WorldWideScience

Sample records for improves bone mass

  1. Exercise and bone mass in adults.

    Science.gov (United States)

    Guadalupe-Grau, Amelia; Fuentes, Teresa; Guerra, Borja; Calbet, Jose A L

    2009-01-01

    There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects. It is not clear which training method is superior for bone stimulation in adults, although scientific evidence points to a combination of high-impact (i.e. jumping) and weight-lifting exercises. Exercise involving high impacts, even a relatively small amount, appears to be the most efficient for enhancing bone mass, except in postmenopausal women. Several types of resistance exercise have been tested also with positive results, especially when the intensity of the exercise is high and the speed of movement elevated. A handful of other studies have reported little or no effect on bone density. However, these results may be partially attributable to the study design, intensity and duration of the exercise protocol, and the bone density measurement techniques used. Studies performed in older adults show only mild increases, maintenance or just attenuation of BMD losses in postmenopausal women, but net changes in BMD relative to control subjects who are losing bone mass are beneficial in

  2. Behavioral Intervention in Adolescents Improves Bone Mass, Yet Lactose Maldigestion Is a Barrier

    Directory of Open Access Journals (Sweden)

    Yujin Lee

    2018-03-01

    Full Text Available Calcium intake during adolescence is important for attainment of peak bone mass. Lactose maldigestion is an autosomal recessive trait, leading to lower calcium intake. The Adequate Calcium Today study aimed to determine if a school-based targeted behavioral intervention over one year could improve calcium intake and bone mass in early adolescent girls. The school-randomized intervention was conducted at middle schools in six states over one school year. A total of 473 girls aged 10–13 years were recruited for outcome assessments. Bone mineral content (BMC was determined by dual energy X-ray absorptiometry. Dietary calcium intake was assessed with a semi-quantitative food frequency questionnaire. Baseline calcium intake and BMC were not significantly different between groups. After the intervention period, there were no differences in changes in calcium intake and BMC at any site between groups. An unanticipated outcome was a greater increase in spinal BMC among lactose digesters than lactose maldigesters in the intervention schools only (12 months (6.9 ± 0.3 g vs. 6.0 ± 0.4 g, p = 0.03 and considering the entire study period (18 months (9.9 ± 0.4 vs. 8.7 ± 0.5 g, p < 0.01. Overall, no significant differences between the intervention and control schools were observed. However, lactose digesters who received the intervention program increased bone mass to a greater extent than lactose maldigesters.

  3. Establishment of peak bone mass.

    Science.gov (United States)

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  4. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  5. Improvement of Lumbar Bone Mass after Infliximab Therapy in Crohn’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Marina Mauro

    2007-01-01

    Full Text Available BACKGROUND: Patients with Crohn’s disease (CD have a high risk of developing osteoporosis, but the mechanisms underlying bone mass loss are unclear. Elevated proinflammatory cytokines, such as tumour necrosis factor-alpha (TNFα, have been implicated in the pathogenesis of bone resorption.

  6. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    Science.gov (United States)

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  7. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found in lum.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  8. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice

    Science.gov (United States)

    Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and

  9. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    Science.gov (United States)

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  10. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found...... in lumbar bone mineral density, femoral neck bone mineral density, serum levels of alkaline phosphatase, osteocalcin, ionized calcium and phosphate. The urinary excretion of both hydroxyproline and calcium relative to urinary creatinine excretion was significantly higher in patients with fibromyalgia, p = 0.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  11. Sclerostin Blockade and Zoledronic Acid Improve Bone Mass and Strength in Male Mice With Exogenous Hyperthyroidism.

    Science.gov (United States)

    Tsourdi, Elena; Lademann, Franziska; Ominsky, Michael S; Rijntjes, Eddy; Köhrle, Josef; Misof, Barbara M; Roschger, Paul; Klaushofer, Klaus; Hofbauer, Lorenz C; Rauner, Martina

    2017-11-01

    Hyperthyroidism in mice is associated with low bone mass, high bone turnover, and high concentrations of sclerostin, a potent Wnt inhibitor. Here, we explored the effects of either increasing bone formation with sclerostin antibodies (Scl-Ab) or reducing bone turnover with bisphosphonates on bone mass and strength in hyperthyroid mice. Twelve-week-old C57BL/6 male mice were rendered hyperthyroid using l-thyroxine (T4; 1.2 µg/mL added to the drinking water) and treated with 20 mg/kg Scl-Ab twice weekly or 100 µg/kg zoledronic acid (ZOL) once weekly or phosphate-buffered saline for 4 weeks. Hyperthyroid mice displayed a lower trabecular bone volume at the spine (-42%, P hyperthyroid mice increased trabecular bone volume at the spine by threefold and twofold, respectively. Serum bone formation and resorption markers were increased in hyperthyroid mice and suppressed by treatment with ZOL but not Scl-Ab. Trabecular bone stiffness at the lumbar vertebra was 63% lower in hyperthyroid mice (P hyperthyroidism, was increased by Scl-Ab by 71% and ZOL by 22% (both P hyperthyroid mice was restored by treatment with Scl-Ab and ZOL. Thus, bone-forming and antiresorptive drugs prevent bone loss in hyperthyroid mice via different mechanisms. Copyright © 2017 Endocrine Society.

  12. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha J; Kiviranta, Riku

    2017-01-19

    Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.

  13. Determinants of bone mass and bone geometry in adolescent and young adult women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Hoorneman, G.; Väänänen, K.; Charles, P.; Ando, S.; Maggiolini, M.; Charzewska, J.; Rotily, M.; Deloraine, A.; Heikkinen, J.; Juvin, R.; Schaafsma, G.

    2000-01-01

    Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six

  14. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  15. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  17. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...

  19. DXA measurements in Rett syndrome reveal small bones with low bone mass.

    Science.gov (United States)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine; Andersen, Henrik; Nielsen, Jytte Bieber; Brøndum-Nielsen, Karen; Jensen, Jens-Erik Beck

    2011-09-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype. Copyright © 2011 American Society for Bone and Mineral Research.

  20. Peak bone mineral density, lean body mass and fractures

    NARCIS (Netherlands)

    Boot, Annemieke M.; de Ridder, Maria A. J.; van der Sluis, Inge M.; van Slobbe, Ingrid; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    Background: During childhood and adolescence, bone mass and lean body mass (LBM) increase till a plateau is reached. In this longitudinal and cross-sectional study, the age of reaching the plateau was evaluated for lumbar spine and total body bone mass measurements and lean body mass. The

  1. Corticosteroid therapy and bone mass - comparisOfl of rheumatoid ...

    African Journals Online (AJOL)

    osis Int sis and et of ine in l energy. Tissue. Invasive. -72. cl Med f the ed. The ce ... needs to be re-evaluated, favouring earlier use of such ... There are also very few reports of bone ... compare bone mass at various sites in young, ambulant .... Bone mass ill patients with RA and SLE in relation to ..... on bone in young adults.

  2. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice

    Directory of Open Access Journals (Sweden)

    O'Shea Marianne

    2006-03-01

    Full Text Available Abstract There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX. However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO sedentary (SED; 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT. The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.

  3. Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2014-10-01

    The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.

  4. Bone mass in schizophrenia and normal populations across different decades of life

    Directory of Open Access Journals (Sweden)

    Chueh Ching-Mo

    2009-01-01

    Full Text Available Abstract Background Chronic schizophrenic patients have been reported as having higher osteoporosis prevalence. Survey the bone mass among schizophrenic patients and compare with that of the local community population and reported data of the same country to figure out the distribution of bone mass among schizophrenic patients. Methods 965 schizophrenic patients aged 20 years and over in Yuli Veterans Hospital and 405 members aged 20 and over of the community living in the same town as the institute received bone mass examination by a heel qualitative ultrasound (QUS device. Bone mass distribution was stratified to analyzed and compared with community population. Results Schizophrenic patients have lower bone mass while they are young. But aging effect on bone mass cannot be seen. Accelerated bone mass loss during menopausal transition was not observed in the female schizophrenic patients as in the subjects of the community female population. Conclusion Schizophrenic patients have lower bone mass than community population since they are young. Further study to investigate the pathophysiological process is necessary to delay or avoid the lower bone mass in schizophrenia patients.

  5. DXA measurements in rett syndrome reveal small bones with low bone mass

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients...

  6. Common endocrine control of body weight, reproduction, and bone mass

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  7. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    International Nuclear Information System (INIS)

    Fränzle, Andrea; Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-01-01

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  8. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  9. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment.

    Science.gov (United States)

    Sromicki, Jerzy Jan; Hess, Bernhard

    2017-06-01

    Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH 4 Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH 4 Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing

  10. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  11. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  12. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  13. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    Science.gov (United States)

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  14. Maternal first-trimester diet and childhood bone mass: the Generation R Study.

    Science.gov (United States)

    Heppe, Denise H M; Medina-Gomez, Carolina; Hofman, Albert; Franco, Oscar H; Rivadeneira, Fernando; Jaddoe, Vincent W V

    2013-07-01

    Maternal diet during pregnancy has been suggested to influence bone health in later life. We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. In a prospective cohort study in 2819 mothers and their children, we measured first-trimester daily energy, protein, fat, carbohydrate, calcium, phosphorus, and magnesium intakes by using a food-frequency questionnaire and homocysteine, folate, and vitamin B-12 concentrations in venous blood. We measured childhood total body bone mass by using dual-energy X-ray absorptiometry at the median age of 6.0 y. Higher first-trimester maternal protein, calcium, and phosphorus intakes and vitamin B-12 concentrations were associated with higher childhood bone mass, whereas carbohydrate intake and homocysteine concentrations were associated with lower childhood bone mass (all P-trend childhood bone mass. In the fully adjusted regression model that included all dietary factors significantly associated with childhood bone mass, maternal phosphorus intake and homocysteine concentrations most-strongly predicted childhood bone mineral content (BMC) [β = 2.8 (95% CI: 1.1, 4.5) and β = -1.8 (95% CI: -3.6, 0.1) g per SD increase, respectively], whereas maternal protein intake and vitamin B-12 concentrations most strongly predicted BMC adjusted for bone area [β = 2.1 (95% CI: 0.7, 3.5) and β = 1.8 (95% CI: 0.4, 3.2) g per SD increase, respectively]. Maternal first-trimester dietary factors are associated with childhood bone mass, suggesting that fetal nutritional exposures may permanently influence bone development.

  15. Impact of obesity on bone mass throughout adult life: Influence of gender and severity of obesity.

    Science.gov (United States)

    Maïmoun, Laurent; Mura, Thibault; Leprieur, Elodie; Avignon, Antoine; Mariano-Goulart, Denis; Sultan, Ariane

    2016-09-01

    Obesity improves areal bone mineral density (aBMD). However, it is unknown whether gender, ageing or the severity of obesity could modulate this effect and whether different bone sites are similarly affected. The aim of this observational study was to model the aBMD variation in obese patients from peak bone period to old age according to gender, bone localisation and severity of obesity. Five hundred and four obese patients (363 women, 72%) with a mean BMI of 38.5 ± 6.0 kg/m2, aged from 18.1 to 81.9 years (mean age 49.6 ± 14.6 years) were recruited. The whole body (WB), hip, lumbar spine (L1–L4) and one-third radius aBMDs were determined using dual-energy x-ray absorptiometry (DXA). Z-scores were significantly increased, above the age- and gender-related mean, both for women and men at WB (respectively 0.79 SD and 0.32 SD), hip (1.09 SD and 1.06 SD), one-third radius (1.70 SD and 0.45 SD) and L1–L4 levels (0.86 SD for women only). The improvement of Z-scores was significantly more marked in women compared to men at all bone sites, hip excepted. Furthermore, differences compared with normal values were significantly accentuated by ageing, without noticeable gender effect. In women, regardless of BMI and bone site, Z-scores were higher than normal values, this difference being most marked at WB, L1–L4 and hip levels for obese patients with a BMI above 40 kg/m2. Lean mass, but not fat mass, was independently associated with aBMD in men and women. This study demonstrated for the first time that obesity induces an improvement of aBMD, which is modulated by bone site location, severity of obesity, age and gender. The accentuation of peak bone mass combined with a reduction of bone loss rate with ageing may explain why obese patients present a lower prevalence of osteoporosis.

  16. Do vegetarians have a normal bone mass?

    Science.gov (United States)

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  17. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  18. Dietary Pseudopurpurin Improves Bone Geometry Architecture and Metabolism in Red-Bone Guishan Goats

    Science.gov (United States)

    Han, TieSuo; Li, Peng; Wang, JianGuo; Liu, GuoWen; Wang, Zhe; Ge, ChangRong; Gao, ShiZheng

    2012-01-01

    Red-colored bones were found initially in some Guishan goats in the 1980s, and they were designated red-boned goats. However, it is not understood what causes the red color in the bone, or whether the red material changes the bone geometry, architecture, and metabolism of red-boned goats. Pseudopurpurin was identified in the red-colored material of the bone in red-boned goats by high-performance liquid chromatography–electrospray ionization–mass spetrometry and nuclear magnetic resonance analysis. Pseudopurpurin is one of the main constituents of Rubia cordifolia L, which is eaten by the goats. The assessment of the mechanical properties and micro-computed tomography showed that the red-boned goats displayed an increase in the trabecular volume fraction, trabecular thickness, and the number of trabeculae in the distal femur. The mean thickness, inner perimeter, outer perimeter, and area of the femoral diaphysis were also increased. In addition, the trabecular separation and structure model index of the distal femur were decreased, but the bone mineral density of the whole femur and the mechanical properties of the femoral diaphysis were enhanced in the red-boned goats. Meanwhile, expression of alkaline phosphatase and osteocalcin mRNA was higher, and the ratio of the receptor activator of the nuclear factor kappa B ligand to osteoprotegerin was markedly lower in the bone marrow of the red-boned goats compared with common goats. To confirm further the effect of pseudopurpurin on bone geometry, architecture, and metabolism, Wistar rats were fed diets to which pseudopurpurin was added for 5 months. Similar changes were observed in the femurs of the treated rats. The above results demonstrate that pseudopurpurin has a close affinity with the mineral salts of bone, and consequently a high level of mineral salts in the bone cause an improvement in bone strength and an enhancement in the structure and metabolic functions of the bone. PMID:22624037

  19. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

    NARCIS (Netherlands)

    Parsons, T.J.; Dusseldorp, van M.; Seibel, M.J.; Staveren, van W.A.

    2001-01-01

    Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by

  20. Lumbar bone mass predicts low back pain in males

    NARCIS (Netherlands)

    Hoozemans, M.J.M.; Koppes, L.L.J.; Twisk, J.W.R.; Dieën, J.H. van

    2012-01-01

    STUDY DESIGN.: Longitudinal study of lumbar bone mass as predictor of low back pain (LBP). OBJECTIVE.: To investigate whether low bone mineral content (BMC) and bone mineral density (BMD) values at the age of 36 years are associated with the prevalence of LBP at the age of 42 years among the study

  1. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  2. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  3. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  4. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.B.; Guanzon, M.L.V.V.; Balderas, J.A.J.; Villaruel, C.M.; Santos, F.

    1996-01-01

    To determine the peak bone mass density among residents of Metro Manila using dual x-ray absorptiometry (DEXA).The design used is cross-sectional study. The study include 23 females and 22 males, with 3 to 4 subjects for each age range of 5. The methods used was bone mass density measurements on the lumbar spine and the femur using dual x-ray absorptiometry (DPXI lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with 5 cc of blood separated for future studies. Patients were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on osteoporosis. The mean bone mass density at the L21.4 level for females was 1.12±0.11 g/cm 2 and 0,91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved between the ages 30-35 years of age with the lowest BMD occurring between 15-20 yrs. old and incidentally in 2 subjects with ages between 40-44. There seems to be little bone loss among beyond the age 35, unlike in the females. Bone mass density among a sample Metro Manila residents was determined using DEXA and the measurements on the lumbar spine and femoral neck. These were age-matched with that of young adult based on Caucasian norm provided by the Lunar Co. Peak bone mass density in the L2L4 level among the females is reached between the ages 30-35 years old, after which there is progressive bone loss with values in the 45-50 years old approximating the values in the 15-19 years old age range. A similar pattern is seen in the measurements taken at the femoral neck. Among males, the peak BMD is reached during the 30-35 years old, but there seems to be no rapid decline or rapid bone

  5. Effects of a 6-month football intervention program on bone mass and physical fitness in overweight children

    DEFF Research Database (Denmark)

    Seabra, André; Serra, Hugo; Seabra, Ana

    2016-01-01

    , consisting of four weekly 60-90 min sessions with mean heart rate > 80%HRmax [football group (FG)]. A control group (CG) included eight boys of equivalent age from an obesity clinic located in the same area as the school. Both groups participated in two sessions of 45-90 min physical education per week......Introduction: Physical activity is an important medium for improving bone mass and physical fitness of children, and as such is often emphasized in intervention programs with overweight/obesity children. Only few studies have examined the impact of a specific team sport intervention on the bone...... at school. Bone mass indicators included whole-boy and lumbar spine bone mineral density (BMD) and bone mineral content (BMC). Physical fitness tests included 5- and 30-m sprints, countermovement jump (CMJ), and Yo-Yo intermittent endurance test level 1 (Yo-Yo IE1). Body composition was evaluated using dual...

  6. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    Science.gov (United States)

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  7. High bone turnover is associated with low bone mass in both pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Ravn, Pernille; Fledelius, C; Rosenquist, C

    1996-01-01

    of CrossLaps and OCN-Mid corrected for height and weight, had 6%-11% lower bone mass in all regions (p r = -0.13 to r = -0.28, p ....05. In postmenopausal women, the difference in bone mass between the highest and lowest quartiles was 8%-14% (p r = -0.14 to r = -0.32, p r = -0.06 to r = -0.......20 for premenopausal women, NS to p r = -0.01 to r = -0.23, NS to p

  8. Tracking of bone mass from childhood to puberty

    DEFF Research Database (Denmark)

    Rønne, M. S.; Heidemann, M.; Schou, A.

    2018-01-01

    health. Introduction: Bone mass development in childhood varies by sex and age, but also by pubertal stage. The objectives of this study were to (1) describe bone mass development in childhood as it relates to pubertal onset and to (2) determine the degree of tracking from childhood to adolescence....... Methods: A longitudinal study with 7 years of follow-up was initiated in 2008 to include 831 children (407 boys) aged 8 to 17 years. Participants underwent whole body dual-energy X-ray absorptiometry (DXA) scanning, blood collection to quantify luteinizing hormone levels, and Tanner stage self...

  9. Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.

    Science.gov (United States)

    Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru

    2017-01-01

    Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.

  10. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  11. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  12. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  13. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  14. Does fetal smoke exposure affect childhood bone mass? The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2015-01-01

    textabstractSummary: We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related

  15. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys.

    Science.gov (United States)

    Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D

    2012-09-01

    Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.

  16. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  17. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  18. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover

    International Nuclear Information System (INIS)

    Overgaard, K.; Nilas, L.; Johansen, J.S.; Christiansen, C.

    1988-01-01

    Three previous studies have indicated a seasonal variation in bone mineral content, with values during the summer being 1.7% to 7.5% higher than during the winter. We have examined the seasonal influence on both bone mass, biochemical estimates of bone turnover and vitamin D metabolites in 86 healthy women, aged 29-53 years. All participants were followed up for 2 years with examinations every 6 weeks or 3 months. Bone mineral content in the proximal and distal part of the forearm (single photon absorptiometry) did not reveal any significant seasonal variation, whereas bone mineral density of the lumbar spine (dual photon absorptiometry) indicated that the highest values occurred in winter. None of the biochemical parameters showed any statistically significant cyclical changes. Serum concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D3 showed a highly significant seasonal variation, whereas the serum 1,25-dihydroxyvitamin D concentration was virtually unchanged. We conclude that seasonal variation in bone mineral content and bone turnover should not be taken into account when interpreting data from longitudinal studies of healthy pre- and postmenopausal women on a sufficient vitamin D nutriture

  19. Clinical study evaluating bone mineral mass in the radius during skeletal growth. Single photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome.

  20. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs.

    Science.gov (United States)

    Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M

    2002-03-01

    To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.

  1. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    Science.gov (United States)

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p Rugby players were heavier than controls, with greater lean mass and BMD (p rugby players (p rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  2. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls.

    Science.gov (United States)

    Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B

    2018-05-22

    With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.

  3. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  4. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    International Nuclear Information System (INIS)

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-01-01

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  5. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  6. Effect of age and disease on bone mass in Japanese patients with schizophrenia.

    Science.gov (United States)

    Sugawara, Norio; Yasui-Furukori, Norio; Umeda, Takashi; Tsuchimine, Shoko; Fujii, Akira; Sato, Yasushi; Saito, Manabu; Furukori, Hanako; Danjo, Kazuma; Matsuzaka, Masashi; Takahashi, Ippei; Kaneko, Sunao

    2012-02-20

    There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. We recruited patients (n = 362), aged 48.8 ± 15.4 (mean ± SD) years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV). Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI) was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  7. Analysis of bone mass density of lumbar spine zone of athletes

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... Strengthening exercises, together with walking and aerobic exercises ... effects of exercises on bone mass, the exercises putting load on the ...... activity, body weight and composition, and muscular strength on bone density in ...

  8. Factors associated with low bone mass in the hemodialysis patients – a cross-sectional correlation study

    Directory of Open Access Journals (Sweden)

    Huang Guey-Shiun

    2009-06-01

    Full Text Available Abstract Background Low bone mass is common in end-stage renal disease patients, especially those undergoing hemodialysis. It can lead to serious bone health problems such as fragility fractures. The purpose of this study is to investigate the risk factors of low bone mass in the hemodialysis patients. Methods Sixty-three subjects on hemodialysis for at least 6 months were recruited from a single center for this cross-sectional study. We collected data by questionnaire survey and medical records review. All subjects underwent a bone mineral density (BMD assay with dual-energy x-ray absorptiometry at the lumbar spine and right hip. Data were statistically analyzed by means of descriptive analysis, independent t test and one way analysis of variance for continuous variables, Pearson product-moment correlation to explore the correlated factors of BMD, and stepwise multiple linear regression to identify the predictors of low bone mass. Results Using WHO criteria as a cutoff point, fifty-one subjects (81% had a T-score lower than -1, of them 8 subjects (13% had osteoporosis with the femoral neck most commonly affected. Regarding risk factors, age, serum alkaline phosphatase (ALP level, and intact parathyroid hormone (iPTH level had significant negative correlations with the femoral neck and lumbar spine BMD. On the other hand, serum albumin level, effective exercise time, and body weight (BW had significant positive correlations with the femoral neck and lumbar spine BMD. Age, effective exercise time, and serum albumin level significantly predicted the femoral neck BMD (R2 × 0.25, whereas BW and the ALP level significantly predicted the lumbar spine BMD (R2 × 0.20. Conclusion This study showed that advanced age, low BW, low serum albumin level, and high ALP and iPTH levels were associated with a low bone mass in the hemodialysis patients. We suggest that regular monitoring of the femoral neck BMD, maintaining an adequate serum albumin level and BW

  9. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship.

    Science.gov (United States)

    Golec, Joanna; Chlebna-Sokół, Danuta

    2014-01-01

    The functional model of skeletal development considers the mechanical factor to be the most important skeletal modulant. The aim of the study was a functional analysis of the bone-muscle relationship in children with low and normal bone mass. The study involved 149 children with low and 99 children with normal bone mass (control group). All patients underwent a densitometry examination (DXA). Low bone mass was diagnosed if the Z-score was below values of Z-scores for all parameters in children with low bone mass as compared to the control group. Children with low bone mass had lower content of adipose and muscle tissue and a marked deficit of muscle tissue with regard to height (which according to mechanostat theory leads to lower muscle-generated strain on bones). This group of children had also lower TBBMC/LBM Z-scores, which indicates greater fracture susceptibility. 1. Functional analysis, which showed associations between bone and muscle tissues, can be useful for diagnosing and monitoring skeletal system disorders as well as making therapeutic decisions.2. The study emphasizes the role of proper nutrition and physical activities, which contribute to proper body composition, in the prevention of bone mineralization disorders in childhood and adolescence. 3. The study showed the inadequacy of the classic reference ranges used in interpreting DXA data in children and demonstrated the usefulness of continuous variables for that purpose.

  10. The role of lean body mass and physical activity in bone health in children.

    Science.gov (United States)

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p  608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  11. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  12. Collaborative Research and Support of Fitzsimmons Army Medical Center DWH Research Program Projects. The Effects of Region-Specific Resistance Exercises on Bone Mass in Premenopausal Military Women, Protocol 8

    National Research Council Canada - National Science Library

    Hayes, Robert

    1995-01-01

    .... The purpose of this study is to determine if peak bone mass can be improved after age 20, the age at which peak bone mass is usually reached, and to compare the effects of region-specific resistance...

  13. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  14. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, Mary Anne V.; Gacutan-Liwag, Aretha Ann C.; Balderas, Jubilia Araceli J.; Guanzon, Ma. Vicenta Luz; Guzman, Angel de

    2002-01-01

    Study Objectives: To determine the peak bone mass density among residents of Metro Manila using dual energy X-ray absorptiometry and to correlate factors such as age, height, weight, body mass index, total caloric, protein and calcium intake to bone mass density. Design: Cross sectional study Setting: Philippine General Hospital and St Luke's Medical Center, tertiary government and private owned hospitals, respectively. Subjects: Two hundred twenty-eight 228) healthy randomly chosen subjects from amongst hospital companion, aged 15-52 years old, distributed at 25 subjects per group of five per sex. Methods: Bone mass density measurements were done on lumbar spine and femoral neck using dual energy x-ray absorptiometry (Lunar DPXL). Ten (10) cc of blood was extracted on one hundred fourteen (114) patients; 5 cc of which was used for biochemical studies while the rest of the sample was stored for fixture studies. One hundred fourteen (114) patients were then interviewed using the Filipino version of the WHO questionnaire for the Study of Osteoporosis, and their nutritional intake was assessed using a previous day food recall. Results: At present, there are a total of 228 patients recruited. The mean weight and height were 57-43±11.17 kg and 158.16±8.44 cm, respectively, and the mean BMI was 22.99±4.11. The mean daily calcium intake was 501.17±357.79 gms/day (n=64). The mean BMD at the L2-L4 spine for females was 1.14±0.15 gm/cm 2 and 1.12±0.21 gm/cm 2 for the males. The highest BMD was 1.23±0.20 gm/cm 2 in the 35-39 year old age group for the females and 1.26±0.31 gm/cm 2 in the 30-34 age group for the males. The mean femoral neck BMD was 0.91±0.12 gm/cm 2 for the females and 1.00±0.13 gm/cm 2 for the males. The highest femoral neck BMD was 0.931±0.12 gm/cm 2 in the 20-24 females and 1.03±0.18 gm/cm 2 in the 20-24 age group for the males. Calcium intake and weight was significantly correlated in the lumbar spine. Height and sex was correlated with both

  15. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass.

    Science.gov (United States)

    Schacht, E; Ringe, Johann D

    2012-01-01

    We investigated the effect of daily therapy with 1 mcg alfacalcidol (Doss(®)-TEVA/AWD-pharma) on muscle power, muscle function, balance performance and fear of falls in an open, multi-centered, uncontrolled, prospective study on a cohort of patients with reduced bone mass. Among the 2,097 participants, 87.1% were post-menopausal women and 12.9% were men. Mean age was 74.8 years and mean body mass index (BMI) 26.3 kg/m². A total of 75.3% of the study population had osteoporosis, 81% a diagnosis of "increased risk of falls" and 70.1% had a creatinine clearance (CrCl) of power tests at onset and after 3 and 6 months: the timed up and go test (TUG) and the chair rising test (CRT). At baseline and after 6 months, participants performed the tandem gait test (TGT) and filled out a questionnaire evaluating fear of falling. Successful performance in the muscle tests is associated with a significantly lower risk of falls and non-vertebral fractures in elderly patients (successful test performance: TUG ≤ 10 s (sec), CRT ≤ 10 s, TGT ≥ 8 steps). A significant improvement in the performance of the two muscle tests was proved already after 3 months of treatment with alfacalcidol and further increased by the end of the therapeutic intervention. There were significant increases in the number of participants able to successfully perform the tests: 24.6% at baseline and 46.3% at the end of trial for the TUG (P balance test (TGT) increased from 36.0% at onset to 58.6% at the end of the trial (P power, muscle function and balance and reduces fear of falls. The significant improvement in the three muscle and balance tests and fear of falls may have a preventative effect on falls and fractures. We suggest that the quantitative risk tests used in this study could be reliable surrogate parameters for the risk of falls and fractures in elderly patients.

  16. Effect of age and disease on bone mass in Japanese patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Sugawara Norio

    2012-02-01

    Full Text Available Abstract Background There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. Methods We recruited patients (n = 362, aged 48.8 ± 15.4 (mean ± SD years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV. Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Results Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Conclusions Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  17. Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yoko Fujino

    2016-12-01

    Full Text Available Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues. To determine whether MALDI-IMS analysis of bone tissues can facilitate comprehensive mapping of biomolecules in mouse bone, we first dissected femurs and tibiae from 8-week-old male mice and characterized the quality of multiple fixation and decalcification methods for preparation of the samples. Cryosections were mounted on indium tin oxide-coated glass slides, dried, and then a matrix solution was sprayed on the tissue surface. Images were acquired using an iMScope at a mass-to-charge range of 100–1000. Hematoxylin-eosin, Alcian blue, Azan, and periodic acid-Schiff staining of adjacent sections was used to evaluate histological and histochemical features. Among the various fixation and decalcification conditions, sections from trichloroacetic acid-treated samples were most suitable to examine both histology and comprehensive MS images. However, histotypic MS signals were detected in all sections. In addition to the MS images, phosphocholine was identified as a candidate metabolite. These results indicate successful detection of biomolecules in bone using MALDI-IMS. Although analytical procedures and compositional adjustment regarding the performance of the device still require further development, IMS appears to be a powerful tool to determine the distribution of biomolecules in bone tissues. Keywords: Matrix-assisted laser desorption/ionization-imaging mass spectrometry, Tissue cryosection, Bone, Fixation, Decalcification

  18. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  19. Assessment of bone mass by image analysis of metacarpal bone roentgenograms

    International Nuclear Information System (INIS)

    Hayashi, Yasufumi; Yamamoto, Kichizo; Fukunaga, Masao; Ishibashi, Toshinobu; Takahashi, Kichiya; Nishii, Yasuho.

