immunotherapeutic approaches can synergize with RT in boosting immune cells cell function. (author)

  13. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.

    2015-06-01

    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  14. Intraoperative MRI to control the extent of brain tumor surgery

    International Nuclear Information System (INIS)

    Knauth, M.; Sartor, K.; Wirtz, C.R.; Tronnier, V.M.; Staubert, A.; Kunze, S.

    1998-01-01

    Intraoperative MRI definitely showed residual tumor in 6 of the 18 patients and resulted in ambiguous findings in 3 patients. In 7 patients surgery was continued. Early postoperative MRI showed residual tumor in 3 patients and resulted in uncertain findings in 2 patients. The rate of patients in whom complete removal of enhancing tumor could be achieved was 50% at the time of the intraoperative MR examination and 72% at the time of the early postoperative MR control. The difference in proportion of patients with 'complete tumor removal' between the groups who had been operated on using neuronavigation (NN) and intraoperative MRI (ioMRI) and those who had been operated on using only modern neurosurgical techniques except NN and ioMRI was statistically highly significant (Fisher exact test; P=0.008). Four different types of surgically induced contrast enhancement were observed. These phenomena carry different confounding potentials with residual tumor. Conclusion: Our preliminary experience with intraoperative MRI in patients with enhancing intraaxial tumors is encouraging. Combined use of neuronavigation and intraoperative MRI was able to increase the proportion of patients in whom complete removal of the enhancing parts of the tumor was achieved. Surgically induced enhancement requires careful analysis of the intraoperative MRI in order not to confuse it with residual tumor. (orig.) [de

  15. Use of the Concept of Equivalent Biologically Effective Dose (BED) to Quantify the Contribution of Hyperthermia to Local Tumor Control in Radiohyperthermia Cervical Cancer Trials, and Comparison With Radiochemotherapy Results

    International Nuclear Information System (INIS)

    Plataniotis, George A.; Dale, Roger G.

    2009-01-01

    Purpose: To express the magnitude of contribution of hyperthermia to local tumor control in radiohyperthermia (RT/HT) cervical cancer trials, in terms of the radiation-equivalent biologically effective dose (BED) and to explore the potential of the combined modalities in the treatment of this neoplasm. Materials and Methods: Local control rates of both arms of each study (RT vs. RT+HT) reported from randomized controlled trials (RCT) on concurrent RT/HT for cervical cancer were reviewed. By comparing the two tumor control probabilities (TCPs) from each study, we calculated the HT-related log cell-kill and then expressed it in terms of the number of 2 Gy fraction equivalents, for a range of tumor volumes and radiosensitivities. We have compared the contribution of each modality and made some exploratory calculations on the TCPs that might be expected from a combined trimodality treatment (RT+CT+HT). Results: The HT-equivalent number of 2-Gy fractions ranges from 0.6 to 4.8 depending on radiosensitivity. Opportunities for clinically detectable improvement by the addition of HT are only available in tumors with an alpha value in the approximate range of 0.22-0.28 Gy -1 . A combined treatment (RT+CT+HT) is not expected to improve prognosis in radioresistant tumors. Conclusion: The most significant improvements in TCP, which may result from the combination of RT/CT/HT for locally advanced cervical carcinomas, are likely to be limited only to those patients with tumors of relatively low-intermediate radiosensitivity.

  16. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy.

    Science.gov (United States)

    Tsang, Yuk-Wah; Huang, Cheng-Chung; Yang, Kai-Lin; Chi, Mau-Shin; Chiang, Hsin-Chien; Wang, Yu-Shan; Andocs, Gabor; Szasz, Andras; Li, Wen-Tyng; Chi, Kwan-Hwa

    2015-10-15

    The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with intratumoral DCs. The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT was applied. mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26 tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot assay revealed a tumor-specific T cell activity. This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC immunotherapy.

  17. Gamma knife radiosurgery for cerebellopontine angle epidermoid tumors.

    Science.gov (United States)

    El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M

    2017-01-01

    Intracranial epidermoid tumors are commonly found in the cerebellopontine angle where they usually present with either trigeminal neuralgia or hemifacial spasm. Radiosurgery for these tumors has rarely been reported. The purpose of this study is to assess the safety and clinical outcome of the treatment of cerebellopontine epidermoid tumors with gamma knife radiosurgery. This is a retrospective study involving 12 patients harboring cerebellopontine angle epidermoid tumors who underwent 15 sessions of gamma knife radiosurgery. Trigeminal pain was present in 8 patients and hemifacial spasm in 3 patients. All cases with trigeminal pain were receiving medication and still uncontrolled. One patient with hemifacial spasm was medically controlled before gamma knife and the other two were not. Two patients had undergone surgical resection prior to gamma knife treatment. The median prescription dose was 11 Gy (10-11 Gy). The tumor volumes ranged from 3.7 to 23.9 cc (median 10.5 cc). The median radiological follow up was 2 years (1-5 years). All tumors were controlled and one tumor shrank. The median clinical follow-up was 5 years. The trigeminal pain improved or disappeared in 5 patients, and of these, 4 cases stopped their medication and one decreased it. The hemifacial spasm resolved in 2 patients who were able to stop their medication. Facial palsy developed in 1 patient and improved with conservative treatment. Transient diplopia was also reported in 2 cases. Gamma knife radiosurgery provides good clinical control for cerebellopontine angle epidermoid tumors.

  18. Treatment of nasopharyngeal tumors: literature review

    International Nuclear Information System (INIS)

    Noel, G.; Dessard-Diana, B.; Vignot, S.; Mazeron, J.J.; Noel, G.; Mazeron, J.J.

    2002-01-01

    The conventional radiotherapy and the associated treatments improved the prognostic of nasopharyngeal cancer. A better selection of the patients who must have a more aggressive treatment also probably contributed to this improvement. Even if a relation could be found between the locoregional relapse rate and the distant relapse rate, these two events remain often independent. It results from it that the improvement of local control rate necessarily does not result in a better control of the disease. The patients with a locally advanced tumor, with or not an invasion of the base of the skull and/or neurological symptoms, must have an aggressive locally treatment. This probably includes the increase in dose delivered to the tumor via a more conformational radiotherapy, a brachytherapy, radiotherapy in stereotaxic conditions or other techniques. Dose within the tumor must be at least 70 Gy and the prophylactic nodal dose, at least 50 Gy. CT scan and MRI are essential for delineating the volumes of interest. The protocols of hyperfractionated radiotherapy did not give convincing results. Association with chemotherapy allowed, on the other hand, an improvement of the prognostic locally advanced cancers. Neo-adjuvant or adjuvant chemotherapy was largely used to attempt to limit the risks of systemic dissemination, but an improvement of results was not clearly demonstrated. An improvement of the rates of survival and control of the disease, on the other hand, was observed in a certain number of studies with the chemoradiotherapy. In the event of locoregional relapse, an aggressive attitude can allow the control of the disease in the absence of systemic dissemination. Salvage treatments are, however, disappointing for when distant relapse occurs which suggests. (author)

  19. Endostatin improves radioresponse and blocks tumor revascularization after radiation therapy for A431 xenografts in mice

    International Nuclear Information System (INIS)

    Itasaka, Satoshi; Komaki, Ritsuko; Herbst, Roy S.; Shibuya, Keiko; Shintani, Tomoaki D.D.S.; Hunter, Nancy R. M.S.; Onn, Amir; Bucana, Corazon D.; Milas, Luka; Ang, K. Kian; O'Reilly, Michael S.

    2007-01-01

    Purpose: Clinical trials of antiangiogenic agents used alone for advanced malignancy have been disappointing but preclinical studies suggest that the addition of radiation therapy could improve antitumor efficacy. To test the hypothesis that antiangiogenic therapy combined with radiation therapy can overcome the limitations of antiangiogenic monotherapy, we studied the effects of endostatin combined with radiation on the growth and vascularization of A431 human epidermoid carcinomas growing intramuscularly in the legs of mice. Methods and Materials: Mice with established A431 human epidermoid leg tumors were treated with radiation, endostatin, both radiation and endostatin, or vehicle control. The experiment was repeated and mice from each group were killed at 2, 7, and 10 days after irradiation so that tumor tissue could be obtained to further analyze the kinetics of the antitumor, antivascular, and antiangiogenic response to therapy. Results: Endostatin enhanced the antitumor effects of radiation, and prolonged disease-free survival was observed in the combined treatment group. Endothelial cell proliferation was increased in tumors after irradiation but was blocked by the concurrent administration of endostatin, and the combination of endostatin with radiation enhanced endothelial cell apoptosis within 48 h after irradiation. Expression of vascular endothelial growth factor, interleukin-8, and matrix metalloproteinase-2 were increased in tumors after irradiation, and this increase was blocked by concurrent administration of endostatin. Conclusion: These data indicate that endostatin can block tumor revascularization after radiation therapy and thereby augment radioresponse

  20. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  1. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  2. Malignant melanoma and radiotherapy: past myths, excellent local control in 146 studied lesions at Georgetown University, and improving future management

    International Nuclear Information System (INIS)

    Jahanshahi, Pooya; Nasr, Nadim; Unger, Keith; Batouli, Ali; Gagnon, Gregory J.

    2012-01-01

    Introduction: Once thought to be radioresistant, emerging cellular and clinical evidence now suggests melanoma can respond to large radiation doses per fraction. Materials and Methods: We conducted a retrospective study of all patients treated with stereotactic radiosurgery and stereotactic body radiotherapy at Georgetown University Hospital from May 2002 through November 2008 and studied the classic extrapolated total dose corrected for volume (ETD vol ) model for predicting melanoma tumor response. Region-specific tumor outcomes were categorized by RECIST criteria and local control curves were estimated and analyzed when stratified by ETD vol thresholds by use of the Kaplan–Meier method. Results: Follow-up information was available for 78 lesions (49 intracranial, 8 spinal, and 21 body) with mean follow-up period of 9.2 (range, 2–36) months. 1-year local control rates for intracranial, spinal, and body tumors were 84, 100, and 72%, respectively. Treatments in general were well-tolerated. Increased ETD vol (p < 0.001) among intracranial sites resulted from larger (p < 0.001) doses per fraction combined with smaller (p < 0.001) tumor diameters. Intracranial 6-, 12-, and 24-month local control rates when treated above ETD vol threshold of 230 Gy were all 90 vs. 89, 80, and 53% below this threshold. Body 6- and 12-month local control rates when treated above ETD vol threshold of 100 Gy were 100 and 80% vs. 74 and 59% below this threshold. Discussion: By tailoring to melanoma’s unique radiobiology with large radiation doses per fraction, favorable local control was safely achieved. The ETD vol model combines the important factor of dose per fraction in melanoma treatment with a volume correction factor to predict tumor response. Although limited sample size may have prevented reaching statistical significance for local control improvements using ETD vol thresholds, optimal thresholds may exist to improve future tumor responses and further research is required.

  3. Megavoltage external beam irradiation of craniopharyngiomas: Analysis of tumor control and morbidity

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Lunsford, L.D.; Singer, J.; Cano, E.R.; Deutsch, M.

    1990-01-01

    From 1971 to 1985, 21 patients received megavoltage external beam radiation therapy at the University of Pittsburgh for control of craniopharyngioma. Minimum tumor doses prescribed to the 95% isodose volume ranged between 51.3 to 70.0 Gy. Median total dose was 60.00 Gy and median dose per fraction was 1.83 Gy. Three deaths occurred from intercurrent disease and no deaths from tumor progression. Actuarial overall survival was 89% and 82% at 5 and 10 years. Actuarial local control was 95% at 5 and 10 years. Radiation related complications included one patient with optic neuropathy, one with brain necrosis, and one that developed optic neuropathy followed by brain necrosis. The high dose group of patients who received a NSD or Neuret equivalent of greater than 60 Gy at 1.8 Gy per fraction had a significantly greater risk of radiation complications (p = .024). The actuarial risk at 5 years for optic neuropathy was 30% and brain necrosis was 12.5% in the high dose group. Tumor control in the high dose group was not shown to be significantly better. Any possible benefit in tumor control in treating patients with craniopharyngioma with doses above 60 Gy at 1.8 Gy per fraction appears to be offset by the increased risk of radiation injury

  4. Gamma knife radiosurgery for acoustic neurinomas. Pt. 1. The analysis of tumor control

    International Nuclear Information System (INIS)

    Fukuoka, Seiji; Seo, Yoshinobu; Nakagawara, Jyoji

    1997-01-01

    Forty-three patients with the unilateral type of acoustic neurinoma who were treated with gamma knife radiosurgery were analyzed from the viewpoint of tumor control. The follow-up period ranged from 22 to 55 months. The tumors were treated with marginal radiation doses of 9-15 Gy with multiple isocenters. The actuarial tumor reduction rates were 42% at one year, 75% at 2 years, and 92% at 3 years after gamma knife radiosurgery. Transient tumor expansion was seen in 33% of patients, which correlated with previous surgical cases. The present control rate was 91%. SPECT was performed on 15 selected patients before and 1 year and 2 years after gamma knife radiosurgery. 201 TlCl SPECT was used to determine tumor viability, and the early and delayed 99m Tc-DTPA-HSA-D SPECT images were used to assess tumor vascularity and permeability, respectively. The Tl index and HSA-D index of the delayed images were not significantly different from the respective preoperative values. However, there was a statistically significant decrease in the HSA-D index of the early images 1 year after treatment. A statistically significant reduction in tumor volume was seen 2 years after treatment in these 15 patients, meaning that a reduction in tumor vascularity was followed by a reduction in tumor size. One patient underwent surgical excision of the tumor 18 months after gamma knife radiosurgery because the tumor had expanded and resulted in cerebellar ataxia. Histopathologic investigation revealed the presence of some tumor cells with irregularly shaped nuclei and marked intimal thickening or obliteration of the tumor vessels. (K.H.)

  5. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  6. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  7. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  8. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy

    International Nuclear Information System (INIS)

    Tsang, Yuk-Wah; Huang, Cheng-Chung; Yang, Kai-Lin; Chi, Mau-Shin; Chiang, Hsin-Chien; Wang, Yu-Shan; Andocs, Gabor; Szasz, Andras; Li, Wen-Tyng; Chi, Kwan-Hwa

    2015-01-01

    The treatment of intratumoral dentritic cells (DCs) commonly fails because it cannot evoke immunity in a poor tumor microenvironment (TME). Modulated electro-hyperthermia (mEHT, trade-name: oncothermia) represents a significant technological advancement in the hyperthermia field, allowing the autofocusing of electromagnetic power on a cell membrane to generate massive apoptosis. This approach turns local immunogenic cancer cell death (apoptosis) into a systemic anti-tumor immune response and may be implemented by treatment with intratumoral DCs. The CT26 murine colorectal cancer model was used in this investigation. The inhibition of growth of the tumor and the systemic anti-tumor immune response were measured. The tumor was heated to a core temperature of 42 °C for 30 min. The matured synergetic DCs were intratumorally injected 24 h following mEHT was applied. mEHT induced significant apoptosis and enhanced the release of heat shock protein70 (Hsp70) in CT26 tumors. Treatment with mEHT-DCs significantly inhibited CT26 tumor growth, relative to DCs alone or mEHT alone. The secondary tumor protection effect upon rechallenging was observed in mice that were treated with mEHT-DCs. Immunohistochemical staining of CD45 and F4/80 revealed that mEHT-DC treatment increased the number of leukocytes and macrophages. Most interestingly, mEHT also induced infiltrations of eosinophil, which has recently been reported to be an orchestrator of a specific T cell response. Cytotoxic T cell assay and ELISpot assay revealed a tumor-specific T cell activity. This study demonstrated that mEHT induces tumor cell apoptosis and enhances the release of Hsp70 from heated tumor cells, unlike conventional hyperthermia. mEHT can create a favorable tumor microenvironment for an immunological chain reaction that improves the success rate of intratumoral DC immunotherapy. The online version of this article (doi:10.1186/s12885-015-1690-2) contains supplementary material, which is available to

  9. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh

    2013-01-01

    Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK\\'s Unified Genotyper, the state of the art multisample SNV caller. © 2013 Springer-Verlag.

  10. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.

    Science.gov (United States)

    Kutushov, M; Gorelik, O

    2013-01-01

    Rhodamine-6G is a fluorescent dye binding to mitochondria, thus reducing the intact mitochondria number and inhibiting mitochondrial metabolic activity. Resultantly, the respiratory chain functioning becomes blocked, the cell "suffocated" and eventually destroyed. Unlike normal cells, malignant cells demonstrate a priori reduced mitochondrial numbers and aberrant metabolism. Therefore, a turning point might exist, when Rhodamine-induced loss of active mitochondria would selectively destroy malignant, but spare normal cells. Various malignant vs. non-malignant cell lines were cultured with Rhodamine-6G at different concentrations. In addition, C57Bl mice were implanted with B16-F10 melanoma and treated with Rhodamine-6G at different dosage/time regimens. Viability and proliferation of cultured tumor cells were time and dose-dependently inhibited, up to 90%, by Rhodamine-6G, with profound histological signs of cell death. By contrast, inhibition of normal control cell proliferation hardly exceeded 15-17%. Melanoma-transplanted mice receiving Rhodamine-6G demonstrated prolonged survival, improved clinical parameters, inhibited tumor growth and metastases count, compared to their untreated counterparts. Twice-a-week 10-6M Rhodamine-6G regimen yielded the most prominent results. We conclude that malignant, but not normal, cells are selectively destroyed by low doses of Rhodamine-6G. In vivo, such treatment selectively suppresses tumor progression and dissemination, thus improving prognosis. We suggest that selective anti-tumor properties of Rhodamine-6G are based on unique physiologic differences in energy metabolism between malignant and normal cells. If found clinically relevant, low concentrations of Rhodamine-6G might be useful for replacing, or backing up, more aggressive nonselective chemotherapeutic compounds.

  11. Is it beneficial to selectively boost high-risk tumor subvolumes? A comparison of selectively boosting high-risk tumor subvolumes versus homogeneous dose escalation of the entire tumor based on equivalent EUD plans

    International Nuclear Information System (INIS)

    Kim, Yusung; To me, Wolfgang A.

    2008-01-01

    Purpose. To quantify and compare expected local tumor control and expected normal tissue toxicities between selective boosting IMRT and homogeneous dose escalation IMRT for the case of prostate cancer. Methods. Four different selective boosting scenarios and three different high-risk tumor subvolume geometries were designed to compare selective boosting and homogeneous dose escalation IMRT plans delivering the same equivalent uniform dose (EUD) to the entire PTV. For each scenario, differences in tumor control probability between both boosting strategies were calculated for the high-risk tumor subvolume and remaining low-risk PTV, and were visualized using voxel based iso-TCP maps. Differences in expected rectal and bladder complications were quantified using radiobiological indices (generalized EUD (gEUD) and normal tissue complication probability (NTCP)) as well as %-volumes. Results. For all investigated scenarios and high-risk tumor subvolume geometries, selective boosting IMRT improves expected TCP compared to homogeneous dose escalation IMRT, especially when lack of control of the high-risk tumor subvolume could be the cause for tumor recurrence. Employing, selective boosting IMRT significant increases in expected TCP can be achieved for the high-risk tumor subvolumes. The three conventional selective boosting IMRT strategies, employing physical dose objectives, did not show significant improvement in rectal and bladder sparing as compared to their counterpart homogeneous dose escalation plans. However, risk-adaptive optimization, utilizing radiobiological objective functions, resulted in reduction in NTCP for the rectum when compared to its corresponding homogeneous dose escalation plan. Conclusions. Selective boosting is a more effective method than homogeneous dose escalation for achieving optimal treatment outcomes. Furthermore, risk-adaptive optimization increases the therapeutic ratio as compared to conventional selective boosting IMRT

  12. Fractionated stereotactic radiotherapy of glomus jugulare tumors. Local control, toxicity, symptomatology, and quality of life

    International Nuclear Information System (INIS)

    Henzel, M.; Gross, M.W.; Failing, T.; Strassmann, G.; Engenhart-Cabillic, R.; Hamm, K.; Surber, G.; Kleinert, G.; Sitter, H.

    2007-01-01

    Background and Purpose: For glomus jugulare tumors, the goal of treatment is microsurgical excision. To minimize postoperative neurologic deficits, stereotactic radiosurgery (SRS) was performed as an alternative treatment option. Stereotactic fractionated radiotherapy (SRT) could be a further alternative. This study aims at the assessment of local control, side effects, and quality of life (QoL). Patients and Methods: Between 1999-2005, 17 patients were treated with SRT. 11/17 underwent previous operations. 6/17 received primary SRT. Treatment was delivered by a linear accelerator with 6-MV photons. Median cumulative dose was 57.0 Gy. Local control, radiologic regression, toxicity, and symptomatology were evaluated half-yearly by clinical examination and MRI scans. QoL was assessed by Short Form-36 (SF-36). Results: Median follow-up was 40 months. Freedom from progression and overall survival for 5 years were 100% and 93.8%. Radiologic regression was seen in 5/16 cases, 11/16 patients were stable. Median tumor shrinkage was 17.9% (p = 0.14). Severe acute toxicity (grade 3-4) or any late toxicity was never seen. Main symptoms improved in 9/16 patients, 7/16 were stable. QoL was not affected in patients receiving primary SRT. Conclusion: SRT offers an additional treatment option of high efficacy with less side effects, especially in cases of large tumors, morbidity, or recurrences after incomplete resections. (orig.)

  13. Loci controlling lymphocyte production of interferon gamma after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Havelková, Helena; Badalová, Jana; Vojtíšková, Jarmila; Quan, L.; Krulová, Magdalena; Sohrabi, Yahya; Stassen, A. P. M.; Demant, P.

    2010-01-01

    Roč. 59, č. 2 (2010), s. 203-213 ISSN 0340-7004 R&D Projects: GA MŠk(CZ) LC06009; GA AV ČR IAA500520606; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : Tumor susceptibility * Genetic control of interferon gamma production * Lymphocyte infiltration of tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.293, year: 2010

  14. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

    Directory of Open Access Journals (Sweden)

    Danny Lee, PhD

    2017-07-01

    Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

  15. Tumor evasion from immune control: Strategies of a MISS to become a MASS

    International Nuclear Information System (INIS)

    D'Onofrio, Alberto

    2007-01-01

    We biologically describe the phenomenon of the evasion of tumors from immune surveillance where tumor cells, initially constrained to exist in a microscopic steady state (MISS) elaborate strategies to evade from the immune control and to reach a macroscopic steady state (MASS). We, then, describe 'evasion' as a long term loss of equilibrium in a framework of prey-predator-like models with adiabatic varying parameters, whose changes reflect the evolutionary adaptation of the tumor in a 'hostile' environment by means of the elaboration of new strategies of survival. Similarities and differences between the present work and the interesting seminal paper [Kuznetsov VA, Knott GD. Modeling tumor regrowth and immunotherapy. Math Comput Model 2001;33:1275-87] are discussed. We also propose and study a model of clonal resistance to the immune control with slowly varying adaptive mutation parameter

  16. Tumor evasion from immune control: Strategies of a MISS to become a MASS

    Energy Technology Data Exchange (ETDEWEB)

    D' Onofrio, Alberto [Department of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, I-20141 Milan (Italy)]. E-mail: alberto.d' onofrio@ieo.it

    2007-01-15

    We biologically describe the phenomenon of the evasion of tumors from immune surveillance where tumor cells, initially constrained to exist in a microscopic steady state (MISS) elaborate strategies to evade from the immune control and to reach a macroscopic steady state (MASS). We, then, describe 'evasion' as a long term loss of equilibrium in a framework of prey-predator-like models with adiabatic varying parameters, whose changes reflect the evolutionary adaptation of the tumor in a 'hostile' environment by means of the elaboration of new strategies of survival. Similarities and differences between the present work and the interesting seminal paper [Kuznetsov VA, Knott GD. Modeling tumor regrowth and immunotherapy. Math Comput Model 2001;33:1275-87] are discussed. We also propose and study a model of clonal resistance to the immune control with slowly varying adaptive mutation parameter.

  17. Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity in vitro and in vivo.

    Science.gov (United States)

    Mitrović, Ana; Sosič, Izidor; Kos, Špela; Tratar, Urša Lampreht; Breznik, Barbara; Kranjc, Simona; Mirković, Bojana; Gobec, Stanislav; Lah, Tamara; Serša, Gregor; Kos, Janko

    2017-08-29

    Lysosomal cysteine peptidase cathepsin B, involved in multiple processes associated with tumor progression, is validated as a target for anti-cancer therapy. Nitroxoline, a known antimicrobial agent, is a potent and selective inhibitor of cathepsin B, hence reducing tumor progression in vitro and in vivo . In order to further improve its anti-cancer properties we developed a number of derivatives using structure-based chemical synthesis. Of these, the 7-aminomethylated derivative (compound 17 ) exhibited significantly improved kinetic properties over nitroxoline, inhibiting cathepsin B endopeptidase activity selectively. In the present study, we have evaluated its anti-cancer properties. It was more effective than nitroxoline in reducing tumor cell invasion and migration, as determined in vitro on two-dimensional cell models and tumor spheroids, under either endpoint or real time conditions. Moreover, it exhibited improved action over nitroxoline in impairing tumor growth in vivo in LPB mouse fibrosarcoma tumors in C57Bl/6 mice. Taken together, the addition of a 2-(ethylamino)acetonitrile group to nitroxoline at position 7 significantly improves its pharmacological characteristics and its potential for use as an anti-cancer drug.

  18. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    Chen Yang; Shi Luyao; Shu Huazhong; Luo Limin; Coatrieux, Jean-Louis; Yin Xindao; Toumoulin, Christine

    2013-01-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  19. Skin tumor area extraction using an improved dynamic programming approach.

    Science.gov (United States)

    Abbas, Qaisar; Celebi, M E; Fondón García, Irene

    2012-05-01

    Border (B) description of melanoma and other pigmented skin lesions is one of the most important tasks for the clinical diagnosis of dermoscopy images using the ABCD rule. For an accurate description of the border, there must be an effective skin tumor area extraction (STAE) method. However, this task is complicated due to uneven illumination, artifacts present in the lesions and smooth areas or fuzzy borders of the desired regions. In this paper, a novel STAE algorithm based on improved dynamic programming (IDP) is presented. The STAE technique consists of the following four steps: color space transform, pre-processing, rough tumor area detection and refinement of the segmented area. The procedure is performed in the CIE L(*) a(*) b(*) color space, which is approximately uniform and is therefore related to dermatologist's perception. After pre-processing the skin lesions to reduce artifacts, the DP algorithm is improved by introducing a local cost function, which is based on color and texture weights. The STAE method is tested on a total of 100 dermoscopic images. In order to compare the performance of STAE with other state-of-the-art algorithms, various statistical measures based on dermatologist-drawn borders are utilized as a ground truth. The proposed method outperforms the others with a sensitivity of 96.64%, a specificity of 98.14% and an error probability of 5.23%. The results demonstrate that this STAE method by IDP is an effective solution when compared with other state-of-the-art segmentation techniques. The proposed method can accurately extract tumor borders in dermoscopy images. © 2011 John Wiley & Sons A/S.

  20. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  1. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    International Nuclear Information System (INIS)

    Shiroishi, Mark S.; Nelson, Marvin D.; Panigrahy, Ashok; Moore, Kevin R.; Gilles, Floyd H.; Gonzalez-Gomez, Ignacio; Blueml, Stefan

    2015-01-01

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  2. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  3. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  4. WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S; Warren, DR; Wilson, JM; Muirhead, R; Hawkins, MA; Maughan, T; Partridge, M [University of Oxford, Oxford, Oxfordshire (United Kingdom)

    2016-06-15

    Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boost of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ

  5. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  6. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  7. Trace metals and over-expression of metallothioneins in bladder tumoral lesions: a case-control study

    Directory of Open Access Journals (Sweden)

    Cymbron Teresa

    2009-07-01

    Full Text Available Abstract Background Previous studies have provided some evidence of a possible association between cancer and metallothioneins. Whether this relates to an exposure to carcinogenic metals remains unclear. Methods In order to examine the association between the expression of metallothioneins and bladder tumors, and to compare the levels of arsenic, cadmium, chromium, lead and nickel in animals with bladder tumors and animals without bladder tumors, 37 cases of bovine bladder tumors and 17 controls were collected. The detection and quantification of metallothioneins in bladder tissue of both cases and controls was performed by immunohistochemistry. And the quantification of metals in tissue and hair was assessed by inductively coupled plasma – mass spectrometry. Results Increased expression of metallothioneins was associated with bladder tumors when compared with non-tumoral bladder tissue (OR = 9.3, 95% CI: 1.0 – 480. The concentrations of cadmium, chromium, lead and nickel in hair of cases were significantly higher than those of controls. However, as for the concentration of metals in bladder tissue, the differences were not significant. Conclusion Though the sample size was small, the present study shows an association between bladder tumors and metallothioneins. Moreover, it shows that concentrations of metals such as cadmium, chromium, lead and nickel in hair may be used as a biomarker of exposure.

  8. Effects of nursing intervention models on social adaption capability development in preschool children with malignant tumors: a randomized control trial.

    Science.gov (United States)

    Yu, Lu; Mo, Lin; Tang, Yan; Huang, Xiaoyan; Tan, Juan

    2014-06-01

    The objectives of this study are to compare the effects of two nursing intervention models on the ability of preschool children with malignant tumors to socialize and to determine if these interventions improved their social adaption capability (SAC) and quality of life. Inpatient preschool children with malignant tumors admitted to the hospital between December 2009 and March 2012 were recruited and randomized into either the experimental or control groups. The control group received routine nursing care, and the experimental group received family-centered nursing care, including physical, psychological, and social interventions. The Infants-Junior Middle School Student's Social-Life Abilities Scale was used to evaluate SAC development of participants. Participants (n = 240) were recruited and randomized into two groups. After the intervention, the excellent and normal SAC rates were 27.5% and 55% in the experimental group, respectively, compared with 2.5% and 32.5% in the control group (p intervention, SAC in experimental group was improved compared with before intervention (54.68 ± 10.85 vs 79.9 ± 22.3, p intervention in the control group (54.70 ± 11.47 vs. 52 ± 15.8, p = 0.38). The family-centered nursing care model that included physical, psychological, and social interventions improved the SAC of children with malignancies compared with children receiving routine nursing care. Establishing a standardized family-school-community-hospital hierarchical multi-management intervention model for children is important to the efficacy of long-term interventions and to the improvement of SAC of children with malignancies. Copyright © 2014 John Wiley & Sons, Ltd.

  9. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of Cancer

    Directory of Open Access Journals (Sweden)

    Kathleen F. Pirollo

    2006-01-01

    Full Text Available The development of improvements in magnetic resonance imaging (MRI that would enhance sensitivity, leading to earlier detection of cancer and visualization of metastatic disease, is an area of intense exploration. We have devised a tumor-targeting, liposomal nanodelivery platform for use in gene medicine. This systemically administered nanocomplex has been shown to specifically and efficiently deliver both genes and oligonucleotides to primary and metastatic tumor cells, resulting in significant tumor growth inhibition and even tumor regression. Here we examine the effect on MRI of incorporating conventional MRI contrast agent Magnevist® into our anti-transferrin receptor single-chain antibody (TfRscFv liposomal complex. Both in vitro and in an in vivo orthotopic mouse model of pancreatic cancer, we show increased resolution and image intensity with the complexed Magnevist®. Using advanced microscopy techniques (scanning electron microscopy and scanning probe microscopy, we also established that the Magnevist® is in fact encapsulated by the liposome in the complex and that the complex still retains its nanodimensional size. These results demonstrate that this TfRscFv-liposome-Magnevist® nanocomplex has the potential to become a useful tool in early cancer detection.

  10. Digit ratio (2D:4D) in primary brain tumor patients: A case-control study.

    Science.gov (United States)

    Bunevicius, Adomas; Tamasauskas, Sarunas; Deltuva, Vytenis Pranas; Tamasauskas, Arimantas; Sliauzys, Albertas; Bunevicius, Robertas

    2016-12-01

    The second-to-fourth digit ratio (2D:4D) reflects prenatal estrogen and testosterone exposure, and is established in utero. Sex steroids are implicated in development and progression of primary brain tumors. To investigate whether there is a link between 2D:4D ratio and primary brain tumors, and age at presentation. Digital images of the right and left palms of 85 primary brain tumor patients (age 56.96±13.68years; 71% women) and 106 (age 54.31±13.68years; 68% women) gender and age matched controls were obtained. The most common brain tumor diagnoses were meningioma (41%), glioblastoma (20%) and pituitary adenoma (16%). Right and left 2D:4D ratios, and right minus left 2D:4D (D r-l ) were compared between patients and controls, and were correlated with age. Right and left 2D:4D ratios were significantly lower in primary brain tumor patients relative to controls (t=-4.28, pbrain tumor patients and controls (p=0.27). In meningioma and glioma patients, age at presentation correlated negatively with left 2D:4D ratio (rho=-0.42, p=0.01 and rho=-0.36, p=0.02, respectively) and positively with D r-l (rho=0.45, p=0.009 and rho=0.65, p=0.04, respectively). Right and left hand 2D:4D ratios are lower in primary brain tumor patients relative to healthy individuals suggesting greater prenatal testosterone and lower prenatal estrogen exposure in brain tumor patients. Greater age at presentation is associated with greater D r-l and with lower left 2D:4D ratio of meningioma and glioma patients. Due to small sample size our results should be considered preliminary and interpreted with caution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Fertility drug use and the risk of ovarian tumors in infertile women: a case-control study.

    Science.gov (United States)

    Asante, Albert; Leonard, Phoebe H; Weaver, Amy L; Goode, Ellen L; Jensen, Jani R; Stewart, Elizabeth A; Coddington, Charles C

    2013-06-01

    To assess the influence of infertility and fertility drugs on risk of ovarian tumors. Case-control study (Mayo Clinic Ovarian Cancer Study). Ongoing academic study of ovarian cancer. A total of 1,900 women (1,028 with ovarian tumors and 872 controls, frequency matched on age and region of residence) who had provided complete information in a self-report questionnaire about history of infertility and fertility drug use. None. Effect of infertility history, use of fertility drugs and oral contraception, and gravidity on the risk of ovarian tumor development, after controlling for potential confounders. Among women who had a history of infertility, use of fertility drugs was reported by 44 (24%) of 182 controls and 38 (17%) of 226 cases. Infertile women who used fertility drugs were not at increased risk of developing ovarian tumors compared with infertile women who did not use fertility drugs; the adjusted odds ratio was 0.64 (95% CI, 0.37, 1.11). The findings were similar when stratified by gravidity and when analyzed separately for borderline versus invasive tumors. We found no statistically significant association between fertility drug use and risk of ovarian tumors. Further larger, prospective studies are needed to confirm this observation. Published by Elsevier Inc.

  12. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  13. Preoperative intraluminal irradiation of the extrahepatic bile duct tumor

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Tsujii, Hirohiko; Arimoto, Takuro; Irie, Goro.

    1991-01-01

    From 1984 through 1986, six patients with extrahepatic bile duct tumor were treated preoperatively with intraluminal irradiation of the bile duct. There were no unresectable cases and pathological examination of the surgical specimens showed moderate to remarkable tumor regression in all cases. Postoperative biliary tract hemorrhage occurred in 2 of 3 patients who received 60 Gy at a point 7.5 mm from the center of the source. With accurate preoperative diagnosis of the tumor extent and careful setting of the target area of intraluminal irradiation, improved local tumor control of extrahepatic bile duct tumor can be expected with this method. (author)

  14. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  15. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  16. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  17. Childhood brain tumors: epidemiology, current management and future directions.

    Science.gov (United States)

    Pollack, Ian F; Jakacki, Regina I

    2011-07-26

    Brain tumors are the most common solid tumors in children. With the increasingly widespread availability of MRI, the incidence of childhood brain tumors seemed to rise in the 1980s, but has subsequently remained relatively stable. However, management of brain tumors in children has evolved substantially during this time, reflecting refinements in classification of tumors, delineation of risk groups within histological subsets of tumors, and incorporation of molecular techniques to further define tumor subgroups. Although considerable progress has been made in the outcomes of certain tumors, prognosis in other childhood brain tumor types is poor. Among the tumor groups with more-favorable outcomes, attention has been focused on reducing long-term morbidity without sacrificing survival rates. Studies for high-risk groups have examined the use of intensive therapy or novel, molecularly targeted approaches to improve disease control rates. In addition to reviewing the literature and providing an overview of the complexities in diagnosing childhood brain tumors, we will discuss advances in the treatment and categorization of several tumor types in which progress has been most apparent, as well as those in which improvements have been lacking. The latest insights from molecular correlative studies that hold potential for future refinements in therapy will also be discussed.

  18. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  19. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression.

    Science.gov (United States)

    Wang, Feng-Wei; Cai, Mu-Yan; Mai, Shi-Juan; Chen, Jie-Wei; Bai, Hai-Yan; Li, Yan; Liao, Yi-Ji; Li, Chang-Peng; Tian, Xiao-Peng; Kung, Hsiang-Fu; Guan, Xin-Yuan; Xie, Dan

    2014-08-30

    Hepatocellular carcinoma (HCC) is a highly vascularized tumor with poor clinical outcome. Our previous work has shown that eukaryotic initiation factor 5A2 (EIF5A2) over-expression enhances HCC cell metastasis. In this study, EIF5A2 was identified to be an independent risk factor for poor disease-specific survival among HCC patients. Both in vitro and in vivo assays indicated that ablation of endogenous EIF5A2 inhibited tumor angiogenesis by reducing matrix metalloproteinase 2 (MMP-2) expression. Given that MMP-2 degrades collagen IV, a main component of the vascular basement membrane (BM), we subsequently investigated the effect of EIF5A2 on tumor vasculature remodeling using complementary approaches, including fluorescent immunostaining, transmission electron microscopy, tumor perfusion assays and tumor hypoxia assays. Taken together, our results indicate that EIF5A2 silencing increases tumor vessel wall continuity, increases blood perfusion and improves tumor oxygenation. Additionally, we found that ablation of EIF5A2 enhanced the chemosensitivity of HCC cells to 5-Fluorouracil (5-FU). Finally, we demonstrated that EIF5A2 might exert these functions by enhancing MMP-2 activity via activation of p38 MAPK and JNK/c-Jun pathways. This study highlights an important role of EIF5A2 in HCC tumor vessel remodeling and indicates that EIF5A2 represents a potential therapeutic target in the treatment of HCC.

  20. 3D in radiotherapy - pushing the dose envelope to improve cure

    International Nuclear Information System (INIS)

    Leibel, Steven A.

    1996-01-01

    Approximately one in four newly diagnosed cancer patients receive radiation in the initial attempt to cure the tumor. In terms of the 1996 cancer incidence data, this comprises more than 350,000 patients. Inasmuch as 25% of these patients initially relapse at primary tumor sites, the issue of improving local control remains a major challenge to the profession. Recent improvements in treatment planning and delivery have enhanced the precision of radiotherapy, but radiation resistance remains a critical issue that confounds the potential for cure in many tumors. Chemical and biological modifiers of the radiation response have provided an approach with clinical promise, but their therapeutic impact remains to be established. Hence, tumor dose escalation continues to represent the most viable approach to improve local control. Recent experience with new conformal radiotherapy techniques has demonstrated that significant tumor dose escalation is feasible with concomitant reduction in normal tissue toxicity. This experience provides the best hope for immediate improvement in the rates of local tumor control. It remains, nonetheless, unclear how far the dose envelope can be pushed and whether this would be sufficient to overcome the problem of local failure. It may turn out that biological modification of the radiation response may still be necessary to provide a maximal control in certain types of tumors

  1. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  2. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma.

    Science.gov (United States)

    Liu, Rong; Colby, Aaron H; Gilmore, Denis; Schulz, Morgan; Zeng, Jialiu; Padera, Robert F; Shirihai, Orian; Grinstaff, Mark W; Colson, Yolonda L

    2016-09-01

    The treatment outcomes for malignant peritoneal mesothelioma are poor and associated with high co-morbidities due to suboptimal drug delivery. Thus, there is an unmet need for new approaches that concentrate drug at the tumor for a prolonged period of time yielding enhanced antitumor efficacy and improved metrics of treatment success. A paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) system is described that addresses two unique challenges to improve the outcomes for peritoneal mesothelioma. First, following intraperitoneal administration, eNPs rapidly and specifically localize to tumors. The rate of eNP uptake by tumors is an order of magnitude faster than the rate of uptake in non-malignant cells; and, subsequent accumulation in autophagosomes and disruption of autophagosomal trafficking leads to prolonged intracellular retention of eNPs. The net effect of these combined mechanisms manifests as rapid localization to intraperitoneal tumors within 4 h of injection and persistent intratumoral retention for >14 days. Second, the high tumor-specificity of PTX-eNPs leads to delivery of greater than 100 times higher concentrations of drug in tumors compared to PTX alone and this is maintained for at least seven days following administration. As a result, overall survival of animals with established mesothelioma more than doubled when animals were treated with multiple doses of PTX-eNPs compared to equivalent dosing with PTX or non-responsive PTX-loaded nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimal distributed control of a diffuse interface model of tumor growth

    Science.gov (United States)

    Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen

    2017-06-01

    In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by Hawkins-Daruud et al in Hawkins-Daruud et al (2011 Int. J. Numer. Math. Biomed. Eng. 28 3-24). The model consists of a Cahn-Hilliard equation for the tumor cell fraction φ coupled to a reaction-diffusion equation for a function σ representing the nutrient-rich extracellular water volume fraction. The distributed control u monitors as a right-hand side of the equation for σ and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables. The financial support of the FP7-IDEAS-ERC-StG #256872 (EntroPhase) and of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR ‘Matematica d’Eccellenza in biologia ed ingegneria come accelleratore di una nuona strateGia per l’ATtRattività dell’ateneo pavese’ is gratefully acknowledged. The paper also benefited from the support of the MIUR-PRIN Grant 2015PA5MP7 ‘Calculus of Variations’ for PC and GG, and the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for PC, GG and ER.

  4. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Lü

    Full Text Available Tumor engineering is defined as the construction of three-dimensional (3D tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480 had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510 had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments.

  5. Simultaneous administration of glucose and hyperoxic gas achieves greater improvement in tumor oxygenation than hyperoxic gas alone

    International Nuclear Information System (INIS)

    Snyder, Stacey A.; Lanzen, Jennifer L.; Braun, Rod D.; Rosner, Gary; Secomb, Timothy W.; Biaglow, John; Brizel, David M.; Dewhirst, Mark W.

    2001-01-01

    Purpose: To test the feasibility of hyperglycemic reduction of oxygen consumption combined with oxygen breathing (O 2 ), to improve tumor oxygenation. Methods and Materials: Fischer-344 rats bearing 1 cm R3230Ac flank tumors were anesthetized with Nembutal. Mean arterial pressure, heart rate, tumor blood flow ([TBF], laser Doppler flowmetry), pH, and pO 2 were measured before, during, and after glucose (1 or 4 g/kg) and/or O 2 . Results: Mean arterial pressure and heart rate were unaffected by treatment. Glucose at 1 g/kg yielded maximum blood glucose of 400 mg/dL, no change in TBF, reduced tumor pH (0.17 unit), and 3 mm Hg pO 2 rise. Glucose at 4 g/kg yielded maximum blood glucose of 900 mg/dL, pH drop of 0.6 unit, no pO 2 change, and reduced TBF (31%). Oxygen tension increased by 5 mm Hg with O 2 . Glucose (1 g/Kg) + O 2 yielded the largest change in pO 2 (27 mm Hg); this is highly significant relative to baseline or either treatment alone. The effect was positively correlated with baseline pO 2 , but 6 of 7 experiments with baseline pO 2 2 to improve tumor oxygenation. However, some cell lines are not susceptible to the Crabtree effect, and the magnitude is dependent on baseline pO 2 . Additional or alternative manipulations may be necessary to achieve more uniform improvement in pO 2

  6. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Keall, P; Greer, P; Lapuz, C; Ludbrook, J; Kim, T

    2015-01-01

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath

  7. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Keall, P [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, NSW (Australia); Greer, P [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Lapuz, C; Ludbrook, J [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Kim, T [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, NSW (Australia); Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA (United States)

    2015-06-15

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath

  8. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies.

    Science.gov (United States)

    Lefranc, M; Monet, P; Desenclos, C; Peltier, J; Fichten, A; Toussaint, P; Sevestre, H; Deramond, H; Le Gars, D

    2012-01-01

    Stereotactic biopsies are subject to sampling errors (essentially due to target selection). The presence of contrast enhancement is not a reliable marker of malignancy. The goal of the present study was to determine whether perfusion-weighted imaging can improve target selection in stereotactic biopsies. We studied 21 consecutive stereotactic biopsies between June 2009 and March 2010. Perfusion-weighted magnetic resonance imaging (MRI) was integrated into our neuronavigator. Perfusion-weighted imaging was used as an adjunct to conventional MRI data for target determination. Conventional MRI alone was used to determine the trajectory. We found a linear correlation between regional cerebral blood volume (rCBV) and vessel density (number of vessels per mm(2); R = 0.64; p < 0.001). Perfusion-weighted imaging facilitated target determination in 11 cases (52.4%), all of which were histopathologically diagnosed as glial tumors. For glial tumors, which presented with contrast enhancement, perfusion-weighted imaging identified a more precisely delimited target in 9 cases, a different target in 1 case, and exactly the same target in 1 other case. In all cases, perfusion-selected sampling provided information on cellular features and tumor grading. rCBV was significantly associated with grading (p < 0.01), endothelial proliferation (p < 0.01), and vessel density (p < 0.01). For lesions with rCBV values ≤1, perfusion-weighted MRI did not help to determine the target but was useful for surgical management. For stereotactic biopsies, targeting based on perfusion-weighted imaging is a feasible method for reducing the sampling error and improving target selection in the histopathological diagnosis of tumors with high rCBVs. Copyright © 2012 S. Karger AG, Basel.