    1990-01-01

    A digital image processing (DIP) method for assessing bone mass was developed on the basis of image analysis of roentgenograms. Linearity between DIP values and the actual calcium carbonate content was scarcely affected even if roentgenograms were made with bone phantoms placed in different depths of water or by altering the voltage of X-ray generation. In clinical studies, coefficients of variation (CV) for various measurements were lower than 2.4%. When the correlation between the DIP values and the bone mineral densities in the distal one-third of the radius, and the 2nd to 4th lumbar vertebrae were investigated in 340 females, there were good positive correlations of r=0.799, and r=0.611, respectively (p<0.001). The DIP value was significantly lower in patients showing a low Singh index and in those with vertebral fractures than in other subjects. These results suggest that the DIP method provides an index with which to assess the efficacy of treatment and which can be used as a criterion in screening for osteoporosis. (author)

  20. Low bone mass density is associated with hemolysis in brazilian patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Gabriel Baldanzi

    2011-01-01

    Full Text Available OBJECTIVES: To determine whether kidney disease and hemolysis are associated with bone mass density in a population of adult Brazilian patients with sickle cell disease. INTRODUCTION: Bone involvement is a frequent clinical manifestation of sickle cell disease, and it has multiple causes; however, there are few consistent clinical associations between bone involvement and sickle cell disease. METHODS: Patients over 20 years of age with sickle cell disease who were regularly followed at the Hematology and Hemotherapy Center of Campinas, Brazil, were sorted into three groups, including those with normal bone mass density, those with osteopenia, and those with osteoporosis, according to the World Health Organization criteria. The clinical data of the patients were compared using statistical analyses. RESULTS: In total, 65 patients were included in this study: 12 (18.5% with normal bone mass density, 37 (57% with osteopenia and 16 (24.5% with osteoporosis. Overall, 53 patients (81.5% had bone mass densities below normal standards. Osteopenia and osteoporosis patients had increased lactate dehydrogenase levels and reticulocyte counts compared to patients with normal bone mass density (p<0.05. Osteoporosis patients also had decreased hemoglobin levels (p<0.05. Hemolysis was significantly increased in patients with osteoporosis compared with patients with osteopenia, as indicated by increased lactate dehydrogenase levels and reticulocyte counts as well as decreased hemoglobin levels. Osteoporosis patients were older, with lower glomerular filtration rates than patients with osteopenia. There was no significant difference between the groups with regard to gender, body mass index, serum creatinine levels, estimated creatinine clearance, or microalbuminuria. CONCLUSION: A high prevalence of reduced bone mass density that was associated with hemolysis was found in this population, as indicated by the high lactate dehydrogenase levels, increased

  1. Histone deacetylase 3 is required for maintenance of bone mass during aging

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Dudakovic, Amel; Carlson, Samuel W.; Ryan, Zachary C.; Kumar, Rajiv; Dadsetan, Mahrokh; Yaszemski, Michael J.; Chen, Qingshan; An, Kai-Nan; Westendorf, Jennifer J.

    2012-01-01

    Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the Osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKOOCN mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKOOCN mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKOOCN mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKOOCN mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging. PMID:23085085

  2. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  3. Sports Practice and Bone Mass in Prepubertal Adolescents and Young Adults: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Alessandra Madia Mantovani

    Full Text Available Abstract AIM To compare bone mass and body composition variables between adolescents engaged in high-impact sports and adults who were sedentary during early life. METHOD A cross-sectional study with 155 participants (64 adolescents and 91 adults aged between 11 and 50 years old. Among the adults, history of sports was evaluated during face-to-face interviews, and information regarding the adolescents' training routines was provided by their coaches. Body composition was evaluated using Dual Energy X-Ray Absorptiometry which provided data about bone mineral density (BMD, bone mineral content (BMC, fat mass (FM, and free fat mass (FFM. RESULTS Adults who engaged in sports practice during early life had higher values of BMC (ES-r = 0.063, FFM (ES-r = 0.391, and lower values of FM (ES-r = 0.396 than sedentary adults. Higher values of BMC (ES-r = 0.063 and BMD in lower limbs (ES-r = 0.091 were observed in active adolescents. Adolescents engaged in sports and adults who were sedentary in early life presented similar values in all bone variables, FM, and FFM. CONCLUSIONS Sports involvement in early life is related to higher bone mass in adulthood. Adolescents engaged in sports presented similar bone mass to adults who had been sedentary in early life.

  4. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  5. Low bone mass prevalence and osteoporosis risk factor assessment in African American Wisconsin women.

    Science.gov (United States)

    Kidambi, Srividya; Partington, Susan; Binkley, Neil

    2005-11-01

    Post-menopausal osteoporosis is seen in all racial groups. With the increasing population and longevity of minority groups, osteoporosis is becoming an important health concern. Data regarding risk factors for, and prevalence of, low bone mass and awareness of osteoporosis risk in African American (AA) women are limited. This article evaluates the risk factors for, and prevalence of, low bone mass in a population of urban AA women in Wisconsin and assesses this group's perceived risk for osteoporosis. One hundred fifty consecutive community-dwelling AA women > or = 45 years old from Milwaukee, Wis were asked to complete a questionnaire based on currently accepted osteoporosis risk factors. Additionally, their perception of osteoporosis risk was assessed using a Likert scale. All subjects underwent quantitative calcaneal ultrasound. Subject mean age was 54 +/- 7 years. Mean T- and Z-scores were 0.5 and 0.4, respectively. Applying World Health Organization criteria, osteopenia (bone mineral density T-score 2 children), postmenopausal state, and current smoking were associated with lower calcaneal bone mass. Higher education and presence of diabetes were associated with a higher bone mass. Only 25% of the women surveyed thought they were at moderate to high risk for osteoporosis. Low bone mass was present in 33% of these AA women despite their relative young age. Many AA women do not perceive osteoporosis as a health risk. It is necessary to develop strategies to educate AA women regarding osteoporosis risk.

  6. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  7. Effect of fat mass and lean mass on bone mineral density in postmenopausal and perimenopausal Thai women

    Directory of Open Access Journals (Sweden)

    Namwongprom S

    2013-02-01

    Full Text Available Sirianong Namwongprom,1 Sattaya Rojanasthien,2 Ampica Mangklabruks,3 Supasil Soontrapa,4 Chanpen Wongboontan,5 Boonsong Ongphiphadhanakul61Clinical Epidemiology Program and Department of Radiology, 2Department of Orthopaedics, 3Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 4Department of Orthopaedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, 5Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 6Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandBackground: The purpose of this study was to investigate the association between fat mass, lean mass, and bone mineral density (BMD in postmenopausal and perimenopausal Thai women.Methods: A cross-sectional study was conducted in 1579 healthy Thai women aged 40–90 years. Total body, lumbar spine, total femur, and femoral neck BMD and body composition were measured by dual x-ray absorptiometry. To evaluate the associations between fat mass and lean mass and various measures of BMD, multivariable linear regression models were used to estimate the regression coefficients for fat mass and lean mass, first in separate equations and then with both fat mass and lean mass in the same equation.Results: Among the study population, 1448 subjects (91.7% were postmenopausal and 131 (8.3% were perimenopausal. In postmenopausal women, after controlling for age, height, and duration of menopause, both fat mass and lean mass were positively correlated with BMD when they were analyzed independently of each other. When included in the same equation, both fat mass and lean mass continued to show a positive effect, but lean mass had a significantly greater impact on BMD than fat mass at all regions except for total body. Lean mass but not fat mass had a positive effect on BMD at all skeletal sites except the lumbar spine, after controlling for age and height in perimenopausal

  8. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  9. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake and high bone turnover

    OpenAIRE

    Kruger, Annamarie; Kruger, Marlena C.; Kruger, Iolanthé Marike; Wentzel-Viljoen, Edelweiss

    2011-01-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the Nor...

  10. Thin healthy women have a similar low bone mass to women with anorexia nervosa.

    Science.gov (United States)

    Fernández-García, D; Rodríguez, M; García Alemán, J; García-Almeida, J M; Picón, M J; Fernández-Aranda, F; Tinahones, F J

    2009-09-01

    An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI 18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients.

  11. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    Science.gov (United States)

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  12. Chronic obstructive pulmonary disease and low bone mass: A case-control study

    Directory of Open Access Journals (Sweden)

    Rakesh K Gupta

    2014-01-01

    Full Text Available Background and Objective: Low bone mass (osteopenia and osteoporosis is one of the effects associated with chronic obstructive pulmonary disease (COPD. There is very little data from Saudi Arabia on COPD and low bone mass. This retrospective study was done to assess the prevalence of osteoporosis and osteopenia in COPD patients attending King Fahd Hospital of the University (KFHU, Alkhobar. Patients and Methods: After obtaining the ethical approval from the research committee, all patients seen between at the King Fahd Hospital of the University between January 2010 and December 2012 were included. The inclusion criteria included a follow up of a minimum 2 years, and the Medical Records should have the details of forced expiratory volume in one second (FEV 1 , blood bone profile and bone biomarkers and dual-energy X-ray absorptiometry (DEXA scan. Patients were labeled as osteopenia if the T score was -<1 to <-2.5 and osteoporosis of <-2.5 as per the WHO definition of osteopenia and osteoporosis. Results: Seventy-three patients were being followed in the clinics and 49 patients satisfied the inclusion criteria. The average age was 60.6 ± 10.47 years; males were 43 and females 6. Three (6.1% were normal and the remaining 46 (93.9% were with low bone mass. Thirty-two (65.3% were osteoporotic and 14 (28.57% were osteopenic. The average duration of COPD was 4.5 ± 6.2 years. Majority (n = 36, 73.4% of patients were in the Global Initiative for COPD (GOLD class II and III. FEV 1 was significantly lower in the patients with low bone mass 1.66 ± 0.60 versus 3.61 ± 0.58 (P < 0.001. Conclusions: Our study shows that over 90% of Saudi Arabian patients with COPD suffer from osteopenia and osteoporosis and unfortunately they remain under-diagnosed and undertreated.

  13. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro

    2008-01-01

    .0 +/- 1.4%); nutrient group: 0.953 +/- 0.051 to 0.978 +/- 0.043 g/mm(3) (3.8 +/- 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report...... that nutrient supplementation results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  14. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Science.gov (United States)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  15. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  16. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  17. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Warming, Lise; Ravn, Pernille; Christiansen, Claus

    2003-01-01

    as double-layer thickness. Body composition was measured by dual energy x-ray absorptiometry, which divides the body into fat mass, lean mass, and bone mass, both for the total body and regional body compartments. An abdominal region was inserted manually. Statistics were Pearson correlations and analysis...... of variance. RESULTS: Endometrial thickness and total body bone mass were correlated, respectively, to body mass index (r = 0.14, P ... correlate with increased endometrial thickness and bone mass....

  18. Vitamin D and estrogen receptor-alpha genotype and indices of bone mass and bone turnover in Danish girls

    DEFF Research Database (Denmark)

    Cusack, S.; Mølgaard, C.; Michaelsen, K. F.

    2006-01-01

    (VDR) (FokI, TaqI) and estrogen receptor-alpha (ER alpha) (PvuII, XbaI), and bone mineral density (BMD), bone mineral content (BMC), and markers of bone turnover in 224 Danish girls aged 11-12 years. BMD and BMC were measured by dual-energy X-ray absorptiometry. Serum osteocalcin, 25(OH......Peak bone mass is a major determinant of osteoporosis risk in later life. It is under strong genetic control; however, little is known about the identity of the genes involved. In the present study, we investigated the relationship between polymorphisms in the genes encoding the vitamin D receptor...

  19. The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii.

    Science.gov (United States)

    Davis, J W; Novotny, R; Ross, P D; Wasnich, R D

    1994-10-01

    Our study compares the bone mass of Hawaiian, Filipino, Japanese, and white women living in Oahu, Hawaii. Eligible women ranged in age from 25 to 34; all had bone mass measurements at the spine, calcaneus, and proximal and distal radius. Their average bone mineral density (BMD) remained stable with age at all four bone sites, indicating that the age range 25-34 may represent the peak bone mass. Bone mass varied, however, between ethnicities; differences in BMD up to 11% were observed. The Hawaiian women had the greatest BMD, and whites had the second greatest BMD at the spine and calcaneus. The Japanese most frequently had the lowest BMD. Differences in body size partly explained the differences; most ethnic differences were reduced or eliminated after adjusting for height and weight. At the spine, the ethnic differences for BMD were also apparent with BMC and with vertebral area. Hawaiian and white women had greater values than Japanese or Filipino women. Differences at the proximal radius resembled the spine, except that whites had the widest proximal widths. The results were more complex for the distal radius. At the distal radius whites had the lowest BMD of the four ethic groups. The difference between whites and Hawaiians derived from the greater bone mineral content (BMC) of the Hawaiian women. By contrast, the difference between whites and the Japanese and Filipinos derived from the wider distal widths of the white women. Compared with the Japanese and Filipino women, the white women appeared to disperse their BMC at the distal radius across a wider bone width.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  1. Maternal first-trimester diet and childhood bone mass: The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); O.H. Franco (Oscar); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2013-01-01

    textabstractBackground: Maternal diet during pregnancy has been suggested to influence bone health in later life. Objective: We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. Design: In a prospective cohort study in 2819 mothers and

  2. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  3. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  4. Long term effect of thiazides on bone mass in women with hypercalciuric nephrolithiasis

    OpenAIRE

    Spivacow, Francisco R; Negri, Armando L; del Valle, Elisa E

    2013-01-01

    Background: Decreased bone mineral density and increased prevalence of bone fractures have been found in patients with idiopathic hypercalciuria. It is not yet clear if thiazide treatment prevent these events. Methods: We retrospectively evaluated bone mass and biochemical markers of bone turnover in response to thiazide therapy in 52 consecutive female patients with idiopathic hypercalciuria and nephrolithiasis. Patients were divided in two subgroups according to their menopausal status: 25 ...

  5. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia

    DEFF Research Database (Denmark)

    Amstrup, Anne Kristine; Sikjaer, Tanja; Heickendorff, Lene

    2015-01-01

    Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment...... with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual...... X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin...

  6. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  7. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.

    2008-01-01

    .4%); nutrient group: 0.953 ± 0.051 to 0.978 ± 0.043 g/mm3 (3.8 ± 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report that nutrient supplementation...... results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal maintenance.......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  8. Improvement of adynamic bone disease after renal transplantation.

    Science.gov (United States)

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  9. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs with full

  10. Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-05-01

    Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  11. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  12. Association between circulating levels of adiponectin and indices of bone mass and bone metabolism in middle-aged post-menopausal women.

    Science.gov (United States)

    Tenta, R; Kontogianni, M D; Yiannakouris, N

    2012-03-01

    Adiponectin, a fat derived cytokine, is a potential independent contributor to bone mineral density (BMD); however, its action on bone metabolism in humans is still unclear. The aim of this study was to investigate the relationship of adiponectin with bone mass indices and bone metabolic markers in middle-aged post-menopausal women without diabetes. A random sample consisted of 81 post-menopausal women (age range 45-61 yr, osteopenic/osteoporotic no.=43) was studied. Lumbar-spine BMD (BMD(L2-L4)) and total-body bone mineral content (TBBMC) were measured with dual X-ray absorptiometry. Plasma levels of total and high-molecular weight (HMW) adiponectin, osteoprotegerin (OPG), soluble receptor activator of nuclear factor-κB ligand (sRANKL) and IGF-I were determined. No association was observed between total or HMW adiponectin and BMD(L2-L4) or TBBMC. On the contrary, adiponectin levels were positively associated with OPG levels (partial r=0.276, p=0.015) and negatively with IGF-I (partial r=-0.438, pfailed to show statistically significant association between circulating adiponectin levels and indices of bone mass in women during the postmenopausal period, we showed significant associations with OPG and IGF-I levels, suggesting an anabolic role of adiponectin, which may contribute in the understanding of the interplay between adipose tissue-derived hormones and bone metabolism. © 2012, Editrice Kurtis.

  13. Poor bone health in underprivileged Indian girls: an effect of low bone mass accrual during puberty.

    Science.gov (United States)

    Khadilkar, Anuradha V; Sanwalka, Neha J; Kadam, Nidhi S; Chiplonkar, Shashi A; Khadilkar, Vaman V; Mughal, M Zulf

    2012-05-01

    A socio-economic gradient exists for most reasons of morbidity and mortality including delayed puberty in lower (LSES) as compared to higher (HSES) socio-economic stratum and puberty is an important factor affecting bone status in children and adolescents. Thus, a cross-sectional study was conducted on 195 age-matched pairs of girls (8-17years) from LSES and HSES in Pune City, India to assess the hypothesis that socio-economic factors working through late puberty would have a negative association with bone status of adolescents. Height, weight and Tanner stage were assessed. Total body bone mineral content (TBBMC), total body bone area (TBBA), total body bone mineral density (TBBMD), lean body mass (LBM) and total body fat mass (TBFM) were measured using GE Lunar DPX Pro Pencil Beam DXA (Wisconsin, USA) scanner. Mean TBBMC (1172±434g), TBBA (1351±356cm(2)), TBBMD (0.846±0.104g/cm(2)), LBM (21,622±5306g) and TBFM (7746±5194g) in LSES girls were significantly lower than that of HSES girls [TBBMC (1483±525g), TBBA (1533±380cm(2)), TBBMD (0.942±0.119g/cm(2)), LBM (24,308±5829g) and TBFM (12,196±7404g)] (pbone parameters. The differences in TBBMC, TBBA, LBM and TBFM between the 2 socio-economic strata at Tanner stage I were not significant (p>0.1) whereas there were significant differences in these parameters from Tanner stages II to V (pbone health in adolescent girls from the lower socio-economic stratum. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  15. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  16. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M-C; Thomsen, Jesper Skovhus; Nyengaard, J R

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind...... of periosteal BFR/BS (2-fold increase vs. BTX, Pmuscle mass (+29% vs. BTX, Pmuscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse......BMD, -13%, Pmuscle mass (-69%, Pmuscle cell cross sectional area (CSA) (-73%, P

  17. [Influence of preoperative bone mass density in periprosthetic bone remodeling after implantation of ABG-II prosthesis: A 10-year follow-up].

    Science.gov (United States)

    Aguilar Ezquerra, A; Panisello Sebastiá, J J; Mateo Agudo, J

    2016-01-01

    Preoperative bone mass index has shown to be an important factor in peri-prosthetic bone remodelling in short follow-up studies. Bone density scans (DXA) were used to perform a 10-year follow-up study of 39 patients with a unilateral, uncemented hip replacement. Bone mass index measurements were made at 6 months, one year, 3 years, 5 years, and 10 years after surgery. Pearson coefficient was used to quantify correlations between preoperative bone mass density (BMD) and peri-prosthetic BMD in the 7 Gruen zones at 6 months, one year, 3 years, 5 years, and 10 years. Pre-operative BMD was a good predictor of peri-prosthetic BMD one year after surgery in zones 1, 2, 4, 5 and 6 (Pearson index from 0.61 to 0.75). Three years after surgery it has good predictive power in zones 1, 4 and 5 (0.71-0.61), although in zones 3 and 7 low correlation was observed one year after surgery (0.51 and 0.57, respectively). At the end of the follow-up low correlation was observed in the 7 Gruen zones. Sex and BMI were found to not have a statistically significant influence on peri-prosthetic bone remodelling. Although preoperative BMD seems to be an important factor in peri-prosthetic remodelling one year after hip replacement, it loses its predictive power progressively, until not being a major factor in peri-prosthetic remodelling ten years after surgery. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  18. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass.

    Science.gov (United States)

    Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei

    2017-04-24

    This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  19. Determination of peak bone mass density and composition in low income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.

    2000-01-01

    The work described in this paper is a continuation of the first phase of the study, which is the determination of the peak bone mass density among residents of Metro Manila using dual energy x-ray absorptiometry. However, it also aims to correlate sex, body mass index, nutritional factors, physical activity and lifestyle to peak bone mass and thus attempts to explain any discrepancies in peak bone mass density to that seen in other countries

  20. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    Science.gov (United States)

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  1. Dairy products, yogurts, and bone health.

    Science.gov (United States)

    Rizzoli, René

    2014-05-01

    Fracture risk is determined by bone mass, geometry, and microstructure, which result from peak bone mass (the amount attained at the end of pubertal growth) and from the amount of bone lost subsequently. Nutritional intakes are an important environmental factor that influence both bone mass accumulation during childhood and adolescence and bone loss that occurs in later life. Bone growth is influenced by dietary intake, particularly of calcium and protein. Adequate dietary calcium and protein are essential to achieve optimal peak bone mass during skeletal growth and to prevent bone loss in the elderly. Dairy products are rich in nutrients that are essential for good bone health, including calcium, protein, vitamin D, potassium, phosphorus, and other micronutrients and macronutrients. Studies supporting the beneficial effects of milk or dairy products on bone health show a significant inverse association between dairy food intake and bone turnover markers and a positive association with bone mineral content. Fortified dairy products induce more favorable changes in biochemical indexes of bone metabolism than does calcium supplementation alone. The associations between the consumption of dairy products and the risk of hip fracture are less well established, although yogurt intake shows a weakly positive protective trend for hip fracture. By consuming 3 servings of dairy products per day, the recommended daily intakes of nutrients essential for good bone health may be readily achieved. Dairy products could therefore improve bone health and reduce the risk of fractures in later life.

  2. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  3. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia

    Directory of Open Access Journals (Sweden)

    Fujiwara S

    2014-11-01

    Full Text Available Saeko Fujiwara,1 Etsuro Hamaya,2 Masayo Sato,2 Peita Graham-Clarke,3 Jennifer A Flynn,2 Russel Burge41Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan; 2Lilly Research Laboratories Japan, Eli Lilly Japan K.K., Kobe, Japan; 3Global Health Outcomes, Eli Lilly Australia, Sydney, NSW, Australia; 4Global Health Outcomes, Eli Lilly and Company, Indianapolis, IN, USAPurpose: To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia.Materials and methods: Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain. Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis.Results: Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications, but not the hip region (eight publications, a low incidence of vertebral fracture (three publications, decreases in markers of bone turnover (eleven publications, improved hip structural geometry (two publications, improved blood–lipid profiles (five publications, a low incidence of hot flushes

  4. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben

    2015-01-01

    transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed......Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling....... Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell...

  5. A 4-year treatment with clodronate plus calcium and vitamin D supplements does not improve bone mass in primary biliary cirrhosis.

    Science.gov (United States)

    Floreani, A; Carderi, I; Ferrara, F; Rizzotto, E R; Luisetto, G; Camozzi, V; Baldo, V

    2007-06-01

    International guidelines for managing osteoporosis in cirrhosis or severe cholestasis indicate a m. disodium clodronate 100mg every 10 days for 4 years. Ninety-six patients completed the study: 30 had a normal bone mineral density (group 1), 37 had osteopenia (group 2), 29 had osteoporosis (group 3). No significant differences in biochemical parameters of bone metabolism were observed between the three groups. A total of 288 bone mineral density measurements were taken. Linear regression analysis failed to reveal significant changes in t-score over the follow-up in all groups. A 4-year treatment with clodronate+calcium/vitamin D3 supplements does not significantly improve osteoporosis or osteopenia in primary biliary cirrhosis women in menopause, but prevents the natural bone loss in these patients. Extensive international trials are warranted to optimize the prevention and treatment of bone loss in primary biliary cirrhosis.

  6. Volleyball and Basketball Enhanced Bone Mass in Prepubescent Boys.

    Science.gov (United States)

    Zouch, Mohamed; Chaari, Hamada; Zribi, Anis; Bouajina, Elyès; Vico, Laurence; Alexandre, Christian; Zaouali, Monia; Ben Nasr, Hela; Masmoudi, Liwa; Tabka, Zouhair

    2016-01-01

    The aim of this study was to examine the effect of volleyball and basketball practice on bone acquisition and to determine which of these 2 high-impact sports is more osteogenic in prepubertal period. We investigated 170 boys (aged 10-12 yr, Tanner stage I): 50 volleyball players (VB), 50 basketball players (BB), and 70 controls. Bone mineral content (BMC, g) and bone area (BA, cm(2)) were measured by dual-energy X-ray absorptiometry at different sites. We found that, both VB and BB have a higher BMC at whole body and most weight-bearing and nonweight-bearing sites than controls, except the BMC in head which was lower in VB and BB than controls. Moreover, only VB exhibited greater BMC in right and left ultra-distal radius than controls. No significant differences were observed between the 3 groups in lumbar spine, femoral neck, and left third D radius BMC. Athletes also exhibited a higher BA in whole body, limbs, lumbar spine, and femoral region than controls. In addition, they have a similar BA in head and left third D radius with controls. The VB exhibited a greater BA in most radius region than controls and a greater femoral neck BA than BB. A significant positive correlation was reported between total lean mass and both BMC and BA in whole body, lumbar spine, total hip, and right whole radius among VB and BB. In summary, we suggest that volleyball and basketball have an osteogenic effect BMC and BA in loaded sites in prepubescent boys. The increased bone mass induced by both volleyball and basketball training in the stressed sites was associated to a decreased skull BMC. Moreover, volleyball practice produces a more sensitive mechanical stress in loaded bones than basketball. This effect seems translated by femoral neck expansion. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  7. Association between bone mass as assessed by quantitative ultrasound and physical function in elderly women: The Fujiwara-kyo study

    Directory of Open Access Journals (Sweden)

    Akira Minematsu

    2017-06-01

    Conclusions: Measurements of physical function can effectively identify elderly women with low bone mass at an early stage without the need for bone mass measurements. In particular, one-leg standing time and 10-m gait time were good predictors of low bone mass, and is easy to measure, low-cost, and can be self-measured. These findings will be helpful in the prevention and treatment of osteoporosis.

  8. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  9. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    OpenAIRE

    Pardini,Dolores Perovano; Sabino,Anibal Tagliaferri; Meneses,Ana Maria; Kasamatsu,Teresa; Vieira,José Gilberto Henriques

    2000-01-01

    CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic...

  10. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius

    NARCIS (Netherlands)

    Pistoia, W.; Rietbergen, van B.; Rüegsegger, P.

    2003-01-01

    Metabolic bone diseases such as osteoporosis usually cause a decrease in bone mass and a deterioration of bone microarchitecture leading to a decline in bone strength. Methods to predict bone strength in patients are currently based on bone mass only. It has been suggested that an improved

  11. Optimizing Bone Health in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jason L. Buckner

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA, as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  12. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Jensen, Trine

    2016-01-01

    remission (0.0032 vs. 0.0058 g/cm(2)/year; p clinical practice, and only......BACKGROUND: Rheumatoid arthritis is characterised by progressive joint destruction and loss of periarticular bone mass. Hand bone loss (HBL) has therefore been proposed as an outcome measure for treatment efficacy. A definition of increased HBL adjusted for age- and sex-related bone loss is lacking....... In this study, we aimed to: 1) establish reference values for normal hand bone mass (bone mineral density measured by digital x-ray radiogrammetry (DXR-BMD)); and 2) examine whether HBL is normalised in rheumatoid arthritis patients during treatment with tumour necrosis factor alpha inhibitors (TNFI). METHODS...

  13. Aging and bone. X-ray bone densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Rikushi (Shiga Univ. of Medical Sciences, Otsu (Japan))

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.).

  14. Aging and bone. X-ray bone densitometry

    International Nuclear Information System (INIS)

    Morita, Rikushi

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.)

  15. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  16. Role of clinical indications of bone mass measurement with bi-photonic X-ray absorptiometry. Interet et indications cliniques des mesures de masse osseuse par absorptiometrie biphotonique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    Bone densitometry by precise, reliable and non-traumatic methods such as X-ray bi-phonon absorptiometry, is the only way to predict osteoporosis fractures risks. The whole epidemiological studies establish that bone mass loss and osteoporosis risk are directly linked. The measurement of the bone mass is the basis of osteoporosis prevention for elderly women, and of other clinical situations. This paper gives, by a critical analysis of available data, advantages and limits of bone mass measurements by X-ray bi-phonon absorptiometry, and essential clinical indications. (A.B.). 181 refs.

  17. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  18. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-01-01

    Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893

  19. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P 1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  20. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  1. Bone mass in Indian children--relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study.

    Science.gov (United States)

    Ganpule, A; Yajnik, C S; Fall, C H D; Rao, S; Fisher, D J; Kanade, A; Cooper, C; Naik, S; Joshi, N; Lubree, H; Deshpande, V; Joglekar, C

    2006-08-01

    Bone mass is influenced by genetic and environmental factors. Recent studies have highlighted associations between maternal nutritional status during pregnancy and bone mass in the offspring. We hypothesized that maternal calcium intakes and circulating micronutrients during pregnancy are related to bone mass in Indian children. DESIGN/SETTING/PARTICIPANTS/MAIN OUTCOME MEASURES: Nutritional status was measured at 18 and 28 wk gestation in 797 pregnant rural Indian women. Measurements included anthropometry, dietary intakes (24-h recall and food frequency questionnaire), physical workload (questionnaire), and circulating micronutrients (red cell folate and plasma ferritin, vitamin B12, and vitamin C). Six years postnatally, total body and total spine bone mineral content and bone mineral density (BMD) were measured using dual-energy x-ray absorptiometry (DXA) in the children (n = 698 of 762 live births) and both parents. Both parents' DXA measurements were positively correlated with the equivalent measurements in the children (P pregnancy (milk, milk products, pulses, non-vegetarian foods, green leafy vegetables, fruit) had higher total and spine bone mineral content and BMD, and children of mothers with higher folate status at 28 wk gestation had higher total and spine BMD, independent of parental size and DXA measurements. Modifiable maternal nutritional factors may influence bone health in the offspring. Fathers play a role in determining their child's bone mass, possibly through genetic mechanisms or through shared environment.

  2. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    Science.gov (United States)

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  3. Peak bone mass density among residents of metro Manila: A preliminary report

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.; Guanzon, L.V.; Guzman, A.M. de; Villaruel, C.M.; Santos, F.

    1998-01-01

    Study Objective: To determine the peak bone mass density among residents of Metro Manila using dual X-ray absorptiometry (DEXA). Design: Cross-sectional study. Setting: Philippine General Hospital, a university based tertiary care hospital, and St. Luke's Medical Center, a private tertiary care center. Subjects: Forty five (45) healthy subjects aged 15-50 years old, all current residents of Metro Manila, were randomly chosen from among hospital companions were included in the study. There were 23 females and 22 males, with 3 to 4 subjects for each age range of 5. Methods: Bone mass density measurements on the lumbar spine and the femur using dual X-ray absorptiometry (DPXL Lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with the 5 cc of blood separated for future studies. Parathormone assay and biochemistry examinations were also done. Patents were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on Osteoporosis. Dietary content was estimated using a previous day food recall. Results: The mean weight and height for females were 59.48±16.34 kg and 153.52±5.09 cm respectively, and for males, 58.14±10.06 kg and 162.52±6.75 cm respectively. The mean bone mass density at the L 2 L 4 level for females was 1.12±0.11 g/cm 2 and 0.91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved among those aged 30-35 years of age with the lowest BMD occurring between 15-19 and 45-50 years of age in the lumbar spine among female subjects. The highest BMD at the lumbar spine and the femoral neck among males was achieved between the ages 30-35 years of age with the lowest IND

  4. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  5. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  6. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  7. High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep.

    Science.gov (United States)

    Simon, M J K; Beil, F T; Rüther, W; Busse, B; Koehne, T; Steiner, M; Pogoda, P; Ignatius, A; Amling, M; Oheim, R

    2014-07-01

    Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone

  8. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.

    Science.gov (United States)

    Guntur, Anyonya R; Le, Phuong T; Farber, Charles R; Rosen, Clifford J

    2014-05-01

    Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and

  9. A multicenter study of the influence of fat and lean mass on bone mineral content

    DEFF Research Database (Denmark)

    Hla, M M; Davis, J W; Ross, P D

    1996-01-01

    We examined the relative influence of fat and lean mass on bone mineral content (BMC) among 1600 early postmenopausal women aged 45-59 y from four geographical locations (Nottingham, United Kingdom; Portland, OR; Honolulu; and Copenhagen). Bone sites investigated included the major fracture sites...

  10. Effect of Raised Body Fat on Vitamin D, Leptin and Bone Mass

    International Nuclear Information System (INIS)

    Fatima, S. S.; Alam, F.

    2015-01-01

    Objectives: To estimate leptin, vitamin D and bone mineral density levels in individuals with high fat mass, and to assess any correlation. Methods: The cross-sectional study was conducted at the Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi, and Aga Khan University, Karachi, from August 2012 to July 2014, and comprised healthy male volunteers between the ages of 18-60 years. Body fat percentage was determined using bioelectrical impedance analysis and the participants were classified as: Group A (15-21.9); Group B (22-27.9); and Group C (>28). Bone mineral density was calculated by ultrasound bone densitometer (T-score between +1 and -1 considered normal). Enzyme-linked immunosorbent assay kits were used to determine the levels of vitamin D and leptin. SPSS 19 was used for statistical analysis. Results: A total of 132 male subjects participated in this study, with each of the 3 groups having 44(33.3 percent). Despite all groups having low Vitamin D, a marked decrease was observed in group C compared to groups A and B (p <0.018). Bone mineral density T-score was <-1; total calcium was within normal range in all three groups. Serum leptin was raised in Group C compared to group A and B (p=0.03). Body fat percentage was negatively associated with vitamin D (p=0.004; r = -0.351), while it was positively correlated with leptin (p =0.038; r = 0.256). Conclusion: Excess of body fat percentage led to decreased vitamin D and raised leptin. However, bone mineral density and calcium levels were within normal range, suggesting that other factors might have played a role in maintaining bone mass in obese individuals, such as leptin. (author)

  11. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass

    Directory of Open Access Journals (Sweden)

    Guiyuan Han

    2017-04-01

    Full Text Available This study investigated the relationships of fat mass (FM and lean mass (LM with estimated hip bone strength in Chinese men aged 50–80 years (median value: 62.0 years. A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA. The relationships of the LM index (LMI and the FM index (FMI with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders (p < 0.05. Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area (p < 0.05. The contribution of the LMI (4.0%–12.8% was greater than that of the FMI (2.0%–5.7%. The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile (p < 0.05, but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  12. Appendicular bone mass and knee and hand osteoarthritis in Japanese women: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Moji Kazuhiko

    2002-10-01

    Full Text Available Abstract Background It has been reported that there is an inverse association between osteoarthritis (OA and osteoporosis. However, the relationship of bone mass to OA in a Japanese population whose rates of OA are different from Caucasians remains uncertain. Methods We studied the association of appendicular bone mineral density (second metacarpal; mBMD and quantitative bone ultrasound (calcaneus; stiffness index with knee and hand OA among 567 Japanese community-dwelling women. Knee and hand radiographs were scored for OA using Kellgren-Lawrence (K/L scales. In addition, we evaluated the presence of osteophytes and of joint space narrowing. The hand joints were examined at the distal and proximal interphalangeal (DIP, PIP and first metacarpophalangeal/carpometacarpal (MCP/CMC joints. Results After adjusting for age and body mass index (BMI, stiffness index was significantly higher in women with K/L scale, grade 3 at CMC/MCP joint compared with those with no OA. Adjusted means of stiffness index and mBMD were significantly higher in women with definite osteophytes at the CMC/MCP joint compared to those without osteophytes, whereas there were no significant differences for knee, DIP and PIP joints. Stiffness index, but not mBMD, was higher in women with definite joint space narrowing at the CMC/MCP joint compared with those with no joint space narrowing. Conclusions Appendicular bone mass was increased with OA at the CMC/MCP joint, especially among women with osteophytes. Our findings suggest that the association of peripheral bone mass with OA for knee, DIP or PIP may be less clearcut in Japanese women than in other populations.

  13. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Prevalence of Osteoporosis and Low Bone Mass Among Puerto Rican Older Adults

    Science.gov (United States)

    Noel, Sabrina E; Mangano, Kelsey M; Griffith, John L; Wright, Nicole C; Dawson-Hughes, Bess; Tucker, Katherine L

    2018-01-01

    Historically, osteoporosis has not been considered a public health priority for the Hispanic population. However, recent data indicate that Mexican Americans are at increased risk for this chronic condition. Although it is well established that there is heterogeneity in social, lifestyle, and health-related factors among Hispanic subgroups, there are currently few studies on bone health among Hispanic subgroups other than Mexican Americans. The current study aimed to determine the prevalence of osteoporosis and low bone mass (LBM) among 953 Puerto Rican adults, aged 47 to 79 years and living on the US mainland, using data from one of the largest cohorts on bone health in this population: The Boston Puerto Rican Osteoporosis Study (BPROS). Participants completed an interview to assess demographic and lifestyle characteristics and bone mineral density measures. To facilitate comparisons with national data, we calculated age-adjusted estimates for osteoporosis and LBM for Mexican American, non-Hispanic white, and non-Hispanic black adults, aged ≥50 years, from the National Health and Nutrition Examination Survey (NHANES). The overall prevalence of osteoporosis and LBM were 10.5% and 43.3% for participants in the BPROS, respectively. For men, the highest prevalence of osteoporosis was among those aged 50 to 59 years (11%) and lowest for men ≥70 years (3.7%). The age-adjusted prevalence of osteoporosis for Puerto Rican men was 8.6%, compared with 2.3% for non-Hispanic white, and 3.9% for Mexican American men. There were no statistically significant differences between age-adjusted estimates for Puerto Rican women (10.7%), non-Hispanic white women (10.1%), or Mexican American women (16%). There is a need to understand specific factors contributing to osteoporosis in Puerto Rican adults, particularly younger men. This will provide important information to guide the development of culturally and linguistically tailored interventions to improve bone health in this

  15. [Diet, nutrition and bone health].

    Science.gov (United States)

    Miggiano, G A D; Gagliardi, L

    2005-01-01

    Nutrition is an important "modifiable" factor in the development and maintenance of bone mass and in the prevention of osteoporosis. The improvement of calcium intake in prepuberal age translates to gain in bone mass and, with genetic factor, to achievement of Peak Bone Mass (PBM), the higher level of bone mass reached at the completion of physiological growth. Individuals with higher PBM achieved in early adulthood will be at lower risk for developing osteoporosis later in life. Achieved the PBM, it is important maintain the bone mass gained and reduce the loss. This is possible adopting a correct behaviour eating associated to regular physical activity and correct life style. The diet is nutritionally balanced with caloric intake adequate to requirement of individual. This is moderate in protein (1 g/kg/die), normal in fat and the carbohydrates provide 55-60% of the caloric intake. A moderate intake of proteins is associated with normal calcium metabolism and presumably does'nt alter bone turnover. An adequate intake of alkali-rich foods may help promote a favorable effect of dietary protein on the skeleton. Lactose intolerance may determinate calcium malabsorption or may decrease calcium intake by elimination of milk and dairy products. Omega3 fatty acids may "down-regulate" pro-inflammatory cytokines and protect against bone loss by decreasing osteoclast activation and bone reabsorption. The diet is characterized by food containing high amount of calcium, potassium, magnesium and low amount of sodium. If it is impossible to reach the requirement with only diet, it is need the supplement of calcium and vitamin D. Other vitamins (Vit. A, C, E, K) and mineral (phosphorus, fluoride, iron, zinc, copper and boron) are required for normal bone metabolism, thus it is need adequate intake of these dietary components. It is advisable reduce ethanol, caffeine, fibers, phytic and ossalic acid intake. The efficacy of phytoestrogens is actually under investigation. Some

  16. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study.

    Science.gov (United States)

    Cole, Zoe A; Gale, Catharine R; Javaid, M Kassim; Robinson, Sian M; Law, Catherine; Boucher, Barbara J; Crozier, Sarah R; Godfrey, Keith M; Dennison, Elaine M; Cooper, Cyrus

    2009-04-01

    Maternal nutrition is a potentially important determinant of intrauterine skeletal development. Previous studies have examined the effects of individual nutrients, but the pattern of food consumption may be of greater relevance. We therefore examined the relationship between maternal dietary pattern during pregnancy and bone mass of the offspring at 9 yr of age. We studied 198 pregnant women 17-43 yr of age and their offspring at 9 yr of age. Dietary pattern was assessed using principal component analysis from a validated food frequency questionnaire. The offspring underwent measurements of bone mass using DXA at 9 yr of age. A high prudent diet score was characterized by elevated intakes of fruit, vegetables, and wholemeal bread, rice, and pasta and low intakes of processed foods. Higher prudent diet score in late pregnancy was associated with greater (p socioeconomic status, height, arm circumference, maternal smoking, and vitamin D status. Associations with prudent diet score in early pregnancy were weaker and nonsignificant. We conclude that dietary patterns consistent with current advice for healthy eating during pregnancy are associated with greater bone size and BMD in the offspring at 9 yr of age.

  17. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  18. Trends in osteoporosis and low bone mass in older US adults, 2005-2006 through 2013-2014.

    Science.gov (United States)

    Looker, A C; Sarafrazi Isfahani, N; Fan, B; Shepherd, J A

    2017-06-01

    This study examined trends in osteoporosis and low bone mass in older US adults between 2005 and 2014 using bone mineral density (BMD) data from the National Health and Nutrition Examination Survey (NHANES). Osteoporosis and low bone mass appear to have increased at the femur neck but not at the lumbar spine during this period. Recent preliminary data from Medicare suggest that the decline in hip fracture incidence among older US adults may have plateaued in 2013-2014, but comparable data on BMD trends for this time period are currently lacking. This study examined trends in the prevalence of osteoporosis and low bone mass since 2005 using BMD data from NHANES. The present study also updated prevalence estimates to 2013-2014 and included estimates for non-Hispanic Asians. Femur neck and lumbar spine BMD by DXA were available for 7954 adults aged 50 years and older from four NHANES survey cycles between 2005-2006 and 2013-2014. Significant trends (quadratic or linear) were observed for the femur neck (mean T-score and osteoporosis in both sexes; low bone mass in women) but not for the lumbar spine. The trend in femur neck status was somewhat U-shaped, with prevalences being most consistently significantly higher (by 1.1-6.6 percentage points) in 2013-2014 than 2007-2008. Adjusting for changes in body mass index, smoking, milk intake, and physician's diagnosis of osteoporosis between surveys did not change femur neck trends. In 2013-2014, the percent of older adults with osteoporosis was 6% at the femur neck, 8% at the lumbar spine, and 11% at either site. There was some evidence of a decline in femur neck BMD between 2005-2006 and 2013-2014, but not in lumbar spine BMD. Changes in the risk factors that could be examined did not explain the femur neck BMD trends.

  19. The effect of ethnicity on appendicular bone mass in white, coloured ...

    African Journals Online (AJOL)

    Ethnic differences in the incidence and prevalence of osteoporosis have been shown throughout the world. In South Africa the prevalence of osteoporosis is much higher in whites than in blacks. This is surprising, since factors that might predispose to reduce bone mass are more preponderant in black communities.

  20. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Bone mineral density before and after OLT: long-term follow-up and predictive factors.

    Science.gov (United States)

    Guichelaar, Maureen M J; Kendall, Rebecca; Malinchoc, Michael; Hay, J Eileen

    2006-09-01

    Fracturing after liver transplantation (OLT) occurs due to the combination of preexisting low bone mineral density (BMD) and early posttransplant bone loss, the risk factors for which are poorly defined. The prevalence and predictive factors for hepatic osteopenia and osteoporosis, posttransplant bone loss, and subsequent bone gain were studied by the long-term posttransplant follow-up of 360 consecutive adult patients with end-stage primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Only 20% of patients with advanced PBC or PSC have normal bone mass. Risk factors for low spinal BMD are low body mass index, older age, postmenopausal status, muscle wasting, high alkaline phosphatase and low serum albumin. A high rate of spinal bone loss occurred in the first 4 posttransplant months (annual rate of 16%) especially in those with younger age, PSC, higher pretransplant bone density, no inflammatory bowel disease, shorter duration of liver disease, current smoking, and ongoing cholestasis at 4 months. Factors favoring spinal bone gain from 4 to 24 months after transplantation were lower baseline and/or 4-month bone density, premenopausal status, lower cumulative glucocorticoids, no ongoing cholestasis, and higher levels of vitamin D and parathyroid hormone. Bone mass therefore improves most in patients with lowest pretransplant BMD who undergo successful transplantation with normal hepatic function and improved gonadal and nutritional status. Patients transplanted most recently have improved bone mass before OLT, and although bone loss still occurs early after OLT, these patients also have a greater recovery in BMD over the years following OLT.

  2. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links.

    Science.gov (United States)

    Pardini, D P; Sabino, A T; Meneses, A M; Kasamatsu, T; Vieira, J G

    2000-01-06

    The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. Cohort correlational study. Academic referral center. 53 post-menopausal women, aged 48-58 years. Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DEXA) before treatment and after 12 months of HRT. The BMD after HRT was about 4.7% (P < 0.0004); 2% (P < 0.002); and 3% (P < 0. 01) higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002), and 42% (P < 0.0002) respectively after 1 year. Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  3. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  4. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass; Trabekulaere Knochendichte der Lendenwirbelsaeule bei Kindern und Jugendlichen in der quantitativen CT: Referenzwerte und Peak Bone Mass

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, L.D.; Alzen, G. [Kinderradiologie, Zentrum fuer Radiologie, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany); Haras, G. [Siemens AG, Medical Solutions, Forchheim (Germany); Mann, M. [AG Medizinische Statistik, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany)

    2006-12-15

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  5. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  6. Alveolar bone mass in pre- and postmenopausal women with serum calcium as a marker: A comparative study

    Directory of Open Access Journals (Sweden)

    Amitha Ramesh

    2011-01-01

    Conclusion: Postmenopausal women exhibit a reduced alveolar bone mass and lowered levels of serum total calcium with the increasing age. These changes may be useful indicators for low skeletal bone mineral density or osteoporosis.

  7. ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Yong Fu

    2018-03-01

    Full Text Available Optimization of nanofiber surface properties can lead to enhanced tissue regeneration outcomes in the context of bone tissue engineering. Herein, we developed a facile strategy to decorate elctrospun nanofibers using extracellular matrix (ECM in order to improve their performance for bone tissue engineering. Electrospun PLLA nanofibers (PLLA NF were seeded with MC3T3-E1 cells and allowed to grow for two weeks in order to harvest a layer of ECM on nanofiber surface. After decellularization, we found that ECM was successfully preserved on nanofiber surface while maintaining the nanostructure of electrospun fibers. ECM decorated on PLLA NF is biologically active, as evidenced by its ability to enhance mouse bone marrow stromal cells (mBMSCs adhesion, support cell proliferation and promote early stage osteogenic differentiation of mBMSCs. Compared to PLLA NF without ECM, mBMSCs grown on ECM/PLLA NF exhibited a healthier morphology, faster proliferation profile, and more robust osteogenic differentiation. Therefore, our study suggests that ECM decoration on electrospun nanofibers could serve as an efficient approach to improving their performance for bone tissue engineering.

  8. Relationships between bone mass and dietary/lifestyle habits in Japanese women at 3-4 months postpartum.

    Science.gov (United States)

    Hoshino, A; Yamada, A; Tanabe, R; Noda, S; Nakaoka, K; Oku, Y; Katayama, C; Haraikawa, M; Nakano, H; Harada, M; Uenishi, K; Goseki-Sone, M

    2017-11-01

    The relationships between calcaneal bone mass and dietary/lifestyle habits in women at 3-4 months postpartum were examined in the context of osteoporosis prevention. Cross-sectional survey. We measured bone mass using calcaneal ultrasound in mothers who brought their 3- to 4-month-old babies to healthcare centers in Japan for health examination and administered a self-report questionnaire on physical characteristics and dietary/lifestyle habits to those who agreed to participate in the survey. Valid data were available for 1220 women (valid response rate, 97.5%). Based on their stiffness score, a measure of bone mass, 70.9% (n = 865) of the participants were classified as 'no apparent abnormality (stiffness score ≥78.8)' (low-risk group), 18.2% (n = 222) as 'guidance required (≥70.1-healthy eating habits, such as increased consumption of calcium-rich foods, and prevent osteoporosis. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission.

    Science.gov (United States)

    Bastos, C M; Araújo, I M; Nogueira-Barbosa, M H; Salmon, C E G; de Paula, F J A; Troncon, L E A

    2017-07-01

    Bone marrow adipose tissue has not been studied in patients with inactive inflammatory bowel disease. We found that these patients have preserved marrow adiposity even with low bone mass. Factors involved in bone loss in active disease may have long-lasting effects but do not seem to affect bone marrow adiposity. Reduced bone mass is known to occur at varying prevalence in patients with inflammatory bowel diseases (IBD) because of inflammation, malnutrition, and steroid therapy. Osteoporosis may develop in these patients as the result of an imbalanced relationship between osteoblasts and adipocytes in bone marrow. This study aimed to evaluate for the first time bone mass and bone marrow adipose tissue (BMAT) in a particular subgroup of IBD patients characterized by long-term, steroid-free remission. Patients with Crohn's disease (CD; N = 21) and ulcerative colitis (UC; N = 15) and controls (C; N = 65) underwent dual X-ray energy absorptiometry and nuclear magnetic resonance spectroscopy of the L3 lumbar vertebra for BMAT assessment. Both the CD and UC subgroups showed significantly higher proportions of patients than controls with Z-score ≤-2.0 at L1-L4 (C 1.54%; CD 19.05%; UC 20%; p = 0.02), but not at other sites. The proportions of CD patients with a T-score ˂-1.0 at the femoral neck (C 18.46%; CD 47.62%; p = 0.02) and total hip (C 16.92%; CD 42.86%; p = 0.03) were significantly higher than among controls. There were no statistically significant differences between IBD patients and controls regarding BMAT at L3 (C 28.62 ± 8.15%; CD 29.81 ± 6.90%; UC 27.35 ± 9.80%; p = 0.67). IBD patients in long-term, steroid-free remission may have a low bone mass in spite of preserved BMAT. These findings confirm the heterogeneity of bone disorders in IBD and may indicate that factors involved in bone loss in active disease may have long-lasting effects on these patients.

  10. Local bone mineral mass as a function of dose in radium cases

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Bone mineral mass at specific sites in the forearms and fingers of females with exposure to radium and mesothorium appears to have no dependence on dose. Data analysis is continuing, so these results should be considered preliminary. Future analyses will include males

  11. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

    Directory of Open Access Journals (Sweden)

    Theodore P Braun

    Full Text Available Signaling via the type 4-melanocortin receptor (MC4R is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO. We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.

  12. Anorexia nervosa: slow regain of bone mass.

    Science.gov (United States)

    Valla, A; Groenning, I L; Syversen, U; Hoeiseth, A

    2000-01-01

    In a retrospective study of women aged 18-30 years, aimed at assessing factors associated with peak bone mass (PBM), 13 of 239 study cases reported having had anorexia nervosa. The mean total femoral and lumbar bone mineral density (BMD) values were not significantly lower in women who had had anorexia than in the pooled group (mean Z-scores of -0.60 and -0.48). Cases with less than 6 years since the anorexia had on average a present weight 5.7 kg less than their premorbid weights, while cases with more than 6 years since the eating disorder had an average weight 22.5 kg above their pre-morbid weights. The cases who had not regained their weight had BMD values significantly lower than the pooled material (mean Z-scores -1.15 and -0.9 in the lumbar spine and total femur respectively). Those who had regained their weight had BMD values as predicted from their present anthropometric data, while those who had not regained their weight had BMD values that were substantially below that predicted from their present weight. Anorexia nervosa seems to be associated with a low BMD which is even lower than that which can be predicted from the weight loss alone. This suggests that weight loss and other factors, such as menstrual dysfunction and estrogen deficiency, are independent and thus additive causes of bone loss in anorexia nervosa. Recovery of BMD seems slow, but the BMD may become as predicted from the anthropometric data after restoration of body weight and menses. The potential for recovery of BMD seems intact for several years after menarche.

  13. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A 21-Week Bone Deposition Promoting Exercise Programme Increases Bone Mass in Young People with Down Syndrome

    Science.gov (United States)

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2012-01-01

    Aim: To determine whether the bone mass of young people with Down syndrome may increase, following a 21-week conditioning training programme including plyometric jumps. Method: Twenty-eight participants with Down syndrome (13 females, 15 males) aged 10 to 19 years were divided into exercise (DS-E; n = 14; eight females, six males mean age 13y 8mo,…

  15. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    Directory of Open Access Journals (Sweden)

    Dolores Perovano Pardini

    2000-01-01

    Full Text Available CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic referral center. SAMPLE: 53 post-menopausal women, aged 48-58 years. MAIN MEASUREMENTS: Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD was measured by dual energy X-ray absorptiometry (DEXA before treatment and after 12 months of HRT. RESULTS: The BMD after HRT was about 4.7% (P < 0.0004; 2% (P < 0.002; and 3% (P < 0.01 higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002, and 42% (P < 0.0002 respectively after 1 year. CONCLUSIONS: Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  16. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    Science.gov (United States)

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  17. Discordant effect of body mass index on bone mineral density and speed of sound

    Directory of Open Access Journals (Sweden)

    Hagag Philippe

    2003-07-01

    Full Text Available Abstract Background Increased BMI may affect the determination of bone mineral density (BMD by dual X-ray absorptiometry (DXA and speed of sound (SOS measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI on BMD and SOS measured along bones. Methods We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m2, and 11 lean (BMI = 21 kg/m2 postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. Results Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P P Conclusions The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women.

  18. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  19. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    Science.gov (United States)

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Dlk1/FA1 Is a Novel Endocrine Regulator of Bone and Fat Mass and Its Serum Level Is Modulated By Growth Hormone

    DEFF Research Database (Denmark)

    Abdallah, B.M.; Ding, M.; Jensen, C.H.

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. FA1 (fetal antigen 1) is the soluble form of dlk1 (delta like 1), which is a member of the Notch-Delta family. We have previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1-mice) using the hydrodynamic-based gene transfer procedure (HGTP). We found that increased serum FA1 levels led to a significant reduction in total body weight......, fat mass and bone mass in a dose-dependent manner. Reduced bone mass in FA1-mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58% and 72% respectively. Since FA1 is co-localized with growth hormone (GH) in the pituitary gland, we explored the possible...

  1. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ding, Ming; Jensen, Charlotte H

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat...... mass, and bone mass in a dose-dependent manner. Reduced bone mass in FA1 mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58 and 72%, respectively. Because FA1 is colocalized with GH in the pituitary gland, we explored the possible modulation of serum FA1...

  2. Application and Effect of Mobiletype-Bone Health Intervention in Korean Young Adult Women with Low Bone Mass: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Young-Joo Park, PhD, RN

    2017-03-01

    Conclusion: Although both experimental groups exhibited positive outcomes in regards to the promotion of bone health, this study did not show an additional effect of the mobile application on self-management ability for the promotion of bone health. Nonetheless, the SbFb application is very meaningful as it is the first application developed with the aim of improving women's bone health.

  3. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  4. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass

    International Nuclear Information System (INIS)

    Berthold, L.D.; Alzen, G.; Haras, G.; Mann, M.

    2006-01-01

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  5. Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.

    Science.gov (United States)

    Parsons, T J; van Dusseldorp, M; van der Vliet, M; van de Werken, K; Schaafsma, G; van Staveren, W A

    1997-09-01

    This study investigated the effect of a macrobiotic (vegan-type) diet, low in calcium and vitamin D, consumed in early life, on bone mineral during adolescence. Bone mineral content (BMC) and bone area were measured in 195 adolescents (103 girls, 92 boys) aged 9-15 years, using dual-energy X-ray absorptiometry. Ninety-three adolescents (43 girls, 50 boys) had followed a macrobiotic diet in childhood, and 102 (60 girls, 42 boys) were control subjects. After adjustment for bone area, weight, height, percent body lean, age, and puberty, BMC was significantly lower in macrobiotic subjects, in boys and girls, respectively, at the whole body, -3.4% and -2.5%, spine, -8.5% and -5.0%, femoral neck, -8.0% and -8.2%, midshaft radius, -6.8% and -5.6%, and also in girls, at the trochanter, -5.8% (p < 0.05). No group differences were observed at the wrist. Group differences were not explained by current calcium adjusted bone mass at age 9-15 years, observations which may hold important implications for fracture risk in later life.

  6. Rapid restoration of bone mass after surgical management of hyperthyroidism: A prospective case control study in Southern India.

    Science.gov (United States)

    Karunakaran, Poongkodi; Maharajan, Chandrasekaran; Mohamed, Kamaludeen N; Rachamadugu, Suresh V

    2016-03-01

    The rate and the extent of bone remineralization at cancellous versus cortical sites after treatment of hyperthyroidism is unclear. Few studies have examined the effect of operative management of hyperthyroidism on recovery of bone mass. To evaluate prospectively the bone mineral density (BMD), bone mineral content (BMC), and bone areal size at the spine, hip, and forearm before and after total thyroidectomy. A prospective case control observational study from August 2011 to July 2014 in a single center. This study evaluated 40 overt hyperthyroid patients and 31 age-matched euthyroid controls who were operative candidates. Bone indices were measured at baseline and 6-month postoperatively using dual energy x-ray absorptiometry. Serum levels of alkaline phosphatase and 25-hydroxy vitamin D3 (25OHD) were assessed. Baseline BMD of hyperthyroid subjects at the spine, hip, and forearm were less than euthyroid controls (P = .001) with concomitant increases in serum alkaline phosphatase (mean ± SD, 143 ± 72 vs 72 ± 23 IU/L control; P hyperthyroid patients, posttreatment BMD expressed as g/cm(2) were 0.97 ± 0.12 (vs pretreatment 0.91 ± 0.14; P = .001) at the spine, 0.87 ± 0.12 (vs pretreatment 0.80 ± 0.13; P = .001) at the hip, and 0.67 ± 0.09 (vs pretreatment 0.64 ± 0.11; P = .191) at the forearm. The percent change in BMD was greatest at spine (8.3%) followed by the hip (7.6%) and forearm (3.0%). Operative management with total thyroidectomy improved the bone loss associated with hyperthyroidism as early as 6 months postoperatively at the hip and spine despite concomitant vitamin D deficiency. Delayed recovery of bone indices at the forearm, a cortical bone, requires further long-term evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Ca, Cl, Mg, Na, and P mass fractions in benign and malignant giant cell tumors of bone investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Vladimir Zaichick; German Davydov; Tatyana Epatova; Sofia Zaichick

    2015-01-01

    The Ca, Cl, Mg, Na, and P content and Ca/P, Ca/Mg, Ca/Na, Cl/Ca, and Cl/Na ratios in samples of intact bone, benign and malignant giant cell tumor (GCT) of bone were investigated by neutron activation analysis with high resolution spectrometry of short-lived radionuclides. It was found that in GCT tissue the mass fractions of Cl and Na are higher and the mass fraction of Ca and P are lower than in normal bone tissues. Moreover, it was shown that higher Cl/Na mass fraction ratios as well as lower Ca/Cl, Ca/Mg, and Ca/Na mass fraction ratios are typical of the GCT tissue compared to intact bone. Finally, we propose to use the estimation of such parameters as the Cl mass fraction and the Ca/Cl mass fraction ratio as an additional test for differential diagnosis between benign and malignant GCT. (author)

  8. Role of carotenoid β-cryptoxanthin in bone homeostasis

    Directory of Open Access Journals (Sweden)

    Yamaguchi Masayoshi

    2012-04-01

    Full Text Available Abstract Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin, β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC., has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.

  9. Bone health in anorexia nervosa

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2013-01-01

    Purpose of review Anorexia nervosa is associated with low bone mineral density (BMD), concerning for an increased risk of fractures, and decreased bone accrual in adolescents, concerning for suboptimal peak bone mass. This review discusses causes of impaired bone health in anorexia nervosa and potential therapeutic strategies. Recent findings Low BMD in anorexia nervosa is consequent to decreased lean mass, hypogonadism, low insulin-like growth factor-1 (IGF-1), relative hypercortisolemia and alterations in hormones impacted by energy availability. Weight gain causes some improvement in bone accrual, but not to the extent observed in controls, and vitamin D supplementation does not increase BMD. Oral estrogen is not effective in increasing BMD, likely from IGF-1 suppressive effects. In contrast, transdermal estrogen replacement is effective in increasing bone accrual in adolescents with anorexia nervosa, although not to the extent seen in controls. Recombinant human IGF-1 increases bone formation in adolescents, and with oral estrogen increases BMD in adults with anorexia nervosa. Bisphosphonates increase BMD in adults, but not in adolescents, and should be used cautiously given their long half-life. Summary Further investigation is necessary to explore therapies for low BMD in anorexia nervosa. Weight gain is to be encouraged. Transdermal estrogen in adolescents, and bisphosphonates in adults, have a potential therapeutic role. PMID:21897220

  10. Analysis of bone mass density of lumbar spine zone of athletes ...

    African Journals Online (AJOL)

    This study was carried out to evaluate T-Z scores of lumbar spine zone (L1, L2, L3, L4, L1-L4) bone mass density (BMD) of elite active male athletes in different branches and to determine the differences between them. 42 healthy male athletes aged 18 - 25 competing in different branches (Taekwondo 12, wrestling 8, Judo ...

  11. A case report of aneurysmal bone cyst in involving occipital bone

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hae Soon; Lee, Won Hyong; Yoo, Seong Yul; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Majority of the aneurysmal bone cyst affects tubular bones. The vertebra are also a frequent site of aneurysmal bone cyst where they are usually found as an expanding, nutiloculated new growth in the lamina or within the vertebral body. We present an aneurysmal bone cyst of cranial bone which is relatively rare. A 33 month old girl was admitted to SNUH, complaining of progressive growing occipital mass of 14 months duration. A round, rubbery, child fist sized mass was situated at the suboccipital area. The mass was not tender, nor pulsatile and bruits were not audible. Simple skull roentgenogram showed the huge, blown-out osteolytic lesion at the suboccipital area. No vascularity within the mass was noted on the right brachial angiography.

  12. The Relation between Visceral and Subcutaneous Fat to Bone Mass among Egyptian Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Sahar A. El-Masry

    2014-12-01

    CONCLUSIONS: Visceral and subcutaneous fat had significant positive association with bone mass in children; males and females respectively. On the contrary such association disappeared during adolescence.

  13. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  14. Handball Practice Enhances Bone Mass in Specific Sites Among Prepubescent Boys.

    Science.gov (United States)

    Missawi, Kawther; Zouch, Mohamed; Chakroun, Yosra; Chaari, Hamada; Tabka, Zouhair; Bouajina, Elyès

    2016-01-01

    This investigation's purpose is to focus on the effects of practicing handball for at least 2 yr on bone acquisition among prepubescent boys. One hundred prepubescent boys aged 10.68 ± 0.85 yr were divided into 2 groups: 50 handball players (HP group) and 50 controls (C group). Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were evaluated by using dual-photon X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radiuses. Results showed greater values of BMD in both right and left femoral neck and total hip in handball players than in controls. In addition, handball players had higher values of legs and right total hip BMC than controls without any obvious variation of BA measurement in all sites between groups. All results of the paired t-test displayed an obviously marked variation of bone mass parameters between the left and right sides in the trained group without any marked variation among controls. Data showed an increased BMD of the supporting sites between the left and the right leg among handball players. However, "BMC" results exhibited higher values in the right than in the left total hip, and in the right total radius than in the left correspondent site. In addition, differences in the "BA" measurements were observed in the left total hip and in the right arm. Specific bone sites are markedly stimulated by handball training in prepubescent boys. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  15. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.