  9. Exploratory case-control study of brain tumors in adults

    International Nuclear Information System (INIS)

    Burch, J.D.; Craib, K.J.; Choi, B.C.; Miller, A.B.; Risch, H.A.; Howe, G.R.

    1987-01-01

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies

  10. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  11. Tumor blood vessel 'normalization' improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    International Nuclear Information System (INIS)

    Nigg, D.W.

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  12. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  13. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  14. Endothelial Thermotolerance Impairs Nanoparticle Transport in Tumors.

    Science.gov (United States)

    Bagley, Alexander F; Scherz-Shouval, Ruth; Galie, Peter A; Zhang, Angela Q; Wyckoff, Jeffrey; Whitesell, Luke; Chen, Christopher S; Lindquist, Susan; Bhatia, Sangeeta N

    2015-08-15

    The delivery of diagnostic and therapeutic agents to solid tumors is limited by physical transport barriers within tumors, and such restrictions directly contribute to decreased therapeutic efficacy and the emergence of drug resistance. Nanomaterials designed to perturb the local tumor environment with precise spatiotemporal control have demonstrated potential to enhance drug delivery in preclinical models. Here, we investigated the ability of one class of heat-generating nanomaterials called plasmonic nanoantennae to enhance tumor transport in a xenograft model of ovarian cancer. We observed a temperature-dependent increase in the transport of diagnostic nanoparticles into tumors. However, a transient, reversible reduction in this enhanced transport was seen upon reexposure to heating, consistent with the development of vascular thermotolerance. Harnessing these observations, we designed an improved treatment protocol combining plasmonic nanoantennae with diffusion-limited chemotherapies. Using a microfluidic endothelial model and genetic tools to inhibit the heat-shock response, we found that the ability of thermal preconditioning to limit heat-induced cytoskeletal disruption is an important component of vascular thermotolerance. This work, therefore, highlights the clinical relevance of cellular adaptations to nanomaterials and identifies molecular pathways whose modulation could improve the exposure of tumors to therapeutic agents. ©2015 American Association for Cancer Research.

  15. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    Science.gov (United States)

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Predictors of Individual Tumor Local Control After Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd; Simpson, Joseph R.; Huang, Jiayi; Drzymala, Robert E.; Barani, Igor J.; Dowling, Joshua L.; Rich, Keith M.; Chicoine, Michael R.; Kim, Albert H.; Leuthardt, Eric C.; Robinson, Clifford G.

    2014-01-01

    Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. A P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective

  17. Leukemia and brain tumors in Norwegian railway workers, a nested case-control study.

    Science.gov (United States)

    Tynes, T; Jynge, H; Vistnes, A I

    1994-04-01

    In an attempt to assess whether exposure to electromagnetic fields on Norwegian railways induces brain tumors or leukemia, the authors conducted a nested case-control study of railway workers based on incident cases from the Cancer Registry of Norway in a cohort of 13,030 male Norwegian railway workers who had worked on either electric or non-electric railways. The cohort comprised railway line, outdoor station, and electricity workers. The case series comprised 39 men with brain tumors and 52 men with leukemia (follow-up, 1958-1990). Each case was matched on age with four or five controls selected from the same cohort. The exposure of each study subject to electric and magnetic fields was evaluated from cumulative exposure measures based on present measurements and historical data. Limited information on potential confounders such as creosote, solvents, and herbicides was also collected; information on whether the subject had smoked was obtained by interviews with the subjects or work colleagues. The case-control analysis showed that men employed on electric railways, compared with non-electric ones, had an odds ratio for leukemia of 0.70 (adjusted for smoking) and an odds ratio for brain tumor of 0.87. No significant trend was shown for exposure to either magnetic or electric fields. These results do not support an association between exposure to 16 2/3-Hertz electric or magnetic fields and the risk for leukemia or brain tumors.

  18. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors.

    Science.gov (United States)

    Fischer, Cheryl; Petriccione, Mary; Donzelli, Maria; Pottenger, Elaine

    2016-03-01

    Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life. © The Author(s) 2015.

  19. Mammographic density and risk of breast cancer by tumor characteristics: a case-control study.

    Science.gov (United States)

    Krishnan, Kavitha; Baglietto, Laura; Stone, Jennifer; McLean, Catriona; Southey, Melissa C; English, Dallas R; Giles, Graham G; Hopper, John L

    2017-12-16

    In a previous paper, we had assumed that the risk of screen-detected breast cancer mostly reflects inherent risk, and the risk of whether a breast cancer is interval versus screen-detected mostly reflects risk of masking. We found that inherent risk was predicted by body mass index (BMI) and dense area (DA) or percent dense area (PDA), but not by non-dense area (NDA). Masking, however, was best predicted by PDA but not BMI. In this study, we aimed to investigate if these associations vary by tumor characteristics and mode of detection. We conducted a case-control study nested within the Melbourne Collaborative Cohort Study of 244 screen-detected cases matched to 700 controls and 148 interval cases matched to 446 controls. DA, NDA and PDA were measured using the Cumulus software. Tumor characteristics included size, grade, lymph node involvement, and ER, PR, and HER2 status. Conditional and unconditional logistic regression were applied as appropriate to estimate the Odds per Adjusted Standard Deviation (OPERA) adjusted for age and BMI, allowing the association with BMI to be a function of age at diagnosis. For screen-detected cancer, both DA and PDA were associated to an increased risk of tumors of large size (OPERA ~ 1.6) and positive lymph node involvement (OPERA ~ 1.8); no association was observed for BMI and NDA. For risk of interval versus screen-detected breast cancer, the association with risk for any of the three mammographic measures did not vary by tumor characteristics; an association was observed for BMI for positive lymph nodes (OPERA ~ 0.6). No associations were observed for tumor grade and ER, PR and HER2 status of tumor. Both DA and PDA were predictors of inherent risk of larger breast tumors and positive nodal status, whereas for each of the three mammographic density measures the association with risk of masking did not vary by tumor characteristics. This might raise the hypothesis that the risk of breast tumours with poorer prognosis

  20. The use of image morphing to improve the detection of tumors in emission imaging

    International Nuclear Information System (INIS)

    Dykstra, C.; Greer, K.; Jaszczak, R.; Celler, A.

    1999-01-01

    Two of the limitations on the utility of SPECT and planar scintigraphy for the non-invasive detection of carcinoma are the small sizes of many tumors and the possible low contrast between tumor uptake and background. This is particularly true for breast imaging. Use of some form of image processing can improve the visibility of tumors which are at the limit of hardware resolution. Smoothing, by some form of image averaging, either during or post-reconstruction, is widely used to reduce noise and thereby improve the detectability of regions of elevated activity. However, smoothing degrades resolution and, by averaging together closely spaced noise, may make noise look like a valid region of increased uptake. Image morphing by erosion and dilation does not average together image values; it instead selectively removes small features and irregularities from an image without changing the larger features. Application of morphing to emission images has shown that it does not, therefore, degrade resolution and does not always degrade contrast. For these reasons it may be a better method of image processing for noise removal in some images. In this paper the authors present a comparison of the effects of smoothing and morphing using breast and liver studies

  1. Assessment of tumor control following definitive radiotherapy in carcinoma of the prostate: A continuing dilemma

    International Nuclear Information System (INIS)

    Pilepich, M.V.

    1987-01-01

    Evaluation of tumor response and tumor control after definitive radiotherapy is a relatively simple task in most malignancies arising at sites amenable to clinical examination (inspection and palpation). The rates of tumor regression following irradiation are quite variable. While some types of cancer regress completely during the radiotherapy course, some may take weeks or months to resolve. Occasionally, residual induration or a residual mass may persist for prolonged periods (many months), prompting the clinician to consider a biopsy for evaluation of the tumor status. In these circumstances histological examination may show necrotic tumor or residual fibrotic tissue. Finding viable-appearing tumor cells beyond the immediate postirradiation period (several weeks to a few months after completion of the radiotherapy course) is generally accepted as an equivalent of failure to eradicate the tumor. However, in a few types of cancer, presence of histologically identifiable and apparently viable tumor cells over protracted periods does not necessarily imply treatment failure

  2. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  3. Effects of carbogen plus fractionated irradiation on KHT tumor oxygenation

    International Nuclear Information System (INIS)

    Fenton, Bruce M.

    1997-01-01

    Background and purpose: Numerous studies have demonstrated improvements in the oxygenation of tumor cells following both irradiation and carbogen breathing. The current studies were initiated to measure the combined effects of carbogen inhalation plus single and multi-dose irradiation on tumor oxygen availability, to better define the underlying physiological relationships. Materials and methods: Using KHT murine sarcomas, radiation was delivered to the tumor-bearing legs of non-anesthetized mice. Tumors were quick-frozen prior to or following single or multifraction irradiation and carbogen breathing, and intravascular HbO 2 saturation profiles were determined cryospectrophotometrically. Results: HbO 2 levels for blood vessels located near the tumor surface initially decreased following 10 Gy irradiation, then increased and remained elevated. Interior HbO 2 levels remained unchanged. Following 2.5 Gy, HbO 2 changes were minimal. At 24 h following 10 Gy, HbO 2 levels were significantly increased compared to non-irradiated controls, and carbogen breathing produced no additional benefit. At 24 h following five fractions of 2 Gy, HbO 2 levels throughout the tumor volume were significantly higher in carbogen breathing animals than in air breathing controls. Conclusions: Although peripheral blood vessels demonstrated substantial improvements in oxygenation following irradiation, oxygen availability nearer the tumor center remained at very low levels. The utility of carbogen in enhancing tumor oxygen availability was maintained following five clinically relevant fractions. At higher doses, radiation-induced enhancements in HbO 2 levels overshadowed the carbogen effect. For either air or carbogen breathing, a decrease in the percentage of vessels with very low oxygen content did not appear to be a major factor in the reoxygenation of the KHT tumor

  4. Primary intracranial tumors among atomic bomb survivors and controls, Hiroshima and Nagasaki, 1961-75

    International Nuclear Information System (INIS)

    Seyama, Shinichi; Ishimaru, Toranosuke; Iijima, Soichi; Mori, Kazuo.

    1980-02-01

    An analysis was made of the relationship of radiation dose to the occurrence of primary intracranial tumors among atomic bomb survivors and nonexposed controls, Hiroshima and Nagasaki, in the fixed cohort of the Life Span Study (LSS) extended sample during the period 1961-75, or 16 to 30 years after the A-bombs. Based on various medical sources, 104 cases of primary intracranial tumors were identified among approximately 99,000 LSS extended sample members who were alive as of 1 January 1961. Of these 104 cases, 45 had manifested clinical signs of brain tumors, but, 59 cases were identified incidentally at postmortem examination. The distributions of morphologic type, age, and size of tumor were quite different for those primary intracranial tumors with and without a clinical sign of brain tumor. Glioma was the most frequent type of tumor with a clinical sign and meningioma was the most frequent type without. In relation to radiation dose the incidence rate of primary intracranial tumors with a clinical sign showed a significant excess risk for males in the high dose group who received 100 rad or more after adjustment for age at the time of the bomb (ATB). The standardized relative risk is around 5 in this group. The data also suggest that the crude relative risk of glioma is greater in the high dose group for younger ages ATB. However, there is no increased risk in females. Among the 5,012 autopsy subjects in the LSS extended sample during 1961-75, there is no relationship between radiation dose and the prevalence rate of primary intracranial tumors in those identified incidentally by autopsy. The relative risk of subclinical adenoma of the pituitary gland between high dose subjects and controls was also examined for a sample of 95 sex- and age-matched pairs using Hiroshima autopsy materials for 1961-74, but no relationship to dose was observed. (author)

  5. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity.

    Directory of Open Access Journals (Sweden)

    Yuanjie Hu

    Full Text Available Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7 copy number variation (CNV in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.

  6. 3D model-based documentation with the Tumor Therapy Manager (TTM) improves TNM staging of head and neck tumor patients.

    Science.gov (United States)

    Pankau, Thomas; Wichmann, Gunnar; Neumuth, Thomas; Preim, Bernhard; Dietz, Andreas; Stumpp, Patrick; Boehm, Andreas

    2015-10-01

    Many treatment approaches are available for head and neck cancer (HNC), leading to challenges for a multidisciplinary medical team in matching each patient with an appropriate regimen. In this effort, primary diagnostics and its reliable documentation are indispensable. A three-dimensional (3D) documentation system was developed and tested to determine its influence on interpretation of these data, especially for TNM classification. A total of 42 HNC patient data sets were available, including primary diagnostics such as panendoscopy, performed and evaluated by an experienced head and neck surgeon. In addition to the conventional panendoscopy form and report, a 3D representation was generated with the "Tumor Therapy Manager" (TTM) software. These cases were randomly re-evaluated by 11 experienced otolaryngologists from five hospitals, half with and half without the TTM data. The accuracy of tumor staging was assessed by pre-post comparison of the TNM classification. TNM staging showed no significant differences in tumor classification (T) with and without 3D from TTM. However, there was a significant decrease in standard deviation from 0.86 to 0.63 via TTM ([Formula: see text]). In nodal staging without TTM, the lymph nodes (N) were significantly underestimated with [Formula: see text] classes compared with [Formula: see text] with TTM ([Formula: see text]). Likewise, the standard deviation was reduced from 0.79 to 0.69 ([Formula: see text]). There was no influence of TTM results on the evaluation of distant metastases (M). TNM staging was more reproducible and nodal staging more accurate when 3D documentation of HNC primary data was available to experienced otolaryngologists. The more precise assessment of the tumor classification with TTM should provide improved decision-making concerning therapy, especially within the interdisciplinary tumor board.

  7. Metabolic Control Analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development

    NARCIS (Netherlands)

    Boren, Joan; Montoya, Antonio Ramos; de Atauri, Pedro; Comin-Anduix, Begoña; Cortes, Antonio; Centelles, Josep J.; Frederiks, Wilma M.; van Noorden, Cornelis J. F.; Cascante, Marta

    2002-01-01

    Metabolic control analysis predicts that effects on tumor growth are likely to be obtained with lower concentrations of drug, if an enzyme with a high control coefficient on tumor growth is being inhibited. Here we measure glucose-6-phosphate dehydrogenase (G6PDH) control coefficient on in vivo

  8. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    Science.gov (United States)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem

  9. Monitoring early tumor response to drug therapy with diffuse optical tomography

    Science.gov (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2012-01-01

    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  10. A leucine-supplemented diet improved protein content of skeletal muscle in young tumor-bearing rats

    Directory of Open Access Journals (Sweden)

    Gomes-Marcondes M.C.C.

    2003-01-01

    Full Text Available Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein and leucine-rich diet (L, 15% protein plus 3% leucine, which were further subdivided into control (N or L or tumor-bearing (W or LW subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 ± 0.6, LW = 23.1 ± 1.0 g vs N = 29.4 ± 1.3, L = 28.1 ± 1.9 g, P < 0.05. Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 ± 0.033 vs LW = 0.598 ± 0.036, N = 0.623 ± 0.062, L = 0.697 ± 0.065 arbitrary intensity, P < 0.05. Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.

  11. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Jacob L. Albritton

    2017-01-01

    Full Text Available Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.

  12. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.

    Science.gov (United States)

    Albritton, Jacob L; Miller, Jordan S

    2017-01-01

    Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.

  13. Recent Progress in the Medical Therapy of Pituitary Tumors

    Directory of Open Access Journals (Sweden)

    Fabienne Langlois

    2017-05-01

    Full Text Available Management of pituitary tumors is multidisciplinary, with medical therapy playing an increasingly important role. With the exception of prolactin-secreting tumors, surgery is still considered the first-line treatment for the majority of pituitary adenomas. However, medical/pharmacological therapy plays an important role in controlling hormone-producing pituitary adenomas, especially for patients with acromegaly and Cushing disease (CD. In the case of non-functioning pituitary adenomas (NFAs, pharmacological therapy plays a minor role, the main objective of which is to reduce tumor growth, but this role requires further studies. For pituitary carcinomas and atypical adenomas, medical therapy, including chemotherapy, acts as an adjuvant to surgery and radiation therapy, which is often required to control these aggressive tumors. In the last decade, knowledge about the pathophysiological mechanisms of various pituitary adenomas has increased, thus novel medical therapies that target specific pathways implicated in tumor synthesis and hormonal over secretion are now available. Advancement in patient selection and determination of prognostic factors has also helped to individualize therapy for patients with pituitary tumors. Improvements in biochemical and “tumor mass” disease control can positively affect patient quality of life, comorbidities and overall survival. In this review, the medical armamentarium for treating CD, acromegaly, prolactinomas, NFA, and carcinomas/aggressive atypical adenomas will be presented. Pharmacological therapies, including doses, mode of administration, efficacy, adverse effects, and use in special circumstances are provided. Medical therapies currently under clinical investigation are also briefly discussed.

  14. Risk Factors for Preoperative Seizures and Loss of Seizure Control in Patients Undergoing Surgery for Metastatic Brain Tumors.

    Science.gov (United States)

    Wu, Adela; Weingart, Jon D; Gallia, Gary L; Lim, Michael; Brem, Henry; Bettegowda, Chetan; Chaichana, Kaisorn L

    2017-08-01

    Metastatic brain tumors are the most common brain tumors in adults. Patients with metastatic brain tumors have poor prognoses with median survival of 6-12 months. Seizures are a major presenting symptom and cause of morbidity and mortality. In this article, risk factors for the onset of preoperative seizures and postoperative seizure control are examined. Adult patients who underwent resection of one or more brain metastases at a single institution between 1998 and 2011 were reviewed retrospectively. Of 565 patients, 114 (20.2%) patients presented with seizures. Factors independently associated with preoperative seizures were preoperative headaches (P = 0.044), cognitive deficits (P = 0.031), more than 2 intracranial metastatic tumors (P = 0.013), temporal lobe location (P = 0.031), occipital lobe location (P = 0.010), and bone involvement by tumor (P = 0.029). Factors independently associated with loss of seizure control after surgical resection were preoperative seizures (P = 0.001), temporal lobe location (P = 0.037), lack of postoperative chemotherapy (P = 0.010), subtotal resection of tumor (P = 0.022), and local recurrence (P = 0.027). At last follow-up, the majority of patients (93.8%) were seizure-free. Thirty patients (5.30%) in total had loss of seizure control, and only 8 patients (1.41%) who did not have preoperative seizures presented with new-onset seizures after surgical resection of their metastases. The brain is a common site for metastases from numerous primary cancers, such as breast and lung. The identification of factors associated with onset of preoperative seizures as well as seizure control postoperatively could aid management strategies for patients with metastatic brain tumors. Patients with preoperative seizures who underwent resection tended to have good seizure control after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Advances in Cancer Immunotherapy in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Smitha Menon

    2016-11-01

    Full Text Available Immunotherapy is heralded as one of the most important advances in oncology. Until recently, only limited immunotherapeutic options were available in selected immunogenic cancers like melanoma and renal cell carcinomas. Nowadays, there is an improved understanding that anti-tumor immunity is controlled by a delicate balance in the tumor microenvironment between immune stimulatory and immune inhibitory pathways. Either by blocking the inhibitory pathways or stimulating the activating pathways that regulate cytotoxic lymphocytes, anti-tumor immunity can be enhanced leading to durable anti-tumor responses. Drugs which block the immune regulatory checkpoints namely the PD-1/PDL1 and CTLA 4 pathway have shown tremendous promise in a wide spectrum of solid and hematological malignancies, significantly improving overall survival in newly diagnosed and heavily pretreated patients alike. Hence there is renewed enthusiasm in the field of immune oncology with current research focused on augmenting responses to checkpoint inhibitors by combination therapy as well as studies looking at other immune modulators and adoptive T cell therapy. In this article, we highlight the key clinical advances and concepts in immunotherapy with particular emphasis on checkpoint inhibition as well as the future direction in this field.

  16. Effects of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Lu Yanda

    2001-01-01

    Objective: To study the effect of low dose radiation on tumor growth and changes of erythrocyte immune function and activity of SOD in the tumor-bearing mice. Methods: Kunming strain male mice were implanted with S 180 sarcoma cells in the right inguen subcutaneously as an experimental in situ animal model. Six hours before implantation the mice were given 75 mG whole-body X-ray irradiation and tumor-formation rate was counted 5 days late. From then, every two days the tumor volume was measured to draw a tumor growth curve. Fifteen days later, all mice were killed to measure the tumor weight, observe the necrosis area and the tumor-infiltration lymphoreticular cells (TIL) in the tumor pathologically. At the same time, erythrocyte immune function and activity of SOD were tested. Results: (1) The mice pre-exposed to low dose radiation had a lower tumor formation rate than those without a pre-exposed (P < 0.05). (2) The tumor growth slowed down significantly in mice receiving a low does irradiation; The average tumor weight in mice receiving a low dose irradiation was lighter too (P < 0.05). (3) The tumor necrosis areas were larger and TILs were more in the irradiation group than those of the control group. (4) The erythrocyte immune function and activity of SOD in the irradiation group were all higher significantly than those of the control group ( P < 0.05). Conclusion: Low dose radiation could markedly increase anti-tumor ability of the organism and improve the erythrocyte immune function and activity of SOD in red cells, suggesting it could be useful in clinical cancer treatment

  17. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement.

    Science.gov (United States)

    Wang, Yong; Yuan, Fan

    2006-01-01

    It is a challenge to deliver therapeutic genes to tumor cells using viral vectors because (i) the size of these vectors are close to or larger than the space between fibers in extracellular matrix and (ii) viral proteins are potentially toxic in normal tissues. In general, gene delivery is hindered by various physiological barriers to virus transport from the site of injection to the nucleus of tumor cells and is limited by normal tissue tolerance of toxicity determined by local concentrations of transgene products and viral proteins. To illustrate the obstacles encountered in the delivery and yet limit the scope of discussion, this review focuses only on extracellular transport in solid tumors and distribution of viral vectors in normal organs after they are injected intravenously or intratumorally. This review also discusses current strategies for improving intratumoral transport and specificity of viral vectors.

  18. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    Science.gov (United States)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  19. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En

    2004-01-01

    As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  20. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  1. A system for tumor heterogeneity evaluation and diagnosis based on tumor markers measured routinely in the laboratory.

    Science.gov (United States)

    Hui, Liu; Rixv, Liu; Xiuying, Zhou

    2015-12-01

    To develop an efficient and reliable approach to estimate tumor heterogeneity and improve tumor diagnosis using multiple tumor markers measured routinely in the clinical laboratory. A total of 161 patients with different cancers were recruited as the cancer group, and 91 patients with non-oncological conditions were required as the non-oncological disease group. The control group comprised 90 randomly selected healthy subjects. AFP, CEA, CYFRA, CA125, CA153, CA199, CA724, and NSE levels were measured in all these subjects with a chemiluminescent microparticle immunoassay. The tumor marker with the maximum S/CO value (sample test value:cutoff value for discriminating individuals with and without tumors) was considered as a specific tumor marker (STM) for an individual. Tumor heterogeneity index (THI)=N/P (N: number of STMs; P: percentage of individuals with STMs in a certain tumor population) was used to quantify tumor heterogeneity: high THI indicated high tumor heterogeneity. The tumor marker index (TMI), TMI = STM×(number of positive tumor markers+1), was used for diagnosis. The THIs of lung, gastric, and liver cancers were 8.33, 9.63, and 5.2, respectively, while the ROC-areas under the curve for TMI were 0.862, 0.809, and 0.966. In this study, we developed a novel index for tumor heterogeneity based on the expression of various routinely evaluated serum tumor markers. Development of an evaluation system for tumor heterogeneity on the basis of this index could provide an effective diagnostic tool for some cancers. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy

    Science.gov (United States)

    Hoopes, P. Jack; Petryk, Alicia A.; Tate, Jennifer A.; Savellano, Mark S.; Strawbridge, Rendall R.; Giustini, Andrew J.; Stan, Radu V.; Gimi, Barjor; Garwood, Michael

    2013-02-01

    The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a

  3. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model

    International Nuclear Information System (INIS)

    Zhou Sumin; Das, Shiva; Wang Zhiheng; Marks, Lawrence B.

    2004-01-01

    The generalized equivalent uniform dose (GEUD) model uses a power-law formalism, where the outcome is related to the dose via a power law. We herein investigate the mathematical compatibility between this GEUD model and the Poisson statistics based tumor control probability (TCP) model. The GEUD and TCP formulations are combined and subjected to a compatibility constraint equation. This compatibility constraint equates tumor control probability from the original heterogeneous target dose distribution to that from the homogeneous dose from the GEUD formalism. It is shown that this constraint equation possesses a unique, analytical closed-form solution which relates radiation dose to the tumor cell survival fraction. It is further demonstrated that, when there is no positive threshold or finite critical dose in the tumor response to radiation, this relationship is not bounded within the realistic cell survival limits of 0%-100%. Thus, the GEUD and TCP formalisms are, in general, mathematically inconsistent. However, when a threshold dose or finite critical dose exists in the tumor response to radiation, there is a unique mathematical solution for the tumor cell survival fraction that allows the GEUD and TCP formalisms to coexist, provided that all portions of the tumor are confined within certain specific dose ranges

  4. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors.

    Science.gov (United States)

    Rodriguez Gutierrez, D; Awwad, A; Meijer, L; Manita, M; Jaspan, T; Dineen, R A; Grundy, R G; Auer, D P

    2014-05-01

    Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features. This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data. ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix. Support vector machine-based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology. © 2014 by American Journal of Neuroradiology.

  5. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  6. Contemporary Management of Benign and Malignant Parotid Tumors.

    Science.gov (United States)

    Thielker, Jovanna; Grosheva, Maria; Ihrler, Stephan; Wittig, Andrea; Guntinas-Lichius, Orlando

    2018-01-01

    To report the standard of care, interesting new findings and controversies about the treatment of parotid tumors. Relevant and actual studies were searched in PubMed and reviewed for diagnostics, treatment and outcome of both benign and malignant tumors. Prospective trials are lacking due to rarity of the disease and high variety of tumor subtypes. The establishment of reliable non-invasive diagnostics tools for the differentiation between benign and malignant tumors is desirable. Prospective studies clarifying the association between different surgical techniques for benign parotid tumors and morbidity are needed. The role of adjuvant or definitive radiotherapy in securing loco-regional control and improving survival in malignant disease is established. Prospective clinical trials addressing the role of chemotherapy/molecular targeted therapy for parotid cancer are needed. An international consensus on the classification of parotid surgery techniques would facilitate the comparison of different trials. Such efforts should lead into a clinical guideline.

  7. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  8. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  9. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    Science.gov (United States)

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  10. Dietary black-grained wheat intake improves glycemic control and inflammatory profile in patients with type 2 diabetes: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Liu Y

    2018-02-01

    Full Text Available Yanping Liu,1,* Ju Qiu,2,* Yanfen Yue,3 Kang Li,3 Guixing Ren41Department of Nutrition, Peking Union Medical College Hospital, Beijing, 2Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing, 3Department of Nutrition, Pinggu Hospital of Traditional Chinese Medicine, Beijing, 4Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China *These authors contributed equally to this workIntroduction: Although black-grained wheat (BGW is recognized as a nutritional food for humans in China, it has yet to be utilized well for industrial applications, which can be attributed to the limited research data available on its health benefits. Thus, the hypothesis was tested that a daily substitution of BGW for a partial staple food would improve glycemia and inflammatory profile of type 2 diabetes mellitus (T2DM patients by a randomized controlled trial. Materials and methods: A total of 120 patients were randomly divided between control group (diet control and nutritional education and BGW group (daily substitution of BGW for a partial staple food. Results: Based on the significant difference between BGW and control groups (P<0.05, the primary outcomes were that BGW treatment in diet resulted in a significant lowering of glycated albumin (GA, 18.05 to 16.06 mmol/L level in T2DM patients after a 5-week intervention, and this treatment regimen was much more efficient than the strategy of diet control alone. In addition, BGW supplementation prevented the increase in tumor necrosis factor (TNF-α and interleukin (IL-6 induced by T2DM. There were no significant differences in blood glucose, glycated hemoglobin or insulin levels between the 2 groups. The subgroup analyses of the BGW daily intake showed that, except the TNF-α, significant improvements in GA and IL-6 were observed when the BGW intake dose was >69 g/day.Conclusion: These findings support the hypothesis that BGW may improve glycemia and the

  11. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    International Nuclear Information System (INIS)

    Loevey, J.; Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J.; Dobos, J.; Vago, A.; Kasler, M.; Doeme, B.; Tovari, J.

    2008-01-01

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPOα on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPOα at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPOα on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1α expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPOα and irradiation were also tested in vitro. Results: in vitro, rHuEPOα treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPOα administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1α expression but had no effect on tumor growth. At the same time rHuEPOα treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 ± 4.7 mg and 34.9 ± 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPOα treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1α expression, but also by destroying tumoral vessels. (orig.)

  12. Incidence of urinary bladder tumors in the control Beagle dog population at the Inhalation Toxicology Research Institute

    International Nuclear Information System (INIS)

    King, R.R.; Kusewitt, D.F.; Hahn, F.F.; Muggenburg, B.A.

    1982-01-01

    The report reviews the incidence and types of urinary bladder tumors in 94 dogs that have died in a population of 250 control dogs (median life span 14.0 years). Six bladder tumors, two papillomas and four transitional cell carcinomas, were found. The cumulative incidence for bladder tumors was 10.5 percent at 16 to 19 years of age; this was a 20 percent age-specific incidence

  13. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kujak, Jennifer L.; Liu, Patrick T. [Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ (United States); Johnson, Geoffrey B.; Callstrom, Matthew R. [Mayo Clinic Rochester, Department of Radiology, Rochester, MN (United States)

    2010-02-15

    Surgical resection, radiation therapy and chemotherapy are all accepted as standard treatments for extra-abdominal desmoid (EAD) tumors, but their effectiveness has been limited by frequent local recurrence. The purpose of this article is to describe our early experiences with using percutaneous cryoablation for local control of extra-abdominal desmoid tumors in five patients whose tumors had failed to respond to standard therapy. In a retrospective search of our institution's radiology database for patients who had undergone percutaneous cryoablation for treatment of EAD tumors between June 2004 and July 2007, we identified five patients (three female and two male). No patients were excluded from this review. Three of these patients had been referred for cryoablation for local tumor control, and two had been referred for palliation of inoperable tumors. The age range of the patients at the time of cryoablation was 9-41 years. The treated EAD tumors were located in the neck, shoulders and trunk and ranged in size from 3.0 cm to 10.0 cm. Medical records were reviewed for short-term and long-term follow-up, and patients were contacted for additional follow-up. Patients were asked to rate their pain as absent, mild, moderate or severe, and to compare it with their levels before cryoablation, describing it as improved, unchanged or worsened. Radiology records were reviewed to follow the size of the EAD tumors before and after cryotherapy. For the three patients referred for local control of EAD tumors, complete tumor coverage with the ablation zones was achieved. Two of these patients, with masses 3.0 cm and 4.9 cm in diameter, reported complete absence of pain at both short-term and long-term follow-up at 13 months and 49 months. Their tumors had completely resolved on long-term imaging follow-up at 19 months and 43 months. The third patient, with a 6.1 cm mass, reported improved mild pain at 6 months, and imaging showed a moderate decrease of tumor size. For the

  14. The effects of postoperative irradiation on loco-regional tumor control and survival in patients with head and neck carcinomas by tumor subsites and relative risk factors for recurrence

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, Rupert K.; Johnson, Christopher R.; Payne, Cheryl; Lu Jiandong; Han, Daniel

    1997-01-01

    Purpose/Objective: This study reports on a unique experience in the management of patients with advanced head and neck squamous cell carcinomas (HNSCC) in which, between 1982 and 1990, patients with varied risk for recurrence were either referred for immediate postoperative irradiation by one surgical group or offered radiotherapy after surgical failure by the other. We have previously demonstrated in patients with high risk for recurrence that combined surgery and postoperative radiotherapy (S/RT) resulted in improved loco-regional tumor control (LRC) and overall patient survival (OS) for the entire patient cohort. This updated and expanded analysis describes the benefit of postoperative irradiation for patients with HNSCC depending upon relative risk factors for recurrence and different subsites of primary tumors. Materials and Methods: Of 219 patients, 190 were evaluable because of tumor locations in the major subsites analyzed, i.e. oral cavity (OC), oropharynx (OP), hypopharynx (HP), and larynx (L). Depending upon the philosophy of the two surgical groups, 79 patients were treated with combined S/RT and 111 with S alone with a >90% compliance. Minimum 2-year follow-up applies to all data reported. The two patient groups were well balanced with respect to tumor stages (AJCC 1983) and other patient characteristics. Histopathological review revealed 88 cases with one risk factor for recurrence, 49 patients with positive resection margin (PRM) and 39 with extracapsular extension (ECE); an additional 22 patients presented with both risk factors and 80 patients were found to have no risk factors. S, consisting of wide local excisions or radical resections including neck dissections, and postoperative RT with doses between 50 and 70 Gy were similar for both groups. Statistical evaluations consisted of Kaplan-Meier analyses to calculate LRC and OS rates and of multivariate Cox's proportional hazard models to estimate significance of treatment effects including S vs. S

  15. Anemia, tumor hypoxemia, and the cancer patient

    International Nuclear Information System (INIS)

    Varlotto, John; Stevenson, Mary Ann

    2005-01-01

    Purpose: To review the impact of anemia/tumor hypoxemia on the quality of life and survival in cancer patients, and to assess the problems associated with the correction of this difficulty. Methods: MEDLINE searches were performed to find relevant literature regarding anemia and/or tumor hypoxia in cancer patients. Articles were evaluated in order to assess the epidemiology, adverse patient effects, anemia correction guidelines, and mechanisms of hypoxia-induced cancer cell growth and/or therapeutic resistance. Past and current clinical studies of radiosensitization via tumor oxygenation/hypoxic cell sensitization were reviewed. All clinical studies using multi-variate analysis were analyzed to show whether or not anemia and/or tumor hypoxemia affected tumor control and patient survival. Articles dealing with the correction of anemia via transfusion and/or erythropoietin were reviewed in order to show the impact of the rectification on the quality of life and survival of cancer patients. Results: Approximately 40-64% of patients presenting for cancer therapy are anemic. The rate of anemia rises with the use of chemotherapy, radiotherapy, and hormonal therapy for prostate cancer. Anemia is associated with reductions both in quality of life and survival. Tumor hypoxemia has been hypothesized to lead to tumor growth and resistance to therapy because it leads to angiogenesis, genetic mutations, resistance to apoptosis, and a resistance to free radicals from chemotherapy and radiotherapy. Nineteen clinical studies of anemia and eight clinical studies of tumor hypoxemia were found that used multi-variate analysis to determine the effect of these conditions on the local control and/or survival of cancer patients. Despite differing definitions of anemia and hypoxemia, all studies have shown a correlation between low hemoglobin levels and/or higher amounts of tumor hypoxia with poorer prognosis. Radiosensitization through improvements in tumor oxygenation/hypoxic cell

  16. [Diagnosis and surgical management in gastrointestinal neuroendocrine tumors].

    Science.gov (United States)

    Tomulescu, V; Stănciulea, O; Dima, S; Herlea, V; Stoica Mustafa, E; Dumitraşcu, T; Pechianu, C; Popescu, I

    2011-01-01

    Neuroendocrine tumors, known as carcinoid tumors constitute a heterogeneous group of neoplasms that present many clinical challenges. They secrete peptides and neuroamines that cause specific clinical syndromes. Assessment of specific or general tumors markers offers high sensitivity in establishing the diagnosis and they also have prognostic significance. Management strategies include curative surgery, whenever possible-that can be rarely achieved, palliative surgery, chemotherapy, radiologic therapy, such as radiofrequency ablation and chemoembolisations and somatostatin analogues therapy in order to control the symptoms. The aim of this paper is to review recent publications in this field and to give recommendations that take into account current advances in order to facilitate improvement in management and outcome.

  17. Radiosurgery of epidermoid tumors with gamma knife. Possiblity of radiosurgical nerve decompression

    International Nuclear Information System (INIS)

    Kida, Yoshihisa; Yoshimoto, Masayuki; Hasegawa, Toshinori; Fujitani, Shigeru

    2006-01-01

    Long-term results of radiosurgery for epidermoid tumors are reported. There are 7 cases including 2 males and 5 females, ages ranging from 6 to 46 (mean: 33.3 years). At radiosurgery whole tumor was covered in 4 cases and partially covered in 3 cases in attempting to relieve cranial nerve signs like trigeminal neuralgia and facial spasm. The mean maximum and marginal doses were 25.6 Gy and 14.6 Gy respectively. In the mean follow-up of 52.7 months, all the tumors showed good tumor control without any progression and tumor shrinkage has been confirmed in 2 out of the 7 cases. Symptomatic trigeminal neuralgia improved or disappeared in all 4 cases and facial spasm disappeared in one. No neurological deterioration was found in any of the cases after the treatment. In conclusion, it is apparent that epidermoid tumors do respond well to radiosurgery and the accompanying hyperactive dysfunction of cranial nerves is significantly improved by gamma knife treatment with either entire or partial tumor coverage. Therefore the radiosurgical nerve decompression for epidermoid tumor seems to be achieved by gamma-radiosurgery. (author)

  18. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  19. Improved results for vestibular schwannoma radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kondziolka, D; Pollock, B; Lunsford, L D

    1995-07-01

    PURPOSE/OBJECTIVE: Treatment techniques in radiosurgery have changed since 1987. We reviewed patients who received radiosurgery for vestibular schwannoma to identify these changes and to investigate any differences in tumor control and complications. MATERIALS and METHODS: One hundred thirty-eight unilateral vestibular schwannoma patients with a minimum follow-up of two years after treatment with gamma knife radiosurgery between 1987 and 1992 were analyzed. The early treatment group consisted of 55 patients treated between 1987-1989 (median: tumor volume 3.63 cc, Dmin 18.1 Gy, Dmax 35.4 Gy, isocenters 2.3, follow-up 50.4 mos.). The later treatment group consisted of 83 patients treated between 1990-1992 (median: tumor volume 3.81 cc, Dmin 16.0 Gy, Dmax 31.6 Gy, isocenters 4.7, follow-up 35.8 mos.) RESULTS: Clinical tumor recurrence requiring surgical intervention occurred in one patient in each group. The overall actuarial clinical tumor control rate was 98%. Slight increases in tumor size (1 to 2 mm) were identified in five other patients not requiring intervention, because of no further tumor growth (n=4) or shrinkage (n=1). This led to an overall radiologic tumor control rate of 92% (not significantly different in either group). Compared to the early treatment group, the incidence of facial neuropathy (temporary or permanent) decreased in the later group (49% vs. 11%, p < 0.0001), as did trigeminal neuropathy (40% vs. 8%, p < 0.0001). Serviceable hearing preservation improved only slightly in the later group (27% vs. 40%, p = 0.70). CONCLUSION: We document a significant decrease in the morbidity of vestibular schwannoma radiosurgery over this time period with no decrease in the high rate of tumor control. This improvement is attributed to a) better conformal dose-planning with stereotactic MRI rather than CT, b) an increase in the number of isocenters used, and c) a reduction in the average dose administered by 2 Gy.

  20. Improved outcome of resection of hilar cholangiocarcinoma (Klatskin tumor)

    NARCIS (Netherlands)

    Dinant, Sander; Gerhards, Michael F.; Rauws, E. A. J.; Busch, Olivier R. C.; Gouma, Dirk J.; van Gulik, Thomas M.

    2006-01-01

    BACKGROUND: Treatment of hilar cholangiocarcinoma (Klatskin tumors) has changed in many aspects. A more extensive surgical approach, as proposed by Japanese surgeons, has been applied in our center over the last 5 years; it combines hilar resection with partial hepatectomy for most tumors. The aim

  1. Risk factors for central nervous system tumors in children: New findings from a case-control study.

    Directory of Open Access Journals (Sweden)

    Rebeca Ramis

    Full Text Available Central nervous system tumors (CNS are the most frequent solid tumor in children. Causes of CNS tumors are mainly unknown and only 5% of the cases can be explained by genetic predisposition. We studied the effects of environmental exposure on the incidence of CNS tumors in children by subtype, according to exposure to industrial and/or urban environment, exposure to crops and according to socio-economic status of the child.We carried out a population-based case-control study of CNS tumors in Spain, covering 714 incident cases collected from the Spanish Registry of Childhood Tumors (period 1996-2011 and 4284 controls, individually matched by year of birth, sex, and autonomous region of residence. We built a covariate to approximate the exposure to industrial and/or urban environment and a covariate for the exposure to crops (GCI using the coordinates of the home addresses of the children. We used the 2001 Census to obtain information about socio-economic status (SES. We fitted logistic regression models to estimate odds ratios (ORs and 95% confidence intervals (95%CIs.The results for all CNS tumors showed an excess risk (OR = 1.37; 95%CI = 1.09-1.73 for SES, i.e., children living in the least deprived areas had 37% more risk of CNS tumor than children living in the most deprived areas. For GCI, an increase of 10% in crop surface in the 1-km buffer around the residence implied an increase of 22% in the OR (OR = 1.22; 95%CI = 1.15-1.29. Children living in the intersection of industrial and urban areas could have a greater risk of CNS tumors than children who live outside these areas (OR = 1.20; 95%CI = 0.82-1.77. Living in urban areas (OR = 0.90; 95%CI = 0.65-1.24 or industrial areas (OR = 0.96; 95%CI = 0.81-1.77 did not seem to increase the risk for all CNS tumors together. By subtype, Astrocytomas, Intracranial and intraspinal embryonal tumors, and other gliomas showed similar results.Our results suggest that higher socioeconomic status and

  2. Gamma knife radiosurgery of radiation-induced intracranial tumors: Local control, outcomes, and complications

    International Nuclear Information System (INIS)

    Jensen, Ashley W.; Brown, Paul D.; Pollock, Bruce E.; Stafford, Scott L.; Link, Michael J.; Garces, Yolanda I.; Foote, Robert L.; Gorman, Deborah A.; Schomberg, Paula J.

    2005-01-01

    Purpose: To determine local control (LC) and complication rates for patients who underwent radiosurgery for radiation-induced intracranial tumors. Methods and Materials: Review of a prospectively maintained database (2,714 patients) identified 16 patients (20 tumors) with radiation-induced tumors treated with radiosurgery between 1990 and 2004. Tumor types included typical meningioma (n = 17), atypical meningioma (n = 2), and schwannoma (n 1). Median patient age at radiosurgery was 47.5 years (range, 27-70 years). The median tumor margin dose was 16 Gy (range, 12-20 Gy). Median follow-up was 40.2 months (range, 10.8-146.2 months). Time-to-event outcomes were calculated with Kaplan-Meier estimates. Results: Three-year and 5-year LC rates were 100%. Three-year and 5-year overall survival rates were 92% and 80%, respectively. Cause-specific survival rates at 3 and 5 years were 100%. Three patients died: 1 had in-field progression 65.1 months after radiosurgery and later died of the tumor, 1 died of progression of a preexisting brain malignancy, and 1 died of an unrelated cause. One patient had increased seizure activity that correlated with development of edema seen on neuroimaging. Conclusions: LC, survival, and complication rates in our series are comparable to those in previous reports of radiosurgery for intracranial meningiomas. Also, LC rates with radiosurgery are at least comparable to those of surgical series for radiation-induced meningiomas. Radiosurgery is a safe and effective treatment option for radiation-induced intracranial tumors, most of which are typical meningiomas

  3. Albumin as a "Trojan Horse" for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting.

    Science.gov (United States)

    Yin, Qian; Tang, Li; Cai, Kaimin; Yang, Xujuan; Yin, Lichen; Zhang, Yanfeng; Dobrucki, Lawrence W; Helferich, William G; Fan, Timothy M; Cheng, Jianjun

    2018-05-01

    Although polymeric nanoconjugates (NCs) hold great promise for the treatment of cancer patients, their clinical utility has been hindered by the lack of efficient delivery of therapeutics to targeted tumor sites. Here, we describe an albumin-functionalized polymeric NC (Alb-NC) capable of crossing the endothelium barrier through a caveolae-mediated transcytosis pathway to better target cancer. The Alb-NC is prepared by nanoprecipitation of doxorubicin (Doxo) conjugates of poly(phenyl O-carboxyanhydrides) bearing aromatic albumin-binding domains followed by subsequent surface decoration of albumin. The administration of Alb-NCs into mice bearing MCF-7 human breast cancer xenografts with limited tumor vascular permeability resulted in markedly increased tumor accumulation and anti-tumor efficacy compared to their conventional counterpart PEGylated NCs (PEG-NCs). The Alb-NC provides a simple, low-cost and broadly applicable strategy to improve the cancer targeting efficiency and therapeutic effectiveness of polymeric nanomedicine.