    Science.gov (United States)

    Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark

    2015-04-01

    The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

  16. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, ... on bone mineral density at either the femur neck or lumbar spine? Nine percent of persons aged ...

  18. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  19. Body composition and bone mineral mass in normal and obese female population using dual X-ray absorptiometry

    International Nuclear Information System (INIS)

    Massardo, T.; Gonzalez, P.; Coll, C.; Rodriguez, J.L.; Solis, I.; Oviedo, S.

    2002-01-01

    It has been observed that a greater percentage of body fat is associated with augmented bone mineral mass. Objective: The goal of this work was to assess the relationship between bone mineral density (BMD in g/cm 2 ) and content (BMC in g) and soft tissue components, fat and lean mass (in g) in whole body of adult female population in Chile. Method: We studied 185 volunteers, asymptomatic, excluding those using estrogens, regular medication, tobacco (>10 cigarettes/day), excessive alcohol intake or with prior oophorectomy. They were separated in 111 pre and 74 post menopausal and according to body mass index (BMI) they were 37 women > 30 kg/m 2 and 148 2 . A Lunar Dual X-Ray absorptiometer was used to determine whole BMD and BMC. Results: Post menopausal women were older and smaller [p:0.0001], with higher body mass index [p:0.0007] and with lower BMD and BMC and higher fat mass than the pre menopausal group; In the whole group, women with BMI ≥ 30 (obese) were compared with normal weight observing no difference in BMD. The fat mass incremented significantly with age. Obese women > 50 years presented greater BMC than the non-obese. The percentage of fat corresponded to 48% in the obese group and to 39% in the non-obese [p<0.0001]. Conclusion: Fat mass somehow protect bone mineral loss in older normal population, probably associated to multifactorial causes including extra ovaric estrogen production. Postmenopausal women presented lower mineral content than premenopausal, as it was expected

  20. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  1. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    Science.gov (United States)

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  2. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  3. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.

  4. Bone Metabolism in Anorexia Nervosa

    Science.gov (United States)

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863

  5. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation.

    Science.gov (United States)

    Forli, Liv; Bollerslev, Jens; Simonsen, Svein; Isaksen, Gunhild A; Kvamsdal, Kari E; Godang, Kristin; Gadeholt, Gaut; Pripp, Are H; Bjortuft, Oystein

    2010-02-27

    Osteoporosis is a problem after transplantation. Studies since the last year indicate that vitamin K plays a role in optimal bone health. The aim of this randomized, double blind, prospective longitudinal study was to investigate the effect of a dietary supplement with vitamin K2 (180 microg menakinon-7) on bone mass, the first year after lung and heart transplantation. After preoperative baseline investigation of bone mass and bone-related biochemistry, 35 lung and 59 heart recipients were postoperatively randomized to vitamin K2 or placebo and reinvestigated the following year. In all recipients, 1 year after solid organ transplantation, the difference between vitamin K2 and placebo for the lumbar spine (L2-L4) bone mineral density (BMD) was 0.028 (SE 0.014) g/cm(2), P=0.055 and for L2 to L4 bone mineral content was 1.33 (SE 1.91) g/cm(2) (P=0.5). In lung recipients separately, the difference for bone mineral content was 3.39 g (SE 1.65), P=0.048 and in heart recipients 0.45 (SE 0.02) g, P=0.9 after controlling for baseline measures. In a forward stepwise linear regression analysis fitted to model differences in the L2 to L4 BMD, controlled for possible confounding variables (including use of bisphosphonate), and the only significant predictors were organ (B=-0.065 g/cm(2), P<0.001) and vitamin K2 (B=0.034 g/cm(2), P=0.019). Insufficient vitamin D status was common, and the parathyroid hormone was highest in the K2 group indicating a higher need for vitamin D. One year of vitamin K2 supplement suggest a favorable effect on lumbar spine BMD with different response in lung and heart recipients. Vitamin D status should receive more attention.

  6. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development.

    Science.gov (United States)

    Lappe, Joan M; Watson, Patrice; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Oberfield, Sharon; Shepherd, John; Winer, Karen K; Zemel, Babette

    2015-01-01

    Childhood and adolescence are critical periods of bone mineral content (BMC) accrual that may have long-term consequences for osteoporosis in adulthood. Adequate dietary calcium intake and weight-bearing physical activity are important for maximizing BMC accrual. However, the relative effects of physical activity and dietary calcium on BMC accrual throughout the continuum of pubertal development in childhood remains unclear. The purpose of this study was to determine the effects of self-reported dietary calcium intake and weight-bearing physical activity on bone mass accrual across the five stages of pubertal development in a large, diverse cohort of US children and adolescents. The Bone Mineral Density in Childhood study was a mixed longitudinal study with 7393 observations on 1743 subjects. Annually, we measured BMC by dual-energy X-ray absorptiometry (DXA), physical activity and calcium intake by questionnaire, and pubertal development (Tanner stage) by examination for up to 7 years. Mixed-effects regression models were used to assess physical activity and calcium intake effects on BMC accrual at each Tanner stage. We found that self-reported weight-bearing physical activity contributed to significantly greater BMC accrual in both sexes and racial subgroups (black and nonblack). In nonblack males, the magnitude of the activity effect on total body BMC accrual varied among Tanner stages after adjustment for calcium intake; the greatest difference between high- and low-activity boys was in Tanner stage 3. Calcium intake had a significant effect on bone accrual only in nonblack girls. This effect was not significantly different among Tanner stages. Our findings do not support differential effects of physical activity or calcium intake on bone mass accrual according to maturational stage. The study demonstrated significant longitudinal effects of weight-bearing physical activity on bone mass accrual through all stages of pubertal development. © 2014 American

  7. Sequential treatment with basic fibroblast growth factor and PTH is more efficacious than treatment with PTH alone for increasing vertebral bone mass and strength in osteopenic ovariectomized rats

    DEFF Research Database (Denmark)

    Iwaniec, U.T.; Mosekilde, Li.; Mitova-Caneva, N.G.

    2002-01-01

    The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whethe...

  8. Dating of some fossil Romanian bones by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Emilian Alexandrescu; Hellborg, Ragnar; Stenstroem, Krstina; Faarinen, Mikko; Persson, Per

    2002-01-01

    Some fossil bones from Romanian territories have been dated by accelerator mass spectrometry (AMS) using the pelletron system from Lund University. The preparation of samples has been the classical procedure to produce pure graphite from bones specimens, The Paleolithic site from Malu Rosu, near Giurgiu was thoroughly analyzed. Two human fossil skulls from Cioclovina and Baia de Fier of special archaeological importance have been estimated to be of around 30 000 years old, a conclusion with great implications for the history of ancient Romania. By this physical analysis, a long scientific dispute was settled. The two fossil human skulls are the only ones of this age from Romania. One could advance the hypothesis that the skulls belong to a certain type of a branch of Central European Cro-Magon, the classical western type, considering both the chronological and the anthropological features. They constitute eastern limit of the Cro-Magnon man type. (authors)

  9. Improved detection of focal pneumonia by chest radiography with bone suppression imaging

    International Nuclear Information System (INIS)

    Li, Feng; Engelmann, Roger; Pesce, Lorenzo; Armato, Samuel G.; MacMahon, Heber

    2012-01-01

    To evaluate radiologists' ability to detect focal pneumonia by use of standard chest radiographs alone compared with standard plus bone-suppressed chest radiographs. Standard chest radiographs in 36 patients with 46 focal airspace opacities due to pneumonia (10 patients had bilateral opacities) and 20 patients without focal opacities were included in an observer study. A bone suppression image processing system was applied to the 56 radiographs to create corresponding bone suppression images. In the observer study, eight observers, including six attending radiologists and two radiology residents, indicated their confidence level regarding the presence of a focal opacity compatible with pneumonia for each lung, first by use of standard images, then with the addition of bone suppression images. Receiver operating characteristic (ROC) analysis was used to evaluate the observers' performance. The mean value of the area under the ROC curve (AUC) for eight observers was significantly improved from 0.844 with use of standard images alone to 0.880 with standard plus bone suppression images (P < 0.001) based on 46 positive lungs and 66 negative lungs. Use of bone suppression images improved radiologists' performance for detection of focal pneumonia on chest radiographs. (orig.)

  10. Improved detection of focal pneumonia by chest radiography with bone suppression imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feng; Engelmann, Roger; Pesce, Lorenzo; Armato, Samuel G.; MacMahon, Heber [University of Chicago, Department of Radiology, MC-2026, Chicago, IL (United States)

    2012-12-15

    To evaluate radiologists' ability to detect focal pneumonia by use of standard chest radiographs alone compared with standard plus bone-suppressed chest radiographs. Standard chest radiographs in 36 patients with 46 focal airspace opacities due to pneumonia (10 patients had bilateral opacities) and 20 patients without focal opacities were included in an observer study. A bone suppression image processing system was applied to the 56 radiographs to create corresponding bone suppression images. In the observer study, eight observers, including six attending radiologists and two radiology residents, indicated their confidence level regarding the presence of a focal opacity compatible with pneumonia for each lung, first by use of standard images, then with the addition of bone suppression images. Receiver operating characteristic (ROC) analysis was used to evaluate the observers' performance. The mean value of the area under the ROC curve (AUC) for eight observers was significantly improved from 0.844 with use of standard images alone to 0.880 with standard plus bone suppression images (P < 0.001) based on 46 positive lungs and 66 negative lungs. Use of bone suppression images improved radiologists' performance for detection of focal pneumonia on chest radiographs. (orig.)

  11. Influence of androgens on bone mass in young women with sickle cell anemia

    International Nuclear Information System (INIS)

    Al-Elq, Abdulmohsen H.; Sultan, Osama A.; Al-Turki, Haifa A.; Sadat-Ali, M.

    2008-01-01

    The objective was to evaluate the relationship between the gender hormonal levels and bone mineral density in premenopausal women suffering with sickle cell disease. Method was a cross-sectional study including consecutive female adult patients with sickle cell anemia attending the outpatient hematology/orthopedic clinics, or admitted to King Fahd University Hospital, Al-Khobar, Saudi Arabia, between August 2006 and June 2007. Patient's age was documented and body mass index was calculated. Blood was drawn for complete blood picture, biochemistry and hormonal profile including total estradiol E2 and total testosterone Te. Bone mineral density BMD was measured for all patients using dual energy x-ray absorptiometry scan at the hip and lumbar spine. We analyzed the data of 51 patients with an average age of 26+/-3.1 years. Patients were divided into two groups group A and group B. Group A had normal BMD and group B with low BMD. Thirty-one (60.8%) were in group A and 20 (39.2%) were in group B. The E-2 level was not statistically different between the 2 groups, while Te level was significantly lower in women with low BMD 38+/-11.8 versus 22.3+/-11.7 ng/dl, p<0.001. Our study indicates that in menopausal female patients with sickle cell anemia, testosterone may play a role in the preservation of bone mass. (author)

  12. Food Versus Pharmacy: Assessment of Nutritional and Pharmacological Strategies to Improve Bone Health in Energy-Deficient Exercising Women.

    Science.gov (United States)

    Southmayd, Emily A; Hellmers, Adelaide C; De Souza, Mary Jane

    2017-10-01

    The review aims to summarize our current knowledge surrounding treatment strategies aimed at recovery of bone mass in energy-deficient women suffering from the Female Athlete Triad. The independent and interactive contributions of energy status versus estrogen status on bone density, geometry, and strength have recently been reported, highlighting the importance of addressing both energy and estrogen in treatment strategies for bone health. This is supported by reports that have identified energy-related features (low body weight and BMI) and estrogen-related features (late age of menarche, oligo/amenorrhea) to be significant risk factors for low bone mineral density and bone stress injury in female athletes and exercising women. Nutritional therapy is the recommended first line of treatment to recover bone mass in energy-deficient female athletes and exercising women. If nutritional therapy fails after 12 months or if fractures or significant worsening in BMD occurs, pharmacological therapy may be considered in the form of transdermal estradiol with cyclic oral progestin (not COC).

  13. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization?

    DEFF Research Database (Denmark)

    Molgaard, C.; Larnkjaer, A.; Cashman, K.D.

    2010-01-01

    Introduction: A high peak bone mass may be essential for reducing the risk of osteoporosis later in life and a sufficient vitamin D level during puberty may be necessary for optimal bone accretion and obtaining a high peak bone mass. Dietary intake and synthesis during winter of vitamin D might...... be limited but the effect of vitamin D supplementation in adolescence on bone mass is not well established. Objective: To investigate the effect of supplementation with 5 and 10 mu g/day vitamin D-3 for 12 months in 11- to 12-year-old girls on bone mass and bone turnover as well as the possible influence....../l) vitamin D-3 for 12 months compared to placebo (-3.1 +/- 9.8 nmol/l, baseline 43.4 +/- 17.1 nmol/l). There was no effect of vitamin D-supplementation on biomarkers for bone turnover or on whole body or spine bone mineral augmentation. However, vitamin D supplementation increased whole body bone mineral...

  14. Bone scintigraphy in lesions of the skull

    International Nuclear Information System (INIS)

    Fischer, M.; Wasilewski, A.; Deitmer, T.

    1982-01-01

    The value of 3-phase-scintigraphy in bone lesions of the skull with a new seeking agent 99mTc-2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) is studied. A high soft tissue-bone-ratio of DPD is emphasized. For this reason DPD is used for bone scintigraphy of the skull, because the mass of soft tissue in relation to bone is high and a higher clearance improves the interpretation of the images of the first two phases. An increased tracer uptake is found for skeletal neoplasms (malignant and benign lesions) and for acute osteomyelitis. By contrast, the chronic inflammatory bone lesions showed normal tracer uptake. This new bone seeking agent allows to localize and differentiate tumorous or acute inflammatory lesions and chronic inflammatory bone lesions of the skull

  15. Clinical manifestations of low bone mass in amenorrhea patients with elevated follicular stimulating hormone.

    Science.gov (United States)

    Yu, Qi; Lin, Shouqing; He, Fangfang; Li, Baoluo; Lin, Yuan; Zhang, Tao; Zhang, Ying

    2002-09-01

    To study the characteristics of low bone mass in amenorrhea patients with elevated follicular stimulating hormone (FSH). Amenorrhea patients with elevated FSH: Primary amenorrhea 18 cases, secondary amenorrhea 171 cases and age matched controls with normal menstruation, 180 cases. The descriptive parameters were: estrogen, alkaline phosphatase, urinary excretion of calcium to creatine ratio, cortical bone mineral density at the right radius measured by single photon absorptiometry and trabecular bone mineral density at the lumbar vertebra body measured by quantitative computerized tomography. Average E(2) levels in amenorrhea patients is under 150 pmol/L with significantly higher alkaline phosphatase and urine calcium to creatine ratio values than the normal menstruation group. Cortical bone mineral density in the secondary amenorrhea group (655 +/- 69 mg/cm(2)) was significantly lower than that of the normal menstruation group (677 +/- 56 mg/cm(2), P < 0.01). Trabecular bone mineral density in the secondary amenorrhea group (145 +/- 26 mg/cm(3)) was significantly lower than that of the NOR group (192 +/- 28 mg/cm(3), P < 0.001). The disparity with the normal menstruation group is even greater in the primary amenorrhea group. Bone mineral density of the amenorrhea patients was negatively correlated with duration of the menopause. Serum estrodiol levels in amenorrhea patients was so low that bone turnover was accelerated. This led to insufficient bone accumulation and a dramatically drop in trabecular bone mineral density. The extent was closely related to age of onset of amenorrhea and the duration of ovarian failure.

  16. Usefulness of circuit training at home for improving bone mass and muscle mass while losing fat mass in undergraduate female students.

    Science.gov (United States)

    Takahata, Yoko

    2018-05-09

    The purpose of this study was to determine whether or not circuit training at home affects the calcaneus quantitative ultrasound status as well as other indices of body composition among undergraduate female students. Forty-one adolescents were recruited (18.5 ± 0.6 years old). The stiffness index of the calcaneus, broadband ultrasound attenuation of the calcaneus, speed of sound of the calcaneus, and body frame index. This was a three-month intervention study, so the measurements were conducted at baseline, 2 months later, and 3 months later while the subjects underwent circuit training at home. The subjects were divided into two groups: namely, the exercising group and non-exercising group. In the exercising group, broadband ultrasound attenuation of the calcaneus was higher 2 months later (p = 0.033) as well as 3 months later (p = 0.036), and the speed of sound of the calcaneus was higher 3 months later (p = 0.018). In addition, the muscle mass was strongly positively correlated with the calcaneus QUS-SOS (p = 0.004), while the body fat percentage was a strongly negatively correlated with the calcaneus QUS-BUA (p = 0.043). In the non-exercising group, the stiffness index of the calcaneus was higher 2 months later (p = 0.002) as well as 3 months later (p = 0.002). Furthermore, the body percentage was strongly positively correlated with the calcaneus QUS-SI (p = 0.009). These findings suggest that the calcaneus quantitative ultrasound status and muscle mass while losing fat mass may be improved by means of a simple exercise regimen within a short period among undergraduate female students.

  17. Determination of peak bone mass density and composition in low-income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.V.; Guanzon, L.V.V.; De Guzman, A.M.; Villaruel, C.M.; Santos, F.

    1996-01-01

    Filipinos are predisposed to osteoporosis because of inadequate calcium in their diet early on in life, confounded by malnutrition, susceptibility to infectious diseases and their generally small body frame. And yet the problem of osteoporosis has not been properly addressed. The incidence of osteoporosis is not known since oftentimes it is established only once complications have set in. It is believed that osteoporosis poses a public health concern but its extent is not realized at present because of lack of local epidemiological data. This study aims to determine the bone mass density as a function of age among 210 screened and healthy volunteers coming from urban poor communities of Metro Manila over a 3-year period. A LUNAR DPX-L bone densitometry for dual X-ray photon absorptiometry will be used, with measurements taken on the spine and femur. It also aims to correlate factors such as nutritional intake, physical activity, lifestyle, sex and body mass index with that of bone mass density. Blood and urine samples will be obtained for biochemistry and hormonal radioimmunoassay examination. Statistical analysis will be done to com are differences within the group and to determine rate of bone loss as a function of age and sex. Plans for future research include the determination of trace element content in cortical bone and tooth samples from healthy living subjects. (author)

  18. Physical activity effects on bone metabolism.

    Science.gov (United States)

    Smith, E L; Gilligan, C

    1991-01-01

    The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

  19. Strategies to reverse bone loss in women with functional hypothalamic amenorrhea: a systematic review of the literature.

    Science.gov (United States)

    Vescovi, J D; Jamal, S A; De Souza, M J

    2008-04-01

    Functional hypothalamic amenorrhea (FHA) impairs the attainment of peak bone mass and as such can increase the risk of fractures later in life. To document available treatment strategies, we conducted a systematic review of the literature. We report that hormonal therapies have limited effectiveness in increasing bone mass, whereas increased caloric intake resulting in weight gain and/or resumption of menses is an essential strategy for restoring bone mass in women with FHA. Women with functional hypothalamic amenorrhea (FHA) may not achieve peak bone mass (PBM), which increases the risk of stress fractures, and may increase the risk of osteoporotic fractures in later life. To identify effective treatment strategies for women with FHA, we conducted a systematic review of the literature. We included randomized controlled trials (RCTs), cross-sectional studies, and case studies that reported on the effects of pharmacological and non-pharmacological interventions on bone mineral density (BMD) or bone turnover in women with FHA. Most published studies (n=26) were designed to treat the hormonal abnormalities observed in women with FHA (such as low estrogen, leptin, insulin-like growth factor-1, and DHEA); however none of these treatments demonstrated consistent improvements in BMD. Therapies containing an estrogen given for 8-24 months resulted in variable improvements (1.0-19.0%) in BMD, but failed to restore bone mass to that of age-matched controls. Three studies reported on the use of bisphosphonates (3-12 months) in anorexic women, which appear to have limited effectiveness to improve BMD compared to nutritional treatments. Another three investigations showed no improvements in BMD after androgen therapy (DHEA and testosterone) in anorexic women. In contrast, reports (n=9) describing an increase in caloric intake that results in weight gain and/or the resumption of menses reported a 1.1-16.9% increase in BMD concomitant with an improvement in bone formation and

  20. Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study.

    Science.gov (United States)

    Zouch, Mohamed; Zribi, Anis; Alexandre, Christian; Chaari, Hamada; Frere, Delphine; Tabka, Zouhair; Vico, Laurence

    2015-01-01

    The aim of this study was to examine the effect of 3-yr soccer practice on bone acquisition in prepubescent boys. We investigated 65 boys (aged 10-13 yr, Tanner stage I) at baseline, among which only 40 boys (Tanner stages II and III) have continued the 3-yr follow-up: 23 soccer players (F) completed 2-5 h of training plus 1 competition game per week and 17 controls (C). Bone mineral density (BMD, g/cm(2)) and bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry at different sites. At baseline, BMD was higher in soccer players than in controls in the whole body and legs. In contrast, there was nonsignificant difference BMD in head, femoral neck, arms, and BMC in all measured sites between groups. At 3-yr follow-up, soccer players were found to have higher BMD and BMC at all sites than controls, except for head BMD and BMC and arms BMC in which the difference was nonsignificant between groups. During the 3-yr follow-up, the soccer players were found to gain significantly more in lumbar spine (31.2% ± 2.9% vs 23.9% ± 2.1%; p soccer players have less %BMD and %BMC changes in the head than controls. A nonsignificant difference was found in legs, dominant arm, head %BMD and %BMC changes, and whole-body %BMC changes between groups. In summary, we suggest that soccer has an osteogenic effect BMD and BMC in loaded sites in pubertal soccer players. The increased bone mass induced by soccer training in the stressed sites was associated to a decreased skull bone mass after 3 yr of follow-up. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  1. The relationship between low bone mass and metabolic syndrome in Korean women.

    Science.gov (United States)

    Hwang, D-K; Choi, H-J

    2010-03-01

    We examined the relationship between low bond mass and metabolic syndrome in 2,475 Korean women. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome. Moreover, age and weight adjusted vertebral BMD was significantly decreased with additional components of the metabolic syndrome. Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and metabolic syndrome. It has been suggested that proinflammatory cytokines and low-grade systemic inflammation activate bone resorption and may lead to reduced bone mineral density (BMD). The objective of this study was to determine the relationship between low bone mass and metabolic syndrome in Korean women. This is a cross-sectional study of 2,548 women aged 18 years and over who had visited the Health Promotion Center. Physical examination and laboratory tests were performed. Vertebral BMD was measured using dual-energy X-ray absorptiometry. Metabolic syndrome was defined by National Cholesterol Education Program-Adult Treatment Panel III criteria. Among 2,475 women, 511 (21.0%) women had metabolic syndrome. Women with abdominal obesity or hypertriglyceridemia had significantly lower vertebral BMD than women without respective components after adjustment for age, weight, and height. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome (p = 0.031). Moreover, age- and weight-adjusted vertebral BMD were significantly decreased with additional components of the metabolic syndrome (p = 0.004). These findings suggest that metabolic syndrome might be another risk factor for osteoporosis and related fractures.

  2. MR imaging of bone marrow metastasis in patients with neuroblastoma. Comparison between mass-screened cases and clinically detected cases

    International Nuclear Information System (INIS)

    Kanegawa, Kimio; Akasaka, Yoshinori; Kawasaki, Ryuta; Nishiyama, Shoji; Mabuchi, Osamu; Muraji, Toshihiro

    1999-01-01

    Seventy-six patients with neuroblastoma who underwent bone marrow MRI were divided into two groups: the first group consisted of patients detected by mass screening (M group, n=55), and the second group of patients detected clinically (non-M group, n=21). Bone marrow metastasis was morphologically classified into two types, nodular type and diffuse type. We studied the incidence of bone marrow metastasis, relationship between the patterns of bone marrow metastasis and the presence of bone metastasis, and morphological changes of bone marrow metastasis after chemotherapy. In M group, the incidence of bone marrow metastasis was 7.3% (4 patients) and the patterns of bone marrow metastases were all nodular type not accompanied with bone metastasis and disappeared after chemotherapy. In non-M group, the incidence of bone marrow metastasis was 52.4% (11 patients). Bone marrow metastases had both patterns of metastasis. Forty-five per cent of diffuse type of bone marrow metastasis were accompanied with bone metastasis. All bone marrow metastases disappeared after chemotherapy, but in one of 11, there was recurrence of bone marrow metastasis. (author)

  3. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Ee-Cheng Khor

    Full Text Available Prader-Willi Syndrome (PWS, a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR, including a set of small non-translated nucleolar RNA's (snoRNA. Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health

  4. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study.

    Science.gov (United States)

    Rudäng, Robert; Darelid, Anna; Nilsson, Martin; Nilsson, Staffan; Mellström, Dan; Ohlsson, Claes; Lorentzon, Mattias

    2012-10-01

    It has previously been shown that smoking is associated with reduced bone mass and increased fracture risk, but no longitudinal studies have been published investigating altered smoking behavior at the time of bone mass acquisition. The aim of this study was to investigate the development of bone density and geometry according to alterations in smoking behavior in a 5-year, longitudinal, population-based study of 833 young men, age 18 to 20 years (baseline). Furthermore, we aimed to examine the cross-sectional, associations between current smoking and parameters of trabecular microarchitecture of the radius and tibia, using high-resolution peripheral quantitative computed tomography (HR-pQCT), in young men aged 23 to 25 years (5-year follow-up). Men who had started to smoke since baseline had considerably smaller increases in areal bone mineral density (aBMD) at the total body (mean ± SD, 0.020 ± 0.047 mg/cm(2) versus 0.043 ± 0.040 mg/cm(2) , p young adulthood have poorer development of their aBMD at clinically important sites such as the spine and hip than nonsmokers, possibly due to augmented loss of trabecular density and impaired growth of cortical cross-sectional area. Copyright © 2012 American Society for Bone and Mineral Research.

  5. Final Report: Bone Mass Inheritance: A Project to Identify the Genetic Regulation of Bone Mass; FINAL

    International Nuclear Information System (INIS)

    Recker, Robert R. M.D.

    2002-01-01

    This project was designed to find human chromosomal locations that contain genes regulating peak bone density. It is part of a whole genome search for those loci,each responsible for at least 15% of the variation in the peak adult bone density. We accomplished this with a sib pair design, combined with simultaneous examination of extended kindreds. This project gave partial support of the recruitment which has now been completed. The project will extend into 2003. During the remainder of the project, a whole genome scan will be performed from the entire cohort of 2226 persons who have DNA archived, followed by linkage analysis. This project will meet the scientific objective leading eventually to expanded options for treating the condition that leads to bone thinning osteoporosis, and potential fractures in aging populations

  6. Short-term lower-body plyometric training improves whole body BMC, bone metabolic markers, and physical fitness in early pubertal male basketball players.

    Science.gov (United States)

    Zribi, Anis; Zouch, Mohamed; Chaari, Hamada; Bouajina, Elyes; Ben Nasr, Hela; Zaouali, Monia; Tabka, Zouhair

    2014-02-01

    The effects of a 9-week lower-body plyometric training program on bone mass, bone markers and physical fitness was examined in 51 early pubertal male basketball players divided randomly into a plyometric group (PG: 25 participants) and a control group (CG: 26 participants). Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area (BA) in the whole body, L2-L4 vertebrae, and in total hip, serum levels of osteocalcin (Oc) and C-terminal telopeptide fragment of Type I collagen (CTx), jump, sprint and power abilities were assessed at baseline and 9 weeks. Group comparisons were done by independent student's t-test between means and analyses of (ANOVA) and covariance (ANCOVA), adjusting for baseline values. PG experienced a significant increase in Oc (p BMC and BA in any measured site, except in whole body BMC of the PG. A positive correlation was observed between percentage increase (Δ%) of physical fitness and those of (Oc) for the PG. In summary, biweekly sessions of lower body plyometric training program were successful for improving whole body BMC, bone formation marker (Oc) and physical fitness in early pubertal male basketball players.

  7. 'Sink or swim': an evaluation of the clinical characteristics of individuals with high bone mass.

    LENUS (Irish Health Repository)

    Gregson, C L

    2011-04-01

    High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. INTRODUCTION: High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. METHODS: Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. RESULTS: Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon\\/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg\\/m(2

  8. Association of vitamin D receptor and estrogen receptor-α gene polymorphism with peak bone mass and bone size in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Qi-ren HUANG; Jin-wei HE; Yun-qiu HU; Qi ZHOU; Jing-hui LU; Miao LI; Yu-juan LIU

    2004-01-01

    AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-α (ER-α) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-α Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Hah nationality in Shanghai city. BMD (g/cm2), BMC (g), and bone areal size (BAS, cm2) at lumbar spine 1-4 (L1-4) and proximal femur (femoral neck, trochanter and Ward's triangle) were measured by duel-energy X-ray absorptionmetry. RESULTS: All allele frequencies did not deviate from Hardy-Weinberg equilibrium. After phenotypes were adjusted for age, height, and weight, a significant association was found between VDR Apa I genotype and BMC variation at L1-4 and Ward's triangle (P<0.05), but not in BMD or BAS at lumbar spine and proximal femur.ER-α Pvu II, Xba I genotype was not related to BMC, BMD, and BAS at all sites. CONCLUSION: The study suggested that Apa I polymorphism in VDR gene may influence on attainment and maintenance of peak bone mass in premenopausal Chinese women.

  9. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Han, Fei; Zhang, Peng; Sun, Yaying; Lin, Chao; Zhao, Peng; Chen, Jiwu

    2015-01-01

    Hamstring tendon autograft is a routine graft for anterior cruciate ligament (ACL) reconstruction. However, ways of improving the healing between the tendon and bone is often overlooked in clinical practice. This issue can be addressed by using a biomimetic scaffold. Herein, a biomimetic nanofiber membrane of polycaprolactone/nanohydroxyapatite/collagen (PCL/nHAp/Col) is fabricated that mimics the composition of native bone tissue for promoting tendon-bone healing. This membrane has good cytocompatibility, allowing for osteoblast cell adhesion and growth and bone formation. As a result, MC3T3 cells reveal a higher mineralization level in PCL/nHAp/Col membrane compared with PCL membrane alone. Further in vivo studies in ACL reconstruction in a rabbit model shows that PCL/nHAp/Col-wrapped tendon may afford superior tissue integration to nonwrapped tendon in the interface between the tendon and host bone as well as improved mechanical strength. This study shows that PCL/nHAp/Col nanofiber membrane wrapping of autologous tendon is effective for improving tendon healing with host bone in ACL reconstruction.

  10. Bone health in children and adolescents with perinatal HIV infection

    Science.gov (United States)

    Puthanakit, Thanyawee; Siberry, George K

    2013-01-01

    The long-term impact on bone health of lifelong HIV infection and prolonged ART in growing and developing children is not yet known. Measures of bone health in youth must be interpreted in the context of expected developmental and physiologic changes in bone mass, size, density and strength that occur from fetal through adult life. Low bone mineral density (BMD) appears to be common in perinatally HIV-infected youth, especially outside of high-income settings, but data are limited and interpretation complicated by the need for better pediatric norms. The potential negative effects of tenofovir on BMD and bone mass accrual are of particular concern as this drug may be used more widely in younger children. Emphasizing good nutrition, calcium and vitamin D sufficiency, weight-bearing exercise and avoidance of alcohol and smoking are effective and available approaches to maintain and improve bone health in all settings. More data are needed to inform therapies and monitoring for HIV-infected youth with proven bone fragility. While very limited data suggest lack of marked increase in fracture risk for youth with perinatal HIV infection, the looming concern for these children is that they may fail to attain their expected peak bone mass in early adulthood which could increase their risk for fractures and osteoporosis later in adulthood. PMID:23782476

  11. Evaluating the risk of osteoporosis through bone mass density

    International Nuclear Information System (INIS)

    Sayed, S.A.; Khaliq, A.

    2017-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30 percent of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. Method: In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). Result: The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4 percent (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. Conclusion: The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis. (author)

  12. Evaluating The Risk Of Osteoporosis Through Bone Mass Density.

    Science.gov (United States)

    Sayed, Sayeeda Amber; Khaliq, Asif; Mahmood, Ashar

    2016-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30% of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4% (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis.

  13. Importance of participation rate in sampling of data in population based studies, with special reference to bone mass in Sweden.

    OpenAIRE

    Düppe, H; Gärdsell, P; Hanson, B S; Johnell, O; Nilsson, B E

    1996-01-01

    OBJECTIVE: To study the effects of participation rate in sampling on "normative" bone mass data. DESIGN: This was a comparison between two randomly selected samples from the same population. The participation rates in the two samples were 61.9% and 83.6%. Measurements were made of bone mass at different skeletal sites and of muscle strength, as well as an assessment of physical activity. SETTING: Malmö, Sweden. SUBJECTS: There were 230 subjects (117 men, 113 women), aged 21 to 42 years. RESUL...

  14. Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function.

    Directory of Open Access Journals (Sweden)

    Christine Wittig

    Full Text Available Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×10(3 cells. To create bone marrow cell-enriched pseudoislets 2×10(3 islet cells were co-cultured with 2×10(3 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation.

  15. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile.

    Science.gov (United States)

    Rosen, J; Negro-Vilar, A

    2002-03-01

    A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly

  16. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    Science.gov (United States)

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral

  17. Selected factors affecting bone mass in students with diagnosed obesity, aged 7–10 years, from Łódź

    Directory of Open Access Journals (Sweden)

    Anna Łupińska

    2017-12-01

    Full Text Available Introduction: Obesity may be a risk factor for mineralisation and bone structure disorders, contrary to a common belief in its protective effects on bone tissue. Aim: The aim of the study was to assess the relationship between selected risk factors and obesity indicators and bone mass in obese children. Material and methods: The study included 80 children aged between 7 and 10 years with excessive body weight (60 obese and 20 overweight; the reference group included 37 children with body weight appropriate for height. All patients underwent physical examination with anthropometric measurements. Parents were asked to complete a questionnaire. The average daily intake of selected nutrients was analysed using Dieta 2 software package. Densitometry (dual-energy X-ray absorptiometry, DXA was performed in all children to evaluate bone mass. Results: Obese and overweight children had statistically significantly higher total body BMD and total body BMD Z-score compared to control group. Most DXA parameters (except from volumetric bone mineral density were positively correlated with body weight, height and waist circumference. A significant positive correlation was found between physical activity and total body BMD. There was a negative correlation between the average daily intake of proteins, carbohydrates, magnesium and phosphorus in obese children and most DXA parameters (p < 0.05. Conclusions: Bone mass in obese children is positively affected by somatic features (body weight, height, waist circumference and body composition and physical activity, and negatively affected by increased intake of proteins, carbohydrates, phosphorus and magnesium. The calculated volumetric mineral bone density may reflect the actual bone mineral density and prevent DXA overestimation in obese children.

  18. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  19. Vitamin K2 improves femoral bone strength without altering bone mineral density in gastrectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo

    2014-01-01

    Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.

  20. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    Science.gov (United States)

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  1. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  2. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  3. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    Science.gov (United States)

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (posteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  4. Growth hormone and bone health.

    Science.gov (United States)

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  5. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  6. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia

  7. Assessment of bone mineral content in the internal bone volume

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Alho, A.; Husby, T.; Ullevaal Sykehus, Oslo

    1991-01-01

    A method for assessing values related to bone density and mass is described. Mean attenuation and pixel area are measured in pixels selected on the basis of CT units. The method is to a large extent computerized and not dependent on manual positioning or outlining of a region of interest. Because it is not dependent on a comparatively large volume of homogeneous bone it can be used to make assessments even in very heterogeneous bones including cortical bone. The method is adaptable for measurement in all parts of the skeleton and values related to both bone density (DRV) and bone mass (MRV) are derived. The measurements in the femoral condyles were shown to have a precision of approximately 0.25 to 0.30 Z-score units (standard deviation of the measurements expressed in Z-score units). The agreement between chemically analyzed calcium density (weight of calcium per volume) and DRV was little less than 0.50 Z-scores and 0.30 Z-scores for the chemically determined calcium mass and the MRV. The agreement with mechanical bone strength was 0.78 Z-scores for DRV and 0.64 for the MRV. Altering scan parameters or measuring approaches gave systematic differences in the measurements. There were, however, good linear correlations between the measurements which show that these different measuring approaches essentially gave identical measurements. (orig.)

  8. Modeling the effect of levothyroxine therapy on bone mass density in postmenopausal women: a different approach leads to new inference

    Directory of Open Access Journals (Sweden)

    Tavangar Seyed

    2007-06-01

    Full Text Available Abstract Background The diagnosis, treatment and prevention of osteoporosis is a national health emergency. Osteoporosis quietly progresses without symptoms until late stage complications occur. Older patients are more commonly at risk of fractures due to osteoporosis. The fracture risk increases when suppressive doses of levothyroxine are administered especially in postmenopausal women. The question is; "When should bone mass density be tested in postmenopausal women after the initiation of suppressive levothyroxine therapy?". Standard guidelines for the prevention of osteoporosis suggest that follow-up be done in 1 to 2 years. We were interested in predicting the level of bone mass density in postmenopausal women after the initiation of suppressive levothyroxine therapy with a novel approach. Methods The study used data from the literature on the influence of exogenous thyroid hormones on bone mass density. Four cubic polynomial equations were obtained by curve fitting for Ward's triangle, trochanter, spine and femoral neck. The behaviors of the models were investigated by statistical and mathematical analyses. Results There are four points of inflexion on the graphs of the first derivatives of the equations with respect to time at about 6, 5, 7 and 5 months. In other words, there is a maximum speed of bone loss around the 6th month after the start of suppressive L-thyroxine therapy in post-menopausal women. Conclusion It seems reasonable to check bone mass density at the 6th month of therapy. More research is needed to explain the cause and to confirm the clinical application of this phenomenon for osteoporosis, but such an approach can be used as a guide to future experimentation. The investigation of change over time may lead to more sophisticated decision making in a wide variety of clinical problems.

  9. Bone density and young athletic women. An update.

    Science.gov (United States)

    Nichols, David L; Sanborn, Charlotte F; Essery, Eve V

    2007-01-01

    High-school girls and collegiate women have tremendous opportunities to participate in athletic teams. Young girls are also playing in club and select teams at an early age and often, year-round. There are many benefits for participating in sport and physical activity on both the physical and mental health of girls and women. Decreased risk for heart disease and diabetes mellitus, along with improved self-esteem and body-image, were among the first reported benefits of regular physical activity. In addition, sport participation and physical activity is also associated with bone health. Athletes have a greater bone mineral density compared with non-active and physically active females. The increase in bone mass should reduce the risk of fragility fractures in later life. There appears to be a window of opportunity during the development of peak bone mass in which the bone is especially responsive to weight-bearing physical activity. Impact loading sports such as gymnastics, rugby or volleyball tend to produce a better overall osteogenic response than sports without impact loading such as cycling, rowing and swimming. Relatively little is known about the impact of retiring from athletics on bone density. It appears that former athletes continue to have a higher bone density than non-athletes; however, the rate of bone loss appears to be similar in the femoral neck. The positive impact of sports participation on bone mass can be tempered by nutritional and hormonal status. It is not known whether female athletes need additional calcium compared with the general female population. Due to the increased energy expenditure of exercise and/or the pressure to obtain an optimal training bodyweight, some female athletes may develop low energy availability or an eating disorder and subsequently amenorrhoea and a loss of bone mineral density. The three inter-related clinical disorders are referred to as the 'female athlete triad'. This article presents a review of the

  10. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Directory of Open Access Journals (Sweden)

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  11. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria

    NARCIS (Netherlands)

    Klink, D.T.; Caris, M.G.; Heijboer, A.C.; van Trotsenburg, M.; Rotteveel, J.

    2015-01-01

    Context: Sex steroids are important for bone mass accrual. Adolescents with gender dysphoria (GD) treated with gonadotropin-releasing hormone analog (GnRHa) therapy are temporarily sex-steroid deprived until the addition of cross-sex hormones (CSH). The effect of this treatment on bone mineral

  12. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    Science.gov (United States)

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Longitudinal changes in bone parameters in young girls with anorexia nervosa.

    Science.gov (United States)

    Shepherd, Sheila; Kyriakou, Andreas; Shaikh, Mohamed Guftar; McDevitt, Helen; Oakley, Charlotte; Thrower, Michelle; Faisal Ahmed, S; Mason, Avril

    2018-03-27

    Anorexia nervosa (AN) during childhood and adolescence has been reported to adversely affect bone health, but few studies have investigated longitudinal changes. DXA-derived bone parameters and body composition were retrospectively assessed in 111 young girls with AN with a median age of 15.4 years (10.9, 19.8). In 68 (61%) vertebral fracture assessment (VFA) was performed and in 31 (28%), a follow-up DXA was performed. Correlations with growth, changes in body composition and effects of illness duration and menstruation were examined. Size adjusted DXA standard deviation scores were calculated for total body (TB) less head bone mineral content (TBLH-BMC) and lumbar spine bone mineral apparent density (LS-BMAD). Mean (range) bone area (BA) for height centile was 27.1 (0-97), and mean lean mass for height centile was 28.8 (0-95) at baseline. Mean (range) LS BMAD was -1.0 (-2.6, 0.8) SDS at first and - 1.2 (-3.0, -0.2) at second DXA (p = 0.023). On follow up, lean mass for height increased from 27th centile (0, 75) to 40th centile (0, 70) (p = 0.006), and fat mass for height increased from 55 g/cm to 67 g/cm (11.3, 124.2) (p < 0.001). Duration of illness was the only negative predictor of LS BMAD (p < 0.0001). Change in height SDS was the only positive predictor of change in TBLH-BMC (r = 0.384, p = 0.037), and change in LS BMAD (r-0.934, p < 0.0001). Of 68 patients who had VFA, 4 (5.9%) had a mild vertebral fracture. Bones are smaller and less dense in childhood/adolescent AN compared to healthy adolescents. Although there are significant gains in lean mass and fat mass, over time, BMAD SDS decreases slightly. Improvement in BMAD SDS is related to improvement in height SDS. Copyright © 2017. Published by Elsevier Inc.

  14. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  15. Association between low lean mass and low bone mineral density in 653 women with hip fracture: does the definition of low lean mass matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa

    2017-12-01

    Loss of both muscle and bone mass results in fragility fractures with increased risk of disability, poor quality of life, and death. Our aim was to assess the association between low appendicular lean mass (aLM) defined according to different criteria and low bone mineral density (BMD) in hip-fracture women. Six hundred fifty-three women admitted to our rehabilitation hospital underwent dual energy X-ray absorptiometry 19.1 ± 4.1 (mean ± SD) days after hip-fracture occurrence. Low aLM was identified according to either Baumgartner's definition (aLM/height 2 less than two standard deviations below the mean of the young reference group) or FNIH criteria: aLM definition, the association between low aLM/height 2 and low BMD was significant: χ 2 (1, n = 653) = 8.52 (p = 0.004), but it was erased by adjustments for age and fat mass. Using the FNIH definition the association between low aLM and low BMD was significant: χ 2 (1, n = 653) = 42.5 (p definition based on aLM/BMI ratio the association between low aLM/BMI ratio and low BMD was nonsignificant: χ 2 (1, n = 653) = 0.003 (p = 0.957). The association between low aLM and low BMD in women with hip fracture dramatically depends on the adopted definition of low aLM. FNIH threshold for aLM (<15.02 kg) emerges as a useful tool to capture women with damage of the muscle-bone unit.

  16. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  17. SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Menghui Jiang

    2016-07-01

    Full Text Available Osteoblasts and adipocytes are derived from a common precursor, mesenchymal stem cells (MSCs. Alterations in the normal fate of differentiating MSCs are involved in the development of obesity and osteoporosis. Here, we report that viable motheaten (mev mice, which are deficient in the SH2-domain-containing phosphatase-1 (SHP1, develop osteoporosis spontaneously. Consistently, MSCs from mev/mev mice exhibit significantly reduced osteogenic potential and greatly increased adipogenic potential. When MSCs were transplanted into nude mice, SHP1-deficient MSCs resulted in diminished bone formation compared with wild-type MSCs. SHP1 was found to bind to GSK3β and suppress its kinase activity by dephosphorylating pY216, thus resulting in β-catenin stabilization. Mice, in which SHP1 was deleted in MSCs using SHP1fl/flDermo1-cre, displayed significantly decreased bone mass and increased adipose tissue. Taken together, these results suggest a possible role for SHP1 in controlling tissue homeostasis through modulation of MSC differentiation via Wnt signaling regulation.

  18. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  19. Imaginal diagnosis of eosinophilic granuloma of long bones

    International Nuclear Information System (INIS)

    Cui Fa; Cui Minyi

    2006-01-01

    Objective: To analyze the clinical and imaging features of eosinophilic granuloma of long bones so as to improve diagnosis accuracy of the disease. Methods: The clinic materials and imaging findings of 24 patients with eosinophilic granuloma of long bones proved by surgery or histopathology were analyzed retrospectively. All the patients received radiography; CT scan was performed in 6 cases; and MRI was done in 4 cases. Results: Fifteen patients out of 24 were male and 9 were female, with the average age 14. 7 years old. Solitary lesion was found in 22 cases, and multiple bone destruction was noted in 2 cases. There were 14 lesions located in femur; 5 in tibia; 3 in humer; and 2 in fibula. In total 16 lesions involved diaphysis and in 8 cases the metaphysis was invaded. Bone destruction, the changes of the adjacent cortex, periosteal reaction and soft tissue mass or swelling were demonstrated in images obtained. Conclusion: The imaging features in eosinophilic granuloma of long bones are characteristic. Careful and integrative analysis of imaging findings improves diagnosis accuracy of the disease. (authors)

  20. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Cheng; Meng, Haoye; Wang, Xin; Zhao, Chenyang; Peng, Jing; Wang, Yu

    2016-01-21

    Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis.

  1. Identification of a dietary pattern prospectively associated with bone mass in Australian young adults.

    Science.gov (United States)

    van den Hooven, Edith H; Ambrosini, Gina L; Huang, Rae-Chi; Mountain, Jenny; Straker, Leon; Walsh, John P; Zhu, Kun; Oddy, Wendy H

    2015-11-01

    Relatively little is known about the relations between dietary patterns and bone health in adolescence, which is a period of substantial bone mass accrual. We derived dietary patterns that were hypothesized to be related to bone health on the basis of their protein, calcium, and potassium contents and investigated their prospective associations with bone mineral density (BMD), bone area, and bone mineral content (BMC) in a cohort of young adults. The study included 1024 young adults born to mothers who were participating in the Western Australian Pregnancy Cohort (Raine) Study. Dietary information was obtained from food-frequency questionnaires at 14 and 17 y of age. Dietary patterns were characterized according to protein, calcium, and potassium intakes with the use of reduced-rank regression. BMD, bone area, and BMC were estimated with the use of a total body dual-energy X-ray absorptiometry scan at 20 y of age. We identified 2 major dietary patterns. The first pattern was positively correlated with intakes of protein, calcium, and potassium and had high factor loadings for low-fat dairy products, whole grains, and vegetables. The second pattern was positively correlated with protein intake but negatively correlated with intakes of calcium and potassium and had high factor loadings for meat, poultry, fish, and eggs. After adjustment for anthropometric, sociodemographic, and lifestyle factors, a higher z score for the first pattern at 14 y of age was positively associated with BMD and BMC at 20 y of age [differences: 8.6 mg/cm(2) (95% CI: 3.0, 14.1 mg/cm(2)) and 21.9 g (95% CI: 6.5, 37.3 g), respectively, per SD increase in z score]. The z score for this same pattern at 17 y of age was not associated with bone outcomes at 20 y of age. The second pattern at 14 or 17 y of age was not associated with BMD, BMC, or bone area. A dietary pattern characterized by high intakes of protein, calcium, and potassium in midadolescence was associated with higher BMD and BMC at 20

  2. Studies directed toward improving the spatial resolution of the distribution of plutonium in bone

    International Nuclear Information System (INIS)

    Auxier, J.A.; Beach, J.L.; Becker, K.; Gammage, R.D.; Henley, L.C.; Parkinson, W.W.

    1975-01-01

    Of several methods which have been discussed for the improvement of resolution in fission fragment track detectors for neutron-induced autoradiography, emphasis had been on the use of absorber layers inserted between the sample and the detector. Scanning electron microscopy was shown to be beneficial for viewing only the entrance holes of fission fragment tracks in the detector foil. The primary disadvantage of using thick absorbers lies in the factor of 50 to 100 percent loss in sensitivity over bare detectors. One promising solution to this problem is the use of glass detectors with high critical angles, no absorbers, and short etching times. Such detectors gave the best resolution of any system tested (+-2 μ), though they suffered at fluences greater than 10 16 n/sub th/ cm 2 from high backgrounds as a result of their natural uranium content. Two samples of bone, each of 1 mg were dissolved in HNO 3 spiked with 244 Pu, and analyzed for total 239 Pu content in an isotopic abundance mass spectrometer. The 239 Pu concentration was 1 ppm by weight; bones with 10 ppm of 239 Pu are required, therefore, for neutron-induced autoradiography. Bones in suitable form for IMMA required only to be coated with a thin conductive coating of gold. In a fast scan mode, all elements were searched in 200 x 200 areas. Good quality micrographs were obtained showing Na, K, Ca, and P as major constituents with minor elements present, such as Cr and Fe

  3. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study

    DEFF Research Database (Denmark)

    Vlachopoulos, Dimitris; Barker, Alan R; Ubago-Guisado, Esther

    2018-01-01

    OBJECTIVES: Research investigating the longitudinal effects of the most popular sports on bone development in adolescent males is scarce. The aim is to investigate the effect of 12-month participation in osteogenic and non-osteogenic sports on bone development. DESIGN: A 12-month study...... by dual-energy X-ray absorptiometry, and bone stiffness was measured by quantitative ultrasound. Bone outcomes at 12 months were adjusted for baseline bone status, age, height, lean mass and moderate to vigorous physical activity. RESULTS: Footballers had higher improvement in adjusted BMC at the total...... body, total hip, shaft, Ward's triangle, legs and bone stiffness compared to cyclists (6.3-8.0%). Footballers had significantly higher adjusted BMC at total body, shaft and legs compared to swimmers (5.4-5.6%). There was no significant difference between swimmers and cyclists for any bone outcomes...

  4. Hormone replacement therapy dissociates fat mass and bone mass, and tends to reduce weight gain in early postmenopausal women

    DEFF Research Database (Denmark)

    Jensen, L B; Vestergaard, P; Hermann, A P

    2003-01-01

    in women randomized to HRT (1.94 +/- 4.86 kg) than in women randomized to no HRT (2.57 +/- 4.63, p = 0.046). A similar pattern was seen in the group receiving HRT or not by their own choice. The smaller weight gain in women on HRT was almost entirely caused by a lesser gain in fat. The main determinant...... of the weight gain was a decline in physical fitness. Women opting for HRT had a significantly lower body weight at inclusion than the other participants, but the results in the self-selected part of the study followed the pattern found in the randomized part. The change in fat mass was the strongest predictor...... of bone changes in untreated women, whereas the change in lean body mass was the strongest predictor when HRT was given. Body weight increases after the menopause. The gain in weight is related to a decrease in working capacity. HRT is associated with a smaller increase in fat mass after menopause. Fat...

  5. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.

    Science.gov (United States)

    Campione, Nicolás E; Evans, David C

    2012-07-10

    Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a

  6. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Directory of Open Access Journals (Sweden)

    Campione Nicolás E

    2012-07-01

    Full Text Available Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in

  7. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    Science.gov (United States)

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  8. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    Directory of Open Access Journals (Sweden)

    Sina Gallo

    2012-01-01

    Full Text Available For over 2 decades, dual-energy X-ray absorptiometry (DXA has been the gold standard for estimating bone mineral density (BMD and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation, weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada. Whole body (WB as well as regional sites of the lumbar spine (LS 1–4 and femur was measured using DXA (QDR 4500A, Hologic Inc. providing bone mineral content (BMC for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0±14.2 versus 227.0±29.7 g, spine BMC by 130% (2.35±0.42 versus 5.37±1.02 g, and femur BMC by 190% (2.94±0.54 versus 8.50±1.84 g. Spine BMD increased by 14% (0.266±0.044 versus 0.304±0.044 g/cm2 during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals.

  9. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  10. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Science.gov (United States)

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  11. Improving efficiency of a regional stand alone bone bank.

    Science.gov (United States)

    Warnock, Jonathan M; Rowan, Clare H; Davidson, Helen; Millar, Ciara; McAlinden, M Gavan

    2016-03-01

    The introduction of a stand-alone Bone Bank in our Regional Orthopaedic Hospital has improved the availability of femoral head allograft. Benninger et al. (Bone Joint J 96-B:1307-1311, 2014), demonstrated their institutions bank to be cost effective despite a 30 % discard rate for harvested allograft. We sought to audit our own discard rates and subsequent cost-effectiveness of our bone bank. Donor recruitment. Before approaching a potential donor, our establishment's nurse specialists review their clinical notes and biochemical laboratory results, available on a regional Electronic Care Records. They view femoral head architecture on radiographs against set criteria, Patient Archive and Communication system (SECTRA, Sweden). In total 1383 femoral heads were harvested, 247 were discarded giving an overall rate of 17.9 %. The most common reasons for discard of harvested graft was a positive microbiology/bacteriology result, n = 96 (38.9 %). After a rise in discard rates in 2007, we have steadily reduced our discard rates since 2006/2007 (28.2 %), 2008/2009 (17 %), 2010/2011 (14.8 %), and finally to 10.3 % in 2012/2013. In the current financial year, our cost to harvest, test, store and release a femoral head is £ 610. With a structured donor recruitment process and unique pre-operative radiographic analysis we have successfully reduced our discard rates bi-annually making our bone bank increasingly cost-effective.

  12. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    Science.gov (United States)

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Directory of Open Access Journals (Sweden)

    Francisco J A de Paula

    Full Text Available Bone marrow harbors a significant amount of body adipose tissue (BMAT. While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  14. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Science.gov (United States)

    de Paula, Francisco J A; de Araújo, Iana M; Carvalho, Adriana L; Elias, Jorge; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H

    2015-01-01

    Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  15. Bone and fat connection in aging bone.

    Science.gov (United States)

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  16. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    International Nuclear Information System (INIS)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok

    2000-01-01

    %, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  17. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    flaccida (35%, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  18. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians

    DEFF Research Database (Denmark)

    Harsløf, Torben; Frost, M; Nielsen, T L

    2013-01-01

    The interaction between muscle and bone is complex. The aim of this study was to investigate if variations in the muscle genes myostatin (MSTN), its receptor (ACVR2B), myogenin (MYOG), and myoD1 (MYOD1) were associated with fracture risk, bone mineral density (BMD), bone mineral content (BMC......), and lean body mass. We analyzed two independent cohorts: the Danish Osteoporosis Prevention Study (DOPS), comprising 2,016 perimenopausal women treated with hormone therapy or not and followed for 10 years, and the Odense Androgen Study (OAS), a cross-sectional, population-based study on 783 men aged 20......-29 years. Nine tag SNPs in the four genes were investigated. In the DOPS, individuals homozygous for the variant allele of the MSTN SNP rs7570532 had an increased risk of any osteoporotic fracture, with an HR of 1.82 (95 % CI 1.15-2.90, p = 0.01), and of nonvertebral osteoporotic fracture, with an HR of 2...

  19. Lack of influence of simple premenopausal hysterectomy on bone mass and bone metabolism

    DEFF Research Database (Denmark)

    Ravn, Pernille; Lind, C; Nilas, L

    1995-01-01

    urinary calcium corrected for creatinine excretion. RESULTS: Women who had undergone premenopausal hysterectomy had similar bone mineral densities compared with women with an intact uterus in all compartments, apart from a 6% to 11% higher bone mineral density (p

  20. Regulation of placental calcium transport and offspring bone health

    Directory of Open Access Journals (Sweden)

    Laura eGoodfellow

    2011-02-01

    Full Text Available Osteoporosis causes considerable morbidity and mortality in later life, and the risk of the disease is strongly determined by peak bone mass, which is achieved in early adulthood. Poor intrauterine and early childhood growth are associated with reduced peak bone mass, and increased risk of osteoporotic fracture in older age. In this review we describe the regulatory aspects of intrauterine bone development, and then summarise the evidence relating early growth to later fracture risk. Physiological systems include vitamin D, PTH; leptin; GH/ IGF-1; finally the potential role of epigenetic processes in the underlying mechanisms will be explored. Thus factors such as maternal lifestyle, diet, body build, physical activity and vitamin D status in pregnancy all appear to influence offspring bone mineral accrual. These data demonstrate a likely interaction between environmental factors and gene expression, a phenomenon ubiquitous in the natural world (developmental plasticity, as the potential key process. Intervention studies are now required to test the hypotheses generated by these epidemiological and physiological findings, to inform potential novel public health interventions aimed at improving childhood bone health and reducing the burden of osteoporotic fracture in future generations.

  1. [THE IMPORTANCE OF "MILK BONES" TO "WISDOM BONES" - COW MILK AND BONE HEALTH - LESSONS FROM MILK ALLERGY PATIENTS].

    Science.gov (United States)

    Nachshon, Liat; Katz, Yitzhak

    2016-03-01

    The necessity of milk consumption in the western diet is a subject of intense controversy. One of the main benefits of milk is that it is the main source of dietary calcium. Calcium is a major bone mineral, mandatory for bone health. Its supply is derived exclusively from external dietary sources. During the growth period, an increased calcium supply is needed for the process of bone mass accumulation. An optimal bone mass achieved by the end of the growth period may be protective later in life against the bone mass loss that commonly occurs. This in turn, can be preventative against the occurrence of osteoporosis and the development of spontaneous bone fractures. Over the past several decades, an increased incidence of osteoporosis has been documented in western countries, leading to high rates of morbidity and mortality in the middle-aged and geriatric population. Many studies have investigated the dietary calcium requirements for different ages, to achieve and maintain proper bone health. Based on their results, guidelines concerning calcium intake in every stage of life have been published by national and international organizations. In the western diet, it is difficult to achieve the recommended calcium intake without milk consumption. Moreover, calcium bioavailability for intestinal absorption is high. Several studies have recently raised doubts concerning the amounts of calcium intake in the western diet and its effectiveness in preventing osteoporosis. The main disadvantage of these studies is their being based on the patient's past memory recall of milk consumption. Patients with IgE-mediated cow's milk protein allergy are a unique population. Their lifetime negligible milk consumption is undisputed. A recent study investigated for the first time, the bone density of young adults with milk allergy at the end of their growth period. Their severe reduction in bone mineral density and dietary calcium intake defines them as a high risk group for the

  2. Improved single ion cyclotron resonance mass spectroscopy

    International Nuclear Information System (INIS)

    Boyce, K.R.

    1993-01-01

    The author has improved the state of the art for precision mass spectroscopy of a mass doublet to below one part in 10 10 . By alternately loading single ions into a Penning trap, the author has determined the mass ratio M(CO + )/M(N + 2 ) = 0.999 598 887 74(11), an accuracy of 1 x 10 -10 . This is a factor of 4 improvement over previous measurements, and a factor of 10 better than the 1985 atomic mass table adjustment [WAA85a]. Much of the author's apparatus has been rebuilt, increasing the signal-to-noise ratio and improving the reliability of the machine. The typical time needed to make and cool a single ion has been reduced from about half an hour to under 5 minutes. This was done by a combination of faster ion-making and a much faster procedure for driving out ions of the wrong species. The improved S/N, in combination with a much better signal processing algorithm to extract the ion phase and frequency from the author's data, has substantially reduced the time required for the actual measurements. This is important now that the measurement time is a substantial fraction of the cycle time (the time to make a new ion and measure it). The improvements allow over 30 comparisons in one night, compared to 2 per night previously. This not only improves the statistics, but eliminates the possibility of large non-Gaussian errors due to sudden magnetic field shifts

  3. Alendronate Can Improve Bone Alterations in Experimental Diabetes by Preventing Antiosteogenic, Antichondrogenic, and Proadipocytic Effects of AGEs on Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sara Rocío Chuguransky

    2016-01-01

    Full Text Available Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs that impair bone marrow progenitor cell (BMPC osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization and chondrogenesis (glycosaminoglycan production of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b increased bone marrow adiposity; and (c deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis. Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC.

  4. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    Science.gov (United States)

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Body composition and circulating estradiol are the main bone density predictors in healthy young and middle-aged men.

    Science.gov (United States)

    Bilha, S C; Branisteanu, D; Buzduga, C; Constantinescu, D; Cianga, P; Anisie, E; Covic, A; Ungureanu, M C

    2018-01-16

    Current fracture risk assessment options in men call for improved evaluation strategies. Recent research directed towards non-classic bone mass determinants have often yielded scarce and conflicting results. We aimed at investigating the impact of novel potential bone mass regulators together with classic determinants of bone status in healthy young and middle-aged men. Anthropometric measurements, all-site bone mineral density (BMD) and body composition parameters assessed by dual-energy X-ray absorptiometry and also serum concentrations of (1) the adipokines leptin and resistin, (2) vitamin D and parathormone (PTH), (3) sex hormone binding globulin (SHBG), total testosterone and estradiol (free testosterone was also calculated) and (4) C-terminal telopeptide of type I collagen (CTx) were obtained from 30 apparently healthy male volunteers aged 20-65 years enrolled in this cross-sectional study. Only lean mass (LM) and total estradiol independently predicted BMD in men in multiple regression analysis, together explaining 49% (p ≤ 0.001) of whole-body BMD variance. Hierarchical regression analysis with whole-body BMD as outcome variable demonstrated that the body mass index (BMI) beta coefficient became nonsignificant when LM was added to the model. Adipokines, fat parameters, testosterone (total and free), SHBG, PTH and vitamin D were not independently associated with BMD or CTx. The present study shows that LM and sex hormones-namely estradiol-are the main determinants of bone mass in young and middle-aged men. The effects of BMI upon BMD seem to be largely mediated by LM. Lifestyle interventions should focus on preserving LM in men for improved bone outcomes.