  4. Gamma-knife radiosurgery for metastatic brain tumors from primary lung cancer

    International Nuclear Information System (INIS)

    Uchiyama, Bine; Satoh, Ken; Saijo, Yasuo

    1998-01-01

    Forty patients with metastatic brain tumors from primary lung cancer underwent radiosurgery (γ-knife). We retrospectively compared their prior treatment history, number of metastatic foci, and performance status, to evaluate the effects of, and indications for, γ-knife therapy. After both the primary and the metastatic tumors were controlled, performance status could be used as an index in the choice of γ-knife therapy. Our results demonstrate that repeated γ-knife radiosurgeries prolonged survival time. Gamma-knife radiosurgery improves quality of life and prognosis of patients with metastatic brain tumors. (author)

  5. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Science.gov (United States)

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  6. Dose prescription complexity versus tumor control probability in biologically conformal radiotherapy

    International Nuclear Information System (INIS)

    South, C. P.; Evans, P. M.; Partridge, M.

    2009-01-01

    The technical feasibility and potential benefits of voxel-based nonuniform dose prescriptions for biologically heterogeneous tumors have been widely demonstrated. In some cases, an ''ideal'' dose prescription has been generated by individualizing the dose to every voxel within the target, but often this voxel-based prescription has been discretized into a small number of compartments. The number of dose levels utilized and the methods used for prescribing doses and assigning tumor voxels to different dose compartments have varied significantly. The authors present an investigation into the relationship between the complexity of the dose prescription and the tumor control probability (TCP) for a number of these methods. The linear quadratic model of cell killing was used in conjunction with a number of modeled tumors heterogeneous in clonogen density, oxygenation, or proliferation. Models based on simple mathematical functions, published biological data, and biological image data were investigated. Target voxels were assigned to dose compartments using (i) simple rules based on the initial biological distribution, (ii) iterative methods designed to maximize the achievable TCP, or (iii) methods based on an ideal dose prescription. The relative performance of the simple rules was found to depend on the form of heterogeneity of the tumor, while the iterative and ideal dose methods performed comparably for all models investigated. In all cases the maximum achievable TCP was approached within the first few (typically two to five) compartments. Results suggest that irrespective of the pattern of heterogeneity, the optimal dose prescription can be well approximated using only a few dose levels but only if both the compartment boundaries and prescribed dose levels are well chosen.

  7. Preoperative Y-90 microsphere selective internal radiation treatment for tumor downsizing and future liver remnant recruitment: a novel approach to improving the safety of major hepatic resections.

    Science.gov (United States)

    Gulec, Seza A; Pennington, Kenneth; Hall, Michael; Fong, Yuman

    2009-01-08

    Extended liver resections are being performed more liberally than ever. The extent of resection of liver metastases, however, is restricted by the volume of the future liver remnant (FLR). An intervention that would both accomplish tumor control and induce compensatory hypertrophy, with good patient tolerability, could improve clinical outcomes. A 53-year-old woman with a history of cervical cancer presented with a large liver mass. Subsequent biopsy indicated poorly differentiated carcinoma with necrosis suggestive of squamous cell origin. A decision was made to proceed with pre-operative chemotherapy and Y-90 microsphere SIRT with the intent to obtain systemic control over the disease, downsize the hepatic lesion, and improve the FLR. A surgical exploration was performed six months after the first SIRT (three months after the second). There was no extrahepatic disease. The tumor was found to be significantly decreased in size with central and peripheral scarring. The left lobe was satisfactorily hypertrophied. A formal right hepatic lobectomy was performed with macroscopic negative margins. Selective internal radiation treatment (SIRT) with yttrium-90 (Y-90) microspheres has emerged as an effective liver-directed therapy with a favorable therapeutic ratio. We present this case report to suggest that the portal vein radiation dose can be substantially increased with the intent of inducing portal/periportal fibrosis. Such a therapeutic manipulation in lobar Y-90 microsphere treatment could accomplish the end points of PVE with avoidance of the concern regarding tumor progression.

  8. Health-related quality of life in parents of pediatric brain tumor survivors at the end of tumor-directed therapy.

    Science.gov (United States)

    Quast, Lauren F; Turner, Elise M; McCurdy, Mark D; Hocking, Matthew C

    2016-01-01

    This study examines theoretical covariates of health-related quality of life (HRQL) in parents of pediatric brain tumor survivors (PBTS) following completion of tumor-directed therapy. Fifty PBTS (ages 6-16) completed measures of neurocognitive functioning and their parents completed measures of family, survivor, and parent functioning. Caregiving demand, caregiver competence, and coping/supportive factors were associated with parental physical and psychosocial HRQL, when controlling for significant background and child characteristics. Study findings can inform interventions to strengthen caregiver competence and family functioning following the completion of treatment, which may improve both parent and survivor outcomes.

  9. Three-Dimensional Patient-Derived In Vitro Sarcoma Models: Promising Tools for Improving Clinical Tumor Management

    Directory of Open Access Journals (Sweden)

    Manuela Gaebler

    2017-09-01

    Full Text Available Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell–cell as well as cell–microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

  10. Localization of indium-111 in human malignant tumor xenografts and control by chelators

    International Nuclear Information System (INIS)

    Watanabe, Naoyuki; Oriuchi, Noboru; Endo, Keigo; Inoue, Tomio; Tanada, Shuji; Murata, Hajime; Kim, E. Edmund; Sasaki, Yasuhito

    1999-01-01

    The kinetics of soluble indium-111 ( 111 In) in human malignant tumor xenografts and cells was investigated in combination with chelators. Firstly, without chelator, the kinetics of 111 In-chloride was investigated in vitro and in vivo using four human malignant neuroblastoma SK-N-MC, pulmonary papillary adenocarcinoma NCI-H441, pulmonary squamous cell carcinoma PC 9, and colon adenocarcinoma LS 180 cells and xenografts. 111 In was incorporated into tumor cells in vitro to a maximum level during a 60-min incubation. A maximum level of radioactivity was demonstrated in vivo in four human malignant tumors xenografted into nude mice at 24 h postinjection of 111 In-chloride. Secondly, the effect of edetate calcium disodium (CaNa 2 EDTA) on radioactivity in 111 In-labeled tumors xenografts and cells was studied in vitro and in vivo. CaNa 2 EDTA significantly reduced 111 In-activity from the labeled tumor xenografts, whereas it had no affect on the radioactivity in the labeled cells. Thirdly, the effect of CaNa 2 EDTA on radioactivity in human malignant tumors xenografted into nude mice injected with 111 In-chloride was investigated. In one group of mice CaNa 2 EDTA administered intraperitoneally at 1, 22, 34, 46, 58, and 70 h after injection of 111 In-chloride (postadministration), the localization of 111 In at the tumors was significantly decreased at 72 h compared with the control in all four tumor types. In the other group of mice, CaNa 2 EDTA administered intraperitoneally at 12 and 1 h before injection of 111 In-chloride and 1, 22, 34, 46, 58, and 70 h postinjection (pre- and postadministration), the radioactivity of tumors was also significantly decreased at 72 h, and the reduction was greater than that with use of postadministration. In a comparative study, CaNa 3 DTPA had a more powerful effect than CaNa 2 EDTA. In conclusion, 111 In-activity in tumors consists of intracellular and extracellular components, and the extracellular 111 In may be cleared by

  11. Definitive Radiotherapy for Ewing Tumors of Extremities and Pelvis: Long-Term Disease Control, Limb Function, and Treatment Toxicity

    International Nuclear Information System (INIS)

    Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.; Shi Wenyin; Morris, Christopher G.; Marcus, Robert B.

    2008-01-01

    Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gy in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors 3 . Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes

  12. Effect of virtual reality on cognitive dysfunction in patients with brain tumor.

    Science.gov (United States)

    Yang, Seoyon; Chun, Min Ho; Son, Yu Ri

    2014-12-01

    To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.

  13. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  14. Improved local and regional control with radiotherapy for Merkel cell carcinoma of the head and neck.

    Science.gov (United States)

    Strom, Tobin; Naghavi, Arash O; Messina, Jane L; Kim, Sungjune; Torres-Roca, Javier F; Russell, Jeffery; Sondak, Vernon K; Padhya, Tapan A; Trotti, Andy M; Caudell, Jimmy J; Harrison, Louis B

    2017-01-01

    We hypothesized that radiotherapy (RT) would improve both local and regional control with Merkel cell carcinoma of the head and neck. A single-institution institutional review board-approved study was performed including 113 patients with nonmetastatic Merkel cell carcinoma of the head and neck. Postoperative RT was delivered to the primary tumor bed (71.7% cases) ± draining lymphatics (33.3% RT cases). Postoperative local RT was associated with improved local control (3-year actuarial local control 89.4% vs 68.1%; p = .005; Cox hazard ratio [HR] 0.18; 95% confidence interval [CI] = 0.06-0.55; p = .002). Similarly, regional RT was associated with improved regional control (3-year actuarial regional control 95.0% vs 66.7%; p = .008; Cox HR = 0.09; 95% CI = 0.01-0.69; p = .02). Regional RT played an important role for both clinical node-negative patients (3-year regional control 100% vs 44.7%; p = .03) and clinical/pathological node-positive patients (3-year regional control 90.9% vs 55.6%; p = .047). Local RT was beneficial for all patients with Merkel cell carcinoma of the head and neck, whereas regional RT was beneficial for clinical node-negative and clinical/pathological node-positive patients. © 2016 Wiley Periodicals, Inc. Head Neck 39: 48-55, 2017. © 2016 Wiley Periodicals, Inc.

  15. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  16. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  17. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Munck Af Rosenschöld, Per; Feldt-Rasmussen, Ulla

    2017-01-01

    BACKGROUND: The purpose of this study was to examine visual outcome, endocrine function and tumor control in a prospective cohort of craniopharyngioma patients, treated with fractionated stereotactic radiation therapy (FSRT). MATERIAL AND METHODS: Sixteen adult patients with craniopharyngiomas were...... eligible for analysis. They were treated with linear accelerator-based FSRT during 1999-2015. In all cases, diagnosis was confirmed by histological analysis. The prescription dose to the tumor was 54 Gy (median, range 48-54) in 1.8 or 2.0 Gy per fraction, and the maximum radiation dose to the optic nerves.......7-13.1) for visual outcome, endocrine function, and tumor control, respectively. RESULTS: Visual acuity impairment was present in 10 patients (62.5%) and visual field defects were present in 12 patients (75%) before FSRT. One patient developed radiation-induced optic neuropathy at seven years after FSRT. Thirteen...

  18. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    Science.gov (United States)

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  19. Tumor oxygenation in a transplanted rat rhabdomyosarcoma during fractionated irradiation

    International Nuclear Information System (INIS)

    Zywietz, Friedrich; Reeker, Wolfram; Kochs, Eberhard

    1995-01-01

    Purpose: To quantify the changes in tumor oxygenation in the course of a fractionated radiation treatment extending over 4 weeks. Methods and Materials: Rhabdomyosarcomas R1H of the rat were irradiated with 60 Co-γ-rays with a total dose of 60 Gy, given in 20 fractions over 4 weeks. Oxygen partial pressure (pO 2 ) in tumors was measured at weekly intervals using polarographic needle probes in combination with a microprocessor-controlled device (pO 2 -Histograph/KIMOC). The pO 2 measurements were carried out in anesthetized animals under mechanical ventilation and in respiratory and hemodynamic steady state. Tumor pO 2 values were correlated to the arterial oxygen pressure p a O 2 , arterial pCO 2 , and pH determined with a blood gas analyzer. Results: Tumor oxygenation did not change significantly during the 3 weeks of irradiation (up to 45 Gy), from a median pO 2 of 23 ± 2 mmHg in untreated controls to 19 ± 4 mmHg after the third week. The decrease of the number of pO 2 values between 0 and 5 mmHg indicated that an improved oxygenation in the tumors occurred. However, with increasing radiation dose (fourth week, 60 Gy) a significant decrease in tumor oxygenation to a median pO 2 of 8 ± 2 mmHg and a rapid increase in the frequency of pO 2 values (35 ± 4%) between 0 and 5 mmHg was found. Conclusion: Improved oxygenation in rhabdomyosarcomas R1H was only present in the early phase of the fractionated irradiation. Radiation doses above 45 Gy led to a considerable decrease of tumor oxygenation in the later phase of irradiation

  20. Combination photodynamic therapy using 5-fluorouracil and aminolevulinate enhances tumor-selective production of protoporphyrin IX and improves treatment efficacy of squamous skin cancers and precancers

    Science.gov (United States)

    Maytin, Edward V.; Anand, Sanjay

    2016-03-01

    In combination photodynamic therapy (cPDT), a small-molecule drug is used to modulate the physiological state of tumor cells prior to giving aminolevulinate (ALA; a precursor for protoporphyrin IX, PpIX). In our laboratory we have identified three agents (methotrexate, 5-fluorouracil, and vitamin D) that can enhance therapeutic effectiveness of ALAbased photodynamic therapy for cutaneous squamous cell carcinoma (SCC). However, only one (5-fluorouracil; 5-FU) is FDA-approved for skin cancer management. Here, we describe animal and human studies on 5-FU mechanisms of action, in terms of how 5-FU pretreatment leads to enhanced PpIX accumulation and improves selectivity of ALA-PDT treatment. In A431 subcutaneous tumors in mice, 5-FU changed expression of heme enzyme (upregulating coproporphyrinogen oxidase, and down-regulating ferrochelatase), inhibited tumor cell proliferation (Ki-67), enhanced differentiation (E-cadherin), and led to strong, tumor-selective increases in apoptosis. Interestingly, enhancement of apoptosis by 5-FU correlated strongly with an increased accumulation of p53 in tumor cells that persisted for 24 h post- PDT. In a clinical trial using a split-body, bilaterally controlled study design, human subjects with actinic keratoses (AK; preneoplastic precursors of SCC) were pretreated on one side of the face, scalp, or forearms with 5-FU cream for 6 days, while the control side received no 5-FU. On the seventh day, the levels of PpIX in 4 test lesions were measured by noninvasive fluorescence dosimetry, and then all lesions were treated with PDT using methyl-aminolevulinate (MAL) and red light (635 nm). Relative amounts of PpIX were found to be increased ~2-fold in 5-FU pretreated lesions relative to controls. At 3 months after PDT, the overall clinical response to PDT (reduction in lesion counts) was 2- to 3-fold better for the 5-FU pretreated lesions, a clinically important result. In summary, 5-FU is a useful adjuvant to aminolevulinate-based PDT

  1. Improved local control with neoadjuvant chemotherapy for locally advanced rectal carcinoma: Long-term analysis

    International Nuclear Information System (INIS)

    Nakfoor, Bruce M.; Willett, Christopher G.; Kaufman, S. Donald; Shellito, Paul C.; Daly, William J.

    1996-01-01

    Objective: Since 1979, our institution has treated locally advanced rectal cancer with preoperative irradiation followed by resection with or without intraoperative radiation therapy (IORT). In 1986, our preoperative treatment policy was changed to include bolus 5-FU chemotherapy concurrent with irradiation in hopes of improving resectability, downstaging and/or local control rates. We report the long-term results with the addition of 5-FU chemotherapy to preoperative irradiation. Materials and Methods: From 1979 - 1994, 200 patients with locally advanced rectal carcinoma (primary or recurrent) received preoperative irradiation, resection and IORT if indicated. Bolus 5-FU (500mg/m 2 /day) chemotherapy was administered for three days during weeks one and five of irradiation. The change in treatment policy was limited to the addition of 5-FU chemotherapy: the radiation techniques (four-field), doses (50.4 Gy), and indications for intraoperative radiation (microscopic residual, gross residual, tumor adherence) remained constant. The median follow-up for the entire group of patients was 33 months (.95 months - 199 months), and the minimum follow-up was 1.5 years. Tabular results are 5-year actuarial calculations. Results: One hundred and five patients received preoperative 5-FU chemotherapy and irradiation whereas 95 patients underwent preoperative irradiation alone. Sixty-five percent of the patients were able to undergo complete resections, and 53% had transmural disease upon pathologic examination. The addition of chemotherapy did not affect the rates of resectability or tumor downstaging. However, the 10-year local control rate was significantly improved for those patients who received preoperative chemotherapy: 77% vs. 44% (p<0.01) (see figure). When stratified by extent of resection and stage, those patients who underwent complete resections or had transmural disease had significantly improved local control rates when compared to the non-chemotherapy group: No

  2. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival.

    Science.gov (United States)

    Cilliers, Cornelius; Menezes, Bruna; Nessler, Ian; Linderman, Jennifer; Thurber, Greg M

    2018-02-01

    Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo , yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy. Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Science.gov (United States)

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  4. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.

  5. Radiofrequency ablation of liver tumors (II): clinical application and outcomes.

    Science.gov (United States)

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Radiofrequency ablation is one of the alternatives in the management of liver tumors, especially in patients who are not candidates for surgery. The aim of this article is to review applicability of radiofrequency ablation achieving complete tumor destruction, utility of imaging techniques for patients' follow-up, indications for local ablative procedures, procedure-associated morbidity and mortality, and long-term results in patients with different tumors. The success of local thermal ablation consists in creating adequate volumes of tissue destruction with adequate "clear margin," depending on improved delivery of radiofrequency energy and modulated tissue biophysiology. Different volumes of coagulation necrosis are achieved applying different types of electrodes, pulsing energy sources, utilizing sophisticated ablation schemes. Some additional methods are used to increase the overall deposition of energy through alterations in tissue electrical conductivity, to improve heat retention within the tissue, and to modulate tolerance of tumor tissue to hyperthermia. Contrast-enhanced computed tomography, magnetic resonance imaging, ultrasound or positron emission tomography are applied to control the effectiveness of radiofrequency ablation. The long-term results of radiofrequency ablation are controversial.

  6. Value of diffusion weighted MRI in differentiating benign from malignant bony tumors and tumor like lesions

    Directory of Open Access Journals (Sweden)

    Samir Zaki Kotb

    2014-06-01

    Conclusion: DWI has been proven to be highly useful in the differentiation of benign, malignant bone tumors and tumor like bony lesions. Measurement of ADC values improves the accuracy of the diagnosis of bone tumors and tumor like lesions. Moreover, measurement of ADC values can be used in the follow up of tumors and their response to therapy.

  7. Radiation therapy for favorable histology Wilms tumor: Prevention of flank recurrence did not improve survival on National Wilms Tumor Studies 3 and 4

    International Nuclear Information System (INIS)

    Breslow, Norman E.; Beckwith, J. Bruce; Haase, Gerald M.; Kalapurakal, John A.; Ritchey, Michael L.; Shamberger, Robert C.; Thomas, Patrick; D'Angio, Giulio J.; Green, Daniel M.

    2006-01-01

    Purpose: To determine whether radiation therapy (RT) of patients with Wilms tumor of favorable histology prevented flank recurrence and thereby improved the survival outcomes. Methods and Materials: Recurrence and mortality risks were compared among groups of patients with Stage I-IV/favorable histology Wilms tumor enrolled in the third (n = 1,640) and fourth (n = 2,066) National Wilms Tumor Study Group studies. Results: Proportions of patients with flank recurrence were 0 of 513 = 0.0% for 20 Gy, 12 of 805 = 1.5% for 10 Gy, and 44 of 2,388 = 1.8% for no flank RT (p trend 0.001 adjusted for stage and doxorubicin); for intra-abdominal (including flank) recurrence they were 5 of 513 = 1.0%, 30 of 805 = 3.7%, and 58 of 2,388 = 2.4%, respectively (p trend = 0.02 adjusted). Survival percentages at 8 years after intra-abdominal recurrence were 0 of 5 = 0% for 20 Gy, 10 of 30 = 33% for 10 Gy, and 34 of 58 = 56% for no RT (p trend = 0.0001). NWTS-4 discontinued use of 20 Gy RT, and the 8-year flank recurrence risk increased to 2.1% from 1.0% on NWTS-3 (p = 0.013). However, event-free survival was unaltered (88% vs. 86%, p = 0.39), and overall survival was better (93.8% vs. 90.8%, p = 0.036) on NWTS-4. Conclusions: Partly because of lower postrecurrence mortality among nonirradiated patients, prevention of flank recurrence by RT did not improve survival. It is important to evaluate entire treatment policies with regard to long-term outcomes

  8. Actual and future strategies in interdisciplinary treatment of medulloblastomas, supratentorial PNET and intracranial germ cell tumors in childhood

    International Nuclear Information System (INIS)

    Kortmann, R.D.; Timmermann, B.; Bamberg, M.; Kuehl, J.; Calaminus, G.; Goebel, U.; Dieckmann, K.; Wurm, R.; Soerensen, N.; Urban, C.

    2001-01-01

    Methods: Systemic irradiation of neuroaxis is an essential part in the management of medulloblastoma, stPNET and intracranial germ cell tumors. The introduction of quality assurance programs in radiooncology assures a precise radiotherapy of target volumes and is a prerequisite to improve survival. Results: Hyperfractionated radiotherapy has the potential of increasing dose to tumor more safely without increasing the risk for late adverse effects. Pilot studies revealed excellent tumor control in medulloblastoma with acceptable acute toxicity and a long-term survival of up to 96%. In medulloblastoma stereotactic radiation techniques reveal an acceptable toxicity and promising results in tumor control in recurrent disease or as primary treatment. They are now part of future treatment protocols in case of persisting residual tumor. Radiotherapy alone in pure germinoma is continuously yielding high cure rates. In secreting germ cell tumors cisplatin containing chemotherapies in conjunction with radiotherapy achieve a long-term survival rate of 80% today. Especially in high risk medulloblastoma and secreting germ cell tumors chemotherapies are playing an increasingly important role in the interdisciplinary management. It can be expected that future developments of chemotherapeutic protocols and the introduction of new cytostatic substances will further improve the therapeutic outcome. (orig.) [de

  9. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Avanzo, Michele; Stancanello, Joseph; Franchin, Giovanni; Sartor, Giovanna; Jena, Rajesh; Drigo, Annalisa; Dassie, Andrea; Gigante, Marco; Capra, Elvira [Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Research and Clinical Collaborations, Siemens Healthcare, Erlangen 91052 (Germany); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ (United Kingdom); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy)

    2010-04-15

    Purpose: To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). Methods: A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. Results: Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term {alpha} and the dose per fraction. The estimated values of {alpha} and OER from data fitting were 0.396 Gy{sup -1} and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). Conclusions: The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.

  10. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy

    International Nuclear Information System (INIS)

    Avanzo, Michele; Stancanello, Joseph; Franchin, Giovanni; Sartor, Giovanna; Jena, Rajesh; Drigo, Annalisa; Dassie, Andrea; Gigante, Marco; Capra, Elvira

    2010-01-01

    Purpose: To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). Methods: A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. Results: Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term α and the dose per fraction. The estimated values of α and OER from data fitting were 0.396 Gy -1 and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). Conclusions: The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.

  11. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...

  13. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  14. Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients

    DEFF Research Database (Denmark)

    Persson, Oscar; Bartek, Jiri; Shalom, Netanel Ben

    2017-01-01

    OBJECTIVE: Repeated controlled studies have revealed that stereotactic radiosurgery is better than microsurgery for patients with vestibular schwannoma (VS) ... to patients treated with fractionated stereotactic radiotherapy. RESULTS: No randomized controlled trial (RCT) was identified. None of the identified controlled studies comparing SRS with FSRT were eligible according to the inclusion criteria. Nineteen case series on SRS (n = 17) and FSRT (n = 2) were...... included in the systematic review. Loss of tumor control necessitating a new VS-targeted intervention was found in an average of 5.0% of the patients treated with SRS and in 4.8% treated with FSRT. Mean deterioration ratio for patients with serviceable hearing before treatment was 49% for SRS and 45...

  15. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma

    DEFF Research Database (Denmark)

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin

    2015-01-01

    Objectives: Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome...... than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods: Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and COV, its ratio to blood mean transit time, provide indices...... of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival...

  16. IMRT for Sinonasal Tumors Minimizes Severe Late Ocular Toxicity and Preserves Disease Control and Survival

    International Nuclear Information System (INIS)

    Duprez, Fréderic; Madani, Indira; Morbée, Lieve; Bonte, Katrien; Deron, Philippe; Domján, Vilmos; Boterberg, Tom; De Gersem, Werner; De Neve, Wilfried

    2012-01-01

    Purpose: To report late ocular (primary endpoint) and other toxicity, disease control, and survival (secondary endpoints) after intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between 1998 and 2009, 130 patients with nonmetastatic sinonasal tumors were treated with IMRT at Ghent University Hospital. Prescription doses were 70 Gy (n = 117) and 60–66 Gy (n = 13) at 2 Gy per fraction over 6–7 weeks. Most patients had adenocarcinoma (n = 82) and squamous cell carcinoma (n = 23). One hundred and one (101) patients were treated postoperatively. Of 17 patients with recurrent tumors, 9 were reirradiated. T-stages were T1–2 (n = 39), T3 (n = 21), T4a (n = 38), and T4b (n = 22). Esthesioneuroblastoma was staged as Kadish A, B, and C in 1, 3, and 6 cases, respectively. Results: Median follow-up was 52, range 15–121 months. There was no radiation-induced blindness in 86 patients available for late toxicity assessment (≥6 month follow-up). We observed late Grade 3 tearing in 10 patients, which reduced to Grade 1–2 in 5 patients and Grade 3 visual impairment because of radiation-induced ipsilateral retinopathy and neovascular glaucoma in 1 patient. There was no severe dry eye syndrome. The worst grade of late ocular toxicity was Grade 3 (n = 11), Grade 2 (n = 31), Grade 1 (n = 33), and Grade 0 (n = 11). Brain necrosis and osteoradionecrosis occurred in 6 and 1 patients, respectively. Actuarial 5-year local control and overall survival were 59% and 52%, respectively. On multivariate analysis local control was negatively affected by cribriform plate and brain invasion (p = 0.044 and 0.029, respectively) and absence of surgery (p = 0.009); overall survival was negatively affected by cribriform plate and orbit invasion (p = 0.04 and <0.001, respectively) and absence of surgery (p = 0.001). Conclusions: IMRT for sinonasal tumors allowed delivering high doses to targets at minimized ocular toxicity, while maintaining disease control and

  17. IMRT for Sinonasal Tumors Minimizes Severe Late Ocular Toxicity and Preserves Disease Control and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Duprez, Frederic, E-mail: frederic.duprez@ugent.be [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Madani, Indira; Morbee, Lieve [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Bonte, Katrien; Deron, Philippe; Domjan, Vilmos [Department of Head and Neck Surgery, Ghent University Hospital, Ghent (Belgium); Boterberg, Tom; De Gersem, Werner; De Neve, Wilfried [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium)

    2012-05-01

    Purpose: To report late ocular (primary endpoint) and other toxicity, disease control, and survival (secondary endpoints) after intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between 1998 and 2009, 130 patients with nonmetastatic sinonasal tumors were treated with IMRT at Ghent University Hospital. Prescription doses were 70 Gy (n = 117) and 60-66 Gy (n = 13) at 2 Gy per fraction over 6-7 weeks. Most patients had adenocarcinoma (n = 82) and squamous cell carcinoma (n = 23). One hundred and one (101) patients were treated postoperatively. Of 17 patients with recurrent tumors, 9 were reirradiated. T-stages were T1-2 (n = 39), T3 (n = 21), T4a (n = 38), and T4b (n = 22). Esthesioneuroblastoma was staged as Kadish A, B, and C in 1, 3, and 6 cases, respectively. Results: Median follow-up was 52, range 15-121 months. There was no radiation-induced blindness in 86 patients available for late toxicity assessment ({>=}6 month follow-up). We observed late Grade 3 tearing in 10 patients, which reduced to Grade 1-2 in 5 patients and Grade 3 visual impairment because of radiation-induced ipsilateral retinopathy and neovascular glaucoma in 1 patient. There was no severe dry eye syndrome. The worst grade of late ocular toxicity was Grade 3 (n = 11), Grade 2 (n = 31), Grade 1 (n = 33), and Grade 0 (n = 11). Brain necrosis and osteoradionecrosis occurred in 6 and 1 patients, respectively. Actuarial 5-year local control and overall survival were 59% and 52%, respectively. On multivariate analysis local control was negatively affected by cribriform plate and brain invasion (p = 0.044 and 0.029, respectively) and absence of surgery (p = 0.009); overall survival was negatively affected by cribriform plate and orbit invasion (p = 0.04 and <0.001, respectively) and absence of surgery (p = 0.001). Conclusions: IMRT for sinonasal tumors allowed delivering high doses to targets at minimized ocular toxicity, while maintaining disease control and survival

  18. A Cushing's syndrome patient's severe insomnia and morning blood pressure surge both improved after her left adrenal tumor resection.

    Science.gov (United States)

    Imaizumi, Yuki; Ibaraki, Ai; Asada, Satoshi; Tominaga, Mitsuhiro; Hayashi, Hiroyuki; Tsuchihashi, Takuya; Eguchi, Kazuo; Kario, Kazuomi; Taketomi, Akira

    2016-12-01

    Underlying mechanisms of the elevated risks of hypertension and cardiovascular disease (CVD) in Cushing's syndrome (CS) are unclear. We treated an adult woman with CS because of a cortisol-secreting adrenal tumor. After tumor resection, the 24-h blood pressure (BP) level improved from 156/91 to 131/84 mmHg; the morning BP surprisingly improved from 174/98 to 127/93 mmHg, although we reduced her antihypertensive medication. Her sleep quality (by the Pittsburgh Sleep Quality Index) improved from 7 to 2 points. Disturbed circadian BP rhythm is often observed in CS, but was reported only as altered nocturnal BP fall. This is the first report showing the disappearance of the morning BP surge evaluated by ambulatory BP monitoring with postsurgery sleep quality improvement. Poor-quality sleep, followed by exaggerated morning BP surge may thus be a cause of CS-related cardiovascular events. Sleep quality and BP circadian rhythm evaluations may clarify hypertension and high CVD risk in CS.

  19. [Influence of anesthesia procedure on malignant tumor outcome].

    Science.gov (United States)

    Fukui, K; Werner, C; Pestel, G

    2012-03-01

    Malignant tumors are the second major cause of death in Germany. The essential therapy of operable cancer is surgical removal of primary tumors combined with adjuvant therapy. However, several consequences of surgery may promote metastasis, such as shedding of tumor cells into the circulation, decrease in tumor-induced antiangiogenesis factors, excessive release of growth factors for wound healing and suppression of immunity induced by surgical stress. In the last decade it has become clear that cell-mediated immunity controls the development of metastasis. Various perioperative factors, such as surgical stress, certain anesthetic and analgesic drugs and pain can suppress the patients' immune system perioperatively. On the other hand, by modifications of the anesthesia technique (e.g. regional anesthesia) and perioperative management to minimize immunosuppression, anesthesiologists can play a considerable role for a better outcome in patients having malignant tumors. Sufficient clinical evidence is not yet available to prove or disprove the hypothesis that anesthesia practice can improve cancer prognosis. Despite difficulties in study design, several prospective randomized trials are currently running and the results are awaited to elucidate this topic.

  20. Repopulation of interacting tumor cells during fractionated radiotherapy: Stochastic modeling of the tumor control probability

    International Nuclear Information System (INIS)

    Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer

    2013-01-01

    Purpose: Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the “five Rs” (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider “stem-like cancer cells” (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. Methods: The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. Results: In sample calculations with linear quadratic parameters α = 0.3 per Gy, α/β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. Conclusions: The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are

  1. Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability.

    Science.gov (United States)

    Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer

    2013-12-01

    Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the "five Rs" (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider "stem-like cancer cells" (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. In sample calculations with linear quadratic parameters α = 0.3 per Gy, α∕β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are the ones appropriate for individualized

  2. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    International Nuclear Information System (INIS)

    Sun Wenjie; Yu Haijun; Xiongjie; Xu Yu; Liao Zhengkai; Zhou Fuxiang; Xie Conghua; Zhou Yunfeng

    2011-01-01

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ 2 =18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong

  3. Clinical trial aims to study immunotherapy for central nervous system tumors | Center for Cancer Research

    Science.gov (United States)

    A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...

  4. A realistic closed-form radiobiological model of clinical tumor-control data incorporating intertumor heterogeneity

    International Nuclear Information System (INIS)

    Roberts, Stephen A.; Hendry, Jolyon H.

    1998-01-01

    Purpose: To investigate the role of intertumor heterogeneity in clinical tumor control datasets and the relationship to in vitro measurements of tumor biopsy samples. Specifically, to develop a modified linear-quadratic (LQ) model incorporating such heterogeneity that it is practical to fit to clinical tumor-control datasets. Methods and Materials: We developed a modified version of the linear-quadratic (LQ) model for tumor control, incorporating a (lagged) time factor to allow for tumor cell repopulation. We explicitly took into account the interpatient heterogeneity in clonogen number, radiosensitivity, and repopulation rate. Using this model, we could generate realistic TCP curves using parameter estimates consistent with those reported from in vitro studies, subject to the inclusion of a radiosensitivity (or dose)-modifying factor. We then demonstrated that the model was dominated by the heterogeneity in α (tumor radiosensitivity) and derived an approximate simplified model incorporating this heterogeneity. This simplified model is expressible in a compact closed form, which it is practical to fit to clinical datasets. Using two previously analysed datasets, we fit the model using direct maximum-likelihood techniques and obtained parameter estimates that were, again, consistent with the experimental data on the radiosensitivity of primary human tumor cells. This heterogeneity model includes the same number of adjustable parameters as the standard LQ model. Results: The modified model provides parameter estimates that can easily be reconciled with the in vitro measurements. The simplified (approximate) form of the heterogeneity model is a compact, closed-form probit function that can readily be fitted to clinical series by conventional maximum-likelihood methodology. This heterogeneity model provides a slightly better fit to the datasets than the conventional LQ model, with the same numbers of fitted parameters. The parameter estimates of the clinically

  5. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  6. Five-chlorodeoxycytidine, a tumor-selective enzyme-driven radiosensitizer, effectively controls five advanced human tumors in nude mice

    International Nuclear Information System (INIS)

    Greer, Sheldon; Alvarez, Marcy; Mas, Marisol; Wozniak, Chandra; Arnold, David; Knapinska, Anna; Norris, Christina; Burk, Ronald; Aller, Alex; Dauphinee, Michael

    2001-01-01

    Purpose: The study's goals were as follows: (1) to extend our past findings with rodent tumors to human tumors in nude mice, (2) to determine if the drug protocol could be simplified so that only CldC and one modulator, tetrahydrouridine (H 4 U), would be sufficient to obtain efficacy, (3) to determine the levels of deoxycytidine kinase and dCMP deaminase in human tumors, compared to adjacent normal tissue, and (4) to determine the effect of CldC on normal tissue radiation damage to the cervical spinal cord of nude mice. Methods and Materials: The five human tumors used were as follows: prostate tumors, PC-3 and H-1579; glioblastoma, SF-295; breast tumor, GI-101; and lung tumor, H-165. The duration of treatment was 3-5 weeks, with drugs administered on Days 1-4 and radiation on Days 3-5 of each week. The biomodulators of CldC were N-(Phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartyl transcarbamoylase, 5-fluorodeoxycytidine (FdC), resulting in tumor-directed inhibition of thymidylate synthetase, and H 4 U, an inhibitor of cytidine deaminase. The total dose of focused irradiation of the tumors was usually 45 Gy in 12 fractions. Results: Marked radiosensitization was obtained with CldC and the three modulators. The average days in tumor regrowth delay for X-ray compared to drugs plus X-ray, respectively, were: PC-3 prostate, 42-97; H-1579 prostate, 29-115; glioblastoma, 5-51; breast, 50-80; lung, 32-123. Comparative studies with PC-3 and H-1579 using CldC coadministered with H 4 U, showed that both PALA and FdC are dispensable, and the protocol can be simplified with equal and possibly heightened efficacy. For example, PC-3 with X-ray and (1) no drugs, (2) CldC plus the three modulators, (3) a high dose of CldC, and (4) escalating doses of CldC resulted in 0/10, 3/9, 5/10, and 6/9 cures, respectively. The tumor regrowth delay data followed a similar pattern. After treating mice only 1((1)/(2)) weeks with CldC + H 4 U, 92% of the PC-3 tumor cells were found

  7. Symptom resolution, tumor control, and side effects following postoperative radiotherapy for pituitary macroadenomas

    International Nuclear Information System (INIS)

    Rush, Stephen; Cooper, Paul R.

    1997-01-01

    This study reports the outcome of 70 patients who were treated by a consistent treatment plan of surgery and postoperative radiotherapy (RT) for pituitary macroadenomas in the modern era [computed tomographic scan or magnetic resonance imaging (MRI), dopamine agonist therapy (DA) added as indicated, and immunohistochemical staining]. Sixty-two patients underwent transsphenoidal surgery (vs. transcranial surgery) and 61 received 45-Gy/25 fractions postoperatively (vs. other dose fractionation schemes). Twenty-four patients received DA for prolactin-secreting tumors. With a median follow-up of 8 years (range 2-15), 68 patients have experienced continuous control of their tumors. Most symptoms related to mass effect abated, while physiologic symptoms such as amenorrhea from markedly elevated prolactin levels tended to persist. Treatment-induced hypopituitarism occurred in 42% of the patients at risk. No patients in this series have died as a result of their pituitary tumor. No gross neuropsychologic dysfunction after treatment has been noted. While it is possible at this time with serial MRI to withhold postoperative RT and observe some patients who have had a 'gross total' resection of a macroadenoma, the therapeutic ratio for surgery and adjuvant radiotherapy for patients with nonfunctional tumors as well as select patients with secretory macroadenomas is favorable

  8. Surgical treatment of tumor-induced osteomalacia: a retrospective review of 40 cases with extremity tumors.

    Science.gov (United States)

    Sun, Zhi-jian; Jin, Jin; Qiu, Gui-xing; Gao, Peng; Liu, Yong

    2015-02-26

    Tumor-induced osteomalacia (TIO) is a rare syndrome typically caused by mesenchymal tumors. It has been shown that complete tumor resection may be curative. However, to our knowledge, there has been no report of a large cohort to exam different surgical approaches. This study was aimed to assess outcomes of different surgical options of patients with tumor-induced osteomalacia at a single institution. Patients with extremity tumors treated in our hospital from January, 2004 to July, 2012 were identified. The minimum follow-up period was 12 months. Patient's demography, tumor location, preoperative preparation, type of surgeries were summarized, and clinical outcomes were recorded. Successful treatment was defined as significant symptom improvement, normal serum phosphorus and significant improvement or normalization of bone mineral density at the last follow-up. Differences between patients with soft tissue tumors and bone tumors were compared. There were 40 (24 male and 16 female) patients identified, with an average age of 44 years. The tumors were isolated in either soft tissue (25 patients) or bone (12 patients) and combined soft tissue and bone invasion was observed in 3 patients. For the primary surgery, tumor resection and tumor curettage were performed. After initial surgical treatment, six patients then received a second surgery. Four patients were found to have malignant tumors base on histopathology. With a minimum follow-up period of 12 months, 80% of patients (32/40) were treated successfully, including 50% of patients (2/4) with malignant tumors. Compared to patients with bone tumor, surgical results were better in patient with soft tissue tumor. Surgical treatment was an effective way for TIO. Other than tumor curettage surgery, tumor resection is the preferred options for these tumors.

  9. Decreased tumor cell proliferation as an indicator of the effect of preoperative radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Adell, Gunnar; Zhang Hong; Jansson, Agneta; Sun Xiaofeng; Staal, Olle; Nordenskjoeld, Bo

    2001-01-01

    Background: Rectal cancer is a common malignancy, with significant local recurrence and death rates. Preoperative radiotherapy and refined surgical technique can improve local control rates and disease-free survival. Purpose: To investigate the relationship between the tumor growth fraction in rectal cancer measured with Ki-67 and the outcome, with and without short-term preoperative radiotherapy. Method: Ki-67 (MIB-1) immunohistochemistry was used to measure tumor cell proliferation in the preoperative biopsy and the surgical specimen. Materials: Specimens from 152 patients from the Southeast Swedish Health Care region were included in the Swedish rectal cancer trial 1987-1990. Results: Tumors with low proliferation treated with preoperative radiotherapy had a significantly reduced recurrence rate. The influence on death from rectal cancer was shown only in the univariate analysis. Preoperative radiotherapy of tumors with high proliferation did not significantly improve local control and disease-free survival. The interaction between Ki-67 status and the benefit of radiotherapy was significant for the reduced recurrence rate (p=0.03), with a trend toward improved disease-free survival (p=0.08). In the surgery-alone group, Ki-67 staining did not significantly correlate with local recurrence or survival rates. Conclusion: Many Ki-67 stained tumor cells in the preoperative biopsy predicts an increased treatment failure rate after preoperative radiotherapy of rectal cancer

  10. The selection of patients for accelerated radiotherapy on the basis of tumor growth kinetics and intrinsic radiosensitivity

    International Nuclear Information System (INIS)

    Tucker, S.L.; Kang-Sow Chan

    1990-01-01

    Mathematical modelling was used to reach qualitative conclusions concerning the relative rate of local tumor control that might be achieved by using accelerated fractionation to treat only the patients with the most rapidly growing rumors, compared with the control rated that could be expected from either conventional or accelerated radiotherapy alone. The results suggest that concomitant boost therapy is equally or more effective than conventional dose fractionation for all tumors, regardless of their growth kinetics. For tumors with very short clonogen doubling times, CHART (continuous hyperfractionated accelerated radiotherapy) may be even more effective than concomitant boost treatment, but CHART is less effective than conventional or concomitant boost therapy for tumors with longer clonogen doubling times. Thus, there is a rationale for using a predictive assay of tumor clonogen doubling times to identify the patients who should be treated with CHART. However, improvements in local tumor control resulting from concomitant boost treatment or the selective use of CHART are not likely to be apparent in the population as a whole, because the overall control rated are largely determined by refractory tumors having little chance of control with any of the treatments and by higher responsive tumors that are likely to be controlled regardless of the treatment choice. Differences in control rated with different treatment strategies are most apparent in the stochastic fraction of the population, which excludes those patients for whom there is either very little change (e.g. 99%) of achieving local control with both treatments. The stochastic fraction can be approximated by excluding those patients with the most radioresistant and the most radiosensitive tumors, since intrinsic tumor radiosensitivity appears to be the single most important factor determining treatment outcome. (author). 32 refs.; 4 figs.; 5 tabs

  11. A preclinical study of boron neutron capture therapy (BNCT) of spontaneous tumors in cats at RA-6 in Argentina

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Calzetta, Osvaldo A.; Blaumann, Hernan R.; Longhino, J.; Rao, Monica; Cantarelli, Maria de los A.

    2005-01-01

    BNCT is a binary treatment modality that combines irradiation with a thermal or epithermal neutron beam with tumor-seeking, boron containing drugs to produce selective irradiation of tumor tissue. Having demonstrated that BNCT mediated by boronophenylalanine (BPA) induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of RA-1. Having demonstrated partial tumor control with no radio toxic effects, the aim of the present study was to evaluate the effect of BPA-BNCT on tumor and normal tissue in 3 cases of spontaneous SCC in feline patients employing a higher neutron fluence than in the previous study. The present study was performed at RA-6 with the thermalized epithermal neutron beam. All three irradiations were successful. Except for an initial, moderate and reversible mucositis, no significant radio toxic effects were observed in terms of clinical follow-up, histological examination, biochemical analysis and assessment of autopsy material. Partial tumor control was evidenced in terms of growth inhibition and partial necrosis and improvement in the quality of life during the survival period. Optimization of the therapeutic efficacy of BNCT would require improvement in boron tumor targeting and strategies to increase in-depth dose in large tumors. (author)

  12. Tumor response to ionizing radiation and combined 2-deoxy-D-glucose application in EATC tumor bearing mice: monitoring of tumor size and microscopic observations

    International Nuclear Information System (INIS)

    Latz, D.; Thonke, A.; Jueling-Pohlit, L.; Pohlit, W.

    1993-01-01

    The present study deals with the changes induced by two fractionation schedules (5x9 Gy and 10x4.5 Gy; 30 MeV-electrons) of ionizing radiations and 2-Deoxy-D-Glucose (2-DG) application on EATC tumor bearing swiss albino mice. The monitoring of tumor response was carried out by means of calliper measurement on the macroscopic level and by histopathological examination of tumor preparations stained with hematoxiline and eosine on the microscopic level. The tumor material was assessed at suitable intervals after treatment by killing the animals. The tumor response was analysed in the histological preparations and the thickness of the tumor band was determined quantitatively by an ocularmicrometric technique. Tumor damage was most extensive in the combined treated animals (5x9 Gy + 2-DG). Only in this group local tumor control was achievable. The histological analysis of tumor preparations revealed additional data about treatment-induced changes in the tumor compared to the measurement of the tumor volume with mechanical callipers. We also found that the treatment outcome could be predicted from the histopathological analysis. It is concluded that studies involving histopathological examinations may give some insight into the way cancer is controlled by radiotherapy and may be of value in prognosis and selection of treatment in patients. (orig.) [de

  13. Diltiazem enhances tumor blood flow: MRI study in a murine tumor

    International Nuclear Information System (INIS)

    Muruganandham, M.; Kasiviswanathan, A.; Jagannathan, N.R.; Raghunathan, P.; Jain, P.C.; Jain, V.