  6. Improving the dose-myelotoxicity correlation in radiometabolic therapy of bone metastases with {sup 153}Sm-EDTMP

    Energy Technology Data Exchange (ETDEWEB)

    Pacilio, Massimiliano; Basile, Chiara [Azienda Ospedaliera San Camillo Forlanini, Rome (Italy). Dept. of Medical Physics; Ventroni, Guido; Mango, Lucio [Azienda Ospedaliera San Camillo Forlanini, Rome (Italy). Dept. of Nuclear Medicine; Ialongo, Pasquale [Azienda Ospedaliera San Camillo Forlanini, Rome (Italy). Dept. of Radiology; Becci, Domenico [University of Rome, Health Physics Postgraduate School, Rome (Italy)

    2014-02-15

    {sup 153}Sm-ethylene diamine tetramethylene phosphonic acid ({sup 153}Sm-EDTMP) is widely used to palliate pain from bone metastases, and is being studied for combination therapy beyond palliation. Conceptually, red marrow (RM) dosimetry allows myelotoxicity to be predicted, but the correlation is poor due to dosimetric uncertainty, individual sensitivity and biological effects from previous treatments. According to EANM guidelines, basic dosimetric procedures have been studied to improve the correlation between dosimetry and myelotoxicity in {sup 153}Sm-EDTMP therapy. RM dosimetry for 33 treatments of bone metastases from breast, prostate and lung tumours was performed prospectively (with {sup 99m}Tc-MDP) and retrospectively, acquiring whole-body scans early and late after injection. The {sup 153}Sm-EDTMP activity was calculated by prospective dosimetry based on measured skeletal uptake and full physical retention, with the RM absorbed dose not exceeding 3.8 Gy. Patient-specific RM mass was evaluated by scaling in terms of body weight (BW), lean body mass (LBM) and trabecular volume (TV) estimated from CT scans of the L2-L4 vertebrae. Correlations with toxicity were determined in a selected subgroup of 27 patients, in which a better correlation between dosimetry and myelotoxicity was expected. Skeletal uptakes of {sup 99m}Tc and {sup 153}Sm (Tc{sub %} and Sm{sub %}) were well correlated. The median Sm{sub %} was higher in prostate cancer (75.3 %) than in lung (60.5 %, p = 0.005) or breast (60.8 %, p = 0.008). PLT and WBC nadirs were not correlated with administered activity, but were weakly correlated with uncorrected RM absorbed doses, and the correlation improved after rescaling in terms of BW, LBM and TV. Most patients showed transient toxicity (grade 1-3), which completely and spontaneously recovered over a few days. Using TV, RM absorbed dose was in the range 2-5 Gy, with a median of 312 cGy for PLT in patients with toxicity and 247 cGy in those with no

  7. Fat, Sugar, and Bone Health: A Complex Relationship.

    Science.gov (United States)

    Tian, Li; Yu, Xijie

    2017-05-17

    With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation

  8. Fat, Sugar, and Bone Health: A Complex Relationship

    Directory of Open Access Journals (Sweden)

    Li Tian

    2017-05-01

    Full Text Available With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD, along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of

  9. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    International Nuclear Information System (INIS)

    Riis, B.J.; Christiansen, C.

    1988-01-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement

  10. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    Science.gov (United States)

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  11. Mechanism by Sambucus nigra Extract Improves Bone Mineral Density in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Laurentiu Badescu

    2012-01-01

    Full Text Available The effects of polyphenols extracted from Sambucus nigra fruit were studied in streptozotocin- (STZ- induced hyperglycemic rats to evaluate its possible antioxidant, anti-inflammatory, antiglycosylation activity, and antiosteoporosis effects in diabetes. DEXA bone mineral density tests were performed in order to determine bone mineral density (BMD, bone mineral content (BMC, and fat (%Fat in control and diabetic animals, before and after polyphenol delivery. As compared to the normoglycemic group, the rats treated with STZ (60 mg/kg body weight revealed a significant malondialdehyde (MDA increase, as an index of the lipid peroxidation level, by 69%, while the total antioxidant activity (TAS dropped by 36%, with a consistently significant decrease (<0.05 in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX. Also, the treatment of rats with STZ revealed a significant increase of IL-6, glycosylated haemoglobin (HbA1c, and osteopenia detected by DEXA bone mineral density tests. The recorded results highlight a significant improvement (<0.001 in the antioxidative capacity of the serum in diabetic rats treated with natural polyphenols, bringing back to normal the concentration of reduced glutathione (GSH, as well as an important decrease in the serum concentration of MDA, with improved osteoporosis status. Knowing the effects of polyphenols could lead to the use of the polyphenolic extract of Sambucus nigra as a dietary supplement in diabetic osteoporosis.

  12. Dating of cremated bones

    OpenAIRE

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a r...

  13. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    Science.gov (United States)

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  14. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  15. Effects of Denosumab and Calcitriol on Severe Secondary Hyperparathyroidism in Dialysis Patients With Low Bone Mass.

    Science.gov (United States)

    Chen, Chien-Liang; Chen, Nai-Ching; Liang, Huei-Lung; Hsu, Chih-Yang; Chou, Kang-Ju; Fang, Hua-Chang; Lee, Po-Tsang

    2015-07-01

    Secondary hyperparathyroidism (SHPT) may worsen with administration of denosumab in chronic renal failure patients with low bone mass. This study aimed to evaluate the short-term effect of coadministration of calcitriol and denosumab on PTH secretion and parathyroid structure and the incidence of adverse effects in patients with SHPT and low bone mass. This was a 24-week, open-label study at Kaohsiung Veterans General Hospital in Kaohsiung, Taiwan. Dialysis patients with SHPT (intact parathyroid hormone [iPTH] > 800 pg/mL) and low bone mass (T score < -2.5) were enrolled. Patients received denosumab (60 mg) and doses of calcitriol adjusted to achieve iPTH < 300 pg/mL. Parathyroid gland volume was assessed upon study initiation and completion. Serum calcium, phosphate, alkaline phosphatase, iPTH, and adverse effects were assessed at each visit (Day 7, 14, and 21, and every month thereafter). iPTH significantly decreased (mean decrease, 58.28 ± 6.12%) with denosumab/calcitriol administration (P < .01) but not in the controls (patients not receiving denosumab). Parathyroid gland volume decreased (mean decrease, 21.98 ± 5.54%) with denosumab/calcitriol administration (P < .01) and progressively increased (20.58 ± 4.48%) in the controls (P < .05). Serum alkaline phosphatase and iPTH levels were significantly correlated to decreased iPTH and regression of parathyroid hyperplasia (P < .05). The most common adverse events were hypocalcemia (33.33%) and respiratory tract infection (4.17%). Hypocalcemia rapidly resolved with calcium and calcitriol supplements. Denosumab allows for supra-physiologic doses of calcitriol resulting in decreased parathyroid secretion and parathyroid hyperplasia. Supervised administration and weekly laboratory and clinical monitoring of serum calcium are recommended during the first month to prevent hypocalcemia.

  16. Improved conditions for labeling EDTMP with 188Re for bone pain palliation

    International Nuclear Information System (INIS)

    Faintuch, B.L.; Osso, J.A. Jr.; Muramoto, E.; Faintuch, S.

    2002-01-01

    Introduction: Ethilenediamine tetramethylene phosphonate (EDTMP) is a tetraphosphonate ligand which, when labeled with 188 Re, can be used for relief of metastatic bone pain. The preferential localization of phosphonate complexes in bone is attributed to their affinity for calcium, and tetraphosphonates may be equal or superior to diphosphonates in this regard. In the present study, it was aimed to determine optimal conditions for preparation of a kit of EDTMP to be labeled with 188 Re. Methods: EDTMP was dissolved in NaOH 1N, and alkalinity was reversed with HCl till pH 2, when SnCl 2 . 2H 2 0 and also ascorbic acid were introduced in the mixture, followed by Na 188 ReO 4 . The preparation was incubated in water bath for 30 minutes and after cooling radiochemical purity was assessed. Optimization of the process consisted in varying the values of EDTMP mass (20, 30, 40 mg) SnCl 2 .2H 2 0 concentration (0.5, 1.0, 2.0 and 3.0 mg/mL), and reaction time (15 and 30 minutes). Radiochemical purity and stability were ascertained in vitro and also in Swiss mice. Bone/muscle uptake ratio was calculated from %ID/g of these organs. Results: The best 188 Re-EDTMP complex was obtained with 40 mg of the ligand and 2 mg/mL of stannous chloride heated during 15 minutes, and the product was radiochemically stable during 24 hours. Kidney and bone uptake were very significant (respectively 4.5 ± 0.5% and 3.1 ± 0.3 %ID/g). Bone/muscle ratio observed four hours post-injection was also very adequate (28.5). Conclusions: A stable and biologically useful complex of 188 Re-EDTMP can be prepared with high concentration of EDTMP and considerable uptake by bone. It compares favorably with 153 Sm-EDTMP, as 188 Re has more advantageous radioisotopic properties than 153 Sm, and it can be recommended for further studies in conditions of painful bone metastases

  17. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  18. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass.

    Science.gov (United States)

    Kemper, Han C G; Bakker, I; Twisk, J W R; van Mechelen, W

    2002-05-01

    Most of the questionnaires available to estimate the daily physical activity levels of humans are based on measuring the intensity of these activities as multiples of resting metabolic rate (METs). Metabolic intensity of physical activities is the most important component for evaluating effects on cardiopulmonary fitness. However, animal studies have indicated that for effects on bone mass the intensity in terms of energy expenditure (metabolic component) of physical activities is less important than the intensity of mechanical strain in terms of the forces by the skeletal muscles and/or the ground reaction forces. The physical activity questionnaire (PAQ) used in the Amsterdam Growth and Health Longitudinal Study (AGAHLS) was applied to investigate the long-term effects of habitual physical activity patterns during youth on health and fitness in later adulthood. The PAQ estimates both the metabolic components of physical activities (METPA) and the mechanical components of physical activities (MECHPA). Longitudinal measurements of METPA and MECHPA were made in a young population of males and females ranging in age from 13 to 32 years. This enabled evaluation of the differential effects of physical activities during adolescence (13-16 years), young adulthood (21-28 years), and the total period of 15 years (age 13-28 years) on bone mineral density (BMD) of the lumbar spine, as measured by dual-energy X-ray absorptiometry (DXA) in males (n = 139) and females (n = 163) at a mean age of 32 years. The PAQ used in the AGAHLS during adolescence (13-16 years) and young adulthood (21-28 years) has the ability to measure the physical activity patterns of both genders, which are important for the development of bone mass at the adult age. MECHPA is more important than METPA. The highest coefficient of 0.33 (p PAQ was established by comparing PAQ scores during four annual measurements in 200 boys and girls with two other objective measures of physical activity: movement

  19. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.

  20. Prevalence of radiographic hip osteoarthritis is increased in high bone mass.

    Science.gov (United States)

    Hardcastle, S A; Dieppe, P; Gregson, C L; Hunter, D; Thomas, G E R; Arden, N K; Spector, T D; Hart, D J; Laugharne, M J; Clague, G A; Edwards, M H; Dennison, E M; Cooper, C; Williams, M; Davey Smith, G; Tobias, J H

    2014-08-01

    Epidemiological studies have shown an association between increased bone mineral density (BMD) and osteoarthritis (OA), but whether this represents cause or effect remains unclear. In this study, we used a novel approach to investigate this question, determining whether individuals with High Bone Mass (HBM) have a higher prevalence of radiographic hip OA compared with controls. HBM cases came from the UK-based HBM study: HBM was defined by BMD Z-score. Unaffected relatives of index cases were recruited as family controls. Age-stratified random sampling was used to select further population controls from the Chingford and Hertfordshire cohort studies. Pelvic radiographs were pooled and assessed by a single observer blinded to case-control status. Analyses used logistic regression, adjusted for age, gender and body mass index (BMI). 530 HBM hips in 272 cases (mean age 62.9 years, 74% female) and 1702 control hips in 863 controls (mean age 64.8 years, 84% female) were analysed. The prevalence of radiographic OA, defined as Croft score ≥3, was higher in cases compared with controls (20.0% vs 13.6%), with adjusted odds ratio (OR) [95% CI] 1.52 [1.09, 2.11], P = 0.013. Osteophytes (OR 2.12 [1.61, 2.79], P subchondral sclerosis (OR 2.78 [1.49, 5.18], P = 0.001) were more prevalent in cases. However, no difference in the prevalence of joint space narrowing (JSN) was seen (OR 0.97 [0.72, 1.33], P = 0.869). An increased prevalence of radiographic hip OA and osteophytosis was observed in HBM cases compared with controls, in keeping with a positive association between HBM and OA and suggesting that OA in HBM has a hypertrophic phenotype. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    Science.gov (United States)

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  2. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  3. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    Science.gov (United States)

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  4. LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French-Canadian women.

    Science.gov (United States)

    Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François

    2007-05-01

    Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.

  5. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-Free Female's Lean Body and Bone Mass.

    Science.gov (United States)

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-12-01

    To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  6. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K

    2012-01-01

    Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength....... INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS...

  7. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    Science.gov (United States)

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  8. SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro

    2014-01-01

    Osteoma is a benign bone-forming tumor that usually arises in the craniofacial bones and rarely in the long bones. Clavicular involvement is extremely rare. We report a 51-year-old woman with osteoma of the left clavicle. Radiograph of the left shoulder showed a well-defined lobulated blastic mass in the proximal and mid-portion of the left clavicle. Bone scintigraphy was performed 4 hours after an intravenous injection of Tc-99m hydroxymethylene diphosphonate (HMDP). Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography / computed tomography (SPECT/CT) images were also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis

  9. Bone fluoride determination for clinical investigation of osteoporosis

    International Nuclear Information System (INIS)

    Krishnan, S.S.; McNeill, K.G.; Hitchman, A.J.W.; Mernagh, J.R.; Lin, S.C.; Harrison, J.E.

    1984-01-01

    Sodium fluoride is the therapeutic agent known to stimulate bone growth with net increase in bone mineral mass in patients afflicted with osteoporosis, a common crippling bone disease. In order to study the effect of sodium fluoride treatment, a method of analysis for fluoride in bone has been developed using Neutron Activation Analysis (NAA). The technique proved to be simple, fast, reliable and non-destructive. Thus the sample, often bone biopsy specimen, is available, after fluoride analysis, for further histological studies. NAA was used to analyze both fluoride and calcium in the bone and the results expressed as F/Ca ratio was meaningful since it normalizes the fluoride to bone mineral mass which is the important factor in this study. Four years of fluoride treatment of osteoporotics showed significant increase of bone mass (up to 30%) in several patients. These increases were associated with histological bone picture of fluorosis. In the case of patients with renal osteodystrophy, there was evidence that fluorosis contributes to the bone disease. 3 references, 2 figures, 2 tables

  10. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo.

    Science.gov (United States)

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-08-01

    Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life.

  11. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    Science.gov (United States)

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future

  12. Endurance exercise and growth hormone improve bone formation in young and growth-retarded chronic kidney disease rats.

    Science.gov (United States)

    Troib, Ariel; Guterman, Mayan; Rabkin, Ralph; Landau, Daniel; Segev, Yael

    2016-08-01

    Childhood chronic kidney disease (CKD) is associated with both short stature and abnormal bone mineralization. Normal longitudinal growth depends on proper maturation of epiphyseal growth plate (EGP) chondrocytes, leading to the formation of trabecular bone in the primary ossification centre. We have recently shown that linear growth impairment in CKD is associated with impaired EGP growth hormone (GH) receptor signalling and that exercise improved insulin-like growth factor I (IGF-I) signalling in CKD-related muscle atrophy. In this study, 20-day-old rats underwent 5/6 nephrectomy (CKD) or sham surgery (C) and were exercised with treadmill, with or without GH supplementation. CKD-related growth retardation was associated with a widened EGP hypertrophic zone. This was not fully corrected by exercise (except for tibial length). Exercise in CKD improved the expression of EGP key factors of endochondral ossification such as IGF-I, vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteocalcin. Combining GH treatment with treadmill exercise for 2 weeks improved the decreased trabecular bone volume in CKD, as well as the expression of growth plate runt-related transcription factor 2, RANKL, metalloproteinase 13 and VEGF, while GH treatment alone could not do that. Treadmill exercise improves tibial bone linear growth, as well as growth plate local IGF-I. When combined with GH treatment, running exercise shows beneficial effects on trabecular bone formation, suggesting the potential benefit of this combination for CKD-related short stature and bone disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  13. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  14. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  15. Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention

    Directory of Open Access Journals (Sweden)

    Nguyen Nguyen D

    2005-06-01

    Full Text Available Abstract Background While risk factors of osteoporosis in Western populations have been extensively documented, such a profile has not been well studied in Caucasians of non-European origin. This study was designed to estimate the modifiable distribution and determinants of bone mineral density (BMD among Iranian women in Australia. Methods Ninety women aged 35 years and older completed a questionnaire on socio-demographic and lifestyle factors. BMD was measured at the lumbar spine (LS and femoral neck (FN using DXA (GE Lunar, WI, USA, and was expressed in g/cm2 as well as T-score. Results In multiple regression analysis, advancing age, lower body mass index (BMI, and smoking were independently associated with LS and FN BMD, with the 3 factors collectively accounting for 30% and 38% variance of LS and FN BMD, respectively. LS and FN BMD in smokers was 8% lower than that in non-smokers. Further analysis of interaction between BMI and smoking revealed that the effect of smoking was only observed in the obese group (p = 0.029 for LSBMD and p = 0.007 for FNBMD, but not in the overweight and normal groups. Using T-scores from two bone sites the prevalence of osteoporosis (T-scores ≤ -2.5 was 3.8% and 26.3% in pre-and post-menopausal women, respectively. Among current smokers, the prevalence was higher (31.3% than that among ex-smokers (28.6% and non-smokers (7.5%. Conclusion These data, for the first time, indicate that apart from advancing age and lower body mass index, cigarette smoking is an important modifiable determinant of bone mineral density in these Caucasians of non-European origin.

  16. Weight loss and bone mineral density.

    Science.gov (United States)

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  17. Bisphophonates in CKD Patients with Low Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Wen-Chih Liu

    2013-01-01

    Full Text Available Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients.

  18. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.

    Science.gov (United States)

    Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E

    2011-05-01

    Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.

  19. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.

    Science.gov (United States)

    Hu, Wei-Wen; Wang, Zhuo; Krebsbach, Paul H

    2016-02-01

    To spatially control therapeutic gene delivery for potential tissue engineering applications, a biotin-avidin interaction strategy was applied to immobilize viral vectors on biomaterial scaffolds. Both adenoviral vectors and gelatin sponges were biotinylated and avidin was applied to link them in a virus-biotin-avidin-biotin-material (VBABM) arrangement. The tethered viral particles were stably maintained within scaffolds and SEM images illustrated that viral particles were evenly distributed in three-dimensional (3D) gelatin sponges. An in vivo study demonstrated that transgene expression was restricted to the implant sites only and transduction efficiency was improved using this conjugation method. For an orthotopic bone regeneration model, adenovirus encoding BMP-2 (AdBMP2) was immobilized to gelatin sponges before implanting into critical-sized bone defects in rat calvaria. Compared to gelatin sponges with AdBMP2 loaded in a freely suspended form, the VBABM method enhanced gene transfer and bone regeneration was significantly improved. These results suggest that biotin-avidin immobilization of viral vectors to biomaterial scaffolds may be an effective strategy to facilitate tissue regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Cognitive function in relation with bone mass and nutrition: cross-sectional association in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Brownbill Rhonda A

    2004-05-01

    Full Text Available Abstract Background It has been suggested that bone loss and cognitive decline are co-occurring conditions, possibly due to their relationship with estrogen. Cognitive decline has been associated with various nutritional deficiencies as well. The purpose of this study was to determine if cognitive function is related to bone mineral density of various skeletal sites as well as to various dietary components. Methods Cross-sectional study with 97 healthy, Caucasian, postmenopausal women (59.4–85.0 years enrolled in a larger longitudinal study, investigating the effects of sodium on bone mass. The subjects were divided into two groups based on cognition scores. Group 1 represented lower and Group 2 higher scores on cognitive function. Bone mineral density from the whole body, lumbar spine, femur and forearm were measured with the Lunar DPX-MD instrument. Anthropometry was measured by standard methods. Cognition was assessed using the Mini Mental State Examination. Cumulative (over 2 years dietary intake from 3-day records was analyzed by Food Processor® (ESHA Research, Salem, OR and cumulative physical activity was assessed using Allied Dunbar National Fitness Survey for older adults. Results Subjects' cognition scores ranged from 22–30 (normal, 27–30, indicating all subjects had either mild or no cognitive impairment. Multiple Analysis of Covariance adjusted for age, height, weight, physical activity, alcohol, calcium, sodium and energy intake, showed a statistically significant association between cognition and bone mineral density of all measurable sites (η2 = 0.21, P 2 = 0.07, P = 0.050. Group 2 did have a significantly higher potassium intake (P = 0.023. In multiple regression, saturated fat had a significant negative relationship with cognitive function. Conclusions It appears mild degree of cognitive impairment may be a marker for lower bone mineral density as well as for a diet lower in carbohydrate and potassium intake, and higher

  1. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators, and parathyroid hormone on bone remodeling in osteoporosis

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2007-04-01

    Full Text Available Silvia Migliaccio, Marina Brama, Giovanni SperaCattedra di Medicina Interna, Dipartimento di Fisiopatologia Medica, Università degli Studi di Roma “La Sapienza”, Italy Abstract: Osteoporosis is a skeletal metabolic disease characterized by a compromised bone fragility, leading to an increased risk of developing spontaneous and traumatic fractures. Osteoporosis is considered a multifactorial disease and fractures are the results of several different risk factors both extra- and intraskeletal. Thus bone fragility can be the end point of several different causes: a failure to reach an optimal peak bone mass during growth; b excessive bone resorption resulting in decreased bone mass and microarchitectural deterioration; c inadequate formation upon an increased resorption during the process of bone remodeling. The pharmacological therapeutical options, available to date, are directed on prevention of fractures. The aim of this paper is to describe the activities and the mechanisms of action, as known at present, of the most used therapies for osteoporosis and their clinical implications. Improvement of knowledge in this field will allow us to further improve therapeutical choices and pharmacological interventions.Keywords: Osteoporosis, estrogens, bisphosphonates, SERMS, teriparatide, mechanism of action, fracture

  2. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair.

    Science.gov (United States)

    Kovacevic, David; Fox, Alice J; Bedi, Asheesh; Ying, Liang; Deng, Xiang-Hua; Warren, Russell F; Rodeo, Scott A

    2011-04-01

    Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. Controlled laboratory study. Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. The delivery of TGF-β(3) with an injectable Ca-P matrix

  3. Variations in habitual bone strains in vivo: long bone versus mandible

    NARCIS (Netherlands)

    de Jong, W.C.; Korfage, J.A.M.; Langenbach, G.E.J.

    2010-01-01

    Little is known about the similarities and dissimilarities between daily in vivo strain histories of different bones, other than the generally accepted view that most bones need daily loading to maintain their mass. Similarities in daily strain histories might uncover a common basic mechanical

  4. Variations in habitual bone strains in vivo: Long bone versus mandible

    NARCIS (Netherlands)

    de Jong, W. C.; Korfage, J. A. M.; Langenbach, G. E. J.

    2010-01-01

    Little is known about the similarities and dissimilarities between daily in vivo strain histories of different bones, other than the generally accepted view that most bones need daily loading to maintain their mass. Similarities in daily strain histories might uncover a common basic mechanical

  5. Bone mineral density and body composition in adolescents with failure to thrive

    Directory of Open Access Journals (Sweden)

    Thiago Sacchetto de Andrade

    2010-06-01

    Full Text Available Objective: To evaluate bone mineral mass in adolescents with failure to thrive in relation to body composition. Methods: A case-control study involving 126 adolescents (15 to 19 years, in final puberty maturation being 76 eutrophic and 50 with failure to thrive (genetic or constitutional delay of growth, of matching ages, gender and pubertal maturation. The weight, height and calculated Z score for height/age and body mass index; bone mineral content, bone mineral density and adjusted bone mineral density were established for total body, lower back and femur; total fat-free mass and height-adjusted fat-free mass index, total fat mass and height-adjusted. The statistical analyses were performed using the Student’s t-test (weight, height and body composition; Mann-Whitney test (bone mass and multiple linear regression (bone mass determinants. Results: weight, height and height/age Z-score were significantly higher among eutrophic subjects. Both groups did not show statistically significant differences for fat mass, percentage of fat mass, total fat mass height adjusted and fat-free mass index height sadjusted. However, total free fat maass was smaller for the failure to thrive group. Conclusions: There was no statistically significant difference for bone mass measurements among adolescents with failure to thrive; however, the factors that determine bone mass formation should be better studied due to the positive correlation with free fat mass detected in these individuals.

  6. Bone changes in endometrosis

    International Nuclear Information System (INIS)

    Jensen, P.S.; Orphanoudakis, S.C.; Hutchinson-Williams, K.; Lewis, A.B.; Lovett, L.; Polan, M.L.; DeCherney, A.H.; Comite, F.

    1989-01-01

    In this study, quantitative CT is used to measure bone in the distal radius in normal women, women with endometriosis who had not been treated, and women with endometriosis who had been treated with danazol--an anabolic (androgen) steroid. Measurements of cortex and trabeculae indicate that untreated women have decreased bone mass (1125 HU and 160 HU, respectively), compared with bone mass in normal women (1269 HU and 257 HU; P < .05) and treated women (1238 HU and 255 HU). This finding is important because the most effective way to reduce the complications of osteoporosis is identification of risk factors, prevention, and early treatment

  7. Effects of growth hormone administration for 6 months on bone turnover and bone marrow fat in obese premenopausal women.

    Science.gov (United States)

    Bredella, Miriam A; Gerweck, Anu V; Barber, Lauren A; Breggia, Anne; Rosen, Clifford J; Torriani, Martin; Miller, Karen K

    2014-05-01

    Abdominal adiposity is associated with low BMD and decreased growth hormone (GH) secretion, an important regulator of bone homeostasis. The purpose of our study was to determine the effects of a short course of GH on markers of bone turnover and bone marrow fat in premenopausal women with abdominal adiposity. In a 6-month, randomized, double-blind, placebo-controlled trial we studied 79 abdominally obese premenopausal women (21-45 y) who underwent daily sc injections of GH vs. placebo. Main outcome measures were body composition by DXA and CT, bone marrow fat by proton MR spectroscopy, P1NP, CTX, 25(OH)D, hsCRP, undercarboxylated osteocalcin (ucOC), preadipocyte factor 1 (Pref 1), apolipoprotein B (ApoB), and IGF-1. GH increased IGF-1, P1NP, 25(OH)D, ucOC, bone marrow fat and lean mass, and decreased abdominal fat, hsCRP, and ApoB compared with placebo (pbone formation. A six-month decrease in abdominal fat, hsCRP, and ApoB inversely predicted 6-month change in P1NP, and 6-month increase in lean mass and 25(OH)D positively predicted 6-month change in P1NP (p≤0.05), suggesting that subjects with greatest decreases in abdominal fat, inflammation and ApoB, and the greatest increases in lean mass and 25(OH)D experienced the greatest increases in bone formation. A six-month increase in bone marrow fat correlated with 6-month increase in P1NP (trend), suggesting that subjects with the greatest increases in bone formation experienced the greatest increases in bone marrow fat. Forward stepwise regression analysis indicated that increase in lean mass and decrease in abdominal fat were positive predictors of P1NP. When IGF-1 was added to the model, it became the only predictor of P1NP. GH replacement in abdominally obese premenopausal women for 6 months increased bone turnover and bone marrow fat. Reductions in abdominal fat, and inflammation, and increases in IGF-1, lean mass and vitamin D were associated with increased bone formation. The increase in bone marrow fat may

  8. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Maira L. Mendonça

    Full Text Available OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT and 21 controls (CG. Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01. Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%. The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005, but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  9. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization.

    Science.gov (United States)

    Amrita; Arora, Aditya; Sharma, Poonam; Katti, Dhirendra S

    2015-06-05

    Porous hydrogels have been explored for bone tissue engineering; however their poor mechanical properties make them less suitable as bone graft substitutes. Since incorporation of fillers is a well-accepted method for improving mechanical properties of hydrogels, in this work pullulan hydrogels were reinforced with nano-crystalline hydroxyapatite (nHAp) (5 wt% nHAp in hydrogel) and poly(3-hydroxybutyrate) (PHB) fibers (3 wt% fibers in hydrogel) containing nHAp (3 wt% nHAp in fibers). Addition of these fillers to pullulan hydrogel improved compressive modulus of the scaffold by 10 fold. However, the hydrophilicity of pullulan did not support adhesion and spreading of cells. To overcome this limitation, porous composite scaffolds were modified using a double diffusion method that enabled deposition of hydroxyapatite on pore walls. This method resulted in rapid and uniform coating of HAp throughout the three-dimensional scaffolds which not only rendered them osteoconductive in vitro but also led to an improvement in their compressive modulus. These results demonstrate the potential of mineralized pullulan-based composite scaffolds in non-load bearing bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Improvement of disintegrable properties of bone prosthetic phosphate cements

    International Nuclear Information System (INIS)

    Kaneda, Mitsumasa

    2007-01-01

    The author added a viscoelastic binder or bio-disintegrable polymer filler in αDT-cement (DTC) base, which consisting of α-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate anhydrous, in order to examine whether disintegrable properties of the bone prosthetic materials could be improved. The additive for the former binder was hydroxypropyl-cellulose and the latter filler, poly-(DL-lactide-co-glycolide) and they were mixed in various proportions with the base. At both sides of the cranial coronary suture of Japanese white rabbit, cavities (4 in total) were made at anteroposterior sites where those prosthetic cements were filled. At 1, 2 and 4 weeks later, the operated bone region was dissected out, its soft X-ray image was taken by the machine OMC603 (OHMICRON), and three-dimensional (3D) micro-focused XCT images, by Shimadzu SMX-130CT-SV. The trabecular thickness, bone volume and tissue volume ratio were calculated from the latter images by the trabecular structural measure software TRI/3Dbon (ROTAC). Disintegration rate of the cements was tested in water. Disintegrable properties were found to affect osteogenesis by giving the space for it, and thereby the choice of the ratio of the binder and disintegrable filler in the DTC makes it possible to design the most suitable cement needed. (R.T.)

  11. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    Science.gov (United States)

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    strengthens bonding at the BII, which might improve early implant fixation after spinal surgery for osteoporosis. However, the absence of increased bone mass around the screw remains a concern; prescribing osteoporosis treatment to improve bone quality might be necessary to prevent fractures around the screws.

  12. Vitamins and bone health: beyond calcium and vitamin D.

    Science.gov (United States)

    Ahmadieh, Hala; Arabi, Asma

    2011-10-01

    Osteoporosis is a major health disorder associated with an increased risk of fracture. Nutrition is among the modifiable factors that influence the risk of osteoporosis and fracture. Calcium and vitamin D play important roles in improving bone mineral density and reducing the risk of fracture. Other vitamins appear to play a role in bone health as well. In this review, the findings of studies that related the intake and/or the status of vitamins other than vitamin D to bone health in animals and humans are summarized. Studies of vitamin A showed inconsistent results. Excessive, as well as insufficient, levels of retinol intake may be associated with compromised bone health. Deficiencies in vitamin B, along with the consequent elevated homocysteine level, are associated with bone loss, decreased bone strength, and increased risk of fracture. Deficiencies in vitamins C, E, and K are also associated with compromised bone health; this effect may be modified by smoking, estrogen use or hormonal therapy after menopause, calcium intake, and vitamin D. These findings highlight the importance of adequate nutrition in preserving bone mass and reducing the risk of osteoporosis and fractures. © 2011 International Life Sciences Institute.