    1999-01-01

    Purpose: Diltiazem, a calcium-channel blocker, is known to differentially influence the radiation responses of normal and murine tumor tissues. To elucidate the underlying mechanisms, the effects of diltiazem on the radiation response of Ehrlich ascites tumor (EAT) in mice have been investigated, and the hemodynamic changes induced by diltiazem in tumor and normal muscle have been studied using magnetic resonance imaging (MRI) techniques. Methods and Materials: Ehrlich ascites tumors were grown subcutaneously in Swiss albino strain A mice. Dynamic gadodiamide and blood oxygen level dependent (BOLD) contrast enhanced 1 H MR imaging studies of EAT and normal muscle were performed after administration of diltiazem in mice using a 4.7 Tesla MR scanner. Tumor radiotherapy experiments (total dose = 10 Gy, 0.4-0.5 Gy/min, single fraction) were carried out with 30 min preadministration of diltiazem (27.5 or 55 mg/kg i.p.) to EAT-bearing mice using a teletherapy machine. Results: The diltiazem+ radiation treated group showed significant tumor regression (in congruent with 65% of the animals) and enhanced animal survival. MR-gadodiamide contrast kinetics revealed a higher magnitude of signal enhancement in diltiazem treated groups as compared to the controls. The observed changes in the magnitude of kinetic parameters were the same for both tumor and normal muscle. BOLD-MR images at 30 min after diltiazem administration showed a 25% and 8% (average) intensity enhancement from their basal values in tumor and normal muscle regions, respectively. The control group showed no significant changes. Conclusion: The present studies demonstrate the radiosensitization potential of diltiazem in the mice EAT model. The enhanced radiation response observed with diltiazem correlates with the diltiazem-induced increase in tumor blood flow (TBF) and tumor oxygenation. The present results also demonstrate the applications of BOLD-MR measurements in investigating the alterations in tumor

  14. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  15. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  16. Clinical analysis of four serum tumor markers in 458 patients with ovarian tumors: diagnostic value of the combined use of HE4, CA125, CA19-9, and CEA in ovarian tumors

    Directory of Open Access Journals (Sweden)

    Chen F

    2018-05-01

    Full Text Available Fawen Chen,1,2 Jing Shen,3 Jianwei Wang,1 Pengwei Cai,1 Yi Huang3 1Department of Clinical Laboratory, Fujian Provincial Hospital South Branch, 2Department of Blood Transfusion, 3Department of Clinical Laboratory, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, People’s Republic of China Purpose: To investigate the diagnostic values of human epididymis protein 4 (HE4, carbohydrate antigen 125 (CA125, carbohydrate antigen 19-9 (CA19-9, and carcinoembryonic antigen (CEA for ovarian tumors. Methods: The participants were divided into three groups: 386 healthy women (control group, 262 patients with benign ovarian tumors (the benign group, and 196 patients with malignant pelvic tumors (the malignant group. The serum levels of HE4, CA125, CA19-9, and CEA were analyzed by electrochemiluminescent immunoassay. Results: It showed that serum levels of HE4, CA125, CA19-9, and CEA of patients with ­malignant ovarian tumors were significantly higher than those in the control group and benign group (P<0.01. HE4 had a high specificity (96.56% in malignant ovarian tumors. The tumor markers HE4, CA125, CA19-9, and CEA had a sensitivity of 63.78%, 62.75%, 35.71%, and 38.78%, respectively. The combined use of two or more tumor markers (parallel test had a higher diagnostic sensitivity but lower specificity than a single tumor marker. The combined efficiency of HE4 and CA125 was the highest, with a sensitivity and specificity of 80.10% and 69.08%, respectively. HE4 and CA125 combined with the Risk of Ovarian Malignancy Algorithm provided an efficient means of screening and diagnosis of ovarian malignancies. The diagnostic sensitivity increased to 88.52% when three or four tumor markers were used but showed no significant difference compared with the combination of HE4 and CA125 (P>0.05. Conclusion: The combination of three or four tumor markers did not improve the diagnostic efficacy when compared with the combination

  17. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.

    Science.gov (United States)

    Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2017-11-02

    Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.

  18. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    Science.gov (United States)

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  19. Neuroendocrine tumors of the pancreas.

    LENUS (Irish Health Repository)

    Davies, Karen

    2009-04-01

    Pancreatic endocrine tumors are rare neoplasms accounting for less than 5% of pancreatic malignancies. They are broadly classified into either functioning tumors (insulinomas, gastrinomas, glucagonomas, VIPomas, and somatostatinomas) or nonfunctioning tumors. The diagnosis of these tumors is difficult and requires a careful history and examination combined with laboratory tests and radiologic imaging. Signs and symptoms are usually related to hormone hypersecretion in the case of functioning tumors and to tumor size or metastases with nonfunctioning tumors. Surgical resection remains the treatment of choice even in the face of metastatic disease. Further development of novel diagnostic and treatment modalities offers potential to greatly improve quality of life and prolong disease-free survival for patients with pancreatic endocrine tumors.

  20. Neuroendocrine tumors of the pancreas.

    LENUS (Irish Health Repository)

    Davies, Karen

    2012-02-01

    Pancreatic endocrine tumors are rare neoplasms accounting for less than 5% of pancreatic malignancies. They are broadly classified into either functioning tumors (insulinomas, gastrinomas, glucagonomas, VIPomas, and somatostatinomas) or nonfunctioning tumors. The diagnosis of these tumors is difficult and requires a careful history and examination combined with laboratory tests and radiologic imaging. Signs and symptoms are usually related to hormone hypersecretion in the case of functioning tumors and to tumor size or metastases with nonfunctioning tumors. Surgical resection remains the treatment of choice even in the face of metastatic disease. Further development of novel diagnostic and treatment modalities offers potential to greatly improve quality of life and prolong disease-free survival for patients with pancreatic endocrine tumors.

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  2. Readmission After Craniotomy for Tumor: A National Surgical Quality Improvement Program Analysis.

    Science.gov (United States)

    Dasenbrock, Hormuzdiyar H; Yan, Sandra C; Smith, Timothy R; Valdes, Pablo A; Gormley, William B; Claus, Elizabeth B; Dunn, Ian F

    2017-04-01

    Although readmission has become a common quality indicator, few national studies have examined this metric in patients undergoing cranial surgery. To utilize the prospective National Surgical Quality Improvement Program 2011-2013 registry to evaluate the predictors of unplanned 30-d readmission and postdischarge mortality after cranial tumor resection. Multivariable logistic regression was applied to screen predictors, which included patient age, sex, tumor location and histology, American Society of Anesthesiologists class, functional status, comorbidities, and complications from the index hospitalization. Of the 9565 patients included, 10.7% (n = 1026) had an unplanned readmission. Independent predictors of unplanned readmission were male sex, infratentorial location, American Society of Anesthesiologists class 3 designation, dependent functional status, a bleeding disorder, and morbid obesity (all P ≤ .03). Readmission was not associated with operative time, length of hospitalization, discharge disposition, or complications from the index admission. The most common reasons for readmission were surgical site infections (17.0%), infectious complications (11.0%), venous thromboembolism (10.0%), and seizures (9.4%). The 30-d mortality rate was 3.2% (n = 367), of which the majority (69.7%, n = 223) occurred postdischarge. Independent predictors of postdischarge mortality were greater age, metastatic histology, dependent functional status, hypertension, discharge to institutional care, and postdischarge neurological or cardiopulmonary complications (all P Readmissions were common after cranial tumor resection and often attributable to new postdischarge complications rather than exacerbations of complications from the initial hospitalization. Moreover, the majority of 30-d deaths occurred after discharge from the index hospitalization. The preponderance of postdischarge mortality and complications requiring readmission highlights the importance of posthospitalization

  3. Networking for ovarian rare tumors: a significant breakthrough improving disease management.

    Science.gov (United States)

    Chiannilkulchai, N; Pautier, P; Genestie, C; Bats, A S; Vacher-Lavenu, M C; Devouassoux-Shisheboran, M; Treilleux, I; Floquet, A; Croce, S; Ferron, G; Mery, E; Pomel, C; Penault-Llorca, F; Lefeuvre-Plesse, C; Henno, S; Leblanc, E; Lemaire, A S; Averous, G; Kurtz, J E; Ray-Coquard, I

    2017-06-01

    Rare ovarian tumors represent >20% of all ovarian cancers. Given the rarity of these tumors, natural history, prognostic factors are not clearly identified. The extreme variability of patients (age, histological subtypes, stage) induces multiple and complex therapeutic strategies. Since 2011, a national network with a dedicated system for referral, up to 22 regional and three national reference centers (RC) has been supported by the French National Cancer Institute (INCa). The network aims to prospectively monitor the management of rare ovarian tumors and provide an equal access to medical expertise and innovative treatments to all French patients through a dedicated website, www.ovaire-rare.org. Over a 5-year activity, 4612 patients have been included. Patients' inclusions increased from 553 in 2011 to 1202 in 2015. Expert pathology review and patients' files discussion in dedicated multidisciplinary tumor boards increased from 166 cases in 2011 (25%) to 538 (45%) in 2015. Pathology review consistently modified the medical strategy in 5-9% every year. The rate of patients' files discussed in RC similarly increased from 294 (53%) to 789 (66%). An increasing number (357 in 5 years) of gynecologic (non-ovarian) rare tumors were also registered by physicians seeking for pathological or medical advice from expert tumor boards. Such a nation-wide organization for rare gynecological tumors has invaluable benefits, not only for patients, but also for epidemiological, clinical and biological research. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Cross-immunity among allogeneic tumors of rats immunized with solid tumors

    International Nuclear Information System (INIS)

    Ogasawara, Masamichi

    1979-01-01

    Several experiments were done for the study of cross-immunity among allogeneic rat tumors by immunization using gamma-irradiated or non-irradiated solid tumors. Each group of rats which were immunized with gamma-irradiation solid tumor inocula from ascites tumor cell line of tetra-ploid Hirosaki sarcoma, Usubuchi sarcoma or AH 130, showed an apparent resistance against the intraperitoneal challenge with Hirosaki sarcoma. A similar resistance was demonstrated in the case of the challenge with Usubuchi sarcoma into rats immunized with non-irradiated methylcholanthrene (MCA)-induced tumors. In using solid MCA tumors as immunogen and Hirosaki sarcoma as challenge tumor, it was also demonstrated in 2 out of 3 groups immunized with non-irradiated tumors. In the experiment of trying to induce cross-immunity between 2 MCA tumors by immunization with irradiated solid tumor only, the inhibitory effect on the growth was observed in the early stage in the treated groups as compared with the control one. From the above results, it may be considered that the immunization with irradiated solid tumors fromas cites cell lines and non-irradiated solid MCA tumors induced strong cross-immunity in general, but that the immunization with only irradiated solid MCA tumors induced weak cross-immunity commonly. (author)

  5. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  6. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  7. Image-guided radiofrequency ablation (RFA) of spinal tumors

    International Nuclear Information System (INIS)

    Gevargez, Athour; Groenemeyer, Dietrich H.W.

    2008-01-01

    Purpose: To evaluate retrospectively the efficacy and safety of radiofrequency ablation (RFA) in patients with spinal tumors. Materials and methods: Forty-one patients (25 men, 16 women; age range, 46-82 years) with nonresectable primary or secondary tumor involvement of the spine unresponsive to chemo- and radiotherapy received RFA treatment. Two radiofrequency ablation systems, one with a cool-tip electrode and one with an expandable electrode catheter, were used. Both systems work impedance controlled with a power output of 150- 200 W. Each coagulation cycle lasted 12-15 min depending on tumor impedance. Several single RFA cycles of 15 min each were used for overlapping RFAs in tumors with diameters of more than 3 cm. Temperature was kept between 50 deg. C and 120 deg. C and was chosen according to spinal cord distance and patient heat tolerance during the ablation. Multi-slice computed tomography (CT) combined with C-arm fluoroscopy guided the intervention. Efficacy outcomes were assessed after about 6 weeks, 6 months, and more than 6 months using standardized questionnaires and indices regarding tumor pain, pain disability, functional activities, quality of life, neurological status, and tumor progression. Results: RFA significantly reduced tumor-induced pain within 6 weeks, improved daily activities, and maintained quality of life. Mean time to tumor progression was 730 ± 54 days (Kaplan-Meier estimate). No RFA-associated complications were reported. Conclusion: RFA of primary and secondary spinal tumors, which were unresponsive to chemo- and radiotherapy and prone to progression, is a safe, resource-saving, and highly effective percutaneous technique in patients with nonresectable spinal tumors

  8. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    Science.gov (United States)

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  9. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A.; Bondar, L.; Zolnay, A. G.; Hoogeman, M. S.

    2013-01-01

    parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9–14 mm after rigid bone match to 0.9–4.0 mm, compared to a range of 1.1–9.1 mm with S-TPS-RPM of bladder alone and 0.9–9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  10. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  11. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.

    Science.gov (United States)

    Jablonska, Jadwiga; Leschner, Sara; Westphal, Kathrin; Lienenklaus, Stefan; Weiss, Siegfried

    2010-04-01

    Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.

  12. Fluorescence diagnosis of pre-tumor and tumor pathology of endometrium

    Directory of Open Access Journals (Sweden)

    E. V. Filonenko

    2014-01-01

    Full Text Available The technique of fluorescence hysteroscopy with Alasens includes visual assessment of fluorescence of Alasens-induced protoporphyrin IX and local fluorescence spectroscopy. The technique allows to improve the efficacy of early diagnosis for endometrial pathology including early endometrial cancer, to assess definitely an extent of pre-tumor and tumor process. The sensitivity of fluorescence hysteroscopy accounts for 100%, the specificity – 98%. 

  13. PHYLLODES TUMOR OF THE BREAST : A CLINICOPATHOLOGICAL ANALYSIS FROM A SINGLE INSTITUTION

    Directory of Open Access Journals (Sweden)

    Naoual Benhmidou

    2017-07-01

    Full Text Available The aim of our study is to examine the clinical and pathological features of patients with breast phyllodes tumors and to determine features that are correlated to outcome. Forty four phyllodes tumors were assessed. There were 11 benign, 11 borderline and 22 malignant tumors. 10 of 44 patients (22.72 % relapsed at any site. Seven patients (15.9 % had a local recurrence and 3 patients experienced local and metastatic relapse. The 5-year and 10-year survival rates are 97% and 95 % respectively. The 5 years and 10 years DFS are 81% and 77% respectively. Grade, histological size, margin involvement impacted disease free survival. Adjuvant radiation therapy improved local control in high grade tumors although it didn’t reach significance.

  14. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16+ Oral Tumors and Immunologic Control.

    Science.gov (United States)

    Lin, Yi-Hsin; Yang, Ming-Chieh; Tseng, Ssu-Hsueh; Jiang, Rosie; Yang, Andrew; Farmer, Emily; Peng, Shiwen; Henkle, Talia; Chang, Yung-Nien; Hung, Chien-Fu; Wu, T-C

    2018-01-23

    Human papillomavirus type 16 (HPV16) is the etiologic factor for cervical cancer and a subset of oropharyngeal cancers. Although several prophylactic HPV vaccines are available, no effective therapeutic strategies to control active HPV diseases exist. Tumor implantation models are traditionally used to study HPV-associated buccal tumors. However, they fail to address precancerous phases of disease progression and display tumor microenvironments distinct from those observed in patients. Previously, K14-E6/E7 transgenic mouse models have been used to generate spontaneous tumors. However, the rate of tumor formation is inconsistent, and the host often develops immune tolerance to the viral oncoproteins. We developed a preclinical, spontaneous, HPV16 + buccal tumor model using submucosal injection of oncogenic plasmids expressing HPV16-E6/E7, NRas G12V , luciferase, and sleeping beauty (SB) transposase, followed by electroporation in the buccal mucosa. We evaluated responses to immunization with a pNGVL4a-CRT/E7(detox) therapeutic HPV DNA vaccine and tumor cell migration to distant locations. Mice transfected with plasmids encoding HPV16-E6/E7, NRas G12V , luciferase, and SB transposase developed tumors within 3 weeks. We also found transient anti-CD3 administration is required to generate tumors in immunocompetent mice. Bioluminescence signals from luciferase correlated strongly with tumor growth, and tumors expressed HPV16-associated markers. We showed that pNGVL4a-CRT/E7(detox) administration resulted in antitumor immunity in tumor-bearing mice. Lastly, we demonstrated that the generated tumor could migrate to tumor-draining lymph nodes. Our model provides an efficient method to induce spontaneous HPV + tumor formation, which can be used to identify effective therapeutic interventions, analyze tumor migration, and conduct tumor biology research. Cancer Immunol Res; 6(3); 1-15. ©2018 AACR. ©2018 American Association for Cancer Research.

  15. The application of 3D printed surgical guides in resection and reconstruction of malignant bone tumor.

    Science.gov (United States)

    Wang, Fengping; Zhu, Jun; Peng, Xuejun; Su, Jing

    2017-10-01

    The clinical value of 3D printed surgical guides in resection and reconstruction of malignant bone tumor around the knee joint were studied. For this purpose, a sample of 66 patients from October 2013 to October 2015 were randomly selected and further divided into control group and observation group, each group consisted of 33 cases. The control group was treated by conventional tumor resection whereas, in the observation group, the tumor was resected with 3D printed surgical guide. However, reconstruction of tumor-type hinge prosthesis was performed in both groups and then the clinical effect was compared. Results show that there was no significant difference in the operation time between the two groups (p>0.05). However, the blood loss, resection length and complication rate were found significantly lower in the observation group than in the control group (p0.05) between two groups were statistically the same (p>0.05), whereas the Musculoskeletal Tumor Society (MSTS) score of the knee joint in the observation group was significantly better than that of the control group (p3D printed surgical guides can significantly improve the postoperative joint function after resection and reconstruction of malignant bone tumor around the knee joint and can reduce the incidence of complications.

  16. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    Science.gov (United States)

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  17. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    Directory of Open Access Journals (Sweden)

    Sejal Desai

    Full Text Available Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2 and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper

  18. Improving labeling efficiency in automatic quality control of MRSI data.

    Science.gov (United States)

    Pedrosa de Barros, Nuno; McKinley, Richard; Wiest, Roland; Slotboom, Johannes

    2017-12-01

    To improve the efficiency of the labeling task in automatic quality control of MR spectroscopy imaging data. 28'432 short and long echo time (TE) spectra (1.5 tesla; point resolved spectroscopy (PRESS); repetition time (TR)= 1,500 ms) from 18 different brain tumor patients were labeled by two experts as either accept or reject, depending on their quality. For each spectrum, 47 signal features were extracted. The data was then used to run several simulations and test an active learning approach using uncertainty sampling. The performance of the classifiers was evaluated as a function of the number of patients in the training set, number of spectra in the training set, and a parameter α used to control the level of classification uncertainty required for a new spectrum to be selected for labeling. The results showed that the proposed strategy allows reductions of up to 72.97% for short TE and 62.09% for long TE in the amount of data that needs to be labeled, without significant impact in classification accuracy. Further reductions are possible with significant but minimal impact in performance. Active learning using uncertainty sampling is an effective way to increase the labeling efficiency for training automatic quality control classifiers. Magn Reson Med 78:2399-2405, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. [An improved case of bedridden mental impairment with normal pressure hydrocephalus associated with acoustic neurinoma after tumor resection].

    Science.gov (United States)

    Sugimoto, Seiichiro; Sugimoto, Akiko; Saita, Kazuko; Kishi, Masahiko; Shioya, Keiichi; Higa, Toshinobu

    2008-08-01

    A 67-year-old woman developed gait disturbance, dysarthria, cognitive impairment and incontinence at age 65, and became bedridden. She showed mutism, stupor and lower limb spasticity. Cranial CT and MRI revealed marked ventricular enlargement and a cerebellopontine angle tumor. CSF study showed normal pressure (125 mmH2O) and elevated protein (143 mg/dl). Radionuclide cisternography showed redistribution of radionuclide to the ventricles and intraventricular residual radionuclide after 72 hours, which allowed a diagnosis of normal pressure hydrocephalus. After removal of the tumor, ventricle size and CSF protein decreased, and the symptoms of cognitive impairment and motor dysfunction resolved. Histological examination showed acoustic neurinoma. Over the half of hydrocephalus following acoustic neurinoma shows a tendency to improve by surgical resection of the tumor. Neurologists who see cognitively impaired spastic bedridden patients should not overlook this pathology.

  20. Radiation therapy for glomus tumors of the temporal bone; Tratamento radioterapico dos tumores glomicos do osso temporal

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Igna, Celso; Antunes, Marcelo B [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Hospital das Clinicas. Servico de Otorrinolaringologia e Cirurgia da Cabeca e Pescoco; Dall' Igna, Daniela Pernigotti [Parana Univ., Curitiba, PR (Brazil)

    2005-11-15

    The treatment of glomic tumors has been controversial since its first description. It can be done with surgery, radiotherapy or just expectation. Aim: the objective of this paper was to evaluate the effectiveness and complications of radiotherapy.Study Design: clinical with transversal cohort. Material and method: it was made a retrospective review in the charts of the patients with glomus jugular tumors treated with radiotherapy. Disease control was determined by (1) no progression of symptoms or cranial nerve dysfunction or (2) no progression of the lesion in radiological follow-up. It was also evaluated the follow-up period and the sequelae of the treatment. Results: twelve patients were included, 8 of then women. The follow-up period was from 3 to 35 years, with a media of 11,6 years. The main symptoms were: hearing loss, pulsate tinnitus, dizziness and vertigo. The signs were pulsate retrotympanic mass, facial palsy and cofosis. The tumors were staged using Fischs classification. The radiotherapy was performed with linear accelerator with dose ranging from 4500-5500 in 4-6 weeks. In the follow-up period were possible to identify sequelaes like dermatitis, meatal stenosis, cofosis and facial palsy. Discussion: the signs and symptoms were the same found in the medical literature. The type and dosages of the radiotherapy were also the same of others reports. All patients had improvement of the symptoms and only one was not considered as having disease controlled. Complications were, in general, minor complications, with exception of the cofosis and facial palsy. Conclusion: radiotherapy is a viable alternative to treatment of these tumors because their good response and low level of complications. It should be considered specially in advanced tumors where a surgical procedure could bring a high level of morbidity. (author)

  1. Stereotactic gamma radiosurgery of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Oyama, Hirofumi; Yoshida, Kazuo; Maesawa, Satoshi; Kai, Osamu; Nakamura, Mototoshi; Arahata, Masashige [Komaki City Hospital, Aichi (Japan)

    1996-06-01

    One thousand cases with various head and neck diseases have been treated by gamma radiosurgery at Komaki City Hospital since May 1991. Five hundred and sixty-eight out of 1,000 cases were neoplastic lesions which consisted of 173 cases of neurinoma, 108 of metastatic tumors, 103 of meningioma, 69 of gliomas, 27 of pituitary adenoma, 26 of craniopharyngioma, 13 of pineal tumors, 11 of chordoma, 6 of malignant lymphoma, 5 of hemangioblastoma and so on. The most effective result has been shown in metastatic brain tumors. The complete response (disappearance of the lesion) was obtained in more than 50% of the treated lesions, and the control rate of 85% was maintained for more than 12 months. Next effective results were shown in craniopharyngioma, malignant pineal tumors and malignant lymphoma. There was a group which showed moderate response but no tumor disappearance. Those were pituitary adenoma, acoustic neurinoma, meningioma and chordoma. Gliomas showed less response and even progression of tumor at relatively higher rate. It has been found that malignant gliomas showed difficult control of the tumor and progression rate of 70%, while benign gliomas showed the control rate of more than 90%. Besides intracranial lesions, malignant skull base tumors such as chordoma, naso-pharyngeal cancer, adenoid cystic cancer showed better response to gamma radiosurgery and higher control rate for longer period of time with high QOL compaired to conventional irradiation. (author)

  2. Enhanced tumor responses through therapies combining CCNU, MISO and radiation

    International Nuclear Information System (INIS)

    Siemann, D.W.; Hill, S.A.

    1984-01-01

    Studies were performed to determine whether the radiation sensitizer misonidazole (MISO) could enhance the tumor control probability in a treatment strategy combining radiation and the nitrosourea 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). In initial experiments KHT sarcoma-bearing mice were injected with 1.0 mg/g of MISO simultaneously with a 20 mg/kg dose of CCNU 30-40 min prior to irradiation (1500 rad). With this treatment protocol approximately 60% of the mice were found to be tumor-free 100 days post treatment. By comparison all 2 agent combinations led to 0% cures. To evaluate the relative importance of chemopotentiation versus radiosensitization in the 3 agent protocol, tumors were treated with MISO plus one anti-tumor agent (either radiation of CCNU) and then at times ranging from 0 to 24 hr later exposed to the other agent. When the time between treatments was 0 to 6 hr, a 60 to 80% tumor control rate was achieved for both MISO plus radiation followed by CCNU and MISO plus CCNU followed by radiation. However if the time interval was increased to 18 or 24 hr, the cure rate in the former treatment regimen dropped to 10% while that of the latter remained high at 40%. The data therefore indicate that (1) improved tumor responses may be achieved when MISO is added to a radiation-chemotherapy combination and (2) MISO may be more effective in such a protocol when utilized as a chemopotentiator

  3. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  4. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  5. Tumor targeting using {sup 67}Ga-DOTA-Bz-folate - investigations of methods to improve the tissue distribution of radiofolates

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Cristina, E-mail: cristina.mueller@psi.ch [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Vlahov, Iontcho R.; Santhapuram, Hari Krishna R.; Leamon, Christopher P. [Endocyte Inc., West Lafayette, IN 47906 (United States); Schibli, Roger [Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI (Switzerland); Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland)

    2011-07-15

    Introduction: Use of folic acid radioconjugates for folate receptor (FR) targeting is a promising strategy for imaging purposes as well as for potential therapy of cancer and inflammatory diseases due to the frequent FR overexpression found on cancer cells and activated macrophages. Herein, we report on preclinical results using a novel DOTA-Bz-EDA-folate conjugate radiolabeled with [{sup 67}Ga]-gallium. Methods: DOTA-Bz-EDA-folate was prepared by conjugation of ethylenediamine-({gamma})-folate with 2-(p-isothiocyanobenzyl)-DOTA. Radiolabeling was carried out with {sup 67}GaCl{sub 3} according to standard procedures. Biodistribution studies of the tracer were performed in mice bearing FR-positive KB tumor xenografts. The effects on radiofolate biodistribution with coadministered renal uptake-blocking amino acids, diuretic agents, antifolates as well as different routes of administration were likewise investigated. Supportive imaging studies were performed using a small-animal single photon emission computed tomography (SPECT)/CT scanner. Results: {sup 67}Ga-DOTA-Bz-EDA-folate showed a high and specific accumulation in tumors (6.30%{+-}0.75% ID/g, 1 h pi and 6.08%{+-}0.89% ID/g, 4 h pi). Nonspecific radioactivity uptake in nontargeted tissues was negligible, but significant accumulation was found in FR-positive kidneys, which resulted in unfavorably low tumor-to-kidney ratios (<0.1). Coadministered amino acids or diuretics did not effectively reduce renal accumulation; in contrast, predosed pemetrexed did significantly reduce kidney uptake (<29% of control values). The SPECT/CT studies confirmed the excellent tumor-to-background contrast of {sup 67}Ga-radiofolate and the favorable reduction in kidney uptake (with improved imaging quality) resulting from pemetrexed administration. Conclusion: Conventional methods to reduce kidney uptake of radiofolates fail. However, the novel {sup 67}Ga-radiolabeled DOTA-Bz-EDA-folate can effectively be used to image FR

  6. Tweaking Dendrimers and Dendritic Nanoparticles for Controlled Nano-bio Interactions: Potential Nanocarriers for Improved Cancer Targeting

    Science.gov (United States)

    Bugno, Jason; Hsu, Hao-Jui; Hong, Seungpyo

    2016-01-01

    Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation, and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: i) modifications of structure and surfaces; ii) integration with linear polymers; and iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses. PMID:26453160

  7. Radiation therapy for metastatic spinal tumors

    International Nuclear Information System (INIS)

    Kida, Akio; Fukuda, Haruyuki; Taniguchi, Shuji; Sakai, Kazuaki

    2000-01-01

    The results of radiation therapy for metastatic spinal tumors were evaluated in terms of pain relief, improvement of neurological impairment, and survival. Between 1986 and 1995, 52 symptomatic patients with metastatic spinal tumors treated with radiation therapy were evaluated. The patients all received irradiation of megavoltage energy. Therapeutic efficacy was evaluated in terms of pain relief and improvement of neurological impairment. Pain relief was observed in 29 (61.7%) of 47 patients with pain. Therapy was effective for 17 (70.8%) of 24 patients without neurological impairment, and efficacy was detected in 12 (52.2%) of 23 patients with neurological impairment. Improvement of neurological symptoms was obtained in seven (25.0%) of 28 patients with neurological impairment. Radiation therapy was effective for pain relief in patients with metastatic spinal tumors. In patients with neurological impairment, less pain relief was observed than in those without impairment. Improvement of neurological impairment was restricted, but radiation therapy was thought to be effective in some cases in the early stage of neurological deterioration. Radiation therapy for metastatic spinal tumors contraindicated for surgery was considered effective for improvement of patients' activities of daily living. (author)

  8. Genetic modification of T cells improves the effectiveness of adoptive tumor immunotherapy.

    Science.gov (United States)

    Jakóbisiak, Marek; Gołab, Jakub

    2010-10-01

    Appropriate combinations of immunotherapy and gene therapy promise to be more effective in the treatment of cancer patients than either of these therapeutic approaches alone. One such treatment is based on the application of patients' cytotoxic T cells, which can be activated, expanded, and genetically engineered to recognize particular tumor-associated antigens (TAAs). Because T cells recognizing TAAs might become unresponsive in the process of tumor development as a result of tumor evasion strategies, immunogenic viral antigens or alloantigens could be used for the expansion of cytotoxic T cells and then redirected through genetic engineering. This therapeutic approach has already demonstrated promising results in melanoma patients and could be used in the treatment of many other tumors. The graft-versus-leukemia, or more generally graft-versus-tumor, reaction based on the application of a donor lymphocyte infusion can also be ameliorated through the incorporation of suicide genes into donor lymphocytes. Such lymphocytes could be safely and more extensively used in tumor patients because they could be eliminated should a severe graft-versus-host reaction develop.

  9. Increased frontal functional networks in adult survivors of childhood brain tumors

    Directory of Open Access Journals (Sweden)

    Hongbo Chen

    2016-01-01

    Full Text Available Childhood brain tumors and associated treatment have been shown to affect brain development and cognitive outcomes. Understanding the functional connectivity of brain many years after diagnosis and treatment may inform the development of interventions to improve the long-term outcomes of adult survivors of childhood brain tumors. This work investigated the frontal region functional connectivity of 16 adult survivors of childhood cerebellar tumors after an average of 14.9 years from diagnosis and 16 demographically-matched controls using resting state functional MRI (rs-fMRI. Independent component analysis (ICA was applied to identify the resting state activity from rs-fMRI data and to select the specific regions associated with executive functions, followed by the secondary analysis of the functional networks connecting these regions. It was found that survivors exhibited differences in the functional connectivity in executive control network (ECN, default mode network (DMN and salience network (SN compared to demographically-matched controls. More specifically, the number of functional connectivity observed in the survivors is higher than that in the controls, and with increased strength, or stronger correlation coefficient between paired seeds, in survivors compared to the controls. Observed hyperconnectivity in the selected frontal functional network thus is consistent with findings in patients with other neurological injuries and diseases.

  10. Surgical Control of a Primary Hepatic Carcinoid Tumor: A Case Report

    Directory of Open Access Journals (Sweden)

    Norio Yokoigawa

    2009-04-01

    Full Text Available We report a primary hepatic carcinoid tumor occurring in a 47-year-old man. The patient consulted our hospital complaining of epigastralgia. Abdominal ultrasonography, computed tomography scanning, and magnetic resonance imaging showed a large mass in the right lobe of the liver. FDG-PET revealed 18F-FDG uptake by the right hepatic lobe. The tumor was a solid mass with cystic components, approximately 15 cm in diameter. We conducted an extended right lobectomy of the liver. The resected specimen was a solid tumor with cystic components and hemorrhagic lesion. Microscopic findings showed that the tumor cells had round nuclei and formed trabecular patterns. Immunohistologically, tumor cells were stained positive for chromogranin A, neuron specific enolase, CD56, and S-100. Careful examinations before and after the operation revealed no other possible origin of the tumor. Based on these findings, the tumor was diagnosed as a primary hepatic carcinoid. This is a report of a rare case of a primary hepatic carcinoid tumor with a discussion of several other relevant reports.

  11. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Radiation Therapy Intensification for Solid Tumors: A Systematic Review of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Yamoah, Kosj [Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL (United States); Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Ohri, Nitin, E-mail: ohri.nitin@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States)

    2015-11-15

    Purpose: To systematically review the outcomes of randomized trials testing radiation therapy (RT) intensification, including both dose escalation and/or the use of altered fractionation, as a strategy to improve disease control for a number of malignancies. Methods and Materials: We performed a literature search to identify randomized trials testing RT intensification for cancers of the central nervous system, head and neck, breast, lung, esophagus, rectum, and prostate. Findings were described qualitatively. Where adequate data were available, pooled estimates for the effect of RT intensification on local control (LC) or overall survival (OS) were obtained using the inverse variance method. Results: In primary central nervous system tumors, esophageal cancer, and rectal cancer, randomized trials have not demonstrated that RT intensification improves clinical outcomes. In breast cancer and prostate cancer, dose escalation has been shown to improve LC or biochemical disease control but not OS. Radiation therapy intensification may improve LC and OS in head and neck and lung cancers, but these benefits have generally been limited to studies that did not incorporate concurrent chemotherapy. Conclusions: In randomized trials, the benefits of RT intensification have largely been restricted to trials in which concurrent chemotherapy was not used. Novel strategies to optimize the incorporation of RT in the multimodality treatment of solid tumors should be explored.

  13. Extragastrointestinal Stromal Tumor: A Differential Diagnosis of Compressive Upper Abdominal Tumor

    Directory of Open Access Journals (Sweden)

    Clara Kimie Miyahira

    2018-01-01

    Full Text Available Introduction. Extragastrointestinal stromal tumors (EGIST are rare mesenchymal tumor lesions located outside the gastrointestinal tract. A rare compressing tumor with difficult diagnosis is reported. Presentation of the Case. A male patient, 63 years old, was admitted in the emergency room complaining of stretching and continuous abdominal pain for one day. He took Hyoscine, with partial improvement of symptoms, but got worse due to hyporexia, and the abdominal pain persisted. The patient also reported early satiety and ten-pound weight loss over the last month. Discussion. EGIST could be assessed by CT-guided biopsy, leading to diagnosis and proper treatment with surgical resection or Imatinib. Conclusion. This case report highlights the importance of considering EGIST an important differential diagnosis of compressing upper abdominal tumors.

  14. Enhanced Tumor Retention Effect by Click Chemistry for Improved Cancer Immunochemotherapy.

    Science.gov (United States)

    Mei, Ling; Liu, Yayuan; Rao, Jingdong; Tang, Xian; Li, Man; Zhang, Zhirong; He, Qin

    2018-05-30

    Because of the limited drug concentration in tumor tissues and inappropriate treatment strategies, tumor recurrence and metastasis are critical challenges for effectively treating malignancies. A key challenge for effective delivery of nanoparticles is to reduce uptake by reticuloendothelial system and to enhance the permeability and retention effect. Herein, we demonstrated Cu(I)-catalyzed click chemistry triggered the aggregation of azide/alkyne-modified micelles, enhancing micelles accumulation in tumor tissues. In addition, combined doxorubicin with the adjuvant monophosphoryl lipid A, an agonist of toll-like receptor4, generated immunogenic cell death, which further promoted maturity of dendritic cells, antigen presentation and induced strong effector T cells in vivo. Following combined with anti-PD-L1 therapy, substantial antitumor and metastasis inhibitory effects were achieved because of the reduced PD-L1 expression and regulatory T cells. In addition, effective long-term immunity from memory T cell responses protected mice from tumor recurrence.

  15. The prognostic role of controlling nutritional status scores in patients with solid tumors.

    Science.gov (United States)

    Liang, Ruo-Fei; Li, Jun-Hong; Li, Mao; Yang, Yuan; Liu, Yan-Hui

    2017-11-01

    We conducted a meta-analysis to investigate the association between preoperative controlling nutritional status (CONUT) scores in various solid tumors and clinical outcomes. Relevant studies published up to August 12, 2017 were identified using electronic databases, including PubMed, Embase, and Web of Science. The pooled hazard ratios (HR) and their corresponding 95% confidence intervals (CI) for overall survival (OS) and event-free survival (EFS) were calculated to explore the relationship between preoperative CONUT score and prognosis. In total, 674 patients with solid tumors from four published studies were included in this meta-analysis. The pooled HR for OS was 1.98 (95% CI, 1.34-2.91, p=0.001), indicating that patients with high CONUT scores had worse OS. The pooled HR for EFS was 1.98 (95% CI, 1.34-2.93, p=0.001), revealing that high CONUT scores were significantly associated with short EFS. Our data suggest that high preoperative CONUT scores indicate poor prognosis for patients with solid tumors. Further studies are needed to verify the significance of CONUT scores in clinical practice. Copyright © 2017. Published by Elsevier B.V.

  16. Pituitary tumor risk in relation to mobile phone use: A case-control study.

    Science.gov (United States)

    Shrestha, Mithila; Raitanen, Jani; Salminen, Tiina; Lahkola, Anna; Auvinen, Anssi

    2015-01-01

    The number of mobile phone users has grown rapidly, which has generated mounting public concern regarding possible health hazards. This study aims to assess pituitary tumor risk, as it has rarely been investigated. A case-control study was conducted with 80 eligible cases identified from all five university hospitals in Finland and frequency-matched 240 controls from the national population register. Controls were matched to cases by age, sex, region of residence and date of interview. A detailed history of mobile phone use was obtained using a structured interview. Several indicators of mobile phone use were assessed using conditional logistic regression. A reduced odds ratio was seen among regular mobile phone users [OR 0.39, 95% confidence interval (CI) 0.21, 0.72] relative to never/non-regular users, possibly reflecting methodological limitations. Pituitary tumor risk was not increased after 10 or more years since first use (OR 0.69, 95% CI 0.25, 1.89). The risk was not increased in relation to duration, cumulative hours of use, or cumulative number of calls. The results were similar for analog and digital phones. We found no excess risk associated with self-reported short- or medium-term use of mobile phones. This is consistent with most of the published studies. However, uncertainties remained for longer duration of use, as a very small proportion of study participants reported use beyond 10 years.

  17. The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions.

    Science.gov (United States)

    Fang, Shengyu; Wang, Yinyan; Jiang, Tao

    2016-07-01

    Brain cognitive functions affect patient quality of life. The frontal lobe plays a crucial role in advanced cognitive functions, including executive function, meta-cognition, decision-making, memory, emotion, and language. Therefore, frontal tumors can lead to serious cognitive impairments. Currently, neurosurgical treatment is the primary method to treat brain tumors; however, the effects of the surgical treatments are difficult to predict or control. The treatment may both resolve the effects of the tumor to improve cognitive function or cause permanent disabilities resulting from damage to healthy functional brain tissue. Previous studies have focused on the influence of frontal lesions and surgical treatments on patient cognitive function. Here, we review cognitive impairment caused by frontal lobe brain tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    International Nuclear Information System (INIS)

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-01-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with 224 Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of 224 Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  19. Birth characteristics and Wilms tumors in children in the Nordic countries: a register-based case-control study.

    Science.gov (United States)

    Schüz, Joachim; Schmidt, Lisbeth Samsø; Kogner, Per; Lähteenmäki, Päivi M; Pal, Niklas; Stokland, Tore; Schmiegelow, Kjeld

    2011-05-01

    Little is known about causes of Wilms tumor. Because of the young age at diagnosis, several studies have looked at various birth characteristics. We conducted a registry-based case-control study involving 690 cases of Wilms tumor aged 0-14 years, occurring in Denmark, Finland, Norway or Sweden during 1985-2006, individually matched to five controls drawn randomly from the Nordic childhood population. Information on birth characteristics was obtained from the population-based medical birth registries. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using conditional logistic regression analysis. We observed a distinct association between Wilms tumor and high birth weight (≥4 kg) for girls (OR 1.97, CI 1.50-2.59) but not for boys (1.04, 0.78-1.38); overall, the OR was 1.43 (1.17-1.74). Among girls, risk increased by 28% (15-42%) per 500 g increase in birth weight. Large-for-gestational age girls also had a higher risk (2.48, 1.51-4.05), whereas no effect was seen for boys (1.12, 0.60-2.07). An association was seen with Apgar score at 5 min birth order. In our large-scale, registry-based study, we confirmed earlier observations of an association between high birth weight and risk of Wilms tumor, but we found an effect only in girls. The higher risk of infants with low Apgar score might reflect hypoxia causing cell damage, adverse side effects of neonatal treatment or reverse causation as low Apgar score might indicate the presence of a tumor. Copyright © 2010 UICC.

  20. Spinal and Paraspinal Ewing Tumors

    International Nuclear Information System (INIS)

    Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.; Morris, Christopher G.; Gibbs, C. Parker; Scarborough, Mark T.; Pincus, David W.; Marcus, Robert B.

    2010-01-01

    Purpose: To perform a review of the 40-year University of Florida experience treating spinal and paraspinal Ewing tumors. Patients and Methods: A total of 27 patients were treated between 1965 and 2007. For local management, 21 patients were treated with radiotherapy (RT) alone and 6 with surgery plus RT. All patients with metastatic disease were treated with RT alone. The risk profiles of each group were otherwise similar. The median age was 17 years, and the most frequent subsite was the sacral spine (n = 9). The median potential follow-up was 16 years. Results: The 5-year actuarial overall survival, cause-specific survival, and local control rate was 62%, 62%, and 90%, respectively. For the nonmetastatic subset (n = 22), the 5-year overall survival, cause-specific survival, and local control rate was 71%, 71%, and 89%, respectively. The local control rate was 84% for patients treated with RT alone vs. 100% for those treated with surgery plus RT. Patients who were >14 years old and those who were treated with intensive therapy demonstrated superior local control. Of 9 patients in our series with Frankel C or greater neurologic deficits at presentation, 7 experienced a full recovery with treatment. Of the 27 patients, 37% experienced Common Toxicity Criteria Grade 3 or greater toxicity, including 2 deaths from sepsis. Conclusion: Aggressive management of spinal and paraspinal Ewing tumors with RT with or without surgery results in high toxicity but excellent local control and neurologic outcomes. Efforts should be focused on identifying disease amenable to combined modality local therapy and improving RT techniques.

  1. Irradiation effects on the tumor and adjacent tissues of brain tumor-bearing mice

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Tsunemoto, Hiroshi; Koike, Sachiko; Furukawa, Shigeo.

    1979-01-01

    C 3 H mice aged 56 - 70 days, weighing 27 - 37 g were used throughout this experiment. A transplantable fibrosarcoma arising spontaneously from C 3 H mice was used. For experiment, 10 4 tumor cells suspended in 0.025 ml of saline solution were injected into the cerebral hemisphere by a 26 gauge needle with a micrometer syringe under nembutal anesthesia. Whole brain irradiation was performed at 7 days after injection of the tumor cells and the radiation doses were 2,000 and 20,000 rads, respectively. The feature of x-rays were 200 kVp, 20 mA, 0.5 mm Cu + 0.5 mm Al filtration and TSD 20 cm. The dose-rate was 340 - 360 R/min. The articles of this study were as follows: a) Determination of LD 50 values for the mice, tumor-bearing in the brain or non-tumor-bearing; and b) Observation of clinical features and gross autopsy findings of the mice following irradiation. The LD 50 values for 2,000 rad irradiation in the tumor-bearing or non-tumor-bearing mice were 10.9 and 11.4 days, respectively. LD 50 values of 3.7 days and 4.3 days were the results for the tumor-bearing and non-tumor-bearing mice irradiated by 20,000 rad, respectively. On the other hand, the LD 50 value for the control group, i.e. non-irradiated mice, was 6.7 days. At postmortem examinations, gastrointestinal bleeding was observed frequently in mice bearing tumor in the brain. Whole brain irradiation is effective to prolong the life of tumor-bearing mice. However, in some instances, deaths have occurred earlier in tumor-bearing mice compared to the control group. (author)

  2. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  3. On the Inclusion of Short-distance Bystander Effects into a Logistic Tumor Control Probability Model.

    Science.gov (United States)

    Tempel, David G; Brodin, N Patrik; Tomé, Wolfgang A

    2018-01-01

    Currently, interactions between voxels are neglected in the tumor control probability (TCP) models used in biologically-driven intensity-modulated radiotherapy treatment planning. However, experimental data suggests that this may not always be justified when bystander effects are important. We propose a model inspired by the Ising model, a short-range interaction model, to investigate if and when it is important to include voxel to voxel interactions in biologically-driven treatment planning. This Ising-like model for TCP is derived by first showing that the logistic model of tumor control is mathematically equivalent to a non-interacting Ising model. Using this correspondence, the parameters of the logistic model are mapped to the parameters of an Ising-like model and bystander interactions are introduced as a short-range interaction as is the case for the Ising model. As an example, we apply the model to study the effect of bystander interactions in the case of radiation therapy for prostate cancer. The model shows that it is adequate to neglect bystander interactions for dose distributions that completely cover the treatment target and yield TCP estimates that lie in the shoulder of the dose response curve. However, for dose distributions that yield TCP estimates that lie on the steep part of the dose response curve or for inhomogeneous dose distributions having significant hot and/or cold regions, bystander effects may be important. Furthermore, the proposed model highlights a previously unexplored and potentially fruitful connection between the fields of statistical mechanics and tumor control probability/normal tissue complication probability modeling.

  4. Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma

    International Nuclear Information System (INIS)

    Terahara, Atsuro; Niemierko, Andrzej; Goitein, Michael; Finkelstein, Dianne; Hug, Eugen; Liebsch, Norbert; O'Farrell, Desmond; Lyons, Sue; Munzenrider, John

    1999-01-01

    Purpose: When irradiating a tumor that abuts or displaces any normal structures, the dose constraints to those structures (if lower than the prescribed dose) may cause dose inhomogeneity in the tumor volume at the tumor-critical structure interface. The low-dose region in the tumor volume may be one of the reasons for local failure. The aim of this study is to quantitate the effect of tumor dose inhomogeneity on local control and recurrence-free survival in patients with skull base chordoma. Methods and Materials: 132 patients with skull base chordoma were treated with combined photon and proton irradiation between 1978 and 1993. This study reviews 115 patients whose dose-volume data and follow-up data are available. The prescribed doses ranged from 66.6 Cobalt-Gray-Equivalent (CGE) to 79.2 CGE (median of 68.9 CGE). The dose to the optic structures (optic nerves and chiasma), the brain stem surface, and the brain stem center was limited to 60, 64, and 53 CGE, respectively. We used the dose-volume histogram data derived with the three-dimensional treatment planning system to evaluate several dose-volume parameters including the Equivalent Uniform Dose (EUD). We also analyzed several other patient and treatment factors in relation to local control and recurrence-free survival. Results: Local failure developed in 42 of 115 patients, with the actuarial local control rates at 5 and 10 years being 59% and 44%. Gender was a significant predictor for local control with the prognosis in males being significantly better than that in females (P 0.004, hazard ratio = 2.3). In a Cox univariate analysis, with stratification by gender, the significant predictors for local control (at the probability level of 0.05) were EUD, the target volume, the minimum dose, and the D 5cc dose. The prescribed dose, histology, age, the maximum dose, the mean dose, the median dose, the D 90% dose, and the overall treatment time were not significant factors. In a Cox multivariate analysis, the

  5. Antibody tumor penetration

    Science.gov (United States)

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue. PMID:18541331

  6. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    Science.gov (United States)

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  7. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma

    Directory of Open Access Journals (Sweden)

    Divya Sekar

    2018-03-01

    Full Text Available Natural Killer T cells (NKT cells are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA on type I NKT cells in polyoma middle T oncogene-driven (PyMT murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1 were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  8. Cross-immunity among allogeneic tumors in rats immunized with gamma-irradiated ascites tumors

    International Nuclear Information System (INIS)

    Sato, Tatsusuke; Suga, Michio; Kudo, Hajime; Waga, Takashi; Ogasawara, Masamichi

    1980-01-01

    Non-inbred rats of the Gifu strain were intraperitoneally challenged with Hirosaki sarcoma (Tetraploid type, 10 5 cells) after repeated immunization with gamma-irradiated (13,000 rads 60 Co) allogeneic non-viral tumors of ascites type (Tetraploid or diploid type of Hirosaki sarcoma, Usubuchi sarcoma or AH130). In rats immunized not only with the same tumor as the immunizing tumor but also with a different tumor, the growth of the challenge tumor was markedly inhibited as compared with the control in non-immunized rats. It is considered that these tumors retained common antigen(s) by the resistance to irradiation because of their form of ascites tumor. The marked cross-immunity in rats immunized with AH130 may be explained by the fact that gamma-irradiated AH130 cells were alive longer in the peritoneal cavity than other tumors on account of its high resistance to irradiation. (author)

  9. Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data

    DEFF Research Database (Denmark)

    Lühr, Armin; Löck, Steffen; Jakobi, Annika

    2017-01-01

    PURPOSE: Objectives of this work are (1) to derive a general clinically relevant approach to model tumor control probability (TCP) for spatially variable risk of failure and (2) to demonstrate its applicability by estimating TCP for patients planned for photon and proton irradiation. METHODS AND ...

  10. Improving control of the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Valkovyy, V I; Ignatyev, B N

    1982-01-01

    Questions of organizing control of the coal industry based on the use of ACS are examined. Improvement of control of the sector is done in the following main trends: pinpointing the distribution of rights; duties and responsibilities within the associations; more complete calculation of the positions; standard structures of the mines, open pits and other production units of the specific operating conditions; improvement in the forms and methods of controlling specialized production units; formation of style and methods of leadership corresponding to the modern conditions of production.

  11. Improving Accuracy of Processing Through Active Control

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov

    2016-01-01

    Full Text Available An important task of modern mathematical statistics with its methods based on the theory of probability is a scientific estimate of measurement results. There are certain costs under control, and under ineffective control when a customer has got defective products these costs are significantly higher because of parts recall.When machining the parts, under the influence of errors a range scatter of part dimensions is offset towards the tolerance limit. To improve a processing accuracy and avoid defective products involves reducing components of error in machining, i.e. to improve the accuracy of machine and tool, tool life, rigidity of the system, accuracy of the adjustment. In a given time it is also necessary to adapt machine.To improve an accuracy and a machining rate there, currently  become extensively popular various the in-process gaging devices and controlled machining that uses adaptive control systems for the process monitoring. Improving the accuracy in this case is compensation of a majority of technological errors. The in-cycle measuring sensors (sensors of active control allow processing accuracy improvement by one or two quality and provide a capability for simultaneous operation of several machines.Efficient use of in-cycle measuring sensors requires development of methods to control the accuracy through providing the appropriate adjustments. Methods based on the moving average, appear to be the most promising for accuracy control since they include data on the change in some last measured values of the parameter under control.

  12. Playing Action Video Games Improves Visuomotor Control.

    Science.gov (United States)

    Li, Li; Chen, Rongrong; Chen, Jing

    2016-08-01

    Can playing action video games improve visuomotor control? If so, can these games be used in training people to perform daily visuomotor-control tasks, such as driving? We found that action gamers have better lane-keeping and visuomotor-control skills than do non-action gamers. We then trained non-action gamers with action or nonaction video games. After they played a driving or first-person-shooter video game for 5 or 10 hr, their visuomotor control improved significantly. In contrast, non-action gamers showed no such improvement after they played a nonaction video game. Our model-driven analysis revealed that although different action video games have different effects on the sensorimotor system underlying visuomotor control, action gaming in general improves the responsiveness of the sensorimotor system to input error signals. The findings support a causal link between action gaming (for as little as 5 hr) and enhancement in visuomotor control, and suggest that action video games can be beneficial training tools for driving. © The Author(s) 2016.

  13. Anti-Tumor Activity of a Polysaccharide from Blueberry

    Directory of Open Access Journals (Sweden)

    Xiyun Sun

    2015-02-01

    Full Text Available Blueberries (Vaccinium spp. are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1 from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg−1·d−1 inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05, increasing phagocytosis by macrophages (p < 0.05, boosting the proliferation and transformation of lymphocytes (p < 0.01, promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05 and improving NK cell activity (p < 0.01. From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator.

  14. Efficacy of phosphorus-32 brachytherapy without external-beam radiation for long-term tumor control in patients with craniopharyngioma.

    Science.gov (United States)

    Ansari, Shaheryar F; Moore, Reilin J; Boaz, Joel C; Fulkerson, Daniel H

    2016-04-01

    OBJECT Radioactive phosphorus-32 (P32) has been used as brachytherapy for craniopharyngiomas with the hope of providing local control of enlarging tumor cysts. Brachytherapy has commonly been used as an adjunct to the standard treatment of surgery and external-beam radiation (EBR). Historically, multimodal treatment, including EBR, has shown tumor control rates as high as 70% at 10 years after treatment. However, EBR is associated with significant long-term risks, including visual deficits, endocrine dysfunction, and cognitive decline. Theoretically, brachytherapy may provide focused local radiation that controls or shrinks a symptomatic cyst without exposing the patient to the risks of EBR. For this study, the authors reviewed their experiences with craniopharyngioma patients treated with P32 brachytherapy as the primary treatment without EBR. The authors reviewed these patients' records to evaluate whether this strategy effectively controls tumor growth, thus avoiding the need for further surgery or EBR. METHODS The authors performed a retrospective review of pediatric patients treated for craniopharyngioma between 1997 and 2004. This was the time period during which the authors' institution had a relatively high use of P32 for treatment of cystic craniopharyngioma. All patients who had surgery and injection of P32 without EBR were identified. The patient records were analyzed for complications, cyst control, need for further surgery, and need for future EBR. RESULTS Thirty-eight patients were treated for craniopharyngioma during the study period. Nine patients (23.7%) were identified who had surgery (resection or biopsy) with P32 brachytherapy but without initial EBR. These 9 patients represented the study group. For 1 patient (11.1%), there was a complication with the brachytherapy procedure. Five patients (55.5%) required subsequent surgery. Seven patients (77.7%) required subsequent EBR for tumor growth. The mean time between the injection of P32 and

  15. Gamma Knife radiosurgery for glomus jugulare tumors: a single-center series of 75 cases.

    Science.gov (United States)

    Ibrahim, Ramez; Ammori, Mohannad B; Yianni, John; Grainger, Alison; Rowe, Jeremy; Radatz, Matthias

    2017-05-01

    OBJECTIVE Glomus jugulare tumors are rare indolent tumors that frequently involve the lower cranial nerves (CNs). Complete resection can be difficult and associated with lower CN injury. Gamma Knife radiosurgery (GKRS) has established its role as a noninvasive alternative treatment option for these often formidable lesions. The authors aimed to review their experience at the National Centre for Stereotactic Radiosurgery, Sheffield, United Kingdom, specifically the long-term tumor control rate and complications of GKRS for these lesions. METHODS Clinical and radiological data were retrospectively reviewed for patients treated between March 1994 and December 2010. Data were available for 75 patients harboring 76 tumors. The tumors in 3 patients were treated in 2 stages. Familial and/or hereditary history was noted in 12 patients, 2 of whom had catecholamine-secreting and/or active tumors. Gamma Knife radiosurgery was the primary treatment modality in 47 patients (63%). The median age at the time of treatment was 55 years. The median tumor volume was 7 cm 3 , and the median radiosurgical dose to the tumor margin was 18 Gy (range 12-25 Gy). The median duration of radiological follow-up was 51.5 months (range 12-230 months), and the median clinical follow-up was 38.5 months (range 6-223 months). RESULTS The overall tumor control rate was 93.4% with low CN morbidity. Improvement of preexisting deficits was noted in 15 patients (20%). A stationary clinical course and no progression of symptoms were noted in 48 patients (64%). Twelve patients (16%) had new symptoms or progression of their preexisting symptoms. The Kaplan-Meier actuarial tumor control rate was 92.2% at 5 years and 86.3% at 10 years. CONCLUSIONS Gamma Knife radiosurgery offers a risk-versus-benefit treatment option with very low CN morbidity and stable long-term results.

  16. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation

    Directory of Open Access Journals (Sweden)

    Paula Chiarella

    2018-01-01

    Full Text Available Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors, counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.

  17. Improving Tumor Treating Fields Treatment Efficacy in Patients With Glioblastoma Using Personalized Array Layouts

    International Nuclear Information System (INIS)

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.

    2016-01-01

    Purpose: To investigate tumors of different size, shape, and location and the effect of varying transducer layouts on Tumor Treating Fields (TTFields) distribution in an anisotropic model. Methods and Materials: A realistic human head model was generated from MR images of 1 healthy subject. Four different virtual tumors were placed at separate locations. The transducer arrays were modeled to mimic the TTFields-delivering commercial device. For each tumor location, varying array layouts were tested. The finite element method was used to calculate the electric field distribution, taking into account tissue heterogeneity and anisotropy. Results: In all tumors, the average electric field induced by either of the 2 perpendicular array layouts exceeded the 1-V/cm therapeutic threshold value for TTFields effectiveness. Field strength within a tumor did not correlate with its size and shape but was higher in more superficial tumors. Additionally, it always increased when the array was adapted to the tumor's location. Compared with a default layout, the largest increase in field strength was 184%, and the highest average field strength induced in a tumor was 2.21 V/cm. Conclusions: These results suggest that adapting array layouts to specific tumor locations can significantly increase field strength within the tumor. Our findings support the idea of personalized treatment planning to increase TTFields efficacy for patients with GBM.

  18. Improving Tumor Treating Fields Treatment Efficacy in Patients With Glioblastoma Using Personalized Array Layouts

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Cornelia, E-mail: cwenger@fc.ul.pt [Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisbon (Portugal); Salvador, Ricardo [Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisbon (Portugal); Basser, Peter J. [Section on Tissue Biophysics and Biomimetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (United States); Miranda, Pedro C. [Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisbon (Portugal)

    2016-04-01

    Purpose: To investigate tumors of different size, shape, and location and the effect of varying transducer layouts on Tumor Treating Fields (TTFields) distribution in an anisotropic model. Methods and Materials: A realistic human head model was generated from MR images of 1 healthy subject. Four different virtual tumors were placed at separate locations. The transducer arrays were modeled to mimic the TTFields-delivering commercial device. For each tumor location, varying array layouts were tested. The finite element method was used to calculate the electric field distribution, taking into account tissue heterogeneity and anisotropy. Results: In all tumors, the average electric field induced by either of the 2 perpendicular array layouts exceeded the 1-V/cm therapeutic threshold value for TTFields effectiveness. Field strength within a tumor did not correlate with its size and shape but was higher in more superficial tumors. Additionally, it always increased when the array was adapted to the tumor's location. Compared with a default layout, the largest increase in field strength was 184%, and the highest average field strength induced in a tumor was 2.21 V/cm. Conclusions: These results suggest that adapting array layouts to specific tumor locations can significantly increase field strength within the tumor. Our findings support the idea of personalized treatment planning to increase TTFields efficacy for patients with GBM.

  19. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  20. Radiobiological studies on the importance of tumor oxygenation for anti-neoplastic therapy

    International Nuclear Information System (INIS)

    Grau, C.

    1994-01-01

    The aim of the twelve studies included in the present thesis was to determine the importance of hypoxia for various anti-neoplastic treatment modalities, and to evaluate possible ways of overcoming the hypoxia problem by combined modality therapy. The murine tumor systems were the C3H mammary carcinoma with 5-12% hypoxic cells, and the SCCVII squamous cell carcinoma with 2% hypoxic cells. The radiation response was significantly improved by the use of hypoxic cell radiosensitizers such as nimorazole or misonidazole, or by allowing the mice to breathe oxygen or carbogen during irradiation. In contrast, the radiation response was significantly impaired by carbon monoxide breathing at a level comparable to what has been observed in heavy smokers. The clamped TCD 50 assay was used to classify cancer chemotherapeutic drugs according to their preferential cytotoxicity towards the different tumor subpopulations. Methotrexate had no effect on hypoxic cells and was only borderline toxic towards aerobic cells. Three drugs had significant effect against oxic cells only (5-fluorouracil, bleomycin and cisplatin). Similarly, three drugs were toxic towards hypoxic cells only (etoposide, carmustine, and mitomycin c). Three drugs were effective towards both cell types (vincristine, adriamycin, cyclophosphamide). Hypoxic cells in areas with insufficient blood supply, poor nutrition and increased acidity is known to be highly sensitive to hyperthermia. In a study where cisplatin, heat and x-rays were given together, the local tumor control was not improved when compared to radiation + heat, apparently due to a lack of enhancement in the killing of hypoxic cells. These studies have demonstrated the influence of tumor oxygenation on tumor response to treatment with drugs, hyperthermia and irradiation. New strategies targeted also against perfusion-limited hypoxia is needed. One of the most important conclusions from the present thesis can be implemented without expensive trials or

  1. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  2. The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2011-01-01

    Full Text Available Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT, also known as stereotactic ablative radiotherapy (SABR, in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses.

  3. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors.

    Science.gov (United States)

    Ditte, Peter; Dequiedt, Franck; Svastova, Eliska; Hulikova, Alzbeta; Ohradanova-Repic, Anna; Zatovicova, Miriam; Csaderova, Lucia; Kopacek, Juraj; Supuran, Claudiu T; Pastorekova, Silvia; Pastorek, Jaromir

    2011-12-15

    In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.

  4. Atypical Teratoid Rhabdoid Tumor: Current Therapy and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Kevin F.; Gajjar, Amar, E-mail: amar.gajjar@stjude.org [Division of Neuro-Oncology, St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2012-09-12

    Atypical teratoid rhabdoid tumors (ATRTs) are rare central nervous system tumors that comprise approximately 1–2% of all pediatric brain tumors; however, in patients less than 3 years of age this tumor accounts for up to 20% of cases. ATRT is characterized by loss of the long arm of chromosome 22 which results in loss of the hSNF5/INI-1 gene. INI1, a member of the SWI/SNF chromatin remodeling complex, is important in maintenance of the mitotic spindle and cell cycle control. Overall survival in ATRT is poor with median survival around 17 months. Radiation is an effective component of therapy but is avoided in patients younger than 3 years of age due to long term neurocognitive sequelae. Most long term survivors undergo radiation therapy as a part of their upfront or salvage therapy, and there is a suggestion that sequencing the radiation earlier in therapy may improve outcome. There is no standard curative chemotherapeutic regimen, but anecdotal reports advocate the use of intensive therapy with alkylating agents, high-dose methotrexate, or therapy that includes high-dose chemotherapy with stem cell rescue. Due to the rarity of this tumor and the lack of randomized controlled trials it has been challenging to define optimal therapy and advance treatment. Recent laboratory investigations have identified aberrant function and/or regulation of cyclin D1, aurora kinase, and insulin-like growth factor pathways in ATRT. There has been significant interest in identifying and testing therapeutic agents that target these pathways.

  5. Braking Control for Improving Ride Comfort

    Directory of Open Access Journals (Sweden)

    Lee Jonghyup

    2018-01-01

    Full Text Available While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB and other brake-by-wire (BBW systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.

  6. Efficacy of continuous treatment with radiation in a rat brain-tumor model

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Kaufman, K.

    1981-01-01

    Rats bearing intracerebral 9L/Ro tumors were treated with 10 daily fractions of cesium-137 gamma-rays, BCNU, or combinations of these to agents beginning on either Day 10 or Day 12 after implantation. The treatments were administered either 5 days/week for 2 weeks, with the weekend off, or 10 consecutive days. The median day of death for untreated tumor-bearing rats was Day 15, so Day 12 tumors can be considered late tumors and Day 10 tumors can be considered moderately early. Although all single- and multiple-agent treatments significantly (p less than 0.05) increased the lifespan of tumor-bearing rats over that of the untreated controls, and all multiple-agent schedules significantly (p less than 0.05) increased the lifespan over that of the single-agent therapies, none of the 10 consecutive day schedules increased the lifespan of tumor-bearing rats significantly (p less than 0.2) over that obtained with the 5-day/week schedules. Thus, the evidence from this tumor model suggests that no significant improvement in lifespan would be expected if malignant brain tumors were treated with radiation 7 days a week, either alone or in combination with chemotherapeutic agents such as BCNU

  7. Targeting tumor multicellular aggregation through IGPR-1 inhibits colon cancer growth and improves chemotherapy.

    Science.gov (United States)

    Woolf, N; Pearson, B E; Bondzie, P A; Meyer, R D; Lavaei, M; Belkina, A C; Chitalia, V; Rahimi, N

    2017-09-18

    Adhesion to extracellular matrix (ECM) is crucially important for survival of normal epithelial cells as detachment from ECM triggers specific apoptosis known as anoikis. As tumor cells lose the requirement for anchorage to ECM, they rely on cell-cell adhesion 'multicellular aggregation' for survival. Multicellular aggregation of tumor cells also significantly determines the sensitivity of tumor cells to the cytotoxic effects of chemotherapeutics. In this report, we demonstrate that expression of immunoglobulin containing and proline-rich receptor-1 (IGPR-1) is upregulated in human primary colon cancer. Our study demonstrates that IGPR-1 promotes tumor multicellular aggregation, and interfering with its adhesive function inhibits multicellular aggregation and, increases cell death. IGPR-1 supports colon carcinoma tumor xenograft growth in mouse, and inhibiting its activity by shRNA or blocking antibody inhibits tumor growth. More importantly, IGPR-1 regulates sensitivity of tumor cells to the chemotherapeutic agent, doxorubicin/adriamycin by a mechanism that involves doxorubicin-induced AKT activation and phosphorylation of IGPR-1 at Ser220. Our findings offer novel insight into IGPR-1's role in colorectal tumor growth, tumor chemosensitivity, and as a possible novel anti-cancer target.

  8. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  9. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  10. Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin.

    Directory of Open Access Journals (Sweden)

    Keita Saito

    Full Text Available Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII by electron paramagnetic resonance imaging (EPRI and magnetic resonance imaging (MRI to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3 and measurements of tumor pO(2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2<10 mm Hg in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.

  11. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Dhont, J; Poels, K; Verellen, D; Tournel, K; Gevaert, T; Steenbeke, F; Burghelea, M; De Ridder, M [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium)

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to match the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in

  12. Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

    Directory of Open Access Journals (Sweden)

    Manish Shanker

    2011-01-01

    Full Text Available Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  13. Tumor suppressor gene-based nanotherapy: from test tube to the clinic.

    Science.gov (United States)

    Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Miyamoto, Shinya; Grimm, Elizabeth A; Roth, Jack A; Ramesh, Rajagopal

    2011-01-01

    Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  14. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  15. Photochemical Internalization of Bleomycin Before External-Beam Radiotherapy Improves Locoregional Control in a Human Sarcoma Model

    International Nuclear Information System (INIS)

    Norum, Ole-Jacob; Bruland, Oyvind Sverre; Gorunova, Ludmila; Berg, Kristian

    2009-01-01

    Purpose: The aim of this study was to explore the tumor growth response of the combination photochemical internalization and external-beam radiotherapy. Photochemical internalization is a technology to improve the utilization of therapeutic macromolecules in cancer therapy by photochemical release of endocytosed macromolecules into the cytosol. Methods and Materials: A human sarcoma xenograft TAX-1 was inoculated subcutaneously into nude mice. The photosensitizer AlPcS 2a and bleomycin were intraperitoneally administrated 48 h and 30 min, respectively, before diode laser light exposure at 670 nm (20 J/cm 2 ). Thirty minutes or 7 days after photochemical treatment, the animals were subjected to 4 Gy of ionizing radiation. Results: Using photochemical internalization of bleomycin as an adjunct to ionizing radiation increased the time to progression for the tumors from 17 to 33 days as compared with that observed with photodynamic therapy combined with ionizing radiation as well as for radiochemotherapy with bleomycin. The side effects observed when photochemical internalization of bleomycin was given shortly before ionizing radiation were eliminated by separating the treatment modalities in time. Conclusion: Photochemical internalization of bleomycin combined with ionizing radiation increased the time to progression and showed minimal toxicity and may therefore reduce the total radiation dose necessary to obtain local tumor control while avoiding long-term sequelae from radiotherapy.

  16. Robotic excavator trajectory control using an improved GA based PID controller

    Science.gov (United States)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  17. Tumor imaging with monoclonal antibodies

    International Nuclear Information System (INIS)

    Haisma, H.; Hilgers, J.

    1987-01-01

    Many monoclonal antibodies directed against tumor-associated antigens have been identified, but so far none of these are tumor specific. Polyclonal and monoclonal antibodies have been used for imaging of a wide variety of tumors with success. Radiolabeling of antibody is usually done with iodine isotopes of which 123 I is the best candidate for radioimmunodetection purposes. The labeling of antibodies through chelates makes it possible to use metal radioisotopes like 111 In, which is the best radioisotope for imaging with monoclonal antibodies due to its favorable half-life of 2.5 days. Usually imaging cannot be performed within 24 h after injection, but clearance of antibody can be increased by using F(ab) 2 of Fab. Another approach is to clear non-bound antibody by a second antibody, directed against the first. The detection limit of immunoimaging is about 2 cm, but will be improved by tomography or SPECT. There is still a high false positive and false negative rate, which makes it impossible to use radioimmunodetection as the only technique for diagnosis of tumors. In combination with other detection techniques, tumor imaging with monoclonal antibodies can improve diagnosis. 44 refs.; 3 tabs

  18. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. The role of adjuvant radiotherapy in the treatment of resectable desmoid tumors

    International Nuclear Information System (INIS)

    Goy, Barry W.; Lee, Steve P.; Eilber, Frederick; Dorey, Fred; Eckardt, Jeffrey; Fu, Yao-Shi; Juillard, Guy J. F.; Selch, Michael T.

    1997-01-01

    Purpose: Desmoid tumors have a high propensity for local recurrence with surgical resection. There are many reports describing good responses of desmoid tumors to irradiation, but none have clearly established the indications for adjuvant radiotherapy in treating resectable desmoid tumors. Methods and Materials: A retrospective analysis was performed on 61 patients with resectable desmoid tumor(s) who were treated at our institution from 1965 to February of 1992. Five patients had multifocal disease and are analyzed separately. Fifty-six patients had unifocal disease, of which 34 had positive surgical margins. Forty-five of the 56 patients with unifocal disease were treated with surgery alone, while 11 were treated with surgery plus adjuvant radiotherapy. Median follow-up was 6 years. Local control was measured from the last day of treatment, and all cases were reviewed by our Department of Pathology. Results: Multivariate analysis of the 56 patients with unifocal disease revealed that positive margins independently predicted for local recurrence (p ≤ 0.01). Only 3 of 22 patients with clear margins experienced a local recurrence, with a 6-year actuarial local control of 85%. Multivariate analysis of the 34 patients with positive margins revealed that adjuvant radiotherapy independently predicted for improved local control (p 0.01), and patients with recurrent disease had a slightly higher risk of local recurrence (p = 0.08). The 6-year actuarial local control determined by Kaplan-Meier for patients with unifocal disease and positive margins was 32% (±12%) with surgery alone, and 78% (±14%) with surgery plus adjuvant radiotherapy (p = 0.02). Subgroup analysis of the patients with positive margins and recurrent disease revealed that those treated with surgery alone had a 6-year actuarial local control of 0% vs. 80% for those treated with surgery plus radiotherapy (p ≤ 0.01). Patients with positive margins and primary disease had a trend towards improved local

  20. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    International Nuclear Information System (INIS)

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E.

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 μmol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) α and β. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR β antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival

  1. Parotid hybrid tumor

    International Nuclear Information System (INIS)

    Bravo C, Gustavo; Seymour M, Camila; Fernandez R, Lara; Villanueva I, Maria Elena; Scott C, Carlos; Celedon L, Carlos

    2012-01-01

    Tumors of the salivary glands represent 33%-10% of head and neck neoplasms. The most common location is the parotid gland, accounting for 50%-85% of the cases, with 20%-30% of them being malignant. The following are known to be indicative of a malignant tumor: fast growing, painless mass, associated facial paralysis and lymphadenopathy. Most parotid neoplasm derive from a single histological type but eventually the development of more than one type on the same gland can occur. This paper presents a case of a parotid neoplasm with two different histological tumors, with uncharacteristic clinical presentation. The patient presented initially with ear pain and otorrhoea, in the clinical examination highlighted an external auditory canal tumor. The complementary study revealed a parotid neoplasm and a total resection of the gland was performed. The biopsy revealed an adenoid-cystic carcinoma with differentiated basaloid areas. Adjuvant radio-chemotherapy was administered, and the imaging control with PET-CT showed no evidence of recurrence or dissemination of the tumor

  2. The management of tumor motions in the stereotactic irradiation to lung cancer under the use of Abches to control active breathing

    Energy Technology Data Exchange (ETDEWEB)

    Tarohda, Tohru I.; Ishiguro, Mitsuru; Hasegawa, Kouhei; Kohda, Yukihiko; Onishi, Hiroaki; Aoki, Tetsuya; Takanaka, Tsuyoshi [Department of Radiology, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Department of Neurosurgery, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Naruwa Clinic, 1-16-6 Naruwa, Kanazawa 920-0818 (Japan); Department of Radiation Therapy, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641 (Japan)

    2011-07-15

    Purpose: Breathing control is crucial to ensuring the accuracy of stereotactic irradiation for lung cancer. This study monitored respiration in patients with inoperable nonsmall-cell lung cancer using a respiration-monitoring apparatus, Abches, and investigated the reproducibility of tumor position in these patients. Methods: Subjects comprised 32 patients with nonsmall-cell lung cancer who were administered stereotactic radiotherapy under breath-holding conditions monitored by Abches. Computed tomography (CT) was performed under breath-holding conditions using Abches (Abches scan) for treatment planning. A free-breathing scan was performed to determine the range of tumor motions in a given position. After the free-breathing scan, Abches scan was repeated and the tumor position thus defined was taken as the intrafraction tumor position. Abches scan was also performed just before treatment, and the tumor position thus defined was taken as the interfraction tumor position. To calculate the errors, tumor positions were compared based on Abches scan for the initial treatment plan. The error in tumor position was measured using the BrainSCAN treatment-planning device, then compared for each lung lobe. Results: Displacements in tumor position were calculated in three dimensions (i.e., superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) dimensions) and recorded as absolute values. For the whole lung, average intrafraction tumor displacement was 1.1 mm (L-R), 1.9 mm (A-P), and 2.0 mm (S-I); the average interfraction tumor displacement was 1.1 mm (L-R), 2.1 mm (A-P), and 2.0 mm (S-I); and the average free-breathing tumor displacement was 2.3 mm (L-R), 3.5 mm (A-P), and 7.9 mm (S-I). The difference between using Abches and free breathing could be reduced from approximately 20 mm at the maximum to approximately 3 mm in the S-I direction for both intrafraction and interfraction positions in the lower lobe. In addition, maximum intrafraction tumor

  3. Clinical studies of cerebral blood flows using single photon emission computed tomography (SPECT), 1; The remote effects of tumors and the adverse effects of radiochemotherapy in the non-affected brain of patients with intracranial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Yuzo (Gifu Univ. (Japan). Faculty of Medicine)

    1991-01-01

    To examine remote effects of tumors on cerebral blood flow (CBF) and adverse effects of radiochemotherapy on cerebral and cerebellar blood flow (CeBF), mean CBF (mCBF) and mean CeBF (mCeBF) have been studied by single photon emission computed tomography (SPECT) with Xe-133. The subjects were 78 patients with brain tumor, whose ages ranged from 9 to 74 years. Forty normal volunteers served as controls. In the control group, both mCBF and mCeBF were significantly decreased with advancing age. Both ipsilateral and contralateral mCeBFs were significantly decreased in adult patients with bilateral cerebral tumor, as compared with the control group, which was dependent on tumor volume. mCeBF was significantly decreased on the contralataral side than on the ipsilataral side. Similarly, ipsilateral mCBF was significantly lower than that in the control group. Crossed cerebellar diaschisis occurred frequently associated with extensive involvement of tumor into the frontal, parietal, and temporal lobes. In adult patients, a decreased mCBF on the non-affected side before surgery was improved postoperatively. One month after irradiation, it transiently increased and decreased again. Three months after irradiation, mCBF was significantly decreased, as compared with that in the control group. The degree of atrophy and tumor volume influenced mCBF on the non-affected side. These factors were responsible for mCBF in younger patients for the adult group, and in older patients for the child group. For adult patients, radiation dose was also a contributing factor for mCBF. In the group given chemotherapy, mCBF was significantly decreased, as compared with the group without chemotherapy. (N.K.) 102 refs.

  4. Studies of murine tumor control using x-ray fractionation schedules alone or in combination with hyperthermia

    International Nuclear Information System (INIS)

    Imbra, R.J.

    1981-01-01

    The effectiveness of an experimental radiation fractionation schedule of decreasing-sized dose fractions administered at optimal time intervals was compared with a conventional fractionation schedule of constant-sized dose fractions administered five times per week. Also, the effect of the addition of hyperthermia (42.5 0 C) to radiation therapy was investigated. For some experiments, Ehrlich mammary tumors were growth in the right thighs of Swiss mice. The tumor response was determined by measuring the tumor-bearing leg diameter and converting this value to volume. The time for the treated tumor to regrow to its pre-tratment volume was used as an endpoint in Swiss mice. The maximum total treatment dose is limited by the amount of normal tissue damage. A total treatment dose of six thousand rads was most suitable for the further investigations. Definitive investigations were performed using the RIF-1 tumor grown in the right thigh of C3H mice. The length of mitotic delay of RIF-1 cells, in vivo, was determined after various single doses of x radiation. A direct (exponential) relationship betwen x-ray dose and mitotic delay time was observed. Times of release of the RIF-1 cells from radiation-induced mitotic delay were used to determine the optimum time intervals to deliver the decreasing-sized dose fractions. Six thousand rads administered as decreasing-sized dose fractions resulted in significantly greater RIF-1 tumor control, as compared to conventional radiation therapy. The best treatment schedule, overall, was decreasing-sized dose fractions plus hyperthermia

  5. Improvement of internal book-keeping control at company "Balttranslaine"

    OpenAIRE

    Kolodinska, Aļona

    2012-01-01

    Master's thesis "Internal Accounting Control Improvement in Ltd."Balttranslaine"" is designed to determine the potential and directions for improving accounting controls Ltd. "Balttranslaine". The paper assesses Ltd. "Balttranslaine" internal accounting control system and develops proposals for its improvement, based on research on accounting control nature and its place in the overall company's internal control system, as well as the Latvian laws and regulations for construction and maint...

  6. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  7. Experimental study of anti-tumor activity of direct current

    International Nuclear Information System (INIS)

    Ito, Hisao; Hashimoto, Shozo

    1989-01-01

    The anti-tumor activity of direct current combined with radiation was studied. The experiments were performed with fibrosarcomas (FSA, NFSA) syngenetic to C3H mice. Direct current (0.6mA, 120min) alone was effective to reduce the tumor sizes, but could not cure the tumors. When the direct current therapy (DC therapy) was combined with radiation the DC therapy following radiation was more effective than that before radiation. Using TCD 50 assay, the DC therapy enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.2. However, tumor control rates by the combination therapy were more improved at the smaller doses of radiation than at the larger ones. When the single DC therapy (0.6mA, 120min) was applied immediately after the first radiation of fractionated one the combination therapy still showed the enhanced effect. However, both DC therapy and the radiation therapy were divided in three fractions, and the DC therapy (0.6mA, 40min) was applied after each radiation. Tumor growth retardation by the combination therapy was no different from that by radiation alone. This result suggests that there might be a minimum required dose of coulombs to show the effect of the combination therapy. (author)

  8. Evaluation of endourological tools to improve the diagnosis and therapy of ureteral tumors – from model development to clinical application

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-09-01

    Full Text Available Adequate diagnosis of upper urinary tract (UUT tumors is essential for successful local treatment. Organsparing approaches are technically difficult and require consistent further development. Appropriate models for investigating new diagnostic and therapeutic methods are not yet available. This study demonstrates the incorporation of a fresh sample model into five different test levels (I-V for improving the diagnosis and therapy of ureteral tumors. In these test levels, new diagnostic and ablation techniques are evaluated for feasibility, application safety, efficacy and accuracy. An assessment of their suitability for broad preclinical and clinical application also took economic aspects into account.

  9. Evaluation and Immunohistochemical Qualification of Carbogen-Induced ΔR{sub 2}* as a Noninvasive Imaging Biomarker of Improved Tumor Oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lauren C.J., E-mail: lauren.baker@icr.ac.uk [Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Boult, Jessica K.R.; Jamin, Yann; Gilmour, Lesley D.; Walker-Samuel, Simon; Burrell, Jake S. [Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Ashcroft, Margaret [Division of Medicine, Centre for Cell Signalling and Molecular Genetics, University College London, London (United Kingdom); Howe, Franklyn A. [St. George' s, University of London, London (United Kingdom); Griffiths, John R. [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Raleigh, James A. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Kogel, Albert J. van der [University of Nijmegen Medical Centre, Nijmegen (Netherlands); Robinson, Simon P. [Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey (United Kingdom)

    2013-09-01

    Purpose: To evaluate and histologically qualify carbogen-induced ΔR{sub 2}* as a noninvasive magnetic resonance imaging biomarker of improved tumor oxygenation using a double 2-nitroimidazole hypoxia marker approach. Methods and Materials: Multigradient echo images were acquired from mice bearing GH3 prolactinomas, preadministered with the hypoxia marker CCI-103F, to quantify tumor R{sub 2}* during air breathing. With the mouse remaining positioned within the magnet bore, the gas supply was switched to carbogen (95% O{sub 2}, 5% CO{sub 2}), during which a second hypoxia marker, pimonidazole, was administered via an intraperitoneal line, and an additional set of identical multigradient echo images acquired to quantify any changes in tumor R{sub 2}*. Hypoxic fraction was quantified histologically using immunofluorescence detection of CCI-103F and pimonidazole adduct formation from the same whole tumor section. Carbogen-induced changes in tumor pO{sub 2} were further validated using the Oxylite fiberoptic probe. Results: Carbogen challenge significantly reduced mean tumor R{sub 2}* from 116 ± 13 s{sup −1} to 97 ± 9 s{sup −1} (P<.05). This was associated with a significantly lower pimonidazole adduct area (2.3 ± 1%), compared with CCI-103F (6.3 ± 2%) (P<.05). A significant correlation was observed between ΔR{sub 2}* and Δhypoxic fraction (r=0.55, P<.01). Mean tumor pO{sub 2} during carbogen breathing significantly increased from 6.3 ± 2.2 mm Hg to 36.0 ± 7.5 mm Hg (P<.01). Conclusions: The combined use of intrinsic susceptibility magnetic resonance imaging with a double hypoxia marker approach corroborates carbogen-induced ΔR{sub 2}* as a noninvasive imaging biomarker of increased tumor oxygenation.

  10. Tumor-associated antigens identified by mRNA expression profiling as tumor rejection epitopes

    DEFF Research Database (Denmark)

    Andersen, Marie; Ruhwald, Morten; Thorn, Mette

    2003-01-01

    , suggesting that SM7 thymoma cells are recognized by the adaptive immune system of the host. However, prophylactic vaccination with RAD23-31 and RAD24-31 peptides combined with anti-CTLA4 Ab treatment and did not improve tumor resistance. Our data would indicate that vaccination with immunogenic peptides......Thirteen H-2b-binding peptides derived from six potentially overexpressed proteins in p53-/- thymoma (SM7) cells were studied for immunogenecity and vaccine-induced prevention of tumor growth in mice inoculated with SM7 tumor cells. Six of the peptides generated specific CTL responses after...... immunization, but only two of these peptides (RAD23-31 and RAD24-31) were capable of generating a weak vaccination-induced protection against adoptive tumor growth. SM7 inoculated mice treated with a blocking antibody against the inhibitory T cell signal transducing molecule CTLA4 appeared to delay tumor take...

  11. Donepezil for Irradiated Brain Tumor Survivors: A Phase III Randomized Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Rapp, Stephen R; Case, L Doug; Peiffer, Ann; Naughton, Michelle M; Chan, Michael D; Stieber, Volker W; Moore, Dennis F; Falchuk, Steven C; Piephoff, James V; Edenfield, William J; Giguere, Jeffrey K; Loghin, Monica E; Shaw, Edward G

    2015-05-20

    Neurotoxic effects of brain irradiation include cognitive impairment in 50% to 90% of patients. Prior studies have suggested that donepezil, a neurotransmitter modulator, may improve cognitive function. A total of 198 adult brain tumor survivors ≥ 6 months after partial- or whole-brain irradiation were randomly assigned to receive a single daily dose (5 mg for 6 weeks, 10 mg for 18 weeks) of donepezil or placebo. A cognitive test battery assessing memory, attention, language, visuomotor, verbal fluency, and executive functions was administered before random assignment and at 12 and 24 weeks. A cognitive composite score (primary outcome) and individual cognitive domains were evaluated. Of this mostly middle-age, married, non-Hispanic white sample, 66% had primary brain tumors, 27% had brain metastases, and 8% underwent prophylactic cranial irradiation. After 24 weeks of treatment, the composite scores did not differ significantly between groups (P = .48); however, significant differences favoring donepezil were observed for memory (recognition, P = .027; discrimination, P = .007) and motor speed and dexterity (P = .016). Significant interactions between pretreatment cognitive function and treatment were found for cognitive composite (P = .01), immediate recall (P = .05), delayed recall (P = .004), attention (P = .01), visuomotor skills (P = .02), and motor speed and dexterity (P < .001), with the benefits of donepezil greater for those who were more cognitively impaired before study treatment. Treatment with donepezil did not significantly improve the overall composite score, but it did result in modest improvements in several cognitive functions, especially among patients with greater pretreatment impairments. © 2015 by American Society of Clinical Oncology.

  12. Fish oil mitigates myosteatosis and improves chemotherapy efficacy in a preclinical model of colon cancer.

    Directory of Open Access Journals (Sweden)

    Alaa A Almasud

    Full Text Available This study aimed to assess whether feeding a diet containing fish oil was efficacious in reducing tumor- and subsequent chemotherapy-associated myosteatosis, and improving tumor response to treatment.Female Fischer 344 rats were fed either a control diet for the entire study (control, or switched to a diet containing fish oil (2.0 g /100 g of diet one week prior to tumor implantation (long term fish oil or at the start of chemotherapy (adjuvant fish oil. Chemotherapy (irinotecan plus 5-fluorouracil was initiated 2 weeks after tumor implantation (cycle-1 and 1 week thereafter (cycle-2. Reference animals received no tumor or treatment and only consumed the control diet. All skeletal muscle measures were conducted in the gastrocnemius. To assess myosteatosis, lipids were assessed histologically by Oil Red O staining and total triglyceride content was quantified by gas chromatography. Expression of adipogenic transcription factors were assessed at the mRNA level by real-time RT-PCR.Feeding a diet containing fish oil significantly reduced tumor- and subsequent chemotherapy-associated increases in skeletal muscle neutral lipid (p<0.001 and total triglyceride content (p<0.03, and expression of adipogenic transcription factors (p<0.01 compared with control diet fed animals. The adjuvant fish oil diet was as effective as the long term fish oil diet in mitigating chemotherapy-associated skeletal muscle fat content, and in reducing tumor volume during chemotherapy compared with control fed animals (p<0.01.Long term and adjuvant fish oil diets are equally efficacious in reducing chemotherapy-associated myosteatosis that may be occurring by reducing expression of transcription factors involved in adipogenesis/lipogenesis, and improving tumor-response to chemotherapy in a neoplastic model.

  13. Oxygenation of a rodent adenocarcinoma is improved by darbepoetin alfa

    International Nuclear Information System (INIS)

    Kirkpatrick, J.P.; Snyder, S.A.; Zhao, Y.; Peltz, C.; Brizel, D.M.; Dewhirst, M.W.; Blackwell, K.L.

    2003-01-01

    Full text: Tumor hypoxia, particularly in anemia, increases the risk of distant metastases and decreases survival. However, the benefits of stimulating erythropoiesis to supraphysiological levels are unclear. This study examines the effect of darbepoetin alfa (DEPA) on tumor oxygenation and the response to therapeutic radiation (XRT) in rats with initially normal hematocrit. R3230 adenocarcinoma was transplanted into the flank of female Fisher 344 rats. Starting on Day 4 post transplant, the rats received DEPA 3 μg/kg or normal saline sc tiw. At 3 weeks post transplant, pO2 was measured and the tumor excised, or the tumor was irradiated. pO2 was determined using an optical microprobe. In histologic studies, rats were injected with pimonidazole prior to sacrifice, and the tumors excised and stained with an antibody to pimonidazole (PIMO). Extent/intensity of staining was assessed by 3 observers and averaged to yield an IHC score. Rats ± DEPA with tumors 7 -12mm diameter were randomised to receive 32 Gy in 4 bid doses or sham irradiation. Tumor diameters in the 4 groups (±DEPA x ±XRT, total n=41) were measured by calipers. Failure was defined by the tumor reaching 15mm in diameter and used to generate Kaplan-Meier curves. Hematocrit at transplant averaged 45% (n=104) versus 67% in the DEPA-treated rats (n=18, p<0.0001) and 44% in the control animals (n=21.) Median pO2 in the DEPA-treated rats vs. controls did not differ significantly (17 vs. 13 mm Hg, p=0.10.) However, the fraction of tumor pO2 measurements <10mm Hg in the DEPA-treated rats was lower (21% vs. 37%, p=0.046.) IHC score was also less in the DEPA group (p=0.03.) XRT significantly improved failure-free survival (p<0.0001.) While the addition of DEPA to either the XRT or control groups did not significantly increase survival, the trend in both cases favored the DEPA-treated groups. In this tumor, treatment with DEPA improves oxygenation. However, no significant enhancement in radioesponsiveness by DEPA

  14. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    Science.gov (United States)

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  15. Fragment Length of Circulating Tumor DNA.