  13. A path model of sarcopenia on bone mass loss in elderly subjects.

    Science.gov (United States)

    Rondanelli, M; Guido, D; Opizzi, A; Faliva, M A; Perna, S; Grassi, M

    2014-01-01

    Aging is associated with decreases in muscle mass, strength, power (sarcopenia) and bone mineral density (BMD). The aims of this study were to investigate in elderly the role of sarcopenia on BMD loss by a path model, including adiposity, inflammation, and malnutrition associations. Body composition and BMD were measured by dual X-ray absorptiometry in 159 elderly subjects (52 male/107 female; mean age 80.3 yrs). Muscle strength was determined with dynamometer. Serum albumin and PCR were also assessed. Structural equations examined the effect of sarcopenia (measured by Relative Skeletal Muscle Mass, Total Muscle Mass, Handgrip, Muscle Quality Score) on osteoporosis (measured by Vertebral and Femoral T-scores) in a latent variable model including adiposity (measured by Total Fat Mass, BMI, Ginoid/Android Fat), inflammation (PCR), and malnutrition (serum albumin). The sarcopenia assumed a role of moderator in the adiposity-osteoporosis relationship. Specifically, increasing the sarcopenia, the relationship adiposity-osteoporosis (β: -0.58) decrease in intensity. Adiposity also influences sarcopenia (β: -0.18). Malnutrition affects the inflammatory and the adiposity states (β: +0.61, and β: -0.30, respectively), while not influencing the sarcopenia. Thus, adiposity has a role as a mediator of the effect of malnutrition on both sarcopenia and osteoporosis. Malnutrition decreases adiposity; decreasing adiposity, in turn, increase the sarcopenia and osteoporosis. This study suggests such as in a group of elderly sarcopenia affects the link between adiposity and BMD, but not have a pure independent effect on osteoporosis.

  14. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  15. Primary pericranial Ewing's sarcoma on the temporal bone: A case report.

    Science.gov (United States)

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.

  16. Bone turnover in postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Thomsen, K.

    1988-02-01

    Studies of the bone turnover in postmenopausal osteoporosis are essential, because the associated bone loss is inevitably due to the relative increase of bone resorption compared with bone formation. Measurement of the bone mineral content (BMC) in normal adults is assessed - partly on the uncorrected values and partly in proportion to the body muscle mass. The whole body retention (WBR) method is presented. The WBR and alternative urinary excretion (UE) methods used by the author are characterised and compared with the retention methods described in the literature. The representativity of WBR and UE for the estimation of bone turnover in normal subjects and patients with various bone metabolic diseases is discussed. The conclusion is that the modified retention methods used by the author have a satisfactory precision and accuracy in relation to the clinical studies carried out. The author's modification of the WBR method for determination of bone turnover and the alternative urinary excretion method (UE) consists in continuous scanning in the whole body count, using a gamma camera, and with the collimator a short distance from the volunteer. This procedure has the advantage of restricting the radioactive dose to 2 mCi (72 MBa). This is smaller by a factor of 5-10 than the dose used to measure WBR with equally simple counting equipment: With the author's procedure, using frontal counting, WBR is systematically underestimated by about 4 per cent point compared to the purely dorsal count, but since the frontal position is the most comfortable, requires a smaller radioactive dose, and the error is systematic, it is the preferred counting procedure. Correction of WBR and UE for bone mineral content is in principle a new parameter of bone turnover, whose improved accuracy increases the validity of the retention determinations. 136 refs. (EG)

  17. Reduced Bone and Body Mass in Young Male Rats Exposed to Lead

    Directory of Open Access Journals (Sweden)

    Fellipe Augusto Tocchini de Figueiredo

    2014-01-01

    Full Text Available The aim of this study was to see whether there would be differences in whole blood versus tibia lead concentrations over time in growing rats prenatally. Lead was given in the drinking water at 30 mg/L from the time the dams were pregnant until offspring was 28- or 60-day-old. Concentrations of lead were measured in whole blood and in tibia after 28 (28D and 60 days (60D in control (C and in lead-exposed animals (Pb. Lead measurements were made by GF-AAS. There was no significant difference (P>0.05 in the concentration of whole blood lead between Pb-28D (8.0±1.1 μg/dL and Pb-60D (7.2±0.89 μg/dL, while both significantly varied (P<0.01 from controls (0.2 μg/dL. Bone lead concentrations significantly varied between the Pb-28D (8.02±1.12 μg/g and the Pb-60D (43.3±13.26 μg/g lead-exposed groups (P<0.01, while those exposed groups were also significantly higher (P<0.0001 than the 28D and 60D control groups (Pb < 1 μg/g. The Pb-60D group showed a 25% decrease in tibia mass as compared to the respective control. The five times higher amount of lead found in the bone of older animals (Pb-60D versus Pb-28D, which reinforces the importance of using bone lead as an exposure biomarker.

  18. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  19. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat.

    Science.gov (United States)

    Takahashi, Takahiro; Watanabe, Takehiro; Nakada, Hiroshi; Sato, Hiroki; Tanimoto, Yasuhiro; Sakae, Toshiro; Kimoto, Suguru; Mijares, Dindo; Zhang, Yu; Kawai, Yasuhiko

    2016-01-01

    The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O) and magnesium and zinc chlorides (MgCl 2 and ZnCl 2 , respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.

  20. Ethnic Differences in Bone Health

    Directory of Open Access Journals (Sweden)

    Ayse eZengin

    2015-03-01

    Full Text Available There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture as well muscle strength (mass, force generation, anatomy and fat mass. We review what is known about differences in bone-densitometry derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 – 2014. A ‘one size fits all approach’ should not be used to understand better ethnic differences in fracture risk.

  1. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  2. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV Bone: An Overview

    Directory of Open Access Journals (Sweden)

    Hamdan S. Alghamdi

    2018-01-01

    Full Text Available Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification, in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV bone are described in a general manner in this review.

  3. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview.

    Science.gov (United States)

    Alghamdi, Hamdan S

    2018-01-13

    Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone) conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification), in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV) bone are described in a general manner in this review.

  4. Analysis of a Fossil Bone from Malu Rosu - Giurgiu by Accelerator Mass Spectroscopy

    International Nuclear Information System (INIS)

    Olariu, Agata; Popescu, I.V.; Hellborg, Ragnar; Stenstroem, Kristina; Skog, Goeran; Alexandrescu, E.

    2000-01-01

    In the present work we studied a fossil bone found in the archaeological site at Malu Rosu, near Giurgiu. Other specimens of fossil bones from Malu Rosu had been earlier dated by a chemical method, considering the content of the fluorine by neutron activation analysis. In this paper we have determined the age of a bone from Malu Rosu by the method of radiocarbon using the AMS (accelerator mass spectroscopy) technique. The measurement has been performed at 3 MeV Pelletron accelerator of the Lund University. The preparation of the bone sample was done in 2 steps: extraction of collagen from the structure of the bone by a chemical pretreatment, and then the transformation of collagen to pure carbon. The conversion to the elemental carbon is done also in two steps: formation of CO 2 by collagen combustion, and then the reduction of CO 2 to pure carbon. The sample of bone, as pure carbon is put in a copper holder and is arranged in a wheel in the following sequence: 5 carbon samples and 3 standards (1 standard of anthracite and 2 standards of oxalic acid). The anthracite being a very old coal is considered to have no 14 C traces and by its measurement one gets the background for 14 C both of the accelerator and of preparation installation of samples. Oxalic acid is a standard SRM prepared by USA National Bureau of Standards, with a well known activity of 14 C, measured in the Radiocarbon Dating Laboratory, Lund University, used to normalize the value of the 14 C counting rate, for the sample measured in the same conditions of beam current and time as the standard. The wheel with samples and standards are put in the ion source of the accelerator. The central part of the Lund AMS system is a Pelletron tandem accelerator (model 3UDH, produced by NEC, Wisconsin USA). The accelerator is run at 2.4 MV during AMS experiments, which is optimal for the C 3+ charge state. On the experimental beam line a magnetic quadrupole triplet, a velocity selector and a second analyzing

  5. [Milk, Daily products and Bone health.Milk or dairy products and bone:Epidemiology.

    Science.gov (United States)

    Tamaki, Junko

    2018-01-01

    An assessment of the association between the intake of milk or dairy products and bone density or the risk of fractures on the basis of epidemiological studies revealed the following findings:(1)a sufficient prepubertal intake of milk or dairy products could contribute to the increased bone growth and maximized peal bone mass because the intake of calcium in the corresponding stage in Japan is inadequate;(2)adequate milk intake could contribute to the maintenance of peal bone mass among menstruating adult females and the decrease of bone loss in postmenopausal females. Adequate milk intake could contribute to the decrease of aging-induced bone loss in elderly males, though there is no sufficient scientific evidence;and(3)a meta-analysis indicated no correlation between the increased milk intake and decreased risks of hip fractures in the elderly. As the intake of milk or dairy products in the Japanese elderly is rather less than that reported by the meta-analysis, the minimal intake of milk or dairy products is anticipated to elevate the risk of fractures in middle-aged or elderly males and females although the scientific evidence is inadequate.

  6. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    Science.gov (United States)

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  7. Bone benefits of testosterone replacement therapy in male hypogonadism.

    Science.gov (United States)

    Tirabassi, G; Biagioli, A; Balercia, G

    2014-06-01

    Osteoporosis is an asymptomatic, systemic bone disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in increased bone fragility. Such condition is often underdiagnosed and undertreated, especially in men, therefore considerably increasing the fracture risk. Of note, fracture-related morbidity and mortality is generally higher in men, partly due to greater frailty. On the other hand, male hypogonadism is defined as the failure of the testes to produce androgens, sperm, or both and it is often due to the ageing process. This disorder, in turn, causes many systemic disorders, and it is the condition mainly associated with male osteoporosis. Testosterone replacement therapy (TRT) is usually prescribed to restore optimal hormone levels, but conflicting data are available about the efficacy of TRT treatment on bone mineral density. In this review we extensively examined literature data about the usefulness of TRT in improving hypogonadism-associated low bone mineral density. Furthermore, we considered the complex relationship between male osteoporosis and hypogonadism, by specifically addressing the role of androgens in male bone physiology and the diagnostic approach to male osteoporosis and hypogonadism and also by dealing with some new related aspects such as the new endocrine pathways between bone and testis and the role of androgen receptor CAG polymorphism on bone density.

  8. The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial.

    Science.gov (United States)

    Vogel, Kara A; Martin, Berdine R; McCabe, Linda D; Peacock, Munro; Warden, Stuart J; McCabe, George P; Weaver, Connie M

    2017-05-01

    Background: Calcium retention increases with increasing body mass index (BMI) on recommended calcium intakes. Dairy foods are an excellent source of essential nutrients that are needed to increase bone mineral content (BMC) and potentially decrease fracture. Objective: We compared children who were overweight with children who were healthy weight for the accrual of bone mass in response to an extra 3 servings dairy/d compared with usual intake. Design: Participants were 240 healthy boys and girls (64%), aged 8-15.9 y (mean ± SD age: 11.8 ± 1.5 y), who consumed low amounts of dairy (hip were observed between subjects who received the dairy intervention (achieved consumption of 1500 mg Ca/d) and subjects who did not (achieved 1000 mg Ca/d, which represented ∼2 cups milk or other dairy as part of the diet) with the exception of a tibial BMC gain, which was greater in the group who were given dairy ( P = 0.02). Body fat was not influenced by the diet assignment. Conclusions: Dairy food interventions generally had no effect on bone mineral acquisition or body composition either within or between weight groups. This study suggests that 2 cups milk or the dairy equivalent is adequate for normal bone gain between ages 8 and 16 y. This trial was registered at clinicaltrials.gov as NCT00635583. © 2017 American Society for Nutrition.

  9. Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress.

    Science.gov (United States)

    Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M

    2017-03-01

    Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Calcium and vitamin D fortified milk reduces bone turnover and improves bone density in postmenopausal women over 1 year.

    Science.gov (United States)

    Kruger, Marlena C; Chan, Yoke Mun; Lau, Lee Ting; Lau, Chin Chin; Chin, Yit Siew; Kuhn-Sherlock, Barbara; Todd, Joanne M; Schollum, Linda M

    2017-10-03

    In Malaysia, hip fracture incidence is higher in Chinese women than other ethnic groups. This study compared the effects of a high-calcium vitamin D fortified milk with added FOS-inulin versus regular milk over 1 year on aspects of bone health in Chinese postmenopausal women in Malaysia. One-hundred and twenty-one women (mean age 59 (± 4) years) were randomized into two groups: control (n = 60; regular milk, 428 mg calcium per day) or intervention (n = 61; fortified milk at 1200 mg calcium, 96 mg magnesium, 2.4 mg zinc, 15 μg vitamin D and 4 g FOS-inulin per day). At baseline, weeks 12, 24, 36 and 52, parathyroid hormone (PTH), C-Telopeptide of Type I Collagen (CTx-1), Procollagen I Intact N-Terminal propeptide (PINP) and vitamin D levels were assessed. Bone density (BMD) was measured at baseline and week 52 using a GE Lunar iDXA. Body mass index, lumbar spine and femoral neck BMD did not differ between groups at baseline. Over 52 weeks, mean plasma 25 (OH) D 3 levels increased to 74.8 nmol/L (intervention group) or remained at 63.1 nmol/L (control group) (p milk, the fortified milk suppressed bone turnover markers and tended to increase femoral neck BMD.

  11. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  12. Cycling and bone health: a systematic review

    Directory of Open Access Journals (Sweden)

    Olmedillas Hugo

    2012-12-01

    Full Text Available Abstract Background Cycling is considered to be a highly beneficial sport for significantly enhancing cardiovascular fitness in individuals, yet studies show little or no corresponding improvements in bone mass. Methods A scientific literature search on studies discussing bone mass and bone metabolism in cyclists was performed to collect all relevant published material up to April 2012. Descriptive, cross-sectional, longitudinal and interventional studies were all reviewed. Inclusion criteria were met by 31 studies. Results Heterogeneous studies in terms of gender, age, data source, group of comparison, cycling level or modality practiced among others factors showed minor but important differences in results. Despite some controversial results, it has been observed that adult road cyclists participating in regular training have low bone mineral density in key regions (for example, lumbar spine. Conversely, other types of cycling (such as mountain biking, or combination with other sports could reduce this unsafe effect. These results cannot yet be explained by differences in dietary patterns or endocrine factors. Conclusions From our comprehensive survey of the current available literature it can be concluded that road cycling does not appear to confer any significant osteogenic benefit. The cause of this may be related to spending long hours in a weight-supported position on the bike in combination with the necessary enforced recovery time that involves a large amount of time sitting or lying supine, especially at the competitive level.

  13. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  14. Facial nerve paralysis associated with temporal bone masses.

    Science.gov (United States)

    Nishijima, Hironobu; Kondo, Kenji; Kagoya, Ryoji; Iwamura, Hitoshi; Yasuhara, Kazuo; Yamasoba, Tatsuya

    2017-10-01

    To investigate the clinical and electrophysiological features of facial nerve paralysis (FNP) due to benign temporal bone masses (TBMs) and elucidate its differences as compared with Bell's palsy. FNP assessed by the House-Brackmann (HB) grading system and by electroneurography (ENoG) were compared retrospectively. We reviewed 914 patient records and identified 31 patients with FNP due to benign TBMs. Moderate FNP (HB Grades II-IV) was dominant for facial nerve schwannoma (FNS) (n=15), whereas severe FNP (Grades V and VI) was dominant for cholesteatomas (n=8) and hemangiomas (n=3). The average ENoG value was 19.8% for FNS, 15.6% for cholesteatoma, and 0% for hemangioma. Analysis of the correlation between HB grade and ENoG value for FNP due to TBMs and Bell's palsy revealed that given the same ENoG value, the corresponding HB grade was better for FNS, followed by cholesteatoma, and worst in Bell's palsy. Facial nerve damage caused by benign TBMs could depend on the underlying pathology. Facial movement and ENoG values did not correlate when comparing TBMs and Bell's palsy. When the HB grade is found to be unexpectedly better than the ENoG value, TBMs should be included in the differential diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    Science.gov (United States)

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  16. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    Science.gov (United States)

    DiGirolamo, Douglas J.; Singhal, Vandana; Chang, Xiaoli; Lee, Se-Jin; Germain-Lee, Emily L.

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system. PMID:26161291

  17. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    Science.gov (United States)

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  18. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    International Nuclear Information System (INIS)

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K.; Hock, Janet M.

    2006-01-01

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development

  19. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  20. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    Science.gov (United States)

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats — impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over

    Directory of Open Access Journals (Sweden)

    Katharina E. Scholz-Ahrens

    2016-08-01

    Conclusion: SYN exerted a synergistic effect on bone mineralization, presumably due to changes in gut microbiota and ecology associated with large bowel digesta weight (most likely reflecting microbial mass and with large bowel weight (reflecting absorptive area, while bone turnover tended to be reduced as indicated by BAP.

  2. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    Science.gov (United States)

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, pBMC and BMD for LL (R2adj = 0.68, pBMC (R2adj = 0.47, pBMC (R2adj = 0.36, pBMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  3. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone.

    Science.gov (United States)

    Guedes, J A C; Esteves, J V; Morais, M R; Zorn, T M; Furuya, D T

    2017-11-26

    The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved in osteocalcin improved-insulin resistance. The present study aimed to investigate the mechanisms of action of osteocalcin on insulin resistance and inflammation in obese mice and 3T3-L1 adipocytes. Lean control, saline-treated obese and uncarboxylated osteocalcin (uOC)-treated obese mice were subjected to insulin tolerance test in vivo. Blood was collect for biochemical/metabolic profile analysis; and, skeletal muscle, white adipose tissue (WAT) and bone were collected for protein (Western blotting) and mRNA (RT-qPCR) analysis. uOC effects on insulin resistance and inflammation were also investigated in 3T3-L1 adipocytes challenged with tumor necrosis factor. Osteocalcin treatment improved in vivo insulin resistance in obese mice. In WAT, osteocalcin had positive effects such as (1) WAT weight reduction; (2) upregulation of glucose transporter (GLUT) 4 protein and its mRNA (Slc2a4); (3) improved insulin-induced AKT phosphorylation; (4) downregulation of several genes involved in inflammation and inflammassome transcriptional machinery, and (5) reduction of the density of macrophage in crown-like structures (histomorphometrical analysis). Notably, in 3T3-L1 adipocytes, osteocalcin restored Slc2a4/GLUT4 content and reduced the expression of inflammatory genes after TNF-a challenge; moreover, osteocalcin treatment increased AKT phosphorylation induced by insulin. Finally, it was observed that in bone, osteocalcin improves insulin resistance by increasing insulin-induced AKT phosphorylation and reducing the expression of genes involved in bone insulin resistance, resulting in increased secretion of uncarboxylated osteocalcin in circulation. We provided some mechanisms of action for osteocalcin in the

  4. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility

    International Nuclear Information System (INIS)

    Wang, Y; Cui, F Z; Jiao, Y P; Hu, K; Fan, D D

    2008-01-01

    Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering

  5. Improvement of Bone-Sparing Effect of Soy Isoflavones by Pre- and Probiotics in Postmenopausal women

    Directory of Open Access Journals (Sweden)

    J. Mathey

    2008-01-01

    Full Text Available Background Phytoestrogens consumption is targeted as a possible way to achieve hormonal permeation in postmenopausal women. However, their health effect could depend on their bioavailability. Objectives As phytoestrogens bioavailability could be improved by modulating intestinal microflora, the present study was undertaken to investigate whether isoflavones and pre-or probiotics may improve bone markers. Design An intervention trial (2 months was carried out on 39 postmenopausal women receiving 100 mg of IF aglycon equivalents daily, incorporated in two jelly milk and two cereal bars. After the first month, the participants were randomised into three treatment groups: soy (control group, soy + fructooligosaccharides (prebiotics group and soy + yoghurt cultures (probiotics group. Results Level of isoflavone intake was associated with a significant increase in plasma isoflavone levels from baseline to day 15 which was maintained until day 60. Probiotics consumption was associated with increased plasma equol levels at day 60. A 5% increase of bone alkaline phosphatase was elicited on day 30, compared to initial values. Pre- or probiotics did not modulate this parameter. Urinary deoxypyridinoline excretion was slightly increased at day 60. Prebiotics and probiotics consumption improved this parameter. The effect of prebiotics was exacerbated in early compared to late postmenopausal women. Conclusion Addition of prebiotics or probiotics to a diet providing isoflavones is able to improve parameters of bone turnover in early menopause.

  6. Improved Bone Graft Method for Upper Cervical Surgery with Posterior Approach: Technical Description and Report of 52 Cases.

    Science.gov (United States)

    Wang, Yong-Li; Wang, Xiang-Yang

    2018-02-21

    We sought to report a minimum 12 months' follow-up results of our improved bone graft method for upper cervical surgery with the posterior approach. Among 52 consecutive cases, odontoid nonunion occurred in 33 patients, atlantoaxial instability in 11 patients, and occipitocervical deformity in 8 patients who underwent posterior C1-C2 transarticular screw/screw-rod internal fixation (41 cases) and occipitocervical fusion (11 cases) with the improved bone graft technique. Each surgical procedure was performed by the same senior spine surgeon. We took lateral cervical standing roentgenograms before surgery and immediately after surgery. Then we conducted craniocerebral computed tomography examination with reconstruction at 3, 6, 12, and 24 months and annually thereafter. The postoperative follow-up times are about 12-38 months. All cases showed satisfactory screw fixation by radiographic examination, and there were no postoperative neurologic complications. One case had postoperative retropharyngeal infection after the transoral release and posterior reduction by pedicle screw instrumentation. All patients got solid fusions, and no pseudarthrosis occurred. All cases had solid fusions at the 3-month follow-up. Good bone graft bed, enough bone graft material, solid local fixation, and effective bone graft method are prerequisites for a successful bone graft. By analyzing postoperative follow-up in the consecutive cases in this study, our bone graft method describing a new bone graft structure is a reliable posterior fusion technique. It is worth considering, and further research is needed. Copyright © 2018. Published by Elsevier Inc.

  7. Combination of Weight-Bearing Training and Anti-MSTN Polyclonal Antibody Improve Bone Quality In Rats.

    Science.gov (United States)

    Tang, Liang; Gao, Xiaohang; Yang, Xiaoying; Zhang, Didi; Zhang, Xiaojun; Du, Haiping; Han, Yanqi; Sun, Lijun

    2016-12-01

    Weight-bearing exercise is beneficial to bone health. Myostatin (MSTN) deficiency has a positive effect on bone formation. We wondered if a combination of weight-bearing training and polyclonal antibody for MSTN (MsAb) would augment bone formation to a greater degree than single treatment. In this study, rats were randomly assigned to four groups: Control, weight-bearing training (WT), MsAb, and WT+MsAb. The trained rats ran at 15 m/min bearing with 35% of their body weight, 40 min/day (2 min of running followed by 2 min of rest), 6 days/week, for 8 weeks. The rats with MsAb were injected once a week with MsAb for 8 weeks. MicroCT analysis showed that compared with the MsAb group, WT+MsAb significantly enhanced cortical bone mineral density (BMD) (p .05), weight-bearing training significantly increased energy absorption (p weight-bearing training and MsAb have a greater positive effect on bone than treatment with either MsAb or weight-bearing training alone, suggesting that resistance training in combination with MSTN antagonists could be an effective approach for improving bone health and reducing osteoporosis risk.

  8. Greater access to fast-food outlets is associated with poorer bone health in young children.

    Science.gov (United States)

    Vogel, C; Parsons, C; Godfrey, K; Robinson, S; Harvey, N C; Inskip, H; Cooper, C; Baird, J

    2016-03-01

    A healthy diet positively influences childhood bone health, but how the food environment relates to bone development is unknown. Greater neighbourhood access to fast-food outlets was associated with lower bone mass among infants, while greater access to healthy speciality stores was associated with higher bone mass at 4 years. Identifying factors that contribute to optimal childhood bone development could help pinpoint strategies to improve long-term bone health. A healthy diet positively influences bone health from before birth and during childhood. This study addressed a gap in the literature by examining the relationship between residential neighbourhood food environment and bone mass in infants and children. One thousand one hundred and seven children participating in the Southampton Women's Survey, UK, underwent measurement of bone mineral density (BMD) and bone mineral content (BMC) at birth and 4 and/or 6 years by dual-energy X-ray absorptiometry (DXA). Cross-sectional observational data describing food outlets within the boundary of each participant's neighbourhood were used to derive three measures of the food environment: the counts of fast-food outlets, healthy speciality stores and supermarkets. Neighbourhood exposure to fast-food outlets was associated with lower BMD in infancy (β = -0.23 (z-score): 95% CI -0.38, -0.08) and lower BMC after adjustment for bone area and confounding variables (β = -0.17 (z-score): 95% CI -0.32, -0.02). Increasing neighbourhood exposure to healthy speciality stores was associated with higher BMD at 4 and 6 years (β = 0.16(z-score): 95% CI 0.00, 0.32 and β = 0.13(z-score): 95% CI -0.01, 0.26 respectively). The relationship with BMC after adjustment for bone area and confounding variables was statistically significant at 4 years, but not at 6 years. The neighbourhood food environment that pregnant mothers and young children are exposed may affect bone development during early childhood. If confirmed in

  9. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2002-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or 4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  10. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2001-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or (4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  11. Adiposity and TV viewing are related to less bone accrual in young children.

    Science.gov (United States)

    Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R

    2009-01-01

    To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.

  12. Relationship of cytokines and bone metabolic markers to osteoporosis in aged males

    International Nuclear Information System (INIS)

    Luo Nanping; Hu Chengjin; Li Jinhua; Chen Yingjian; Wang Ruishan; Yin Qiuxia

    2003-01-01

    Objective: To observe the relationship of cytokines and bone metabolic markers to osteoporosis in aged men. Methods: Serum interleukin-4 (IL-4), IL-6, IL-10, bone glaprotein (BGP), testosterone (T), alkaline phosphatase (AKP), Ca and bone density of aged men with osteoporosis or bone mass loss were assessed and compared with those of middle-aged and aged healthy men. Results: The levels of serum IL-4 and IL-6 increased with severity of osteoporosis and the differences were significant compared with normal controls (P<0.05, P<0.01). The levels of IL-10, BGP, AKP and T decreased at different degrees and also had significant differences compared with normal controls (P<0.05). Bone density of aged men with osteoporosis and bone mass loss was lower than that of middle-aged healthy men (P<0.01), and bone density of aged men with osteoporosis was apparently lower than that of men with bone mass loss (P<0.05). Conclusions: From bone mass loss to osteoporosis, the deteriorating process presents as bone absorption increasing and osteogenesis decreasing. IL-4, IL-6 and IL-10 and other bone metabolic markers may play a role in diagnosis of osteoporosis

  13. Impact of obesity on bone metabolism.

    Science.gov (United States)

    López-Gómez, Juan J; Pérez Castrillón, José L; de Luis Román, Daniel A

    2016-12-01

    High weight is a protective factor against osteoporosis and risk of fracture. In obesity, however, where overweight is associated to excess fat, this relationship does not appear to be so clear, excess weight has sometimes been associated to decreased bone mass. Obesity interferes with bone metabolism through mechanical, hormonal, and inflammatory factors. These factors are closely related to weight, body composition, and dietary patterns of these patients. The net beneficial or harmful effect on bone mass or risk of fracture of the different components of this condition is not well known. We need to recognize patients at a greater risk of bone disease related to obesity to start an adequate intervention. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  14. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  15. Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.

    Science.gov (United States)

    Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld

    2005-03-01

    Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.

  16. High bone turnover is associated with low bone mass and spinal fracture in postmenopausal women

    DEFF Research Database (Denmark)

    Ravn, Pernille; Rix, M; Andreassen, H

    1997-01-01

    -eight women had a lumbar spine bone mineral density (BMD) above 0.860 g/cm2, and 278 women had a BMD below 0.860 g/cm2. Spinal fracture was diagnosed from lateral spine X-ray studies and defined as at least 20% height reduction (wedge, compression, or endplate fracture) in at least one vertebra (T4-L4). Bone...

  17. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT

    NARCIS (Netherlands)

    Wilks, D.C.; Winwood, K.; Gilliver, S.F.; Kwiet, A.; Chatfield, M; Michaelis, I.; Sun, L.W.; Ferretti, J.L.; Sargeant, A.J.; Felsenberg, D.; Rittweger, J.

    2009-01-01

    Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and

  18. Improvement of Bone Healing by Neutralization of microRNA-335-5p, but not by Neutralization of microRNA-92A in Bone Marrow Mononuclear Cells Transplanted into a Large Femur Defect of the Rat.

    Science.gov (United States)

    Janko, Maren; Dietz, Konstantin; Rachor, Julia; Sahm, Julian; Schroder, Katrin; Schaible, Alexander; Nau, Christoph; Seebach, Caroline; Marzi, Ingo; Henrich, Dirk

    2018-04-23

    Transplanted bone marrow mononuclear cells (BMC) support the healing of large bone defects. Neutralization of microRNA (MiR) that negatively affects key processes of the reparative response in BMC might help to further improve the beneficial effect of transplanted BMC in bone healing. Hence, the aim of this study was to evaluate if the neutralization of MiR-92A (vascularization) and MiR-335-5p (osteogenic differentiation) in BMC using specific antiMiRs leads to a further improvement of the BMC-supported therapy of large bone defects. BMC transiently transfected with antiMiR- 92A, antiMiR-335, antiMiR-92A, and antiMiR-355 or control antiMiR were seeded on β-TCP (beta-tricalcium phosphate) and placed in a femoral large bone defect (5 mm) in Sprague-Dawley rats. Ultimate load as well as osseous integration of the β-TCP-scaffolds were significantly improved in the antiMiR-335 group compared to the control group after 8 weeks, whereas neutralization of antiMiR-92A lead to an improvement of early vascularization after 1 week, but not to enhanced bone healing after 8 weeks. We demonstrated that the targeted inhibition of MiRs in transplanted BMC is a new approach that enhances BMC-supported bone healing.

  19. An improved method for isolation of RNA from bone

    Directory of Open Access Journals (Sweden)

    Carter Lauren E

    2012-01-01

    Full Text Available Abstract Background Bone physiology is increasingly appreciated as an important contributor to metabolic disorders such as type 2 diabetes. However, progress in understanding the role of bone in determining metabolic health is hampered by the well-described difficulty of obtaining high quality RNA from bone for gene expression analysis using the currently available approaches. Results We developed a simple approach to isolate bone RNA that combines pulverizing the bone and the phenol-guanidinium based RNA extraction in a single step while maintaining near-freezing temperatures. This single step method increases the yield of high quality RNA by eight-fold, with RNA integrity numbers ranging from 6.7 to 9.2. Conclusions Our streamlined approach substantially increases the yield of high-quality RNA from bone tissue while facilitating safe and efficient processing of multiple samples using readily available platforms. The RNA obtained from this method is suitable for use in gene expression analysis in real-time quantitative PCR, microarray, and next generation sequencing applications.