    Science.gov (United States)

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  16. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  17. Impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    Science.gov (United States)

    Chen, Zhe (Jay); Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-01-01

    Previous studies have shown that the procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations depends strongly on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al. (Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077–1998) was used to characterize the edema evolutions observed previously during clinical PIB for prostate cancer. The concept of biologically effective dose (BED), taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not taken into account appropriately, can increase the cell survival and decrease the probability of local control of PIB. The edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life for radioactive decay and decreasing energy of the photons energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days

  18. Platelet Proteome and Tumor Dormancy: Can Platelets Content Serve as Predictive Biomarkers for Exit of Tumors from Dormancy?

    Energy Technology Data Exchange (ETDEWEB)

    Almog, Nava, E-mail: nava.almog@tufts.edu; Klement, Giannoula Lakka, E-mail: nava.almog@tufts.edu [Center of Cancer Systems Biology, Caritas St. Elizabeth' s Medical Center, Tufts University School of Medicine, Boston, MA (United States)

    2010-05-11

    Although tumor dormancy is highly prevalent, the underling mechanisms are still mostly unknown. It is unclear which lesions will progress and become a disseminated cancer, and which will remain dormant and asymptomatic. Yet, an improved ability to predict progression would open the possibility of timely treatment and improvement in outcomes. We have recently described the ability of platelets to selectively uptake angiogenesis regulators very early in tumor growth, and proposed their use as an early marker of malignancy. In this review we will summarize current knowledge about these processes and will discuss the possibility of using platelet content to predict presence of occult tumors.

  19. Instrument ampersand controls section (IA) improvements

    International Nuclear Information System (INIS)

    Kramer, C.; Paul, J.

    1993-01-01

    This portion of the panel session briefly delineates improvements in the Instrument and Controls (IA) Section over the past few years. These improvements are listed briefly in summary form. The status of publication of the IA Section of AG-1 is reviewed

  20. Salvage treatment after r-interferon α-2a in advanced neuroendocrine tumors

    International Nuclear Information System (INIS)

    Zilembo, N.; Buzzoni, R.; Bajetta, E.; Di Bartolomeo, M.; De Braud, F.; Castellani, R.; Maffioli, L.; Celio, L.; Villa, E.; Lorusso, V.; Fosser, V.; Buzzi, F.

    1993-01-01

    The use of interferon (IFN) in neuroendocrine advanced tumors has achieved control of hormonal symptoms but low objective tumor response rate. In patients resistant to, or failing on, IFN a second line treatment may be required. Seventeen patients having received recombinant IFN α-2a as last treatment entered the study. There were 12 carcinoids, 3 medullary thyroid carcinomas, one Merkel cell carcinoma, and one neuroendocrine pancreatic tumor. Two different treatments were used: one radiometabolic therapy with metaiodobenzylguanidine (MIBG) in 3 patients with high MIBG uptake and one polychemotherapy regimen, including streptozotocin 500 mg/m 2 intravenously days 1, 2, 3 and epirubicin 75 mg/m 2 intravenously day 1, in the remaining 14 patients. Stable disease with relief of symptoms and tumor marker reduction was obtained in two patients receiving MIGB therapy, whereas the third patient had progressive disease. In the chemotherapy group only one partial response was obtained and neither tumor marker reduction nor subjective improvement were seen. Our second-line treatment was not especially effective but may be considered for rapidly progressive and/or symptomatic disease. The radiometabolic therapy appears promising in symptomatic patients with small tumor burden whereas our chemotherapy regimen appears ineffective. (orig.)

  1. Progress in radiotherapy of diencephalohypophyseal tumor

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kintomo; Kubo, Osami [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1997-12-01

    The patients with hypophyseal adenoma (36 patients) were treated with peripheral irradiation (between 10 and 35 Gy) using gamma unit. The results are shown as follows: GH producing hypophyseal tumor (8 patients); tumor volume did not reduce rapidly. Growth hormone level fell, but it took more than 12 months to recover to normal level. PRL producing hypophyseal tumor (5 patients); five intractable patients were irradiated. Tumor contraction was not obvious, but the increase of tumor size was restrained. ACTH producing hypophyseal tumor (4 patients); ACTH level dropped gradually, and tumor size was reduced. However, there were 2 intractable cases. Non-functional hypophyseal tumor (19 patients); local tumor control rate was 100% in all patients and visual field was recovered. The size of craniopharyngioma was obviously reduced with peripheral irradiation of 10 Gy dimension about 10 months later. (K.H.)

  2. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  3. Does Self-Control Training Improve Self-Control? A Meta-Analysis.

    Science.gov (United States)

    Friese, Malte; Frankenbach, Julius; Job, Veronika; Loschelder, David D

    2017-11-01

    Self-control is positively associated with a host of beneficial outcomes. Therefore, psychological interventions that reliably improve self-control are of great societal value. A prominent idea suggests that training self-control by repeatedly overriding dominant responses should lead to broad improvements in self-control over time. Here, we conducted a random-effects meta-analysis based on robust variance estimation of the published and unpublished literature on self-control training effects. Results based on 33 studies and 158 effect sizes revealed a small-to-medium effect of g = 0.30, confidence interval (CI 95 ) [0.17, 0.42]. Moderator analyses found that training effects tended to be larger for (a) self-control stamina rather than strength, (b) studies with inactive compared to active control groups, (c) males than females, and (d) when proponents of the strength model of self-control were (co)authors of a study. Bias-correction techniques suggested the presence of small-study effects and/or publication bias and arrived at smaller effect size estimates (range: g corrected = .13 to .24). The mechanisms underlying the effect are poorly understood. There is not enough evidence to conclude that the repeated control of dominant responses is the critical element driving training effects.

  4. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    Science.gov (United States)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found to be variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da; hydrodynamic diameter: ≃2 nm). It may be necessary to use a larger MRI contrast agent to effectively evaluate the sonication-induced enhanced permeabilization in large/late-stage tumors when a large drug carrier such as a liposome is used.

  5. Echosonography and surgical therapy of facial skin tumors

    Directory of Open Access Journals (Sweden)

    Pešić Zoran U.

    2002-01-01

    Full Text Available In the second half of the 20 century, echosonography has been used in many medical specialties. In 1992 and 1993 highfrequencies echosonography was used in the examination of irritant and allergic skin lesions in order to examine the effects of different therapeuthical agents on the skin lesions [1-4]. Hoffmann used highfrequencies echosonography in the examination of healing of skin lesions [3]. By their incidence skin tumors are the largest group of newly discovered tumors, and their usual location is on the face [5-7]. By clinical examination it is not possible to precisely determine the depth of tumor border; therefore, the radically performed surgical excision is the only correct surgical treatment. The aim of this study was to estimate the results of preoperatively performed high frequencies echosonography in order to reduce the number of incorrectly performed surgical excisions of skin tumors. The group was composed of 40 patients with 45 tumors, who first underwent echosonographic diagnostic procedure (20 MHz, Hadsund electronic, Hadsund Technology, Denmark and then surgical excision; patients in control group (45 patients with 45 tumors were only subjected to surgical excision. Excised tumors were then pathohistologically analyzed, and measurements of tumor depth progression were performed. Margins of pathohistological specimen were controlled for the presence of tumor cells. Results of measurements of tumor depth obtained by echosonography and pathohistological measurements were compared. By Jate's modification of c2 test results regarding correct and incorrect surgical excision in patients and control group were compared. By linear regression analysis results of tumor depth obtained by echosonographic and pathohistologic examinations were compared. Hypoechogen zone echosonographic results were used like criteria for tumor expansion. Results of tumor depth measurements are presented in Table 1. Linear regression analysis showed (R = 0

  6. Population-based multicase-control study in common tumors in Spain (MCC-Spain): rationale and study design.

    Science.gov (United States)

    Castaño-Vinyals, Gemma; Aragonés, Nuria; Pérez-Gómez, Beatriz; Martín, Vicente; Llorca, Javier; Moreno, Victor; Altzibar, Jone M; Ardanaz, Eva; de Sanjosé, Sílvia; Jiménez-Moleón, José Juan; Tardón, Adonina; Alguacil, Juan; Peiró, Rosana; Marcos-Gragera, Rafael; Navarro, Carmen; Pollán, Marina; Kogevinas, Manolis

    2015-01-01

    We present the protocol of a large population-based case-control study of 5 common tumors in Spain (MCC-Spain) that evaluates environmental exposures and genetic factors. Between 2008-2013, 10,183 persons aged 20-85 years were enrolled in 23 hospitals and primary care centres in 12 Spanish provinces including 1,115 cases of a new diagnosis of prostate cancer, 1,750 of breast cancer, 2,171 of colorectal cancer, 492 of gastro-oesophageal cancer, 554 cases of chronic lymphocytic leukaemia (CLL) and 4,101 population-based controls matched by frequency to cases by age, sex and region of residence. Participation rates ranged from 57% (stomach cancer) to 87% (CLL cases) and from 30% to 77% in controls. Participants completed a face-to-face computerized interview on sociodemographic factors, environmental exposures, occupation, medication, lifestyle, and personal and family medical history. In addition, participants completed a self-administered food-frequency questionnaire and telephone interviews. Blood samples were collected from 76% of participants while saliva samples were collected in CLL cases and participants refusing blood extractions. Clinical information was recorded for cases and paraffin blocks and/or fresh tumor samples are available in most collaborating hospitals. Genotyping was done through an exome array enriched with genetic markers in specific pathways. Multiple analyses are planned to assess the association of environmental, personal and genetic risk factors for each tumor and to identify pleiotropic effects. This study, conducted within the Spanish Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), is a unique initiative to evaluate etiological factors for common cancers and will promote cancer research and prevention in Spain. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  7. Bypassing the EPR effect with a nanomedicine harboring a sustained-release function allows better tumor control.

    Science.gov (United States)

    Shen, Yao An; Shyu, Ing Luen; Lu, Maggie; He, Chun Lin; Hsu, Yen Mei; Liang, Hsiang Fa; Liu, Chih Peng; Liu, Ren Shyan; Shen, Biing Jiun; Wei, Yau Huei; Chuang, Chi Mu

    2015-01-01

    The current enhanced permeability and retention (EPR)-based approved nanomedicines have had little impact in terms of prolongation of overall survival in patients with cancer. For example, the two Phase III trials comparing Doxil(®), the first nanomedicine approved by the US Food and Drug Administration, with free doxorubicin did not find an actual translation of the EPR effect into a statistically significant increase in overall survival but did show less cardiotoxicity. In the current work, we used a two-factor factorial experimental design with intraperitoneal versus intravenous delivery and nanomedicine versus free drug as factors to test our hypothesis that regional (intraperitoneal) delivery of nanomedicine may better increase survival when compared with systemic delivery. In this study, we demonstrate that bypassing, rather than exploiting, the EPR effect via intraperitoneal delivery of nanomedicine harboring a sustained-release function demonstrates dual pharmacokinetic advantages, producing more efficient tumor control and suppressing the expression of stemness markers, epithelial-mesenchymal transition, angiogenesis signals, and multidrug resistance in the tumor microenvironment. Metastases to vital organs (eg, lung, liver, and lymphatic system) are also better controlled by intraperitoneal delivery of nanomedicine than by standard systemic delivery of the corresponding free drug. Moreover, the intraperitoneal delivery of nanomedicine has the potential to replace hyperthermic intraperitoneal chemotherapy because it shows equal efficacy and lower toxicity. In terms of efficacy, exploiting the EPR effect may not be the best approach for developing a nanomedicine. Because intraperitoneal chemotherapy is a type of regional chemotherapy, the pharmaceutical industry might consider the regional delivery of nanomedicine as a valid alternative pathway to develop their nanomedicine(s) with the goal of better tumor control in the future.

  8. Resveratrol-Loaded Albumin Nanoparticles with Prolonged Blood Circulation and Improved Biocompatibility for Highly Effective Targeted Pancreatic Tumor Therapy

    Science.gov (United States)

    Geng, Tao; Zhao, Xia; Ma, Meng; Zhu, Gang; Yin, Ling

    2017-06-01

    Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances across cell membranes. Herein, we have designed and prepared resveratrol (RV)-loaded HSA nanoparticles conjugating RGD (arginine-glycine-aspartate) via a polyethylene glycol (PEG) "bridge" (HRP-RGD NPs) for highly effective targeted pancreatic tumor therapy. HRP-RGD NPs possess an average size of 120 ± 2.6 nm with a narrow distribution, a homodisperse spherical shape, a RV encapsulation efficiency of 62.5 ± 4.21%, and a maximum RV release ratio of 58.4.2 ± 2.8% at pH 5.0 and 37 °C. In vitro biocompatibility of RV is improved after coating with HSA and PEG. Confocal fluorescence images show that HRP-RGD NPs have the highest cellular uptake ratio of 47.3 ± 4.6% compared to HRP NPs and HRP-RGD NPs with free RGD blocking, attributing to an RGD-mediated effect. A cell counting kit-8 (CCK-8) assay indicates that HRP-RGD NPs without RV (HP-RGD NPs) have nearly no cytotoxicity, but HRP-RGD NPs are significantly more cytotoxic to PANC-1 cells compared to free RV and HRP NPs in a concentration dependent manner, showing apoptotic morphology. Furthermore, with a formulated PEG and HSA coating, HRP-RGD NPs prolong the blood circulation of RV, increasing approximately 5.43-fold (t1/2). After intravenous injection into tumor-bearing mice, the content of HRP-RGD NPs in tumor tissue was proven to be approximately 3.01- and 8.1-fold higher than that of HRP NPs and free RV, respectively. Based on these results, HRP-RGD NPs were used in an in vivo anti-cancer study and demonstrated the best tumor growth suppression effect of all tested drugs with no relapse, high in vivo biocompatibility, and no significant systemic toxicity over 35 days treatment. These results demonstrate that HRP-RGD NPs with prolonged blood circulation and improved biocompatibility have high anti-cancer effects with promising future applications in cancer therapy.

  9. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  10. Influence of postsurgical residual tumor volume on local control in radiotherapy for maxillary sinus cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Mitsuhiko; Ogino, Takashi; Hayashi, Ryuichi; Ishikura, Satoshi; Nihei, Keiji; Ito, Yoshinori; Ikeda, Hiroshi; Ebihara, Satoshi [National Cancer Center, Kashiwa, Chiba (Japan). Hospital East; Itai, Yuji

    2001-05-01

    The aim was to study the influence of postsurgical gross residual tumor volume on local control of maxillary sinus cancer treated with radiotherapy combined with debulking surgery. Forty-three patients who underwent combined surgery and radiotherapy (50-72 Gy, median 60 Gy) for squamous cell carcinoma of the maxillary sinus were reviewed. Gross residual tumor volume (GRTV) after surgery was measured on computed tomograms obtained during the radiotherapy planning. Patients were classified according to GRTV as follows: group AA, GRTV=0 (microscopic residual, n=2); group A, GRTV <10 cm{sup 3} (n=24); group B, 10-40 cm{sup 3} (n=9); and group C, {>=}40 cm{sup 3} (n=8). The relationship between local control and GRTV was analyzed using univariate and multivariate analysis. The 2-year local control rate for all patients was 62%. The differences in local control rates between groups AA, A and B were not significant (P<0.05), but the rate was significantly lower in group C than in the other groups (69% at 2 years vs 31% at 1 year, P<0.001). Multivariate analysis showed that GRTV (P=0.002) and histological differentiation (poorly differentiated histology was favorable, P=0.035) were independent prognostic factors and that intraarterial chemotherapy and administered total dose were not. Local control in groups A and B significantly depended on the total dose of radiotherapy, with 2-year control rates of patients receiving 50 Gy (n=6) and {>=}60 Gy (n=27) of 17% vs 79%, respectively (P<0.001). Our data suggest that adequate, not complete, debulking associated with a total radiotherapy dose of {>=}60 Gy can provide satisfactory local control for patients with squamous cell carcinoma of the maxillary sinus. (author)

  11. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    Science.gov (United States)

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  12. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  13. Autoantibody signature differentiates Wilms tumor patients from neuroblastoma patients.

    Directory of Open Access Journals (Sweden)

    Jana Schmitt

    Full Text Available Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8%, a sensitivity of 87.0% and a specificity of 86.7%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.

  14. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    International Nuclear Information System (INIS)

    Korbelik, M.; Sun, J.

    2003-01-01

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  15. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  16. Dynamic contrast-enhanced case-control analysis in 3T MRI of prostate cancer can help to characterize tumor aggressiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Requena, Roberto, E-mail: roberto.sanz@quironsalud.es [Biomedical Engineering, Hospital Quirónsalud Valencia, Valencia (Spain); Radiology Department, Hospital Quirónsalud Valencia, Valencia (Spain); GIBI230, Instituto de Investigación Sanitaria y Hospital Universitari i Politècnic La Fe, Valencia (Spain); Martí-Bonmatí, Luis [Radiology Department, Hospital Quirónsalud Valencia, Valencia (Spain); GIBI230, Instituto de Investigación Sanitaria y Hospital Universitari i Politècnic La Fe, Valencia (Spain); Pérez-Martínez, Rosario [Radiology Department, Hospital Quirónsalud Valencia, Valencia (Spain); García-Martí, Gracián [Biomedical Engineering, Hospital Quirónsalud Valencia, Valencia (Spain); Radiology Department, Hospital Quirónsalud Valencia, Valencia (Spain); GIBI230, Instituto de Investigación Sanitaria y Hospital Universitari i Politècnic La Fe, Valencia (Spain); CIBER-SAM, Instituto de Salud Carlos III, Madrid (Spain)

    2016-11-15

    Highlights: • Curve types showed no statistical association with healthy/tumor peripheral areas. • K{sup trans}, v{sub e}, upslope and AUC showed significant differences in controls vs. tumors. • The global diagnostic performance of standard MRI perfusion parameters is poor. • Normalized K{sup trans}, upslope and AUC had good diagnostic accuracy for tumor grading. - Abstract: Purpose: The aim of this work is to establish normality and tumor tissue ranges for perfusion parameters from dynamic contrast-enhanced (DCE) MR of the peripheral prostate at 3T and to compare the diagnostic performance of quantitative and semi-quantitative parameters. Materials and methods: Thirty-six patients with prostate carcinomas (18 Gleason-6, 15 Gleason-7, and 3 Gleason-8) and 33 healthy subjects were included. Image analysis workflow comprised four steps: manual segmentation of whole prostate and lesions, series registration, voxelwise T1 mapping and calculation of pharmacokinetic and semi-quantitative parameters. Results: K{sup trans}, v{sub e}, upslope and AUC60 showed statistically significant differences between healthy peripheral areas and tumors. Curve type showed no association with healthy/tumor peripheral areas (chi-square = 0.702). Areas under the ROC curves were 0.64 (95% CI: 0.54–0.75), 0.70 (0.60–0.80), 0.62 (0.51–0.72) and 0.63 (0.52–0.74) for K{sup trans}, v{sub e}, upslope and AUC60, respectively. The optimal cutoff values were: K{sup trans} = 0.21 min{sup −1} (sensitivity = 0.61, specificity = 0.64), v{sub e} = 0.36 (0.63, 0.71), upslope = 0.59 (0.59, 0.59) and AUC60 = 2.4 (0.63, 0.64). Significant differences were found between Gleason scores 6 and 7 for normalized K{sup trans}, upslope and AUC60, with good diagnostic accuracy (area under ROC curve 0.80, 95% CI: 0.60–1.00). Conclusion: Quantitative (K{sup trans} and v{sub e}) and semi-quantitative (upslope and AUC60) perfusion parameters showed significant differences between tumors and control

  17. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  18. Conformal avoidance helical tomotherapy for dogs with nasopharyngeal tumors

    International Nuclear Information System (INIS)

    Welsh, J.S.; Turek, M.; Mackie, T.R.; Miller, P.; Mehta, M.P.; Forrest, L.J.

    2003-01-01

    Helical tomotherapy provides a unique means of delivering intensity-modulated radiation therapy (IMRT) using a novel treatment unit, which merges features of a linear accelerator with a helical CT scanner. Thanks to the CT imaging capacity, targeted regions can be visualized prior to, during, or immediately after each treatment. Such image-guidance through megavoltage CT will allow the realization and refinement of the concept of adaptive radiotherapy - the reconstruction of the actually delivered daily dose (as opposed to planned dose) accompanied by prescription adjustments when appropriate. In addition to this unique feature, helical tomotherapy promises further improvements in the specific avoidance of critical normal structures, i.e. conformal avoidance, the counterpart of conformal therapy. The first definitive treatment protocol using helical tomotherapy is presently underway for dogs with nasopharyngeal tumors. In general, such tumors can be treated with conventional external beam radiation therapy but at the cost of severe ocular toxicity due to the anatomy of the canine head. These are readily measurable toxicities and are almost universal in incidence; therefore, the canine nasopharyngeal tumor presents an ideal model to assess the ability to conformally avoid critical structures. It is hoped that conformal avoidance helical tomotherapy will improve tumor control via dose-escalation while reducing ocular toxicity in these veterinary patients. A total of 10 fractions are scheduled for these patients; the first 3 dogs have all received at least 7 fractions delivered via helical tomotherapy. Although preliminary, the first 3 dogs treated have not shown any evidence of ocular toxicity in this ongoing study

  19. Proton therapy for tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E.; Liebsch, N.J. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  20. Proton therapy for tumors of the skull base

    International Nuclear Information System (INIS)

    Munzenrider, J.E.; Liebsch, N.J.

    1999-01-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  1. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Science.gov (United States)

    2010-04-01

    .... Class II (special controls). Tumor markers must comply with the following special controls: (1) A... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tumor-associated antigen immunological test system... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Tumor Associated Antigen...

  2. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs).

    Science.gov (United States)

    Myung, Ja Hye; Park, Sin-Jung; Wang, Andrew Z; Hong, Seungpyo

    2017-12-13

    Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed. Copyright © 2017. Published by Elsevier B.V.

  3. Tumor microenvironment: Sanctuary of the devil.

    Science.gov (United States)

    Hui, Lanlan; Chen, Ye

    2015-11-01

    Tumor cells constantly interact with the surrounding microenvironment. Increasing evidence indicates that targeting the tumor microenvironment could complement traditional treatment and improve therapeutic outcomes for these malignancies. In this paper, we review new insights into the tumor microenvironment, and summarize selected examples of the cross-talk between tumor cells and their microenvironment, which have enhanced our understanding of pathophysiology of the microenvironment. We believe that this rapidly moving field promises many more to come, and they will guide the rational design of combinational therapies for success in cancer eradication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Considering the role of radiation therapy for gastrointestinal stromal tumor

    Directory of Open Access Journals (Sweden)

    Corbin KS

    2014-05-01

    Full Text Available Kimberly S Corbin,1 Hedy L Kindler,2 Stanley L Liauw31Department of Radiation Oncology, Memorial Medical Center, Springfield, IL, USA; 2Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA; 3Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USAAbstract: Gastrointestinal stromal tumors (GISTs are rare mesenchymal tumors arising in the gastrointestinal tract. Over the last decade, the management and prognosis of GISTs has changed dramatically with molecular characterization of the c-kit mutation and the adoption of targeted systemic therapy. Currently, the standard of care for resectable tumors is surgery, followed by adjuvant imatinib for tumors at high risk for recurrence. Inoperable or metastatic tumors are treated primarily with imatinib. Despite excellent initial response rates, resistance to targeted therapy has emerged as a common clinical problem, with relatively few therapeutic solutions. While the treatment of GISTs does not commonly include radiotherapy, radiation therapy could be a valuable contributing modality. Several case reports indicate that radiation can control locally progressive, drug-resistant disease. Further study is necessary to define whether radiation could potentially prevent or delay the onset of drug resistance, or improve outcomes when given in combination with imatinib.Keywords: GIST, imatinib, radiotherapy

  5. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  6. Tumor markers: applications and recommendations. New IZOTOPE products

    International Nuclear Information System (INIS)

    Gyenes, Ana Rosa

    2016-01-01

    At work aspects are discussed: Tumor markers; New products IZOTOP; Measuring principle of IRMA kits for tumor markers; Guidelines and Recommendations for the use of tumor markers. pre-analytical, post-analytical and Quality control recommendations are given

  7. Composing a Tumor Specific Bacterial Promoter.

    Directory of Open Access Journals (Sweden)

    Igor V Deyneko

    Full Text Available Systemically applied Salmonella enterica spp. have been shown to invade and colonize neoplastic tissues where it retards the growth of many tumors. This offers the possibility to use the bacteria as a vehicle for the tumor specific delivery of therapeutic molecules. Specificity of such delivery is solely depending on promoter sequences that control the production of a target molecule. We have established the functional structure of bacterial promoters that are transcriptionally active exclusively in tumor tissues after systemic application. We observed that the specific transcriptional activation is accomplished by a combination of a weak basal promoter and a strong FNR binding site. This represents a minimal set of control elements required for such activation. In natural promoters, additional DNA remodeling elements are found that alter the level of transcription quantitatively. Inefficiency of the basal promoter ensures the absence of transcription outside tumors. As a proof of concept, we compiled an artificial promoter sequence from individual motifs representing FNR and basal promoter and showed specific activation in a tumor microenvironment. Our results open possibilities for the generation of promoters with an adjusted level of expression of target proteins in particular for applications in bacterial tumor therapy.

  8. High symptom improvement and local tumor control using stereotactic radiotherapy when given early after diagnosis of meningioma. A multicentre study

    Energy Technology Data Exchange (ETDEWEB)

    Compter, I.; Houben, R.M.A.; Bosmans, G.; Baumert, B.G. [Maastricht Univ. Medical Centre (Netherlands). Dept. of Radiation-Oncology (MAASTRO); Zaugg, K.; Buescher, C. [University Hospital Zurich (Switzerland). Clinic and Policlinic of Radiation-Oncology; Dings, J.T.A. [Maastricht Univ. Medical Centre (Netherlands). Dept. of Neurosurgery; Anten, M.M.H.M.E. [Maastricht Univ. Medical Centre (Netherlands). Dept. of Neurology

    2012-10-15

    Purpose: The goal of the present study was to analyze long-term results of fractionated stereotactic radiotherapy (SRT) in patients with a meningioma. Methods and materials: A total of 72 patients treated between 1996 and 2008 in MAASTRO clinic (n = 45) and University Hospital Zurich (n = 27) were included. SRT was given as primary treatment (n = 46), postoperatively (n = 19) or at recurrence (n = 7); 49 tumours (68%) were located in the skull base. Median total dose was 54 Gy. Results: Median follow-up was 4.13 years (range 0.66-11 years). The 3- and 5-year overall survival were 92 and 79% for grade 0 and I meningioma. Progression-free survival for grade 0 and I was 95% at 3 and 5 years, and 40% for grade II and III at 3 years. In 98.4% of patients, clinical symptoms were stable or improved. The majority of symptoms improved within 24 months after SRT. Local control is significantly better if patients are irradiated immediately after diagnosis compared to a watchful waiting policy (p = 0.017). Grade IV toxicity was low (4.2%, n = 3) Conclusion: SRT is an effective treatment with high local and clinical control. Early SRT resulted in better outcome than late treatment at progression. (orig.)

  9. Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors.

    Science.gov (United States)

    Spugnini, Enrico P; Baldi, Alfonso; Buglioni, Sabrina; Carocci, Francesca; de Bazzichini, Giulia Milesi; Betti, Gianluca; Pantaleo, Ilaria; Menicagli, Francesco; Citro, Gennaro; Fais, Stefano

    2011-12-28

    The treatment of human cancer has been seriously hampered for decades by resistance to chemotherapeutic drugs. Mechanisms underlying this resistance are far from being entirely known. A very efficient mechanism of tumor resistance to drugs is related to the modification of tumour microenvironment through changes in the extracellular and intracellular pH. The acidification of tumor microenvironment depends on proton pumps that actively pump protons outside the cells, mostly to avoid intracellular acidification. In fact, we have shown in pre-clinical settings as pre-treatment with proton-pumps inhibitors (PPI) increase tumor cell and tumor responsiveness to chemotherapeutics. In this study pet with spontaneously occurring cancer proven refractory to conventional chemotherapy have been recruited in a compassionate study. Thirty-four companion animals (27 dogs and 7 cats) were treated adding to their chemotherapy protocols the pump inhibitor lansoprazole at high dose, as suggested by pre-clinical experiments. Their responses have been compared to those of seventeen pets (10 dogs and 7 cats) whose owners did not pursue any other therapy than continuing the currently ongoing chemotherapy protocols. The drug was overall well tolerated, with only four dogs experiencing side effects due to gastric hypochlorhydria consisting with vomiting and or diarrhea. In terms of overall response twenty-three pets out of 34 had partial or complete responses (67.6%) the remaining patients experienced no response or progressive disease however most owners reported improved quality of life in most of the non responders. On the other hand, only three animals in the control group (17%) experienced short lived partial responses (1-3 months duration) while all the others died of progressive disease within two months. high dose proton pump inhibitors have been shown to induce reversal of tumor chemoresistance as well as improvement of the quality of life in pets with down staged cancer and in

  10. The safety and efficacy of gamma knife surgery in management of glomus jugulare tumor

    Science.gov (United States)

    2010-01-01

    Background Glomus jugulare is a slowly growing, locally destructive tumor located in the skull base with difficult surgical access. The operative approach is, complicated by the fact that lesions may be both intra and extradural with engulfment of critical neurovascular structures. The tumor is frequently highly vascular, thus tumor resection entails a great deal of morbidity and not infrequent mortality. At timeslarge residual tumors are left behind. To decrease the morbidity associated with surgical resection of glomus jugulare, gamma knife surgery (GKS) was performed as an alternative in 13 patients to evaluate its safety and efficacy. Methods A retrospective review of 13 residual or unresectable glomus jagulare treated with GKS between 2004 and 2008.. Of these, 11 patients underwent GKS as the primary management and one case each was treated for postoperative residual disease and postembolization. The radiosurgical dose to the tumor margin ranged between 12-15 Gy. Results Post- gamma knife surgery and during the follow-up period twelve patients demonstrated neurological stability while clinical improvement was achieved in 5 patients. One case developed transient partial 7th nerve palsy that responded to medical treatment. In all patients radiographic MRI follow-up was obtained, the tumor size decreased in two cases and remained stable (local tumor control) in eleven patients. Conclusions Gamma knife surgery provids tumor control with a lowering of risk of developing a new cranial nerve injury in early follow-up period. This procedure can be safely used as a primary management tool in patients with glomus jugulare tumors, or in patients with recurrent tumors in this location. If long-term results with GKS are equally effective it will emerge as a good alternative to surgical resection. PMID:20819207

  11. Tumors of the connective and supporting tissues

    International Nuclear Information System (INIS)

    Suit, Herman

    1995-01-01

    There has been a continuous acceleration of medical/scientific inquiry and of actual improvements in management of patients with neoplasms of the mesenchymal tissues over the last four decades. The number of publications in this field has increased from 1140 in 1970 and then to 1700 in 1990. Important advances discussed over this period include: establishment of sarcoma teams in major oncology centers; staging systems for both soft tissue and osseous sarcomas; demonstration of genetic determinants in the development of, at least, some of the sarcomas; the revolutionary change in quality of diagnostic imaging by the introduction of CT and MRI; use of immunohistochemistry in diagnostic pathology; the drastic gains in survival of patients with osteogenic sarcoma, Ewing's sarcoma and rhabdomyosarcoma due to the efficacy of multi-drug and multi-cycle chemotherapy protocols; major advances in surgical techniques which have made limb salvage practical; cell lines derived from human sarcomas have been shown to have in vitro radiation sensitivity comparable to that of cell lines from epithelial tumors; the combination of conservative surgery and moderate doses of radiation yields local control and survival results equivalent to that of radical surgery with a much improved functional and cosmetic outcome; intra-operative electron beam radiation therapy improves the outcome of patients with retroperitoneal sarcomas when given after grossly complete resection combined with external beam radiation therapy (pre- or post-operatively); radiation is a highly effective alternative to extensive surgery for desmoid tumors; local control of giant cell tumors by modern radiation techniques is ∼ 80% and the incidence of radiation induced tumors at 10 years is ∼ 3%; to decrease the incidence of radiation induced sarcoma, resection has replaced radiation in the management of selected patients with primary Ewing's sarcoma when the response to chemotherapy has been excellent and the

  12. Long-term results of radiotherapy for pituitary adenomas. Evaluation of tumor control and hypopituitarism after radiotherapy

    International Nuclear Information System (INIS)

    Tsuchida, Emiko; Sakai, Kunio; Matsumoto, Yasuo; Sugita, Tadashi; Sasamoto, Ryuta

    1999-01-01

    To evaluate the results of conventional radiotherapy for pituitary adenomas assessed with computed tomography (CT) or magnetic resonance imaging (MRI). Endpoints include tumor control, normalization of hormone levels in functioning adenomas, and hypopituitarism after radiotherapy as an adverse effect. Forty-two patients were treated with radiotherapy from 1982 to 1995 at Niigata University Hospital. Forty patients were irradiated after surgery because of residual adenomas in 33 patients and tumor regrowth in 7 patients. One patient was treated with radiotherapy alone, and the remaining 1 patient was treated with preoperative radiotherapy. Tumor size and extension were evaluated using CT or MRI, and all tumors were macroadenomas. They consisted of 18 non-functioning and 24 functioning adenomas (growth hormone (GH)-secreting: 11, prolactinomas: 7, concomitant GH and prolactin (PRL)-secreting: 5, gonadotropin-secreting: 1). Treatment was given in 200 cGy daily fraction size and a total dose of 50 Gy was given to most patients. Sixteen patients with GH- and/or PRL-secreting adenomas received bromocriptine. Tumor progression was determined by increase in tumor size as shown by CT or MRI. Hypopituitarism after radiotherapy was evaluated using the functions of corticotropin (ACTH), thyrotropin (TSH), and gonadotropin. Median follow-up time from the end of radiotherapy was 103 months. Tumor progression occurred in 2 out of 42 patients and 10-year progression-free rate for all patients was 93.7%. Normalization of GH levels was obtained in 12 of 16 GH-secreting adenomas with a mean time of 27 months after radiotherapy, and 9 of 12 PRL-secreting adenomas achieved normalization of PRL levels with a mean time of 34 months. One gonadotropin-secreting adenoma achieved normalization of gonadotropin level at 21 months after radiotherapy. The incidence of hypopituitarism after radiotherapy increased with time, and cumulative risk of deficiencies of ACTH, TSH, and gonadotropin at 10

  13. Radiation therapy of brain tumor

    International Nuclear Information System (INIS)

    Sung, K. J.; Lee, D. H.; Park, C. Y.

    1980-01-01

    One hundred and six cases of brain tumors were treated at the Yonsei Cancer Center from January 1972 to August 1978 by Co-60 teletherapy unit. We analyses their clinical findings, histopathological findings, treatment and results. In those cases which computerized tomography had been used before and after radiation therapy, changes in tumor size and the presence of edema or necrosis following treatment was evaluated. 1. Among 106 cases, 90 cases were primary brain tumors and 16 cases were metastatic brain tumors. Pituitary tumors (38), glioma (34) and pinealoma (10) composed of most of primary brain tumors. 2. Post treatment follow-up was possible in 38 cases more than 1 years. Four among 11 cases of giloma expired and survivors had considerable neurological symptoms except 2 cases. Sixty five percent (12/20) of pituitary tumors showed improvement of visual symptoms and all cases (7) of pinealoma which post treatment follow-up was possible, showed remarkable good response. 3. Findings of CT scan after radiation treatment were compatible with results of clinical findings and post treatment follow-up. It showed complete regression of tumor mass in one case of pinealoma and medulloblastoma. One case of pituitary tumor showed almost complete regression of tumor mass. It also showed large residual lesion in cases of glioblastoma multiforme and cystic astrocytoma.

  14. Avaliação dos tumores hepáticos ao Doppler Doppler evaluation of liver tumors

    Directory of Open Access Journals (Sweden)

    Márcio Martins Machado

    2004-10-01

    Full Text Available Os avanços recentes na ultra-sonografia têm ampliado a possibilidade de detecção de tumores hepáticos. Isto tem auxiliado na perspectiva de melhora do prognóstico destes pacientes, à medida que novas técnicas terapêuticas têm surgido. Neste artigo os autores relatam achados ao Doppler que podem auxiliar na identificação e caracterização dos tumores hepáticos, avaliando dados do Doppler colorido, pulsado e do Doppler de amplitude ("power Doppler". Fazem, também, referência a novas modalidades de imagem, como o uso da harmônica.Recent advances in ultrasound have optimized the detection of liver tumors and helped to improve the prognosis of patients with this condition as newly developed and improved therapeutic modalities have been established. The authors review important Doppler findings which may help in the identification and characterization of some hepatic tumors through the evaluation of color Doppler, pulsed Doppler and power Doppler features. New imaging methods such as the use of harmonics imaging are also reviewed.

  15. Influence of WR-2721 on metastatic tumor spread after irradiation

    International Nuclear Information System (INIS)

    Ullrich, R.L.; Jernigan, M.C.; Yuhas, J.M.

    1975-01-01

    The Line 1 alveolar cell carcinoma is a transplantable murine tumor which, unlike most others, kills the host by means of metastatic spread. Attempts to cure this tumor with localized radiation therapy often fail, in spite of local tumor control, because the metastases evade the treatment. These facts suggest that host-tumor interactions may play a particularly important role in determining the ultimate survival of the tumor bearing animal. In order to initially evaluate the possible importance of normal regional tissues in host-tumor interactions the influence of WR-2721, a radioprotective drug, was examined for local tumor control and subsequent survival of the tumor bearing animal after localized radiation. Results indicated that WR-2721 can decrease metastasis. (U.S.)

  16. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Shih, Tsung-Mu; Chang, Hsueh-Wei

    2010-12-17

    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  17. Intelligence Deficits in Chinese Patients with Brain Tumor: The Impact of Tumor Resection

    Directory of Open Access Journals (Sweden)

    Chao Shen

    2013-01-01

    Full Text Available Background. Intelligence is much important for brain tumor patients after their operation, while the reports about surgical related intelligence deficits are not frequent. It is not only theoretically important but also meaningful for clinical practice. Methods. Wechsler Adult Intelligence Scale was employed to evaluate the intelligence of 103 patients with intracranial tumor and to compare the intelligence quotient (IQ, verbal IQ (VIQ, and performance IQ (PIQ between the intracerebral and extracerebral subgroups. Results. Although preoperative intelligence deficits appeared in all subgroups, IQ, VIQ, and PIQ were not found to have any significant difference between the intracerebral and extracerebral subgroups, but with VIQ lower than PIQ in all the subgroups. An immediate postoperative follow-up demonstrated a decline of IQ and PIQ in the extracerebral subgroup, but an improvement of VIQ in the right intracerebral subgroup. Pituitary adenoma resection exerted no effect on intelligence. In addition, age, years of education, and tumor size were found to play important roles. Conclusions. Brain tumors will impair IQ, VIQ, and PIQ. The extracerebral tumor resection can deteriorate IQ and PIQ. However, right intracerebral tumor resection is beneficial to VIQ, and transsphenoidal pituitary adenoma resection performs no effect on intelligence.

  18. Improving Blood Pressure Control Using Smart Technology.

    Science.gov (United States)

    Ciemins, Elizabeth L; Arora, Anupama; Coombs, Nicholas C; Holloway, Barbara; Mullette, Elizabeth J; Garland, Robin; Walsh Bishop-Green, Shannon; Penso, Jerry; Coon, Patricia J

    2018-03-01

    The authors sought to determine if wireless oscillometric home blood pressure monitoring (HBPM) that integrates with smartphone technology improves blood pressure (BP) control among patients with new or existing uncontrolled hypertension (HTN). A prospective observational cohort study monitored BP control before and after an educational intervention and introduction to HBPM. Patients in the intervention group were instructed to track their BP using a smartphone device three to seven times per week. Cases were matched to controls at a 1:3 allocation ratio on several clinical characteristics over the same period and received usual care. The proportion of patients with controlled BP was compared between groups at pre- and postintervention, ∼9 months later. Results and Materials: The total study population included 484 patients with mean age 60 years (range 23-102 years), 47.7% female, and 84.6% Caucasian. Mean preintervention BP was 137.8 mm Hg systolic and 81.4 mm Hg diastolic. Mean BP control rates improved for patients who received HBPM from 42% to 67% compared with matched control patients who improved from 59% to 67% (p technology has the potential to improve HTN management among patients with uncontrolled or newly diagnosed HTN. Technology needs to be easy to use and operate and would work best when integrated into local electronic health record systems. In systems without this capability, medical assistants or other personnel may be trained to facilitate the process. Nurse navigator involvement was instrumental in bridging communication between the patients and provider.

  19. Radiation therapy for glomus tumors of the temporal bone

    International Nuclear Information System (INIS)

    Dall'Igna, Celso; Antunes, Marcelo B.

    2005-01-01

    The treatment of glomic tumors has been controversial since its first description. It can be done with surgery, radiotherapy or just expectation. Aim: the objective of this paper was to evaluate the effectiveness and complications of radiotherapy.Study Design: clinical with transversal cohort. Material and method: it was made a retrospective review in the charts of the patients with glomus jugular tumors treated with radiotherapy. Disease control was determined by (1) no progression of symptoms or cranial nerve dysfunction or (2) no progression of the lesion in radiological follow-up. It was also evaluated the follow-up period and the sequelae of the treatment. Results: twelve patients were included, 8 of then women. The follow-up period was from 3 to 35 years, with a media of 11,6 years. The main symptoms were: hearing loss, pulsate tinnitus, dizziness and vertigo. The signs were pulsate retrotympanic mass, facial palsy and cofosis. The tumors were staged using Fischs classification. The radiotherapy was performed with linear accelerator with dose ranging from 4500-5500 in 4-6 weeks. In the follow-up period were possible to identify sequelaes like dermatitis, meatal stenosis, cofosis and facial palsy. Discussion: the signs and symptoms were the same found in the medical literature. The type and dosages of the radiotherapy were also the same of others reports. All patients had improvement of the symptoms and only one was not considered as having disease controlled. Complications were, in general, minor complications, with exception of the cofosis and facial palsy. Conclusion: radiotherapy is a viable alternative to treatment of these tumors because their good response and low level of complications. It should be considered specially in advanced tumors where a surgical procedure could bring a high level of morbidity. (author)

  20. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors.

    Science.gov (United States)

    Peller, Michael; Willerding, Linus; Limmer, Simone; Hossann, Martin; Dietrich, Olaf; Ingrisch, Michael; Sroka, Ronald; Lindner, Lars H

    2016-09-10

    The efficacy of systemically applied, classical anti-cancer drugs is limited by insufficient selectivity to the tumor and the applicable dose is limited by side effects. Efficacy could be further improved by targeting of the drug to the tumor. Using thermosensitive liposomes (TSL) as a drug carrier, targeting is achieved by control of temperature in the target volume. In such an approach, effective local hyperthermia (40-43°C) (HT) of the tumor is considered essential but technically challenging. Thus, visualization of local heating and drug release using TSL is considered an important tool for further improvement. Visualization and feasibility of chemodosimetry by magnetic resonance imaging (MRI) has previously been demonstrated using TSL encapsulating both, contrast agent (CA) and doxorubicin (DOX) simultaneously in the same TSL. Dosimetry has been facilitated using T1-relaxation time change as a surrogate marker for DOX deposition in the tumor. To allow higher loading of the TSL and to simplify clinical development of new TSL formulations a new approach using a mixture of TSL either loaded with DOX or MRI-CA is suggested. This was successfully tested using phosphatidyldiglycerol-based TSL (DPPG2-TSL) in Brown Norway rats with syngeneic soft tissue sarcomas (BN175) implanted at both hind legs. After intravenous application of DOX-TSL and CA-TSL, heating of one tumor above 40°C for 1h using laser light resulted in highly selective DOX uptake. The DOX-concentration in the heated tumor tissue compared to the non-heated tumor showed an almost 10-fold increase. T1 and additional MRI surrogate parameters such as signal phase change were correlated to intratumoral DOX concentration. Visualization of DOX delivery in the sense of a chemodosimetry was demonstrated. Although phase-based MR-thermometry was affected by CA-TSL, phase information was found suitable for DOX concentration assessment. Local differences of DOX concentration in the tumors indicated the need for

  1. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    NARCIS (Netherlands)

    van Oosterhout, J.; Abbink, D. A.; Koning, J. F.; Boessenkool, H.; Wildenbeest, J. G. W.; Heemskerk, C. J. M.

    2013-01-01

    A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested

  2. The role of adjuvant radiotherapy in the treatment of resectable desmoid tumors

    International Nuclear Information System (INIS)

    Goy, Barry W.; Lee, Steve P.; Eilber, Frederick; Dorey, Fred; Eckardt, Jeffrey; Fu, Y.-S.; Juillard, Guy J.F.; Selch, Michael T.

    1996-01-01

    Purpose/Objective: Desmoid tumors have a high propensity for local recurrence with surgical resection. There are many reports describing good responses of desmoid tumors to irradiation, but none have clearly proven the indications for adjuvant radiotherapy in treating resectable desmoid tumors. Materials and Methods: A retrospective analysis was performed on 61 patients with resectable desmoid tumors who were treated at our institution from 1965 to 1992. Fifty-six patients had unifocal disease, of which 34 had positive surgical margins. Forty-five were treated with surgery alone, while 11 received surgery plus adjuvant radiotherapy. Median follow-up was 6 years. Local control was measured from the last day of treatment, and all cases were reviewed by our Department of Pathology. Results: Univariate analysis of 56 patients with unifocal disease revealed that female gender (p=0.025) and positive margins (p=0.032) predicted for local recurrence. Multivariate analysis revealed that only positive margins (p=0.003) independently predicted for local recurrence. Only 3 of 22 patients had local recurrences with clear margins, with a 6 year actuarial local control of 85%. We analyzed 34 patients with positive margins by univariate analysis, and only adjuvant radiotherapy predicted for improved local control (p=0.031). Multivariate analysis of these 34 patients revealed that adjuvant radiotherapy independently predicted for local control (p=0.012), and patients with recurrent disease had a slightly higher risk of local recurrence (p=0.083). The 6 year actuarial local control determined by Kaplan-Meier for patients with unifocal disease and positive margins was 32%(±12%) with surgery alone, and 78%(±14%) with surgery plus adjuvant radiotherapy (p=0.019). None of the patients who received radiotherapy for unifocal disease developed serious complications, or a secondary malignancy. Conclusions: Adjuvant radiotherapy is indicated in the treatment of patients with resectable

  3. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    Science.gov (United States)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in

  4. Pelvic Inflammatory Disease and the Risk of Ovarian Cancer and Borderline Ovarian Tumors: A Pooled Analysis of 13 Case-Control Studies

    Science.gov (United States)

    Rasmussen, Christina B.; Kjaer, Susanne K.; Albieri, Vanna; Bandera, Elisa V.; Doherty, Jennifer A.; Høgdall, Estrid; Webb, Penelope M.; Jordan, Susan J.; Rossing, Mary Anne; Wicklund, Kristine G.; Goodman, Marc T.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Edwards, Robert P.; Schildkraut, Joellen M.; Berchuck, Andrew; Olson, Sara H.; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; Narod, Steven A.; Phelan, Catherine M.; Anton-Culver, Hoda; Ziogas, Argyrios; Wu, Anna H.; Pearce, Celeste L.; Risch, Harvey A.; Jensen, Allan

    2017-01-01

    Inflammation has been implicated in ovarian carcinogenesis. However, studies investigating the association between pelvic inflammatory disease (PID) and ovarian cancer risk are few and inconsistent. We investigated the association between PID and the risk of epithelial ovarian cancer according to tumor behavior and histotype. We pooled data from 13 case-control studies, conducted between 1989 and 2009, from the Ovarian Cancer Association Consortium (OCAC), including 9,162 women with ovarian cancers, 2,354 women with borderline tumors, and 14,736 control participants. Study-specific odds ratios were estimated and subsequently combined into a pooled odds ratio using a random-effects model. A history of PID was associated with an increased risk of borderline tumors (pooled odds ratio (pOR) = 1.32, 95% confidence interval (CI): 1.10, 1.58). Women with at least 2 episodes of PID had a 2-fold increased risk of borderline tumors (pOR = 2.14, 95% CI: 1.08, 4.24). No association was observed between PID and ovarian cancer risk overall (pOR = 0.99, 95% CI: 0.83, 1.19); however, a statistically nonsignificantly increased risk of low-grade serous tumors (pOR = 1.48, 95% CI: 0.92, 2.38) was noted. In conclusion, PID was associated with an increased risk of borderline ovarian tumors, particularly among women who had had multiple episodes of PID. Although our results indicated a histotype-specific association with PID, the association of PID with ovarian cancer risk is still somewhat uncertain and requires further investigation. PMID:27941069

  5. Real-time dose compensation methods for scanned ion beam therapy of moving tumors

    International Nuclear Information System (INIS)

    Luechtenborg, Robert

    2012-01-01

    Scanned ion beam therapy provides highly tumor-conformal treatments. So far, only tumors showing no considerable motion during therapy have been treated as tumor motion and dynamic beam delivery interfere, causing dose deteriorations. One proposed technique to mitigate these deteriorations is beam tracking (BT), which adapts the beam position to the moving tumor. Despite application of BT, dose deviations can occur in the case of non-translational motion. In this work, real-time dose compensation combined with beam tracking (RDBT) has been implemented into the control system to compensate these dose changes by adaptation of nominal particle numbers during irradiation. Compared to BT, significantly reduced dose deviations were measured using RDBT. Treatment planning studies for lung cancer patients including the increased biological effectiveness of ions revealed a significantly reduced over-dose level (3/5 patients) as well as significantly improved dose homogeneity (4/5 patients) for RDBT. Based on these findings, real-time dose compensated re-scanning (RDRS) has been proposed that potentially supersedes the technically complex fast energy adaptation necessary for BT and RDBT. Significantly improved conformity compared to re-scanning, i.e., averaging of dose deviations by repeated irradiation, was measured in film irradiations. Simulations comparing RDRS to BT revealed reduced under- and overdoses of the former method.

  6. Technology: cancer treatment: breath control set radiotherapy free. Two new methods allow to aim the tumors with precision without suffering of respiratory move

    International Nuclear Information System (INIS)

    Blanc, S.

    2004-01-01

    The challenge of radiotherapy consists in improving the ratio between the destruction of tumor cells and the preservation of sane cells. The efficiency of the treatment depends on the precision of radiations impact on the tumor but this one is difficult to get because the patient respiration makes the target mobile. It is now possible to get this precision. It is a question to block the patient respiration or to register the movements and then establish the shooting window of radiations in function of the tumor optimum exposure. (N.C.)

  7. [Testicular and paratesticular tumors in children].

    Science.gov (United States)

    Fabbro, M A; Costa, L; Cimaglia, M L; Donadio, P; Spata, E

    1995-01-01

    Testis tumors in children occur infrequently and exibit differences in their histopathology, clinical behaviour and therapy from their adult counterparts. From 1979 to 1994, 17 children and adolescent with testicular tumors were treated at the Pediatric Surgical Department of Vicenza Regional Hospital. Paratesticular rabdomiosarcoma were present in 3 cases, 4 patients had embrional carcinoma, 1 Sertoli cell tumor, 2 Leydig cell gonadal stromal tumor, and leukemic infiltrates of the testis were clinically evident in 7 patients. We report our clinical series and discuss in relation to clinical characteristic, histopathology and therapy and conclude that the improved survival during the past decade is attributable to better diagnostic imaging thecniques, the availability of serum tumor markers to monitor disease activity and more effective chemotherapy.

  8. Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient

    Directory of Open Access Journals (Sweden)

    Yamin Zhang

    2017-12-01

    Full Text Available Skin fibroblasts and tumor fibroblasts were extracted from a 64-year old male patient clinically diagnosed with laryngeal carcinoma. Control and tumor specific induced pluripotent stem cells were reprogrammed with 5 reprogramming factors, Klf-4, c-Myc, Oct-4, Sox-2, and Lin-28, using the messenger RNA reprogramming system. The transgene-free iPSC lines showed pluripotency, confirmed by immunofluorescence staining. The iPSC lines also showed normal karyotype, and could form embryoid bodies in vitro and differentiate into the 3 germ layers in vivo. This in vitro cellular model can be used to study the oncogenesis and pathogenesis of laryngeal carcinoma.

  9. Body weight considerations in the B6C3F1 mouse and the use of dietary control to standardize background tumor incidence in chronic bioassays

    International Nuclear Information System (INIS)

    Leakey, Julian E.A.; Seng, John E.; Allaben, William T.

    2003-01-01

    In B6C3F 1 mice, the rate of body growth influences susceptibility to liver neoplasia and large variations in body weight can complicate the interpretation of bioassay data. The relationship between body weight and liver tumor incidence was calculated for historical control populations of male and female ad libitum-fed mice (approx. 2750 and 2300 animals, respectively) and in populations of male and female mice which had been subjected to forced body weight reduction due to either dietary restriction or exposure to noncarcinogenic chemicals (approx. 1600 and 1700, respectively). Resulting tumor risk data were then used to construct idealized weight curves for male and female B6C3F 1 mice; these curves predict a terminal background liver tumor incidence of 15-20%. Use of dietary control to manipulate body growth of male B6C3F 1 mice to fit the idealized weight curve was evaluated in a 2-year bioassay of chloral hydrate. Cohorts of mice were successfully maintained at weights approximating their idealized target weights throughout the study. These mice exhibited less body weight variation than their ad libitum-fed counterparts (e.g., standard deviations of body weight were 1.4 and 3.4 g for respective control groups at 36 weeks). Historical control body weight and tumor risk data from the two male mouse populations were utilized to predict background liver tumor rates for each experimental group of the chloral hydrate study. The predicted background tumor rates closely matched the observed rates for both the dietary controlled and ad libitum-fed chloral hydrate control groups when each mouse was evaluated according to either its weekly food consumption or its weekly change in body weight

  10. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    Directory of Open Access Journals (Sweden)

    Jochen Gohlke

    Full Text Available Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes

  11. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  12. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    International Nuclear Information System (INIS)

    Chen Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-01-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131 Cs, 125 I and 103 Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125 I sources was less affected by edema than PIB using 131 Cs or 103 Pd sources due to the long radioactive decay half-life of 125 I. The effect of edema on PIB using 131 Cs or 103 Pd was similar. The effect of edema on 103 Pd PIB was slightly greater, even though the decay half-life of 103 Pd (17 days) is

  13. Improved design of HIRFL-CSR EVME bus controller

    International Nuclear Information System (INIS)

    Zhao Long; Liu Wufeng; Qiao Weimin; Jing Lan

    2009-01-01

    The EVME bus controller which is a key component of the HIRFL-CSR control system was improved. Besides reconfiguring the embedded Linux, a utility program was developed for data exchange between the controller and the database. The bus controller is based on ARM920T(ARM9) micro processor which is BGA packaged. The bus controller has the universal interface of VGA display, keyboard, and mouse. The backboard interface logic is programmed in an in-system configurable FPGA device. The bus can drive high current up to 64 mA, with the flexibility of the programmable signal definitions. All the improved performance helped the EVME bus controller play a crucial role in HIRFL-CSR control system. (authors)

  14. Long-term local control with radiofrequency ablation or radiotherapy for second, third, and fourth lung tumors after lobectomy for primary lung cancer

    International Nuclear Information System (INIS)

    Yokouchi, Hideoki; Murata, Kohei; Miyazaki, Masaki; Miyamoto, Takeaki; Minami, Takafumi; Tsuji, Fumio; Mikami, Koji

    2016-01-01

    A 78-year-old woman developed second, third, and fourth lung tumors at intervals of 1-3 years after left upper lobectomy for primary lung cancer. The tumors were controlled with radiofrequency ablation (RFA) or conventional conformal radiotherapy for 9 years postoperatively. For the treatment of second primary lung cancer or lung metastasis after surgical resection of the primary lung cancer, reoperation is not recommended because of the impaired respiratory reserve. Thus, local therapy such as radiotherapy or RFA is applied in some cases. Among these, stereotactic body radiotherapy (SBRT) is a feasible option because of its good local control and safety, which is comparable with surgery. On the other hand, for cases of multiple lesions that are not suitable for radiotherapy or combination therapy, RFA could be an option because of its short-term local control, easiness, safety, and repeatability. After surgery for primary lung cancer, a second lung tumor could be controlled with highly effective and minimally invasive local therapy if it is recognized as a local disease but is medically inoperable. Therefore, long-term postoperative follow-up for primary lung cancer is beneficial. (author)

  15. Improved Droop Control Strategy for Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Abusara, Mohammad; Sharkh, Suleiman; Guerrero, Josep M.

    2015-01-01

    An improved control strategy for grid-connected inverters within microgrids is presented in this paper. The strategy is based on the classical P-ω and Q-V droop method. The improvement in the proposed control strategy is twofold: Firstly, the transient response of the droop controller is improved...... by replacing the traditional method of measuring average power, which is based on using a first order low pass filter, by a real time integration filter. This is shown to reduce the imported transient energy when connecting to the grid. Secondly, the steady state output current quality is improved by utilising...... a virtual inductance, which is shown to reject grid voltage harmonics disturbance and thus improve the output current THD. A small signal model of the inverter based on the transfer function approach is developed to analyse is stability and determine droop gains. Simulation and experimental results...

  16. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  17. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.

    Science.gov (United States)

    Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun

    2017-09-10

    Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  19. Tumoral calcinosis with vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Kannan Subramanian

    2008-01-01

    Full Text Available A 50-year-old woman presented with recurrent calcified mass in the left gluteal region. The clinical, radiological, and biochemical profile confirmed the diagnosis of tumoral calcinosis. She also had associated vitamin D deficiency. The patient underwent surgical removal of the mass to relieve the sciatic nerve compression and was managed with acetazolamide, calcium carbonate, and aluminium hydroxide gel with which she showed significant improve-ment. The management implications and effect of vitamin D deficiency on phosphate metabolism in the setting of tumoral calcinosis is discussed.

  20. Improved VMAT planning for head and neck tumors with an advanced optimization algorithm

    International Nuclear Information System (INIS)

    Klippel, Norbert; Schmuecking, Michael; Terribilini, Dario; Geretschlaeger, Andreas; Aebersold, Daniel M.; Manser, Peter

    2015-01-01

    PTV coverage as compared to PRO2. The improved spinal cord sparing offers new opportunities for all types of paraspinal tumors and for re-irradiation of recurrent tumors or second malignancies.

  1. Hemoglobin as a factor in the control of tumor oxygenation

    International Nuclear Information System (INIS)

    Hirst, D.G.

    1987-01-01

    The concentration of hemoglobin in the blood has been shown to have a market effect on the radiosensitivity of human and animal tumors. Experimental studies in mice indicate that radiosensitivity is influenced by a change in the hemoglobin level rather than by the absolute concentration. This dependence may be exploited to therapeutic advantage. Recent studies of hemoglobin/oxygen affinity have shown that the concentration of 2,3 diphosphoglycerate (2,3 DPG) affects tumor sensitivity to X-rays. Increased 2,3 DPG levels increase radiosensitivity in several mouse tumors. The time dependence of this effect remains to be established. The effective application of these effects in man may depend on the development of drugs which produce changes in hemoglobin affinity without the need for blood transfusions. Several drugs are currently being investigated

  2. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice

    DEFF Research Database (Denmark)

    Kamoun, Walid S; Ley, Carsten D; Farrar, Christian T

    2009-01-01

    anti-VEGF agents may decrease tumor contrast-enhancement, vascularity, and edema, the mechanisms leading to improved survival in patients remain incompletely understood. Our goal was to determine whether alleviation of edema by anti-VEGF agents alone could increase survival in mice. METHODS: We treated...... mice bearing three different orthotopic models of glioblastoma with a VEGF-targeted kinase inhibitor, cediranib. Using intravital microscopy, molecular techniques, and magnetic resonance imaging (MRI), we measured survival, tumor growth, edema, vascular morphology and function, cancer cell apoptosis...... by an increase in plasma collagen IV. These rapid changes in tumor vascular morphology and function led to edema alleviation -- as measured by MRI and by dry/wet weight measurement of water content -- but did not affect tumor growth. By immunohistochemistry, we found a transient decrease in macrophage...

  3. Mechanism of brain tumor headache.

    Science.gov (United States)

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  4. Off and back-on again: a tumor suppressor's tale.

    Science.gov (United States)

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  5. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  6. Fatal tumors: prenatal ultrasonographic findings and clinical characteristics

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Lee, Young Ho

    2014-01-01

    The incidence of fetal tumors has been increased due to generalization of prenatal evaluation and improvement of imaging techniques. The early detection of a fetal tumor and understanding of its imaging features are very important for fetal, maternal, and neonatal care. Ultrasonography is usually used for the detection and differential diagnosis of fetal tumors, and magnetic resonance imaging is increasingly being used as a complementary study. Many fetal tumors have different clinical and imaging features compared with pediatric tumors. Although several fetal tumors may mimic other common anomalies, some specific imaging features may carry early accurate diagnosis of fetal tumors, which may alter the prenatal management of a pregnancy and the mode of delivery, and facilitate immediate postnatal treatment.

  7. Fatal tumors: prenatal ultrasonographic findings and clinical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Yeon [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Young Ho [Dept. of Radiology, Cheil General Hospital and Women' s Healthcare Center, Kwandong University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    The incidence of fetal tumors has been increased due to generalization of prenatal evaluation and improvement of imaging techniques. The early detection of a fetal tumor and understanding of its imaging features are very important for fetal, maternal, and neonatal care. Ultrasonography is usually used for the detection and differential diagnosis of fetal tumors, and magnetic resonance imaging is increasingly being used as a complementary study. Many fetal tumors have different clinical and imaging features compared with pediatric tumors. Although several fetal tumors may mimic other common anomalies, some specific imaging features may carry early accurate diagnosis of fetal tumors, which may alter the prenatal management of a pregnancy and the mode of delivery, and facilitate immediate postnatal treatment.

  8. Aggressive palliative surgery in metastatic phyllodes tumor: Impact on quality of life

    Directory of Open Access Journals (Sweden)

    A S Kapali

    2010-01-01

    Full Text Available Metastatic phyllodes tumor has very few treatment options. Phyllodes tumor in metastatic setting has limited role of surgery, radiotherapy and chemotherapy or combined treatment. Most of the patients receive symptomatic management only. We present a case of metastatic phyllodes tumor managed with aggressive margin negative resection of primary tumor leading to palliation of almost all the symptoms, which eventually led to improved quality of life and probably to improved survival. The improved quality of life was objectively assessed with Hamilton depression rating scale. Surgery may be the only mode of palliation in selected patients that provides a better quality of life and directly or indirectly may lead to improved survival.

  9. Improved anti-tumor activity of a therapeutic melanoma vaccine through the use of the dual COX-2/5-LO inhibitor licofelone

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    2016-12-01

    Full Text Available Immune-suppressive cell populations impair anti-tumor immunity and can contribute to the failure of immune therapeutic approaches. We hypothesized that the non-steroidal anti-inflammatory drug (NSAID licofelone, a dual COX-2/5-LO inhibitor, would improve therapeutic melanoma vaccination by reducing immune-suppressive cell populations. Therefore, licofelone was administered after tumor implantation, either alone or in combination with a peptide vaccine containing a long tyrosinase-related protein (TRP2-peptide and the adjuvant α-galactosylceramide, all formulated into cationic liposomes. Mice immunized with the long-peptide vaccine and licofelone showed delayed tumor growth compared to mice given the vaccine alone. This protection was associated with a lower frequency of immature myeloid cells (IMCs in the bone marrow (BM and spleen of tumor-inoculated mice. When investigating the effect of licofelone on IMCs in vitro, we found that the prostaglandin E2-induced generation of IMCs was decreased in the presence of licofelone. Furthermore, pre-incubation of BM cells differentiated under IMC-inducing conditions with licofelone reduced the secretion of cytokines interleukin (IL-10 and -6 upon LPS stimulation as compared to untreated cells. Interestingly, licofelone increased IL-6 and IL-10 secretion when administered after the LPS stimulus, demonstrating an environment-dependent effect of licofelone. Our findings support the use of licofelone to reduce tumor-promoting cell populations.

  10. Radiofrequency ablation of pulmonary tumors near the diaphragm.

    Science.gov (United States)

    Iguchi, T; Hiraki, T; Gobara, H; Fujiwara, H; Sakurai, J; Matsui, Y; Mitsuhashi, T; Toyooka, S; Kanazawa, S

    To retrospectively evaluate the feasibility, safety, and efficacy of radiofrequency ablation (RFA) of lung tumors located near the diaphragm. A total of 26 patients (15 men, 11 women; mean age, 61.5 years±13.0 [SD]) with a total of 29 lung tumors near the diaphragm (i.e., distance<10mm) were included. Mean tumor diameter was 11.0mm±5.3 (SD) (range, 2-23mm). Efficacy of RFA, number of adverse events and number of adverse events with a grade≥3, based on the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0, were compared between patients with lung tumors near the diaphragm and a control group of patients with more distally located lung tumors (i.e., distance≥10mm). RFA was technically feasible for all tumors near the diaphragm. Four grade 3 adverse events (1 pneumothorax requiring pleurodesis and 3 phrenic nerve injuries) were observed. No grade≥4 adverse events were reported. The median follow-up period for tumors near the diaphragm was 18.3 months. Local progression was observed 3.3 months after RFA in 1 tumor. The technique efficacy rates were 96.2% at 1 year and 96.2% at 2 years and were not different, from those observed in control subjects (186 tumors; P=0.839). Shoulder pain (P<0.001) and grade 1 pleural effusion (P<0.001) were more frequently observed in patients with lung tumor near the diaphragm. The rates of grade≥3 adverse events did not significantly differ between tumors near the diaphragm (4/26 sessions) and the controls (7/133 sessions) (P=0.083). RFA is a feasible and effective therapeutic option for lung tumors located near the diaphragm. However, it conveys a higher rate of shoulder pain and asymptomatic pleural effusion by comparison with more distant lung tumors. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  11. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  12. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  13. Sorafenib Increases Tumor Hypoxia in Cervical Cancer Patients Treated With Radiation Therapy: Results of a Phase 1 Clinical Study

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Michael F., E-mail: mike.milosevic@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Townsley, Carol A. [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Chaudary, Naz [Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Clarke, Blaise [Department of Pathology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Laboratory Medicine and Pathology, University of Toronto, Toronto (Canada); Pintilie, Melania [Department of Clinical Study Coordination and Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Fan, Stacy; Glicksman, Rachel [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Haider, Masoom [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Imaging, University of Toronto, Toronto (Canada); Kim, Sunmo [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); MacKay, Helen [Department of Medical Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medicine, University of Toronto, Toronto (Canada); Yeung, Ivan [Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Hill, Richard P. [Department of Radiation Oncology, University of Toronto, Toronto (Canada); Department of Advanced Molecular Oncology, Princess Margaret Cancer Center, University Health Network, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); and others

    2016-01-01

    Purpose: Preclinical studies have shown that angiogenesis inhibition can improve response to radiation therapy (RT). The purpose of this phase 1 study was to examine the angiogenesis inhibitor sorafenib in patients with cervical cancer receiving radical RT and concurrent cisplatin (RTCT). Methods and Materials: Thirteen patients with stage IB to IIIB cervical cancer participated. Sorafenib was administered daily for 7 days before the start of standard RTCT in patients with early-stage, low-risk disease and also during RTCT in patients with high-risk disease. Biomarkers of tumor vascularity, perfusion, and hypoxia were measured at baseline and again after 7 days of sorafenib alone before the start of RTCT. The median follow-up time was 4.5 years. Results: Initial complete response was seen in 12 patients. One patient died without achieving disease control, and 4 experienced recurrent disease. One patient with an extensive, infiltrative tumor experienced pelvic fistulas during treatment. The 4-year actuarial survival was 85%. Late grade 3 gastrointestinal toxicity developed in 4 patients. Sorafenib alone produced a reduction in tumor perfusion/permeability and an increase in hypoxia, which resulted in early closure of the study. Conclusions: Sorafenib increased tumor hypoxia, raising concern that it might impair rather than improve disease control when added to RTCT.

  14. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  15. Doranidazole (PR-350), a hypoxic cell radiosensitizer, radiosensitizes human lung tumors (RERF-LC- AI) and causes changes in tumor oxygenation

    International Nuclear Information System (INIS)

    Kubota, N.; Griffin, R.J.; Williams, B.W.; Song, C.W.; Yahiro, T.

    2003-01-01

    Full text: We previously have reported the radiosensitizing capability of Doranidazole (PR-350) on SCCVII cells and tumors (Puerto Rico, 2001). In the present study, we have investigated the efficacy of PR-350 as a hypoxic cell radiosensitizer using human lung cancer cells (RERF-LC-AI) in vitro and also RERF-LC-AI tumors grown s.c. in Balb/c nude mice. Using the micronucleus assay method, we determined the effect of PR-350 on the response of RERF-LC-AI cells to radiation under hypoxic conditions and enhancement ratios (ER) of 1.45∼2.26 were obtained. The in vivo radiosensitizing effect was studied by irradiating RERF-LC-AI tumors with 15 Gy at 20 min. after i.v. injection of PR-350 (200mg/kg) and measuring the tumor growth delay. Significant growth delay occurred after i.v. injection of PR-350 before irradiation compared to radiation alone. We measured tumor pO 2 at 3, 7 and 14 days after treatment using an Eppendorf pO 2 histograph. The frequency of pO 2 values 2 in tumors treated with radiation plus PR-350 were higher than that in tumors treated with radiation plus saline. These data suggest that the O 2 consumption in tumors treated with radiation plus PR-350 was less than that in tumors treated with radiation plus saline due to greater drug and radiation-induced cell death. This hypothesis is supported by the fact that the tumor size in the combined treatment group was smaller than in radiation alone. These results suggest that PR-350 may improve the response of tumors to radiotherapy not only by increasing the radiosensitivity of hypoxic cells but also by improving tumor oxygenation over many days during fractionated radiotherapy

  16. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  17. RITA--Registry of Industrial Toxicology Animal data: the application of historical control data for Leydig cell tumors in rats.

    Science.gov (United States)

    Nolte, Thomas; Rittinghausen, Susanne; Kellner, Rupert; Karbe, Eberhard; Kittel, Birgit; Rinke, Matthias; Deschl, Ulrich

    2011-11-01

    Historical data for Leydig cell tumors from untreated or vehicle treated rats from carcinogenicity studies collected in the RITA database are presented. Examples are given for analyses of these data for dependency on variables considered to be of possible influence on the spontaneous incidence of Leydig cell tumors. In the 7453 male rats available for analysis, only one case of a Leydig cell carcinoma was identified. The incidence of Leydig cell adenomas differed markedly between strains. High incidences of close to 100% have been found in F344 rats, while the mean incidence was 4.2% in Sprague-Dawley rats and 13.7% in Wistar rats. Incidences in Wistar rats were highly variable, primarily caused by different sources of animals. Mean incidences per breeder varied from 2.8 to 39.9%. Analyses for the dependency on further parameters have been performed in Wistar rats. In breeders G and I, the Leydig cell tumor incidence decreased over the observation period and with increasing mean terminal body weight. The incidence of Leydig cell tumors increased with mean age at necropsy and was higher in studies with dietary admixture compared to gavage studies. These parameters had no effect on Leydig cell tumor incidence in breeders A and B. Animals from almost all breeders had a considerably higher mean age at necropsy when bearing a Leydig cell adenoma than animals without a Leydig cell adenoma. Studies with longitudinal trimming of the testes had a higher incidence than studies with transverse trimming. The observed dependencies and breeder differences are discussed and explanations are given. Consequences for the use of historical control data are outlined. With the retrospective analyses presented here we were able to confirm the published features of Leydig cell adenomas and carcinomas. This indicates that the RITA database is a valuable tool for analyses of tumors for their biological features. Furthermore, it demonstrates that the RITA database is highly beneficial for

  18. Chest Wall Ewing Sarcoma Family of Tumors: Long-Term Outcomes

    International Nuclear Information System (INIS)

    Indelicato, Daniel J.; Keole, Sameer R.; Lagmay, Joanne P.; Morris, Christopher G.; Gibbs, C. Parker; Scarborough, Mark T.; Islam, Saleem; Marcus, Robert B.

    2011-01-01

    Purpose: To review the 40-year University of Florida experience treating Ewing sarcoma family of tumors of the chest wall. Methods and Materials: Thirty-nine patients were treated from 1966 to 2006. Of the patients, 22 were treated with radiotherapy (RT) alone, and 17 patients were treated with surgery with or without RT. Of 9 patients with metastatic disease, 8 were treated with RT alone. The risk profiles of each group were otherwise similar. The median age was 16.6 years, and the most frequent primary site was the rib (n = 17). The median potential follow-up was 19.2 years. Results: The 5-year actuarial overall survival (OS), cause-specific survival (CSS), and local control (LC) rates were 34%, 34%, and 72%, respectively. For the nonmetastatic subset (n = 30), the 5-year OS, CSS, and LC rates were 44%, 44%, and 79%, respectively. LC was not statistically significantly different between patients treated with RT alone (61%) vs. surgery + RT (75%). None of the 4 patients treated with surgery alone experienced local failure. No patient or treatment variable was significantly associated with local failure. Of the patients, 26% experienced Common Toxicity Criteria (CTC) Grade 3+ toxicity, including 2 pulmonary deaths. Modern intensive systemic therapy helped increase the 5-year CSS from 7% to 49% in patients treated after 1984 (p = 0.03). Conclusions: This is the largest single-institution series describing the treatment of chest wall Ewing tumors. Despite improvements in survival, obtaining local control is challenging and often accompanied by morbidity. Effort should be focused on identifying tumors amenable to combined-modality local therapy and to improving RT techniques.

  19. Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model

    DEFF Research Database (Denmark)

    Sørensen, Maria Rathmann; Holst, Peter J; Steffensen, Maria Abildgaard

    2010-01-01

    that the delay in tumor growth can be converted to complete regression and long-term survival in 30-40% of the mice by a booster vaccination plus combinational treatment with agonistic anti-CD40 monoclonal antibodies (mAb) and anti-CTLA-4 mAb. Regarding the mechanism underlying the improved clinical effect......, analysis of the tumor-specific response revealed a significantly prolonged tumor-specific CD8 T cell response in spleens of the mice receiving the combinational treatment compared with mice receiving either treatment individually. Matching this, CD8 T cell depletion completely prevented tumor control...

  20. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  1. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5-87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59-100% of 326...

  2. Conjunctival Melanocytic Tumors-New Developments

    Directory of Open Access Journals (Sweden)

    Hülya Gökmen Soysal

    2014-09-01

    Full Text Available Melanocytic lesions of the conjunctiva represent a wide spectrum of tumors that include benign, premalignant, and malignant tumors. There are many ongoing arguments about the definition, classification, and therapeutic options of the conjunctival melanocytic tumors with many different suggestions. Conjunctival nevi are the most common melanocytic tumors and their risk of malignant transformation is less than1%. Primary acquired melanosis (PAM histopathologically includes various types of lesions from increased melanin pigmentation without melanocyte proliferation to melanoma in situ and is accepted as a clinical definition, so that a new classification is recommended which is based on more objective criteria than before. Although conjunctival melanoma is seen rarely, it is associated with a high mortality rate. Management of these tumors mainly involves surgery and adjuvant topical chemotherapy, cryotherapy, and radiation therapy that help improving the survival, however, new options are being investigated related to genetic and molecular researches. (Turk J Ophthalmol 2014; 44: Supplement 15-21

  3. Correlation between metabolic tumor volume and pathologic tumor volume in squamous cell carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Murphy, James D.; Chisholm, Karen M.; Daly, Megan E.; Wiegner, Ellen A.; Truong, Daniel; Iagaru, Andrei; Maxim, Peter G.; Loo, Billy W.; Graves, Edward E.; Kaplan, Michael J.; Kong, Christina; Le, Quynh-Thu

    2011-01-01

    Purpose: To explore the relationship between pathologic tumor volume and volume estimated from different tumor segmentation techniques on 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in oral cavity cancer. Materials and methods: Twenty-three patients with squamous cell carcinoma of the oral tongue had PET–CT scans before definitive surgery. Pathologic tumor volume was estimated from surgical specimens. Metabolic tumor volume (MTV) was defined from PET–CT scans as the volume of tumor above a given SUV threshold. Multiple SUV thresholds were explored including absolute SUV thresholds, relative SUV thresholds, and gradient-based techniques. Results: Multiple MTV’s were associated with pathologic tumor volume; however the correlation was poor (R 2 range 0.29–0.58). The ideal SUV threshold, defined as the SUV that generates an MTV equal to pathologic tumor volume, was independently associated with maximum SUV (p = 0.0005) and tumor grade (p = 0.024). MTV defined as a function of maximum SUV and tumor grade improved the prediction of pathologic tumor volume (R 2 = 0.63). Conclusions: Common SUV thresholds fail to predict pathologic tumor volume in head and neck cancer. The optimal technique that allows for integration of PET–CT with radiation treatment planning remains to be defined. Future investigation should incorporate biomarkers such as tumor grade into definitions of MTV.

  4. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells

    International Nuclear Information System (INIS)

    Akimoto, Miho; Niikura, Mamoru; Ichikawa, Masami; Yonekawa, Hiromichi; Nakada, Kazuto; Honma, Yoshio; Hayashi, Jun-Ichi

    2005-01-01

    Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (ρ 0 ) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties

  5. A pretargeting system for tumor PET imaging and radioimmunotherapy

    Directory of Open Access Journals (Sweden)

    Françoise eKraeber-Bodéré

    2015-03-01

    Full Text Available Labeled antibodies, as well as their fragments and antibody-derived recombinant constructs, have long been proposed as general vectors to target radionuclides to tumor lesions for imaging and therapy. They have indeed shown promise in both imaging and therapeutic applications, but they have not fulfilled the original expectations of achieving sufficient image contrast for tumor detection or sufficient radiation dose delivered to tumors for therapy. Pretargeting was originally developed for tumor immunoscintigraphy. It was assumed that directly-radiolabled antibodies could be replaced by an unlabeled immunoconjugate capable of binding both a tumor-specific antigen and a small molecular weight molecule. The small molecular weight molecule would carry the radioactive payload and would be injected after the bispecific immunoconjugate. It has been demonstrated that this approach does allow for both antibody-specific recognition and fast clearance of the radioactive molecule, thus resulting in improved tumor-to-normal tissue contrast ratios. It was subsequently shown that pretargeting also held promise for tumor therapy, translating improved tumor-to-normal tissue contrast ratios into more specific delivery of absorbed radiation doses. Many technical approaches have been proposed to implement pretargeting, and two have been extensively documented. One is based on the avidin-biotin system, and the other on bispecific antibodies binding a tumor-specific antigen and a hapten. Both have been studied in preclinical models, as well as in several clinical studies, and have shown improved targeting efficiency. This article reviews the historical and recent preclinical and clinical advances in the use of bispecific-antibody-based pretargeting for radioimmunodetection and radioimmunotherapy of cancer. The results of recent evaluation of pretargeting in PET imaging also are discussed.

  6. Radiosurgery of Glomus Jugulare Tumors: A Meta-Analysis

    International Nuclear Information System (INIS)

    Guss, Zachary D.; Batra, Sachin; Limb, Charles J.; Li, Gordon; Sughrue, Michael E.; Redmond, Kristin; Rigamonti, Daniele; Parsa, Andrew T.; Chang, Steven; Kleinberg, Lawrence; Lim, Michael

    2011-01-01

    Purpose: During the past two decades, radiosurgery has arisen as a promising approach to the management of glomus jugulare. In the present study, we report on a systematic review and meta-analysis of the available published data on the radiosurgical management of glomus jugulare tumors. Methods and Materials: To identify eligible studies, systematic searches of all glomus jugulare tumors treated with radiosurgery were conducted in major scientific publication databases. The data search yielded 19 studies, which were included in the meta-analysis. The data from 335 glomus jugulare patients were extracted. The fixed effects pooled proportions were calculated from the data when Cochrane's statistic was statistically insignificant and the inconsistency among studies was 36 months. In these studies, 95% of patients achieved clinical control and 96% achieved tumor control. The gamma knife, linear accelerator, and CyberKnife technologies all exhibited high rates of tumor and clinical control. Conclusions: The present study reports the results of a meta-analysis for the radiosurgical management of glomus jugulare. Because of its high effectiveness, we suggest considering radiosurgery for the primary management of glomus jugulare tumors.

  7. Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients: a systematic review.

    Science.gov (United States)

    Persson, Oscar; Bartek, Jiri; Shalom, Netanel Ben; Wangerid, Theresa; Jakola, Asgeir Store; Förander, Petter

    2017-06-01

    Repeated controlled studies have revealed that stereotactic radiosurgery is better than microsurgery for patients with vestibular schwannoma (VS) 18 years) patients with unilateral VS, followed for a median of >5 years, were eligible for inclusion. After screening titles and abstracts of the 1094 identified articles and systematically reviewing 98 of these articles, 19 were included. Patients with unilateral VS treated with radiosurgery were compared to patients treated with fractionated stereotactic radiotherapy. No randomized controlled trial (RCT) was identified. None of the identified controlled studies comparing SRS with FSRT were eligible according to the inclusion criteria. Nineteen case series on SRS (n = 17) and FSRT (n = 2) were included in the systematic review. Loss of tumor control necessitating a new VS-targeted intervention was found in an average of 5.0% of the patients treated with SRS and in 4.8% treated with FSRT. Mean deterioration ratio for patients with serviceable hearing before treatment was 49% for SRS and 45% for FSRT, respectively. The risk for facial nerve deterioration was 3.6% for SRS and 11.2% for FSRT and for trigeminal nerve deterioration 6.0% for SRS and 8.4% for FSRT. Since these results were obtained from case series, a regular meta-analysis was not attempted. SRS and FSRT are both noninvasive treatment alternatives for patients with VS with low rates of treatment failure in need of rescue therapy. In this selection of patients, the progression-free survival rates were on the order of 92-100% for both treatment options. There is a lack of high-quality studies comparing radiation therapy alternatives for patients with VS. Finally, 19 articles reported long-term tumor control after SRS, while only 2 articles reported long-term FSRT results, making effect estimates more uncertain for FSRT.

  8. Tumors of germinal cells

    International Nuclear Information System (INIS)

    Plazas, Ricardo; Avila, Andres

    2002-01-01

    The tumors of germinal cells (TGC) are derived neoplasia of the primordial germinal cells that in the life embryonic migrant from the primitive central nervous system until being located in the gonads. Their cause is even unknown and they represent 95% of the testicular tumors. In them, the intention of the treatment is always healing and the diagnostic has improved thanks to the results of the handling multidisciplinary. The paper includes topics like their incidence and prevalence, epidemiology and pathology, clinic and diagnoses among other topics

  9. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  10. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  11. Morphogenesis and Complexity of the Tumor Patterns

    Science.gov (United States)

    Izquierdo-Kulich, E.; Nieto-Villar, J. M.

    A mechanism to describe the apoptosis process at mesoscopic level through p53 is proposed in this paper. A deterministic model given by three differential equations is deduced from the mesoscopic approach, which exhibits sustained oscillations caused by a supercritical Andronov-Hopf bifurcation. Taking as hypothesis that the p53 sustained oscillation is the fundamental mechanism for apoptosis regulation; the model predicts that it is necessary a strict control of p53 to stimulated it, which is an important consideration to established new therapy strategy to fight cancer. The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. The mathematical modeling of tumor growth is an approach to explain the complex nature of these systems. A model that describes tumor growth was obtained by using a mesoscopic formalism and fractal dimension. This model theoretically predicts the relation between the morphology of the cell pattern and the mitosis/apoptosis quotient that helps to predict tumor growth from tumoral cells fractal dimension. The relation between the tumor macroscopic morphology and the cell pattern morphology is also determined. This could explain why the interface fractal dimension decreases with the increase of the cell pattern fractal dimension and consequently with the increase of the mitosis/apoptosis relation. Indexes to characterize tumoral cell proliferation and invasion capacities are proposed and used to predict the growth of different types of tumors. These indexes also show that the proliferation capacity is

  12. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    International Nuclear Information System (INIS)

    Liu Yongbiao; Yao Side

    2004-01-01

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S 180 sarcoma, H 22 hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P 180 sarcoma cells were opposite (P 22 hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P 180 sarcoma (P 22 hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S 180 sarcoma (P 22 hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  13. Preoperative radiotherapy for resectable rectal cancer: improved local control is prognostic for distant metastasis occurrence and survival

    International Nuclear Information System (INIS)

    Zlotecki, Robert A.; Mendenhall, William M.; Copeland, Edward M.; Vauthey, Jean-Nicholas; Marsh, Robert D.; McCarley, Dean L.; Million, Rodney R.

    1996-01-01

    Purpose/Objective: To evaluate the effect of preoperative external beam radiotherapy (RT) on local control (LC), distant metastasis (DM), survival, and perioperative complications in a 15-year single-institution experience. Disease and treatment variables potentially prognostic for local-regional control and survival were evaluated, and the importance of LC as a determinant of DM and survival was also examined. Materials and Methods: Two hundred ten patients with potentially resectable cancers of the rectum were treated with preoperative external beam RT at a single institution between 1975 and 1990. Excluded were patients with 'fixed' unresectable tumors and those treated with palliative intent only. All patients were treated with megavoltage RT to minimum tumor doses of 30 Gy using multiple-field techniques. Preoperative chemotherapy was not used. Surgical resection was performed 3-5 weeks after completion of RT. Abdominoperineal resection was performed in 175 cases, low anterior resection in 25 cases, and other surgical procedures in 10 cases. Pathologic tumor staging was by the Astler-Coller modification of the Dukes system. Minimum follow-up was 5 years. Survival analysis was performed using the Kaplan-Meier method, with univariate and multivariate analysis of disease and treatment variables for prognostic significance. Results: No treatment-specific variables were predictive for LC, DM, absolute survival, or cause-specific survival. Disease-specific variables prognostic for LC were deep tumor infiltration or 'tethering' on digital rectal exam and Dukes pathologic stage. Ten-year LC rates were 91% for freely mobile tumors vs. 82% for tethered lesions (p=.009). LC rates for Dukes A, B, and C stage tumors were 100%, 91%, and 73%, respectively (p=.02). Variables prognostic for DM were tumor length, annular involvement, LC, and Dukes pathologic stage. Absolute survival at 5 and 10 years was 57% and 36%, respectively. Variables prognostic for absolute survival were

  14. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  15. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.

    Science.gov (United States)

    Talasaz, A; Patel, R V

    2013-01-01

    Tactile sensing and force reflection have been the subject of considerable research for tumor localization in soft-tissue palpation. The work presented in this paper investigates the relevance of force feedback (presented visually as well as directly) during tactile sensing (presented visually only) for tumor localization using an experimental setup close to one that could be applied for real robotics-assisted minimally invasive surgery. The setup is a teleoperated (master-slave) system facilitated with a state-of-the-art minimally invasive probe with a rigidly mounted tactile sensor at the tip and an externally mounted force sensor at the base of the probe. The objective is to capture the tactile information and measure the interaction forces between the probe and tissue during palpation and to explore how they can be integrated to improve the performance of tumor localization. To quantitatively explore the effect of force feedback on tactile sensing tumor localization, several experiments were conducted by human subjects to locate artificial tumors embedded in the ex vivo bovine livers. The results show that using tactile sensing in a force-controlled environment can realize, on average, 57 percent decrease in the maximum force and 55 percent decrease in the average force applied to tissue while increasing the tumor detection accuracy by up to 50 percent compared to the case of using tactile feedback alone. The results also show that while visual presentation of force feedback gives straightforward quantitative measures, improved performance of tactile sensing tumor localization is achieved at the expense of longer times for the user. Also, the quickness and intuitive data mapping of direct force feedback makes it more appealing to experienced users.

  16. Investigation of the effects of long-term infusion of 125I-iododeoxyuridine on tumor growth in mice (solid mouse tumor sarcoma-180)

    International Nuclear Information System (INIS)

    Wirtz, F.

    1987-05-01

    The present experiments were designed to test the therapeutic qualification of 125 I incorporated in DNA of tumor cells. The tumor-host system used was the solid mouse tumor sarcoma-180 growing on female albino mice (NMRI). A device was built which makes it possible to intravenously infuse tumor bearing mice with solutions of 125 IUdR for several weeks. Three or, respectively, 5 days before the onset of the infusions the mice were inocculated into the right hind leg with 3x10 5 tumor cells in 0.1 ml physiological salt solution. The total activity administered per mouse was 100 μCi infused during a period of 10 days. After termination of the infusions tumor sizes and retained radioactivities were measured every 5 days until death of the animals occured. In comparison with tumors of control animals tumors of mice infused with 125 IUdR showed a mean retardation in growth of about 27% of the volumes of control tumors during the total period of post-infusion observation (25 days). Extension of life expectancy and an increase of the rate of final tumor regression did not occur. Likewise, no significant differences were observed between tumors which were 3 or 5 days old on the first day of infusion. After termination of the infusions the residual whole-body radioactivity per mouse was about 1% of the total activity infused per animal. This was in good agreement with calculations considering rates of incorporation and excretion and confirmed earlier assumptions that only about 5% of the administered IUdR is incorporated initially. The number further confirmed that, during the first 10 days after incorporation, the daily loss of activity - due to cell death - is about 30%. Control animals without tumors showed a faster decrease of incorporated activity or, respectively, loss of cells than tumor bearing mice. This difference could in part be explained by an exhaution of the short-lived cell populations of the reticulo-endothelial system of tumor bearing animals. (orig

  17. Improved GMP-compliant multi-dose production and quality control of 6-[18F]fluoro-L-DOPA.

    Science.gov (United States)

    Luurtsema, G; Boersma, H H; Schepers, M; de Vries, A M T; Maas, B; Zijlma, R; de Vries, E F J; Elsinga, P H

    2017-01-01

    6-[ 18 F]Fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) is a frequently used radiopharmaceutical for detecting neuroendocrine and brain tumors and for the differential diagnosis of Parkinson's disease. To meet the demand for FDOPA, a high-yield GMP-compliant production method is required. Therefore, this study aimed to improve the FDOPA production and quality control procedures to enable distribution of the radiopharmaceutical over distances.FDOPA was prepared by electrophilic fluorination of the trimethylstannyl precursor with [ 18 F]F 2 , produced from [ 18 O] 2 via the double-shoot approach, leading to FDOPA with higher specific activity as compared to FDOPA which was synthesized, using [ 18 F]F 2 produced from 20 Ne, leading to FDOPA with a lower specific activity. The quality control of the product was performed using a validated UPLC system and compared with quality control with a conventional HPLC system. Impurities were identified using UPLC-MS. The [ 18 O] 2 double-shoot radionuclide production method yielded significantly more [ 18 F]F 2 with less carrier F 2 than the conventional method starting from 20 Ne. After adjustment of radiolabeling parameters substantially higher amounts of FDOPA with higher specific activity could be obtained. Quality control by UPLC was much faster and detected more side-products than HPLC. UPLC-MS showed that the most important side-product was FDOPA-quinone, rather than 6-hydroxydopa as suggested by the European Pharmacopoeia. The production and quality control of FDOPA were significantly improved by introducing the [ 18 O] 2 double-shoot radionuclide production method, and product analysis by UPLC, respectively. As a result, FDOPA is now routinely available for clinical practice and for distribution over distances.

  18. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    International Nuclear Information System (INIS)

    Fujii, Hitoshi; Tabata, Yasuhiko; Kaneda, Yasufumi; Sawa, Yoshiki; Lee, Chun Man; Matsuyama, Akifumi; Komoda, Hiroshi; Sasai, Masao; Suzuki, Minoru; Asano, Tomoyuki; Doki, Yuichiro; Kirihata, Mitsunori; Ono, Koji

    2011-01-01

    Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10 B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10 B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10 B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10 B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p < 0.05). In suppressing the spread of tumor cells in mice, BNCT treatment was as effective with CG-HVJ-E-BSH as with BSH

  19. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    Directory of Open Access Journals (Sweden)

    Ono Koji

    2011-01-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH, and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5 were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p . In suppressing the spread of tumor cells in mice, BNCT treatment was as

  20. Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure

    International Nuclear Information System (INIS)

    Brodin, N. Patrik; Vogelius, Ivan R.; Björk-Eriksson, Thomas; Munck af Rosenschöld, Per; Bentzen, Søren M.

    2013-01-01

    Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used to model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available

  1. Improved control system power unit for large parachutes

    Science.gov (United States)

    Chandler, J. A.; Grubbs, T. M.

    1968-01-01

    Improved control system power unit drives the control surfaces of very large controllable parachutes. The design features subassemblies for determining control surface position and cable loading, and protection of the load sensor against the possibility of damage during manipulation.

  2. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  3. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  4. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  5. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.

    Science.gov (United States)

    Scheme, Erik; Lock, Blair; Hargrove, Levi; Hill, Wendy; Kuruganti, Usha; Englehart, Kevin

    2014-01-01

    This paper describes two novel proportional control algorithms for use with pattern recognition-based myoelectric control. The systems were designed to provide automatic configuration of motion-specific gains and to normalize the control space to the user's usable dynamic range. Class-specific normalization parameters were calculated using data collected during classifier training and require no additional user action or configuration. The new control schemes were compared to the standard method of deriving proportional control using a one degree of freedom Fitts' law test for each of the wrist flexion/extension, wrist pronation/supination and hand close/open degrees of freedom. Performance was evaluated using the Fitts' law throughput value as well as more descriptive metrics including path efficiency, overshoot, stopping distance and completion rate. The proposed normalization methods significantly outperformed the incumbent method in every performance category for able bodied subjects (p < 0.001) and nearly every category for amputee subjects. Furthermore, one proposed method significantly outperformed both other methods in throughput (p < 0.0001), yielding 21% and 40% improvement over the incumbent method for amputee and able bodied subjects, respectively. The proposed control schemes represent a computationally simple method of fundamentally improving myoelectric control users' ability to elicit robust, and controlled, proportional velocity commands.

  6. Parotid tumor statistics for the past five years

    International Nuclear Information System (INIS)

    Yamaguchi, Soichi; Sueno, Kohei; Yamaguchi, Takeshi; Asano, Yukimi; Shiba, Kazutaka; Sekiguchi, Nao; Masuda, Takeshi

    2004-01-01

    We reviewed the case of 40 patients with parotid tumor who underwent an operation in the past five years. The patients included 23 (57.5%) males and 17 (42.5%) females. The average age was 53.4 years old with a range of 19 to 71 years. Thirty eight (95.0%) had benign tumor, and 2 (5.0%) had malignant tumor. Tc scintigraphy was performed in 37 out of the 40 patients, and 9 patients showed positive results. Six patients had warthin's tumor, and 3 had pleomorphic adenoma. In other words, 66.7% were positive for warthin's tumor. Ga scintigraphy was performed in 31 out of the 40 patients. Nine were positive out of the 10 benign tumor that showed a positive result. None of the cases had permanent facial palsy as a postoperative complication. Transient facial palsy was exhibited by 13 patients (32.5%), but they all improved 2 weeks to 6 months. In addition, we experienced 1 case of salivary fistula. Pleomorphic adenoma was noted in 63.2%, and warthin's tumor in 23.7%. There was no gender difference for pleomorphic adenoma, but 8 out of the 9 patients with warthin's tumor were men. The average age was 47.0 for pleomorphic adenoma and 58.7 for warthin's tumor which was in accordance with conventional reports. The Tc scintigraphy positive rate of warthin's tumor was low, 66.7%, in comparison with that in conventional reports. In addition, 90% of the tumors that showed positive results in Ga scintigraphy were preoperatively positive tumors, indicating the diagnostic usefulness of this. Transient facial palsy was a complication in 32.5% of the patients, which was similar to the rate in the conventional report. We experienced 1 case salivary fistula, which did not improve with conservative treatment. We opened the wounded area, and drained it by pressing. (author)

  7. An Effective Approach for Immunotherapy Using Irradiated Tumor Cells

    International Nuclear Information System (INIS)

    Mostafa, D.M.B.

    2011-01-01

    This study has been aimed to investigate the effect of injection of Irradiated Ehrlich tumor cells alone or concurrent with immunomodulator in mice before and after challenge with viable Ehrlich tumor cells for enhancement of immune system. This study includes the estimation of survival, tumor size, lymphocyte count, LDH, MTT, granzyme B, and DNA fragmentation. In order to fulfill the target of this study, a total of 120 female swiss albino mice were used. They were divided into two classes vaccinated (injection of vaccine before challenge) and therapeutic class (injection of vaccine after challenge). Each class was divided into four groups, group (1) mice injected with viable Ehrlich tumor cells (G1), group (2) mice injected with irradiated tumor cells (G2), group (3) mice injected with immunomodulator (G3), and group (4) mice injected with irradiated tumor cells + immunomodulator (G4). Results obtained from this study demonstrated that, the lymphocyte count and granzyme B activity were increased in both the vaccinated and therapeutic classes compared with control group. LDH activity was decreased in all groups of vaccinated class and also in G2 and G4 groups of therapeutic class compared with control group. There was a significant increase in percent apoptosis of tumor cells cultured with spleenocytes of the groups of vaccinated class as compared with control group. Cellular DNA from Ehrlich tumor cell line cultured with spleenocytes of immunized groups was fragmented into discrete bands of approximate multiples of 200 bp. Revealing significant apoptosis in tumor cells due to vaccination. It is concluded that, vaccination with irradiated tumor cells is an effective approach in stimulation of immune system against viable tumor cells.

  8. IMPROVED TUMOR CELL KILLING BY TRAIL REQUIRES SELECTIVE AND HIGH AFFINITY RECEPTOR ACTIVATION

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Alessandro, Natoni; Mahalingam, Devalingam; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; Luis Serrano, Steven de Jong; Samali, Afshin; Wallach, D; Kovalenko, A; Feldman, M

    2011-01-01

    Apoptosis can be activated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a wide range of tumor cells, but not in non-transformed cells. TRAIL interaction with receptors DR4 or DR5 induces apoptosis, whereas DcR1, DcR2 and osteoprotegerin are decoy receptors for TRAIL. TRAIL

  9. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    Suit, H.D.; Hwang, T.; Hsieh, C.; Thames, H.

    1985-01-01

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  10. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  11. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells

    Science.gov (United States)

    Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S.; Nieto-Villar, J. M.

    2017-05-01

    By the use of thermodynamics formalism of irreversible processes, complex systems theory and systems biology, it is derived a relationship between the production of entropy per unit time, the fractal dimension and the tumor growth rate for human tumors cells. The thermodynamics framework developed demonstrates that, the dissipation function is a Landau potential and also the Lyapunov function of the dynamical behavior of tumor growth, which indicate the directional character, stability and robustness of the phenomenon. The entropy production rate may be used as a quantitative index of the metastatic potential of tumors. The current theoretical framework will hopefully provide a better understanding of cancer and contribute to improvements in cancer treatment.

  12. Controversies in presacral tumors management

    Directory of Open Access Journals (Sweden)

    Nidal Issa

    2017-10-01

    Full Text Available Presacral tumors are rare lesions of the retrorectal space that can present diagnostic and therapeutic difficulty because of their anatomic location and the different tissue types and etiology. Although the diagnosis and management of these tumors has evolved in recent years, several points still to be addressed in order to improve perioperative diagnosis and treatment. In the upcoming we will try to highlight some controversial points; the pre-operative biopsies, neoadjuvant therapy, the necessity of surgery and the role of minimally invasive surgeries of presacral tumors. Resumo: Tumores pré-sacrais são lesões raras do espaço retrorretal que podem trazer dificuldades diagnósticas e terapêuticas por causa de sua localização anatômica e também pelos diferentes tipos de tecidos e etiologia. Embora nos últimos anos o diagnóstico e tratamento desses tumores tenham evoluído, diversos pontos ainda devem ser estudados com vistas à melhora do diagnóstico e tratamento no perioperatório. Mais adiante, tentaremos esclarecer alguns pontos controversos; biópsias pré-operatórias, terapia neoadjuvante, a necessidade de cirurgia e o papel das cirurgias minimamente invasivas para os tumores pré-sacrais. Keywords: Presacral tumor, Preoperative biopsy, Neoadjuvant therapy, Palavras-chave: Tumor pré-sacral, Biópsia pré-operatória, Terapia neoadjuvante

  13. Local Control and Toxicity in a Large Cohort of Central Lung Tumors Treated With Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Modh, Ankit; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Williams, Eric [Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York, New York (United States); Foster, Amanda; Shah, Mihir [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Shi, Weiji; Zhang, Zhigang [Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Gelblum, Daphna Y. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Rosenzweig, Kenneth E. [Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York (United States); Yorke, Ellen D.; Jackson, Andrew [Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wu, Abraham J., E-mail: wua@mskcc.org [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2014-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) in central lung tumors has been associated with higher rates of severe toxicity. We sought to evaluate toxicity and local control in a large cohort and to identify predictive dosimetric parameters. Methods and Materials: We identified patients who received SBRT for central tumors according to either of 2 definitions. Local failure (LF) was estimated using a competing risks model, and multivariate analysis (MVA) was used to assess factors associated with LF. We reviewed patient toxicity and applied Cox proportional hazard analysis and log-rank tests to assess whether dose-volume metrics of normal structures correlated with pulmonary toxicity. Results: One hundred twenty-five patients received SBRT for non-small cell lung cancer (n=103) or metastatic lesions (n=22), using intensity modulated radiation therapy. The most common dose was 45 Gy in 5 fractions. Median follow-up was 17.4 months. Incidence of toxicity ≥ grade 3 was 8.0%, including 5.6% pulmonary toxicity. Sixteen patients (12.8%) experienced esophageal toxicity ≥ grade 2, including 50% of patients in whom PTV overlapped the esophagus. There were 2 treatment-related deaths. Among patients receiving biologically effective dose (BED) ≥80 Gy (n=108), 2-year LF was 21%. On MVA, gross tumor volume (GTV) was significantly associated with LF. None of the studied dose-volume metrics of the lungs, heart, proximal bronchial tree (PBT), or 2 cm expansion of the PBT (“no-fly-zone” [NFZ]) correlated with pulmonary toxicity ≥grade 2. There were no differences in pulmonary toxicity between central tumors located inside the NFZ and those outside the NFZ but with planning target volume (PTV) intersecting the mediastinum. Conclusions: Using moderate doses, SBRT for central lung tumors achieves acceptable local control with low rates of severe toxicity. Dosimetric analysis showed no significant correlation between dose to the lungs, heart, or NFZ and

  14. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  15. Effect of surgical resection combined with transcatheter arterial chemoembolization on postoperative serum tumor marker levels and stem cell characteristics during tumor recurrence

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2017-05-01

    Full Text Available Objective: To study the effect of surgical resection combined with transcatheter arterial chemoembolization (TACE on postoperative serum tumor marker levels and stem cell characteristics during tumor recurrence. Methods: A total of 98 patients with liver cancer who received radical resection in our hospital between May 2013 and July 2015 were reviewed and divided into TACE group and control group according to whether they received TACE within two months after surgical resection. Serum levels of tumor markers were detected 4 weeks after operation; the tumor recurrence was followed up within 3 years after operation, and the expression of stem cell marker molecules and cell proliferation molecules in recurrent lesions were detected. Results: 4 weeks after radical hepatectomy, serum AFP, AFP-L3, GP73 and GPC3 levels in TACE group were significantly lower than those in control group; Nanog, CD133, EpCAM, PICK1, CyclinD1, C-myc and Survivin expression in surgically removed lesions of TACE group were not different from those of control group while Nanog, CD133, EpCAM, PICK1, CyclinD1, C-myc and Survivin expression in recurrent lesions were significantly lower than those of control group. Conclusion: Surgical resection combined with TACE can more effectively remove liver cancer lesions, reduce the tumor marker levels and inhibit the tumor stem cell characteristics and cell proliferation activity in recurrent lesions.

  16. Risk Factors for Bile Duct Injury After Percutaneous Thermal Ablation of Malignant Liver Tumors: A Retrospective Case-Control Study.

    Science.gov (United States)

    Lin, Man-Xia; Ye, Jie-Yi; Tian, Wen-Shuo; Xu, Ming; Zhuang, Bo-Wen; Lu, Ming-De; Xie, Xiao-Yan; Kuang, Ming

    2017-04-01

    Bile duct injury after ablation of malignant liver tumors (MLTs) was not unusual and should be avoided. However, few studies have focused on evaluating the risk factors for intrahepatic bile duct injury. To evaluate the risk factors for intrahepatic bile duct injury after ablation of MLTs and to evaluate the minimum safe distance for ablating tumors abutting bile ducts. Sixty-five patients with intrahepatic bile duct injury after ablation of MLTs, and 65 controls were recruited. Risk factors for intrahepatic bile duct injury were analyzed. Tumor location was recorded as ≤5 mm (group A), 5-10 mm (group B), and >10 mm (group C) from the right/left main duct or segmental bile duct. Ascites history (P bile duct dilatation before ablation (P bile duct injury. Significant differences in the risk of intrahepatic bile duct injury were found between groups B and C (P = 0.000), but not between groups A and B (P = 0.751). Ascites history (P = 0.002) and tumor location (P Bile duct injury after ablation of MLTs was the result of local treatment-related factors combined with the patients' general condition. The minimum safe distance for ablation of tumor abutting a bile duct was 10 mm.

  17. Performance of next-generation sequencing on small tumor specimens and/or low tumor content samples using a commercially available platform.

    Directory of Open Access Journals (Sweden)

    Scott Morris

    Full Text Available Next generation sequencing tests (NGS are usually performed on relatively small core biopsy or fine needle aspiration (FNA samples. Data is limited on what amount of tumor by volume or minimum number of FNA passes are needed to yield sufficient material for running NGS. We sought to identify the amount of tumor for running the PCDx NGS platform.2,723 consecutive tumor tissues of all cancer types were queried and reviewed for inclusion. Information on tumor volume, success of performing NGS, and results of NGS were compiled. Assessment of sequence analysis, mutation calling and sensitivity, quality control, drug associations, and data aggregation and analysis were performed.6.4% of samples were rejected from all testing due to insufficient tumor quantity. The number of genes with insufficient sensitivity make definitive mutation calls increased as the percentage of tumor decreased, reaching statistical significance below 5% tumor content. The number of drug associations also decreased with a lower percentage of tumor, but this difference only became significant between 1-3%. The number of drug associations did decrease with smaller tissue size as expected. Neither specimen size or percentage of tumor affected the ability to pass mRNA quality control. A tumor area of 10 mm2 provides a good margin of error for specimens to yield adequate drug association results.Specimen suitability remains a major obstacle to clinical NGS testing. We determined that PCR-based library creation methods allow the use of smaller specimens, and those with a lower percentage of tumor cells to be run on the PCDx NGS platform.

  18. Improving work control systems: The core team concept

    International Nuclear Information System (INIS)

    Jorgensen, M.D.; Simpson, W.W.

    1996-01-01

    The improved work control system at the Idaho Chemical Processing Plant minimizes review and approval time, maximizes field work time, and maintains full compliance with applicable requirements. The core team method gives ownership and accountability to knowledgeable individuals, and the teams use sophisticated scheduling techniques to improve information sharing and cost control and to establish accurate roll-up master schedules

  19. Gastroenteropancreatic neuroendocrine tumors (GEP-NETS)

    International Nuclear Information System (INIS)

    Vargas Martinez, Cristian Camilo; Castano Llano, Rodrigo

    2010-01-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETS) are rare neoplasms which can occur anywhere in the gastrointestinal tract. Their particular characteristics include uptake of silver salts, neuroendocrine cell marker expression and hormonal secretory granules. Depending on their size, anatomical location and upon whether or not metastasis has occurred, these tumors can show different clinical patterns and have different prognoses. Early diagnosis is essential for treating these lesions and improving the patients' prognoses, but it requires a high degree of suspicion and confirmation by special testing. Surgical treatment is the first choice, but other medical therapy can be helpful for patients who have unresectable disease. This review presents the most relevant aspects of classification, morphology, methods of locating tumors, diagnosis and treatment of GEP-NETS. It presents only the Colombian experience in the epidemiology and management of these tumors.

  20. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Shimizu, Shinichi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Hashimoto, Seiko; Aoyama, Hidefumi; Kunieda, Tatsuya; Shinohara, Nobuo; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2000-01-01

    Purpose: To achieve precise three-dimensional (3D) conformal radiotherapy for mobile tumors, a new radiotherapy system and its treatment planning system were developed and used for clinical practice. Methods and Materials: We developed a linear accelerator synchronized with a fluoroscopic real-time tumor tracking system by which 3D coordinates of a 2.0-mm gold marker in the tumor can be determined every 0.03 second. The 3D relationships between the marker and the tumor at different respiratory phases are evaluated using CT image at each respiratory phase, whereby the optimum phase can be selected to synchronize with irradiation (4D treatment planning). The linac is triggered to irradiate the tumor only when the marker is located within the region of the planned coordinates relative to the isocenter. Results: The coordinates of the marker were detected with an accuracy of ± 1 mm during radiotherapy in the phantom experiment. The time delay between recognition of the marker position and the start or stop of megavoltage X-ray irradiation was 0.03 second. Fourteen patients with various tumors were treated by conformal radiotherapy with a 'tight' planning target volume (PTV) margin. They were surviving without relapse or complications with a median follow-up of 6 months. Conclusion: Fluoroscopic real-time tumor tracking radiotherapy following 4D treatment planning was developed and shown to be feasible to improve the accuracy of the radiotherapy for mobile tumors

  1. An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation

    Directory of Open Access Journals (Sweden)

    Himar Fabelo

    2018-02-01

    Full Text Available Hyperspectral imaging (HSI allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400–1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min, making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.

  2. Modeling tissue contamination to improve molecular identification of the primary tumor site of metastases

    DEFF Research Database (Denmark)

    Vincent, Martin; Perell, Katharina; Nielsen, Finn Cilius

    2014-01-01

    with any predictor model. The usability of the model is illustrated on primary tumor site identification of liver biopsies, specifically, on a human dataset consisting of microRNA expression measurements of primary tumor samples, benign liver samples and liver metastases. For a predictor trained on primary...... tumor and benign liver samples, the contamination model decreased the test error on biopsies from liver metastases from 77 to 45%. A further reduction to 34% was obtained by including biopsies in the training data....

  3. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    Science.gov (United States)

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  4. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    Science.gov (United States)

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  5. Application of improved quality control technology to pressure vessels

    International Nuclear Information System (INIS)

    Kriedt, F.

    1985-01-01

    Within the last decade, ASME Boiler and Pressure Vessel Code Section VIII-1 instituted requirements for a formal written quality control system. The results, good and bad, of this requirement are discussed. The effects are far reaching from a national economic standpoint. Quality control technology has improved. These improvements are discussed and compared to existing requirements of the CODE. Recommended improvements are suggested

  6. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    International Nuclear Information System (INIS)

    Essig, Harald; Gellrich, Nils-Claudius; Rana, Majeed; Meyer, Andreas; Eckardt, André M; Kokemueller, Horst; See, Constantin von; Lindhorst, Daniel; Tavassol, Frank; Ruecker, Martin

    2011-01-01

    The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists

  7. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Directory of Open Access Journals (Sweden)

    Essig Harald

    2011-11-01

    Full Text Available Abstract The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor to oncologists, radiotherapists and pathologists.

  8. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  9. Occurrence of mammary tumors in beagls given radium-226

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Lloyd, R.D.; Miller, S.C.; Taylor, G.N.; Angus, W.; Huth, D.A.

    1994-01-01

    A total of 128 primary mammary tumors (66 of them malignant) occurred in 35 female beagles injected with 226 Ra at eight dose levels ranging from 0.2 to 440 kBq/kg body mass as young adults, while a total of 156 mammary tumors (57 of them malignant) were seen in 46 female control beagles not given any radioactivity. Sixty-three of 65 control dogs and 59 of 61 dogs given 226 Ra survived the minimum age for diagnosis of mammary tumors of 3.75 years. Based on the observed age-dependent tumor incidence rates in the controls and on the corresponding number of dog-years at risk, the total number of observed malignant tumors in the radium group was statistically greater than the number of expected malignant tumors (66 observed vs 34 expected, P < 0.005). There was no such difference for the benign tumors. Cox regression analysis indicated no increased risk for the first tumor occurrence in irradiated dogs. Cox regression analysis of the multivariate risk sets showed no significantly increased risk for the occurrence of benign tumors but a statistically higher risk of 1.66 with a confidence interval of 1.15-2.40 for the occurrence of malignant tumors. The increased risk was dependent on dose, but a dependence on the frequency of previous occurrence of mammary tumors could not be confirmed. Censoring ovariectomized dogs at time of surgery decreased the relative risks slightly but did not alter the significance. Exposure to diagnostic X rays with cumulative exposures below 0.2 Gy had no effect on tumor formation. It is unknown whether the increased risk for malignant mammary tumors was due to some initial deposition of radium in sensitive tissue, a possible irradiation of fatty mammary tissue from transient radon → polonium deposition, or a general effect of the overall radium deposition on the immune system of the dogs that lowered their resistance to formation of mammary tumors. 27 refs., 5 figs., 4 tabs

  10. Modeling freedom from progression for standard-risk medulloblastoma: a mathematical tumor control model with multiple modes of failure

    DEFF Research Database (Denmark)

    Brodin, Nils Patrik; Vogelius, Ivan R.; Bjørk-Eriksson, Thomas

    2013-01-01

    As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published...

  11. The influence of quantitative tumor volume measurements on local control in advanced head and neck cancer using concomitant boost accelerated superfractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher R; Khandelwal, Shiv R; Schmidt-Ullrich, Rupert K; Ravalese, Joseph; Wazer, David E

    1995-06-15

    Purpose: Current methods to clinically define head and neck tumor bulk are qualitative and imprecise. Although the American Joint Committee on Cancer (AJCC) staging system is important for this purpose, limitations exist. This study will investigate the prognostic value of computed tomography (CT) derived tumor volume measurements in comparison to AJCC stage and other significant variables. Materials and Methods: Seventy-six patients with advanced head and neck squamous cell carcinoma were treated with concomitant boost accelerated superfractionated irradiation. Doses ranged from 68.4-73.8 Gy (median 70.2 Gy). Good quality pretherapy CT scans were available in 51 patients. Total tumor volume (TTV) estimates were derived from these scans using digital integration of primary tumor and metastatic lymphadenopathy. Actuarial and multivariate statistical techniques were applied to analyze local control. Results: Thirty-six-month local control was 63%. TTV ranged from 5-196 cm{sup 3} (median 35 cm{sup 3}) for all cases, 5-142 cm{sup 3} (median 17 cm{sup 3}) for those controlled, and 16-196 cm{sup 3} (median 47 cm{sup 3}) for local failures. There was a significant increase in failures above 35 cm{sup 3}. Univariate analysis found that TTV, T-stage, N-stage, and primary site were each significant prognostic variables. Local control for TTV {<=}35 cm{sup 3} was 92% at 36 months vs. 34% for TTV >35 cm{sup 3} (p = 0.0001). Multivariate analysis, however, found that TTV, primary site, and sex were important as independent variables; T and N stage were not independently significant unless TTV was removed from the model. Conclusions: This study demonstrates the prognostic significance of TTV in advanced carcinoma of the head and neck. This variable appears to be a more predictive than AJCC clinical stage. Quantitative tumor volume measurements may prove to be a useful parameter in future analyses of head and neck cancer.

  12. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  13. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.

  14. Tumor Blood Vessel Dynamics

    Science.gov (United States)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  15. In Vivo Visualizing the IFN-β Response Required for Tumor Growth Control in a Therapeutic Model of Polyadenylic-Polyuridylic Acid Administration.

    Science.gov (United States)

    Nocera, David Andrés; Roselli, Emiliano; Araya, Paula; Nuñez, Nicolás Gonzalo; Lienenklaus, Stefan; Jablonska, Jadwiga; Weiss, Siegfried; Gatti, Gerardo; Brinkmann, Melanie M; Kröger, Andrea; Morón, Gabriel; Maccioni, Mariana

    2016-03-15

    The crucial role that endogenously produced IFN-β plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-β has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-β required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-β in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-β, readily visualized in vivo. IFN-β production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-β. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-β-inducing compounds in tumor therapy. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Enhanced tumor imaging with pokeweed mitogen

    International Nuclear Information System (INIS)

    Bitner, D.M.; Mann, P.L.; D'Souza, P.; Wenk, R.; Baughman, D.G.; Quesada, S.M.; Purvis, R.; Born, J.L.; Matwiyoff, N.A.; Eshima, D.

    1993-01-01

    Traditional tumor imaging with biotracer techniques relies solely on the target specificity of the biomolecule. We hypothesize that specific imaging is possible by altering the rate of tissue clearance of any given radiotracer. Pokeweed mitogen (PWM) as a biomodulator, represents a class of molecules which regulate cellular differentiation and cell-cell interactions and, as part of these mechanisms alter tissue clearance rates. Utilizing the B-16/C57BL/6 model, 7 days post-transplantation, 10 animals were imaged following an i.v. injection of 1-2 mCi 99m Tc-PWM in order to visualize the tumors and determine the optimal imaging kinetics. A specific tumor image is achieved between 120 and 240 min post-injection. In addition, tumor imaging studies using a non-tumor-specific biomolecule were conducted by injecting 19 animals i.v. with 1-2 mCi of 99m Tc-human serum albumin (HSA). Twelve of these animals were given 10 μg of PWM i.p. at various intervals prior to the 99m Tc-HAS administration. Imaging and biodistribution studies were performed at various intervals up to 2 h post- 99m Tc-HSA injection. A 32-59% increase in the tumor-to-muscle ratio was observed in the PWM-treated animals relative to the non-treated controls. To further investigate the PWM-induced tissue clearance alteration hypothesis, tissue clearance studies using 99m Tc-diethylenetriaminepentaacetic acid (DTPA) were conducted in non-tumor bearing ICR mice and the B-16/C57BL/6 tumor bearing animals. 99m Tc-DTPA normal tissue clearance rates were significantly increased in the PWM treated animals relative to the non-treated controls. (author)

  17. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Science.gov (United States)

    2010-01-01

    Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used. PMID:20187962

  18. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-02-01

    Full Text Available Abstract Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT guided hypofractionated radiotherapy with active breathing control (ABC for patients with non-small cell lung cancer (NSCLC or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR, superior-inferior (SI, anterior-posterior (AP directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20% grade1-2 acute pneumonitis, 3 (15% grade1 acute esophagitis, 2 (10% grade1 late pneumonitis and 1 (5% grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used.

  19. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    International Nuclear Information System (INIS)

    Shen, Yali; Zhang, Hong; Wang, Jin; Zhong, Renming; Jiang, Xiaoqing; Xu, Qinfeng; Wang, Xin; Bai, Sen; Xu, Feng

    2010-01-01

    To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used

  20. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer.

    Science.gov (United States)

    McKeage, Mark J; Baguley, Bruce C

    2010-04-15

    The unique characteristics of tumor vasculature represent an attractive target that may be exploited by vascular-targeting anticancer agents. A promising strategy involves the selective disruption of established tumor blood vessels by tumor-vascular disrupting agents (tumor-VDAs), which exhibit antivascular activity, resulting in inhibition of tumor blood flow and extensive necrosis within the tumor core. The tumor-VDA class can be subdivided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding compounds. ASA404, of the flavonoid class, is the most advanced tumor-VDA in clinical development and has been evaluated preclinically and in several phase 1 and phase 2 studies. Preclinical studies have demonstrated the selective apoptosis of tumor endothelial cells and the inhibition of tumor blood flow. Synergistic activity was observed with ASA404 and with several chemotherapeutic agents, particularly taxanes. In clinical trials, compared with chemotherapy alone, ASA404 was tolerated well and produced improved activity in patients with nonsmall cell lung cancer when combined with paclitaxel and carboplatin. Phase 3 clinical trials are ongoing. Selectively targeting established tumor vasculature with tumor-VDAs represents a promising and innovative approach to improving the efficacy of standard anticancer therapies. (c) 2010 American Cancer Society.

  1. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  2. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Madsen, Pernille M; Clausen, Bettina H; Degn, Matilda

    2016-01-01

    Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor...... reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6...... knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display...

  3. Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials

    International Nuclear Information System (INIS)

    Schuck, Andreas; Ahrens, Susanne; Paulussen, Michael; Kuhlen, Michaela; Koenemann, Stefan; Ruebe, Christian; Winkelmann, Winfried; Kotz, Rainer; Dunst, Juergen; Willich, Normann; Juergens, Heribert

    2003-01-01

    Purpose: The impact of different local therapy approaches on local control, event-free survival, and secondary malignancies in the CESS 81, CESS 86, and EICESS 92 trials was investigated. Methods and Materials: The data of 1058 patients with localized Ewing tumors were analyzed. Wherever feasible, a surgical local therapy approach was used. In patients with a poor histologic response or with intralesional and marginal resections, this was to be followed by radiotherapy (RT). In EICESS 92, preoperative RT was introduced for patients with expected close resection margins. Definitive RT was used in cases in which surgical resection seemed impossible. In CESS 81, vincristine, adriamycin, cyclophosphamide, and actinomycin D was used. In CESS 86, vincristine, adriamycin, ifosfamide, and actinomycin D was introduced for patients with central tumors or primaries >100 cm 3 . In CESS 92, etoposide, vincristine, adriamycin, ifosfamide, and actinomycin D was randomized against vincristine, adriamycin, ifosfamide, and actinomycin D in patients with primaries >100 cm 3 . Results: The rate of local failure was 7.5% after surgery with or without postoperative RT, and was 5.3% after preoperative and 26.3% after definitive RT (p=0.001). Event-free survival was reduced after definitive RT (p=0.0001). Irradiated patients represented a negatively selected population with unfavorable tumor sites. Definitive RT showed comparable local control to that of postoperative RT after intralesional resections. Patients with postoperative RT had improved local control after intralesional resections and in tumors with wide resection and poor histologic response compared with patients receiving surgery alone. Patients with marginal resections with or without postoperative radiotherapy showed comparable local control, yet the number of patients with good histologic response was higher in the latter treatment group (72.2% vs. 38.5%). Conclusion: Patients with resectable tumors after initial

  4. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  5. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  6. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-11-01

    Full Text Available Abstract Background Photodynamic therapy (PDT is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR, on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors.

  7. Recent technological advances in pediatric brain tumor surgery.

    Science.gov (United States)

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  8. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects.

    Science.gov (United States)

    Harrabi, Semi B; Adeberg, Sebastian; Welzel, Thomas; Rieken, Stefan; Habermehl, Daniel; Debus, Jürgen; Combs, Stephanie E

    2014-09-16

    There are already numerous reports about high local control rates in patients with craniopharyngioma but there are only few studies with follow up times of more than 10 years. This study is an analysis of long term control, tumor response and side effects after fractionated stereotactic radiotherapy (FSRT) for patients with craniopharyngioma. 55 patients who were treated with FSRT for craniopharyngioma were analyzed. Median age was 37 years (range 6-70 years), among them eight children craniopharyngioma. Overall treatment was tolerated well with almost no severe acute or chronic side effects. One patient developed complete anosmia, another one's initially impaired vision deteriorated further. In 83.6% of the cases with radiological follow up a regression of irradiated tumor residues was monitored, in 7 cases complete response was achieved. 44 patients presented themselves initially with endocrinologic dysfunction none of them showed signs of further deterioration during follow up. No secondary malignancies were observed. Long term results for patients with craniopharyngioma after stereotactic radiotherapy are with respect to low treatment related side effects as well as to local control and overall survival excellent.

  9. Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors

    Directory of Open Access Journals (Sweden)

    Spugnini Enrico P

    2011-12-01

    Full Text Available Abstract Background The treatment of human cancer has been seriously hampered for decades by resistance to chemotherapeutic drugs. Mechanisms underlying this resistance are far from being entirely known. A very efficient mechanism of tumor resistance to drugs is related to the modification of tumour microenvironment through changes in the extracellular and intracellular pH. The acidification of tumor microenvironment depends on proton pumps that actively pump protons outside the cells, mostly to avoid intracellular acidification. In fact, we have shown in pre-clinical settings as pre-treatment with proton-pumps inhibitors (PPI increase tumor cell and tumor responsiveness to chemotherapeutics. In this study pet with spontaneously occurring cancer proven refractory to conventional chemotherapy have been recruited in a compassionate study. Methods Thirty-four companion animals (27 dogs and 7 cats were treated adding to their chemotherapy protocols the pump inhibitor lansoprazole at high dose, as suggested by pre-clinical experiments. Their responses have been compared to those of seventeen pets (10 dogs and 7 cats whose owners did not pursue any other therapy than continuing the currently ongoing chemotherapy protocols. Results The drug was overall well tolerated, with only four dogs experiencing side effects due to gastric hypochlorhydria consisting with vomiting and or diarrhea. In terms of overall response twenty-three pets out of 34 had partial or complete responses (67.6% the remaining patients experienced no response or progressive disease however most owners reported improved quality of life in most of the non responders. On the other hand, only three animals in the control group (17% experienced short lived partial responses (1-3 months duration while all the others died of progressive disease within two months. Conclusions high dose proton pump inhibitors have been shown to induce reversal of tumor chemoresistance as well as improvement of

  10. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  11. Enhancing clinical effectiveness of pre-radiotherapy workflow by using multidisciplinary-cooperating e-control and e-alerts: A SQUIRE-compliant quality-improving study.

    Science.gov (United States)

    Lin, Yung-Hsiang; Hung, Shih-Kai; Lee, Moon-Sing; Chiou, Wen-Yen; Lai, Chun-Liang; Shih, Yi-Ting; Yeh, Pei-Han; Lin, Yi-An; Tsai, Wei-Ta; Hsieh, Hui-Ling; Chen, Liang-Cheng; Huang, Li-Wen; Lin, Po-Hao; Liu, Dai-Wei; Hsu, Feng-Chun; Tsai, Shiang-Jiun; Liu, Jia-Chi; Chung, En-Seu; Lin, Hon-Yi

    2017-06-01

    Radiotherapy (RT) is useful in managing cancer diseases. In clinical practice, early initiation of RT is crucial for enhancing tumor control. But, delivering precise RT requires a series of pre-RT working processes in a tight staff-cooperation manner. In this regard, using information system to conduct e-control and e-alerts has been suggested to improve practice effectiveness; however, this effect is not well defined in a real-world RT setting.We designed an information system to perform e-control and e-alerts for the whole process of pre-RT workflow to shorten processing time, to improve overall staff satisfaction, and to enhance working confidence.A quality-improving study conducted in a large RT center.Externally validated data were retrospectively analyzed for comparison before (from Sep. 2012 to Dec. 2012, n = 223) and after (from Sep. 2013 to Dec. 2013, n = 240) implementation of pre-RT e-control and e-alerts.Applying the e-control with delay-working e-alerts in pre-RT workflow was the main intervention.Nine workstations were identified in pre-RT workflow. The primary outcome measure was the processing time in each pre-RT workstations before and after implementing the e-control and e-alerts. Secondary measures were staff-working confidence and near-missing cases during the process of pre-RT workflow.After implementing e-control, overall processing time of pre-RT workflow was shortened from 12.2 days to 8.9 days (P workflow. Clinical effectiveness, staff satisfaction, and working confidence are able to be enhanced obviously.

  12. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  13. Tratamento radioterápico dos tumores glômicos do osso temporal Radiation therapy for glomus tumors of the temporal bone

    Directory of Open Access Journals (Sweden)

    Celso Dall'Igna

    2005-12-01

    tumors has been controversial since its first description. It can be done with surgery, radiotherapy or just expectation. AIM: The objective of this paper was to evaluate the effectiveness and complications of radiotherapy. STUDY DESIGN: clinical with transversal cohort. MATERIAL AND METHOD: It was made a retrospective review in the charts of the patients with glomus jugulare tumors treated with radiotherapy. Disease control was determined by (1 no progression of symptoms or cranial nerve dysfunction or (2 no progression of the lesion in radiological follow-up. It was also evaluated the follow-up period and the sequelae of the treatment. RESULTS: Twelve patients were included, 8 of then women. The follow-up period was from 3 to 35 years, with a media of 11,6 years. The main symptoms were: hearing loss, pulsate tinnitus, dizziness and vertigo. The signs were pulsate retrotympanic mass, facial palsy and cofosis. The tumors were staged using Fisch's classification. The radiotherapy was performed with linear accelerator with dose ranging from 4500-5500 in 4-6 weeks. In the follow-up period were possible to identify sequelaes like dermatitis, meatal stenosis, cofosis and facial palsy. DISCUSSION: The signs and symptoms were the same found in the medical literature. The type and dosages of the radiotherapy were also the same of others reports. All patients had improvement of the symptoms and only one was not considered as having disease controlled. Complications were, in general, minor complications, with exception of the cofosis and facial palsy. CONCLUSION: Radiotherapy is a viable alternative to treatment of these tumors because their good response and low level of complications. It should be considered specially in advanced tumors where a surgical procedure could bring a high level of morbidity.

  14. Clinical course of non-operated patients with spinal cord tumor

    International Nuclear Information System (INIS)

    Kamata, Michihiro; Kinouchi, Junnosuke; Maruiwa, Hirofumi; Nakamura, Masaya; Matsumoto, Morio; Chiba, Kazuhiro; Toyama, Yoshiaki

    2003-01-01

    The clinical course of spinal cord tumors in 24 non-operated patients who were followed by MRI for more than 1 year was investigated retrospectively. Only 7 patients were positive in neurological symptoms. 7 patients had multiple tumors, and the histopathologic diagnosis in 16 patients was neurinoma. The MRI findings changed in 4 patients, and follow-up MR images showed rapid growth of 2 neurinomas. The clinical manifestations did not change in 17 patients, but they improved in 3 patients whose symptoms were not caused by tumors and improved after temporary worsening caused by tumor growth in 2 patients. They worsened in 2 patients with intramedullary tumors associated with neurological symptoms. The diameter of the spinal cord of the patients with intramedullary tumors increased, making the spinal cord susceptible to both anterior and posterior compression. Finally, the clinical course of the patients with spinal cord tumors did not deteriorate rapidly, except in the patients with intramedullary tumor associated with neurological manifestations. We concluded that when spinal cord tumors that are asymptomatic or associated with minor symptoms are diagnosed as neurinoma or neurofibroma based on the MRI findings, early surgery should not be performed and followed by meticulous follow-up. (author)

  15. The Potential Benefits of Awake Craniotomy for Brain Tumor Resection: An Anesthesiologist's Perspective.

    Science.gov (United States)

    Meng, Lingzhong; Berger, Mitchel S; Gelb, Adrian W

    2015-10-01

    Awake craniotomy for brain tumor resection is becoming a standard of care for lesions residing within or in close proximity to regions presumed to have language or sensorimotor function. Evidence shows an improved outcome including greater extent of resection, fewer late neurological deficits, shorter hospital stay, and longer survival after awake brain tumor resection compared with surgery under general anesthesia. The surgeon's ability to maximize tumor resection within the constraint of preserving neurological function by intraoperative stimulation mapping in an awake patient is credited for this advantageous result. It is possible that the care provided by anesthesiologists, especially the avoidance of certain components of general endotracheal anesthesia, may also be important in the outcome of awake brain tumor resection. We present our interpretation of the evidence that we believe substantiates this proposition. However, due to the lack of direct evidence based on randomized-controlled trials and the heterogeneity of anesthetic techniques used for awake craniotomy, our perspective is largely speculative and hypothesis generating that needs to be validated or refuted by future quality research.

  16. Contribution of radiotherapy to the treatment of malignant tumors, 3. Combined drugs and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Niibe, Hideo; Takahashi, Iku; Tamaki, Yoshio (Gunma Univ., Maebashi (Japan). School of Medicine)

    1984-09-01

    Effects of cytotoxic agent, hormone, hypoxic cell sensitizer, and radiation protector combined with radiation therapy in cancer management were analysed. The results were as follows: 1) An increase in response was seen in 25% or more of tumor nodules given radiotherapy combined with misonidazole, anoxic cell sensitizer, compared with radiotherpy alone. But the drug was also found to be neurotoxic and peripheral neuropathy. 2) Evidence has been given that Amifostine may protect the mucosal damage from radiation when Amifostine prior to irradiation was administrated to patients with tumor in the head and neck or in the pelvis. 3) There were no difference between five year survival of radiotherapy alone and with chemotherapy for patients with stage I Non-Hodgkin lymphoma. Chemotherapy following radiotherapy for patients with stage II was more effective treatment method than radiotherapy alone. 4) Radiotherapy for patients with prostate cancer was performed to control only primary site. The success rates of local control were over 80%. The near future holds extensive promise for a combination of radiation therapy, cytotoxic chemotherapy, hormone therapy, hypoxic cell sensitizer, and radiation protectors. All of these when used in the appropriate circumstances may yield significant improvements in the therapeutic ratio and in the long-tern control of tumors.

  17. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; Bustuoabad, Oscar D; Meiss, Roberto P; Pasqualini, Christiane D

    2012-03-01

    Concomitant tumor resistance (CR) is a phenomenon in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although previous studies indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In a recently published study, we identified this factor as meta-tyrosine and ortho-tyrosine, 2 isomers of tyrosine that would not be present in normal proteins. In 3 different murine models of cancer that generate CR, both meta- and ortho-tyrosine inhibited tumor growth. Additionally, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isomers were mediated in part by early inhibition of the MAP/ERK pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy in G(0)-phase. Other mechanisms, putatively involving the activation of an intra-S-phase checkpoint, would also inhibit tumor proliferation by accumulating cells in S-phase. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors or after other stressors that may promote the escape of metastases from dormancy, an issue that is of pivotal importance to oncologists and their patients.

  18. Local and systemic tumor immune dynamics

    Science.gov (United States)

    Enderling, Heiko

    Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.

  19. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    Science.gov (United States)

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  20. Thyristor-controlled reactor improves series capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Renz, K.W.; Thumm, G.; Weiss, S. [Siemens AG, Erlangen (Germany)

    1995-12-31

    Environmental considerations make it more and more difficult to plan and erect new transmission lines. FACTS (Flexible AC Transmission Systems) technology can provide devices to improve the utility of AC transmission lines. The innovative combination of conventional fixed series capacitors and thyristor controlled reactors as a new FACTS device was introduced into a transmission system in 1992. This Advanced Series Compensation (ASC) system provides many advantages not available with conventional fixed series capacitor installations such as flexible direct and continuous control of the compensation level, direct and smooth power flow control and improved capacitor bank protection. This new technology offers enhanced system flexibility by control of transmission line overload conditions, reduction in fault currents, sub-synchronous resonance (SSR) mitigation and network power oscillation damping. The world-first three-phase installation at Kayenta Substation, USA, demonstrates that modern FACTS devices using SVC thyristor valve technology can be designed and operated successfully. 6 refs, 7 figs