  20. Low-dose hydrocortisone (HC) replacement therapy is associated with improved bone remodeling balance in hypopituitary subjects

    LENUS (Irish Health Repository)

    Behan, L A

    2011-06-01

    The effect of commonly used glucocorticoid replacement regimens on bone health in hypopituitary subjects is not well known. We aimed to assess the effect of 3 hydrocortisone (HC) replacement dose regimens on bone turnover in this group.10 hypopituitary men with severe ACTH deficiency were randomised in a crossover design to 3 HC dose regimens, Dose A (20mg mane, 10mg tarde), Dose B (10mg twice daily) and Dose C (10mg mane, 5mg tarde). Following 6 weeks of each regimen participants underwent fasting sampling of bone turnover markers.Data from matched controls were used to produce a Z score for subject bone formation and resorption markers and to calculate the bone remodeling balance (formation Z score-resorption Z score) and turnover index ((formation Z + resorption Z)\\/2). A positive bone remodeling balance with increased turnover is consistent with a favourable bone cycle. Data are expressed as median (range).The Pro Collagen Type 1 Peptide (PINP) bone formation Z-score was significantly increased in Dose C, (1.805 (-0.6-10.24)) compared to Dose A (0.035 (-1.0-8.1)) p<0.05 while there was no difference in the C-terminal crosslinking telopeptide (CTx) resorption Z score. The bone remodeling balance was significantly lower for dose A -0.02 (-1.05-4.12) compared to dose C 1.13 (0.13-6.4) (p<0.05). Although there was a trend to an increased bone turnover index with the lower dose regimen, this was not statistically significant.Low dose HC replacement (10mg mane\\/5 mg tarde) was associated with increased bone formation and improved bone remodeling balance which is associated with a more favourable bone cycle. This may have a long term beneficial effect on bone health.

  1. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    International Nuclear Information System (INIS)

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-01-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method

  2. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study.

    Directory of Open Access Journals (Sweden)

    Yongjie Chen

    Full Text Available To assess factors associated with bone mineral density (BMD in postmenopausal women in a longitudinal study, and to examine the relative contribution of lean mass, fat mass, dietary patterns, and years since menopause to BMD.Two hundred and eighty-two postmenopausal women were randomly selected from Hongqi Community Health Center, in Harbin City, China. All participants were followed up from 2009 to 2011. Dietary data were collected using a Food Frequency Questionnaire. BMD of the left hip, the lumbar spine, and the total body, and the body composition were measured by dual-energy X-ray absorptiometry at baseline and follow-up.Lean mass and fat mass were positively associated with BMD of the spine, hip, and the total body at both baseline and follow-up. The association between fat mass and BMD at the spine at baseline (P = 0.210 and at the spine (P = 0.116 and hip (P = 0.073 in the second year was not statistically significant when height was adjusted. Six dietary patterns were identified but only cereal grains-fruits pattern (P = 0.001 in the spine, P = 0.037 in hip and milk-root vegetables pattern (P = 0.010 in hip were associated with BMD of the spine and hip. The linear mixed model of follow-up data showed that lean mass, years since menopause, and age of menophania were the significant determinants of BMD of all sites. Moreover, lean mass was the best determinant of BMD (VIP = 1.936.Lean mass, years since menopause, age of menophania and dietary patterns are the important determinants of BMD of the spine, hip, and the total body. Lean mass is the best determinant of BMD.

  3. Electrocoagulation improving bone cement use in middle-ear surgery: short-term and middle-term results.

    Science.gov (United States)

    Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F

    2016-12-01

    Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.

  4. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  5. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing.

    Science.gov (United States)

    Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo

    2017-10-01

    Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated

  6. In-vitro studies of change in edge detection with changes in bone density

    International Nuclear Information System (INIS)

    Pocock, N.; Noakes, K.; Griffiths, M.

    1999-01-01

    Full text: Dual energy X-ray absorptiometry (DXA) requires edge detection software to identify the skeletal regions for quantitation of bone mineral density (BMD) and bone mineral content (BMC). As bone mass decreases, the detection of bone edges becomes more difficult and this potentially could cause errors in DXA estimations of areal BMD or BMC. To address this issue, we have used an in-vitro model to study the effects of 'bone loss' on calculated bone area, BMD and BMC. Multiple vertebral phantoms, of equal cross-sectional area but incrementally decreased areal BMD, were constructed using calcium sulphate hemihydrate. The weight of each phantom vertebra, measured accurately using an electronic balance, was used as an index of its true 'bone mass equivalent' (BME). The phantoms were scanned and analysed in the lumbar spine mode using a Lunar DPX-L (L) and Hologic QDR-1000 (H). The changes in BME were compared to changes in measured area, BMC and areal BMD. The results demonstrate that, in an in-vitro model, as bone mass decreases, measured bone area and consequently BMC will decrease as the edge detection algorithms have greater difficulty in detecting the true edges. In conclusion, in an in-vitro model, the DXA edge detection algorithms will underestimate bone area as bone mass decreases. This has potential implications for monitoring changes in bone mass in vivo

  7. Olive oil and vitamin D synergistically prevent bone loss in mice.

    Directory of Open Access Journals (Sweden)

    Camille Tagliaferri

    Full Text Available As the Mediterranean diet (and particularly olive oil has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH or ovariectomized (OVX mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation.

  8. Association of adiposity indices with bone density and bone turnover in the Chinese population.

    Science.gov (United States)

    Wang, J; Yan, D; Hou, X; Chen, P; Sun, Q; Bao, Y; Hu, C; Zhang, Z; Jia, W

    2017-09-01

    Associations of adiposity indices with bone mineral density (BMD) and bone turnover markers were evaluated in Chinese participants. Body mass index, fat mass, and lean mass are positively related to BMD in both genders. Subcutaneous fat area was proved to be negatively associated with BMD and positively correlated with osteocalcin in postmenopausal females. Obesity is highly associated with osteoporosis, but the effect of adipose tissue on bone is contradictory. Our study aimed to assess the associations of adiposity indices with bone mineral density (BMD) and bone turnover markers (BTMs) in the Chinese population. Our study recruited 5215 participants from the Shanghai area, evaluated related anthropometric and biochemical traits in all participants, tested serum BTMs, calculated fat distribution using magnetic resonance imaging (MRI) images and image analysis software, and tested BMD with dual-energy X-ray absorptiometry. When controlled for age, all adiposity indices were positively correlated with BMD of all sites for both genders. As for the stepwise regression analysis, body mass index (BMI), fat mass, and lean mass were protective for BMD in both genders. However, subcutaneous fat area (SFA) was detrimental for BMD of the L1-4 and femoral neck (β ± SE -0.0742 ± 0.0174; p = 2.11E-05; β ± SE -0.0612 ± 0.0147; p = 3.07E-05). Adiposity indices showed a negative correlation with BTMs adjusting for age, especially with osteocalcin. In the stepwise regression analysis, fat mass was negatively correlated with osteocalcin (β ± SE -8.8712 ± 1.4902; p = 4.17E-09) and lean mass showed a negative correlation with N-terminal procollagen of type I collagen (PINP) for males (β ± SE -0.3169 ± 0.0917; p = 0.0006). In females, BMI and visceral fat area (VFA) were all negatively associated with osteocalcin (β ± SE -0.4423 ± 0.0663; p = 2.85E-11; β ± SE -7.1982 ± 1.1094; p = 9.95E-11), while SFA showed a positive correlation

  9. Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women.

    Science.gov (United States)

    Solis-Trapala, Ivonne; Schoenmakers, Inez; Goldberg, Gail R; Prentice, Ann; Ward, Kate A

    2016-03-09

    There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs. The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models. Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m 2 ) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables. The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R 2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R 2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R 2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by osteocalcin. This study, to our

  10. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  11. Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women.

    Science.gov (United States)

    Aguilera-Barreiro, María de Los Angeles; Rivera-Márquez, José Alberto; Trujillo-Arriaga, Héctor Miguel; Tamayo Y Orozco, Juan Alfredo; Barreira-Mercado, Eduardo; Rodríguez-García, Mario E

    2013-01-01

    The intake of dehydrated nopal (DN) at a high stage of maturity along with high calcium content could improve bone mineral density (BMD) and calciuria and thus prevent osteoporosis. To evaluate the effect of calcium intake from a vegetable source (DN) on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM). The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35-55. Urinary calcium/creatinine index (CCI) was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG), women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1), women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2), women with hypercalciuria, and a maximum dose of DN; and normal group (NG) for reference in BMD. After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1%) and EG2 (pre 1.8% and post 2.5%) groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal). The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels.

  12. Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women

    Science.gov (United States)

    Aguilera-Barreiro, María de los Angeles; Rivera-Márquez, José Alberto; Trujillo-Arriaga, Héctor Miguel; Tamayo y Orozco, Juan Alfredo; Barreira-Mercado, Eduardo; Rodríguez-García, Mario E

    2013-01-01

    Background The intake of dehydrated nopal (DN) at a high stage of maturity along with high calcium content could improve bone mineral density (BMD) and calciuria and thus prevent osteoporosis. Objective To evaluate the effect of calcium intake from a vegetable source (DN) on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM). Methods The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35–55. Urinary calcium/creatinine index (CCI) was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG), women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1), women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2), women with hypercalciuria, and a maximum dose of DN; and normal group (NG) for reference in BMD. Results After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1%) and EG2 (pre 1.8% and post 2.5%) groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal). Conclusion The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels. PMID:23704856

  13. Intake of dehydrated nopal (Opuntia ficus indica improves bone mineral density and calciuria in adult Mexican women

    Directory of Open Access Journals (Sweden)

    María de los Angeles Aguilera-Barreiro

    2013-05-01

    Full Text Available Background: The intake of dehydrated nopal (DN at a high stage of maturity along with high calcium content could improve bone mineral density (BMD and calciuria and thus prevent osteoporosis. Objective: To evaluate the effect of calcium intake from a vegetable source (DN on BMD and calciuria covering a 2-year period in menopausal and non-menopausal women with low bone mass (LBM. Methods: The study was quasi-experimental, blinded, and randomized, and included 131 Mexican women aged 35–55. Urinary calcium/creatinine index (CCI was determined; BMD was analyzed on lumbar spine and total hip regions. Four groups were studied: Control group (CG, women with normocalciuria and a minimum dose of DN; experimental group 1 (EG1, women with hypercalciuria and a minimum dose of DN; experimental group 2 (EG2, women with hypercalciuria, and a maximum dose of DN; and normal group (NG for reference in BMD. Results: After the first semester of treatment, calciuria levels in women from both experimental groups returned to normal, remaining constant for the rest of the treatment. The percentage difference in BMD increased in the total hip region in the CG (pre 4.5% and post 2.1% and EG2 (pre 1.8% and post 2.5% groups significantly in comparison to NG and EG1, which exhibited a significant decrease in their BMD. BMD increased only for the lumbar region in the EG2 group (premenopausal. Conclusion: The use of a vegetable calcium source such as nopal improves BMD in women with LBM in the total hip and lumbar spine regions principally in the premenopausal women, maintaining constant and normal calciuria levels.

  14. Stage 1 Breast Cancer and Bone Mass in Older Women

    National Research Council Canada - National Science Library

    Schneider, Diane

    2002-01-01

    The specific aims of the study are 1) to assess the bone mineral density of women 65 years of age and older with breast cancer in comparison with the bone mineral density of same aged women with normal mammograms; 2...

  15. Bone mineral density and nutritional indices in adolescent females with recently diagnosed anorexia

    International Nuclear Information System (INIS)

    Wong, J.C.H.; Lewindon, P.J.; Mortimer, R.; Sheperd, R.W.; Royal Children's Hospital, Brisbane, QLD

    1999-01-01

    Full text: Osteopenia/osteoporosis and fractures have been shown to occur with anorexia nervosa (AN). This study evaluated adolescent females diagnosed with AN less than 12 months previously to determine the presence of any significant bone mass reduction at this early stage of diagnosis and to evaluate the correlation between total body (TB) and lumbar spine (LS) bone mineral densities (BMD) and bone mineral content (BMC), and nutritional indices (body weight, body mass index (BMI), lean mass, fat mass and percentage fat). The subjects were 22 adolescent females aged 12-17 years (mean= 14.3 years) diagnosed with AN less than 12 months earlier (range 2.5-11 months; mean = 6.7 months). They had bone density measurements of the TB and LS using a Lunar DPX-L densitometer. Comparison was made with values of age-matched controls in the Lunar normative database. Although there was a tendency towards low TB and LS bone mass, these changes were not statistically significant. Bivariate analyses showed significant correlation between TB BMD and lean mass (P < 0.001) and weight (P < 0.001) and between TB BMC and lean mass (P < 0.001) and weight (P < 0.01). There was similar significant correlation between LS BMD and lean mass (P < 0.01) and weight (P<0.01), and between LS BMC and lean mass (P < 0.01) and weight (P < 0.01). With stepwise regression analysis, only lean mass remained significantly correlated with TB BMD and BMC and LS BMD and BMC. There was no longer any significant correlation with weight. In this study, the weight percentile was found to be correlated highly with the LS BMD Z-score (P < 0.01). Therefore, during adolescence, the lean mass in particular, but also body weight, are good indicators of bone densities. Adolescent females do not appear to show bone mass reduction in the early stages of diagnosis of anorexia nervosa. This suggests early intervention may preserve bone gain and attainment of normal peak bone mass

  16. Age-related changes in cortical bone mass: data from a German female cohort

    International Nuclear Information System (INIS)

    Toledo, V.A. Molina; Jergas, M.

    2006-01-01

    To describe data from digital radiogrammetry (DXR) in an unselected German female cohort over a wide age range. Using a retrospective study design we analyzed radiographs of the hand from 540 German women (aged 5-96 years) using an automated assessment of cortical thickness, metacarpal index (MCI), and estimated cortical bone mineral density (DXR-BMD) on digitized radiographs. Both hands were radiographed in 97 women. In this group DXR-BMD and cortical thickness were significantly higher in the right metacarpals while there was no significant difference in MCI. To study the association with age we differentiated young ( 45 years). In young women all parameters increased significantly with age in a linear fashion (r=0.8 for DXR-BMD, r=0.7 for MCI). In those aged 25-45 years DXR-BMD and MCI were highest (peak bone mass). In women aged 45 or older all parameters decreased with age in an almost linear fashion with an annual change ranging from 0.7% to 0.9%. Our results for an unselected German female cohort indicate that DXR is a reliable, widely available osteodensitometric technique based on the refinement of conventional radiogrammetry. These findings are comparable to those from other studies and represent a valid resource for clinical application and for comparisons with other ethnic groups. (orig.)

  17. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    Science.gov (United States)

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength

  18. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis.

    Science.gov (United States)

    Berger, Claudie; Goltzman, David; Langsetmo, Lisa; Joseph, Lawrence; Jackson, Stuart; Kreiger, Nancy; Tenenhouse, Alan; Davison, K Shawn; Josse, Robert G; Prior, Jerilynn C; Hanley, David A

    2010-09-01

    We estimated peak bone mass (PBM) in 615 women and 527 men aged 16 to 40 years using longitudinal data from the Canadian Multicentre Osteoporosis Study (CaMos). Individual rates of change were averaged to find the mean rate of change for each baseline age. The age range for PBM was defined as the period during which bone mineral density (BMD) was stable. PBM was estimated via hierarchical models, weighted according to 2006 Canadian Census data. Lumbar spine PBM (1.046 ± 0.123 g/cm(2)) occurred at ages 33 to 40 years in women and at 19 to 33 years in men (1.066 ± 0.129 g/cm(2)). Total hip PBM (0.981 ± 0.122 g/cm(2)) occurred at ages 16 to 19 years in women and 19 to 21 years in men (1.093 ± 0.169 g/cm(2)). Analysis of Canadian geographic variation revealed that the levels of PBM and of mean BMD in those over age 65 sometimes were discordant, suggesting that PBM and subsequent rates of bone loss may be subject to different genetic and/or environmental influences. Based on our longitudinally estimated PBM values, the estimated Canadian prevalences of osteoporosis (T-score < -2.5) were 12.0% (L(1)-L(4)) and 9.1% (total hip) in women aged 50 years and older and 2.9% (L(1)-L(4)) and 0.9% (total hip) in men aged 50 years and older. These were higher than prevalences using cross-sectional PBM data. In summary, we found that the age at which PBM is achieved varies by sex and skeletal site, and different reference values for PBM lead to different estimates of the prevalence of osteoporosis. Furthermore, lack of concordance of PBM and BMD over age 65 suggests different determinants of PBM and subsequent bone loss. © 2010 American Society for Bone and Mineral Research.

  19. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    Science.gov (United States)

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  20. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  1. Calcium and bone health in children: a review.

    Science.gov (United States)

    Stallings, V A

    1997-01-01

    The recent national survey shows that dietary calcium intake is variable in children and adolescents, with about half consuming less than the intake recommended by the Recommended Dietary Allowances or the National Institutes of Health Consensus Panel on Optimal Calcium Intake. Osteoporosis is a major disease in adults, resulting in 1.5 million fractures and over $10 billion in medical expenditures annually. Osteoporosis is of growing interest in the research, public health, and health consumer-lay communities and to the many primary care and specialty physicians and other health care professionals who work directly with patients with osteoporosis. Treatment of osteoporosis to prevent fracture is improving with newly introduced medications and approaches, but it is not as effective as needed. Effective prevention strategies are critical to decreasing the morbidity and mortality of the disease. Peak bone mass, obtained during childhood and adolescent growth, is one of the major determinants for the risk of developing osteoporosis and fracture. Genetic potential, gender, ethnic origins, nutritional factors such as calcium and vitamin D intake, growth patterns, and physical activity influence the accretion of bone mineral during childhood and determine the peak bone mass. Randomized, placebo-controlled intervention trials conducted in healthy children who are consuming amounts of dietary calcium in accordance with the US recommendations show that bone mass can be increased by calcium supplementation. Retrospective studies in adults suggest that childhood calcium intake is associated with risk of later osteoporosis and fracture. In addition, common childhood clinical conditions, such as low calcium intake related to lactose intolerance or the use of glucocorticoid medications for chronic illness, are risk factors for the development of osteoporosis in childhood, not just in adulthood. An approach for physicians and other pediatric care providers for screening children

  2. Bone banking.

    Science.gov (United States)

    Howard, W

    1999-04-01

    The use of human organs and tissues for transplantation in Australia has increased significantly over the past 30 years. In 1997, the Australian Coordinating Committee on Organ Registries and Donation (ACCORD) reported a total number of 190 organ donors, 636 corneal donors and 1509 bone donors Australia wide. Of the 1509 bone donations, 143 came from cadaveric sources and 1366 were made by living donors. Bone transplantation is not as widely recognised as solid organ or corneal transplantation. Due to improved technology and surgical skills, the demand for bone transplantation has increased markedly. This Clinical Update will provide an overview of the physiological aspects of bone transplantation and explore bone banking, a key step in the complex and critical process of bone transplantation.

  3. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

    International Nuclear Information System (INIS)

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M.; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J.; Waldt, Simone; Bauer, Jan S.

    2015-01-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure

  4. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in

  5. Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathological fracture in a child. Case report and review of the literature.

    Science.gov (United States)

    Snell, B E; Adesina, A; Wolfla, C E

    2001-10-01

    The authors present the case of a 10-year-old girl with a history of cervical trauma in whom a cystic lesion was found to involve all three columns of C-7 with evidence of pathological fracture. Computerized tomography scanning revealed a lytic lesion with sclerotic margins involving the left vertebral body, pedicle, lateral mass, and lamina of C-7 with an associated pathological compression fracture. Magnetic resonance imaging demonstrated mixed signal on both T1- and T2-weighted sequences, with cystic and enhancing solid portions. Magnetic resonance angiography demonstrated anterior displacement of the left vertebral artery at C-7. The patient underwent C-7 subtotal corpectomy and posterior resection of the tumor mass; anterior and posterior fusion were performed in which instrumentation was placed. Histological examination disclosed cystic areas lined by fibromembranous tissue with calcification and osteoid deposits consistent with unicameral bone cyst. Of the four previously reported cases of unicameral bone cysts in the cervical spine, none involved all three columns simultaneously or was associated with pathological fracture. The most common differential diagnostic considerations for cystic lesions in the spine are aneurysmal bone cyst, osteoblastoma, or giant cell tumor of bone. Unicameral bone cyst, in this location, although rare, must be considered in the differential diagnosis and may require resection and spinal reconstruction.

  6. Exercise Preserves Physical Function in Prostate Cancer Patients with Bone Metastases.

    Science.gov (United States)

    Galvão, Daniel A; Taaffe, Dennis R; Spry, Nigel; Cormie, Prue; Joseph, David; Chambers, Suzanne K; Chee, Raphael; Peddle-McIntyre, Carolyn J; Hart, Nicolas H; Baumann, Freerk T; Denham, James; Baker, Michael; Newton, Robert U

    2018-03-01

    The presence of bone metastases has excluded participation of cancer patients in exercise interventions and is a relative contraindication to supervised exercise in the community setting because of concerns of fragility fracture. We examined the efficacy and safety of a modular multimodal exercise program in prostate cancer patients with bone metastases. Between 2012 and 2015, 57 prostate cancer patients (70.0 ± 8.4 yr; body mass index, 28.7 ± 4.0 kg·m) with bone metastases (pelvis, 75.4%; femur, 40.4%; rib/thoracic spine, 66.7%; lumbar spine, 43.9%; humerus, 24.6%; other sites, 70.2%) were randomized to multimodal supervised aerobic, resistance, and flexibility exercises undertaken thrice weekly (EX; n = 28) or usual care (CON; n = 29) for 3 months. Physical function subscale of the Medical Outcomes Study Short-Form 36 was the primary end point as an indicator of patient-rated physical functioning. Secondary end points included objective measures of physical function, lower body muscle strength, body composition, and fatigue. Safety was assessed by recording the incidence and severity of any adverse events, skeletal complications, and bone pain throughout the intervention. There was a significant difference between groups for self-reported physical functioning (3.2 points; 95% confidence interval, 0.4-6.0 points; P = 0.028) and lower body muscle strength (6.6 kg; 95% confidence interval, 0.6-12.7; P = 0.033) at 3 months favoring EX. However, there was no difference between groups for lean mass (P = 0.584), fat mass (P = 0.598), or fatigue (P = 0.964). There were no exercise-related adverse events or skeletal fractures and no differences in bone pain between EX and CON (P = 0.507). Multimodal modular exercise in prostate cancer patients with bone metastases led to self-reported improvements in physical function and objectively measured lower body muscle strength with no skeletal complications or increased bone pain. ACTRN12611001158954.

  7. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    Science.gov (United States)

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. The effects of improved metabolic risk factors on bone turnover markers after 12 weeks of simvastatin treatment with or without exercise.

    Science.gov (United States)

    Jiang, Jun; Boyle, Leryn J; Mikus, Catherine R; Oberlin, Douglas J; Fletcher, Justin A; Thyfault, John P; Hinton, Pamela S

    2014-11-01

    Emerging evidence supports an association between metabolic risk factors and bone turnover. Statins and exercise independently improve metabolic risk factors; however whether improvements in metabolic risk factor affects bone turnover is unknown. The purpose of the present study was to: 1) evaluate the relationship between metabolic risk factors and bone turnover; and 2) determine if improvements in metabolic risk factors after 12 weeks of statin treatment, exercise or the combination affect bone turnover. Fifty participants with ≥2 metabolic syndrome defining characteristics were randomly assigned to one of three groups: statin (STAT: simvastatin, 40 mg/day), exercise (EX: brisk walking and/or slow jogging, 45 minutes/day, 5 days/week), or the combination (STAT+EX). Body composition and whole body bone mineral density were measured with dual energy X-ray absorptiometry. Serum markers of bone formation (bone specific alkaline phosphatase, BAP; osteocalcin, OC), resorption (C-terminal peptide of type I collagen, CTX) and metabolic risk factors were determined. Two-factor (time, group) repeated-measures ANCOVA was used to examine changes of metabolic risk factors and bone turnover. General linear models were used to determine the effect of pre-treatment metabolic risk factors on post-treatment bone turnover marker outcomes. Participants with ≥4 metabolic syndrome defining characteristics had lower pre-treatment OC than those with 3 or fewer. OC was negatively correlated with glucose, and CTX was positively correlated with cholesterol. STAT or STAT+EX lowered total and LDL cholesterol. The OC to CTX ratio decreased in all groups with no other significant changes in bone turnover. Higher pre-treatment insulin or body fat predicted a greater CTX reduction and a greater BAP/CTX increase. Metabolic risk factors were negatively associated with bone turnover markers. Short-term statin treatment with or without exercise lowered cholesterol and all treatments had a small

  9. Hake fish bone as a calcium source for efficient bone mineralization.

    Science.gov (United States)

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  10. Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes.

    Science.gov (United States)

    Malhotra, Angad; Pelletier, Matthew H; Yu, Yan; Walsh, William R

    2013-02-01

    The increased concentration of platelets within platelet-rich plasma (PRP) provides a vehicle to deliver supra-physiologic concentrations of growth factors to an injury site, possibly accelerating or otherwise improving connective tissue regeneration. This potential benefit has led to the application of PRP in several applications; however, inconsistent results have limited widespread adoption in bone healing. This review provides a core understanding of the bone healing mechanisms, and corresponds this to the factors present in PRP. In addition, the current state of the art of PRP preparation, the key aspects that may influence its effectiveness, and treatment outcomes as they relate specifically to bone defect healing are presented. Although PRP does have a sound scientific basis, its use for bone healing appears only beneficial when used in combination with osteoconductive scaffolds; however, neither allograft nor autograft appear to be appropriate carriers. Aggressive processing techniques and very high concentrations of PRP may not improve healing outcomes. Moreover, many other variables exist in PRP preparation and use that influence its efficacy; the effect of these variables should be understood when considering PRP use. This review includes the essentials of what has been established, what is currently missing in the literature, and recommendations for future directions.

  11. Papillary thyroid carcinoma presenting as an asymptomatic pelvic bone metastases

    Directory of Open Access Journals (Sweden)

    Siddiq S

    2010-05-01

    Full Text Available Thyroid carcinoma is rare comprising 1% of all malignancies and commonly presents as a neck lump. Papillary thyroid carcinoma unlike follicular thyroid carcinoma tends not to metastasise to distant sites.We present a case of papillary thyroid carcinoma presenting as a solitary asymptomatic pelvic bone metastases and highlight current management of bone metastases. A 59-year old female was found on abdominal computerised tomography to have an incidental finding of a 4.5 cm soft tissue mass in the right iliac bone. Biopsy of the lesion confirmed metastatic thyroid carcinoma. There was no history of a neck lump, head and neck examination was normal. Further imaging confirmed focal activity in the right lobe of the thyroid. A total thyroidectomy and level VI neck dissection was performed and histology confirmed follicular variant of papillary carcinoma.Early detection of bone metastases have been shown to improve prognosis and thyroid carcinoma should be considered as a potential primary malignancy.

  12. A simple method of screening for metabolic bone disease

    International Nuclear Information System (INIS)

    Broughton, R.B.K.; Evans, W.D.

    1982-01-01

    The purpose of this investigation was to find a simple method -to be used as an adjunct to the conventional bone scintigram- that could differentiate between decreased bone metabolism or mass, i.e., osteoporosis -normal bone- and the group of conditions of increased bone metabolism or mass namely, osteomalacia, renal osteodystrophy, hyperparathyroidism and Paget's disease. The Fogelman's method using the bone to soft tissue ratios from region of interest analysis at 4 hours post injection, was adopted. An initial experience in measuring a value for the count rate density in lumbar vertebrae at 1 hr post injection during conventional bone scintigraphy appears to give a clear indication of the overall rate of bone metabolism. The advantage over whole body retention methods is that the scan performed at the end of the metabolic study will reveal localized bone disease that may otherwise not be anticipated

  13. 201Tl scintigraphic evaluation of tumor mass and viability of bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Tsuda, Takatoshi; Kubota, Masahiro; Yoshida, Satoru; Shibata, Masahito; Wakabayashi, Jun-ichi; Obata, Hiroyuki; Matsuyama, Toshikatsu; Usui, Masamichi; Ishii, Sei-ichi.

    1994-01-01

    To characterize 201 Tl uptake in patients with bone and soft-tissue tumor, we studied 49 patients with surgically proven tumors and one patient with a tumor diagnosed arteriographically. In 37 of our 50 patients, the tumor was evaluated with 201 Tl and arteriography. Moreover, in 14 of patients with pre-operative chemotherapy, pathologic changes were graded on the basis of percent tumor necrosis as defined histologically. The percent tumor necrosis histologically was compared with changes in the scintigraphic and conventional angiographic studies. Radiologic comparisons demonstrated a high degree of correlation with images of 201 Tl and both arterial and blood pool phase of 99m Tc-HMDP. Ninety-six percent of 28 malignant tumors had positive 201 Tl uptake. None of the patients showed any thallium accumulation in the soft tissues or skeleton adjacent to the lesion. Activity of 201 Tl was mainly dependent upon a tumor blood flow and a vascular density. In of 14 cases with the preoperative chemotherapeutic treatment, 201 Tl scintigraphic changes showed concordance with % tumor necrosis. Thallium-201 was superior to 99m Tc-HMDP in predicting tumor response to chemotherapy. Interestingly, delayed images of 99m Tc-HMDP of 5 responders with >90% tumor necrosis showed decreased uptake in the adjacent bone to the tumor mass lesions. It seems to be quite all right to consider that a major determinant of 201 Tl uptake is intratumoral angiogenecity, which is closely connected with tumor viability. Therefore, 201 Tl is a sensitive radiopharmaceutical for detection of vascular rich bone and soft-tissue tumors, and appears to be a simple and an accurate test for evaluating the response to specific therapeutic regimens of malignant bone and soft-tissue tumors. (author)

  14. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jia-yun [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China); Chen, Xian-shuai; Zhang, Chun-yu [Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458 (China); Liu, Yun; Wang, Jing [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China); Deng, Fei-long, E-mail: drdfl@163.com [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China)

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P < 0.05) and higher total protein contents on the 14th day (P < 0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P < 0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. - Highlights: • SLM titanium is modified by adding nano-porous features to the microrough substrate

  15. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation

    International Nuclear Information System (INIS)

    Xu, Jia-yun; Chen, Xian-shuai; Zhang, Chun-yu; Liu, Yun; Wang, Jing; Deng, Fei-long

    2016-01-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P < 0.05) and higher total protein contents on the 14th day (P < 0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P < 0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. - Highlights: • SLM titanium is modified by adding nano-porous features to the microrough substrate

  16. Low bone turnover phenotype in Rett syndrome

    DEFF Research Database (Denmark)

    Roende, Gitte; Petersen, Janne; Ravn, Kirstine

    2014-01-01

    Background:Patients with Rett syndrome (RTT) are at risk of having low bone mass and low-energy fractures.Methods:We characterised bone metabolism by both bone formation and resorption markers in blood in a RTT population of 61 girls and women and 122 well-matched healthy controls. Levels of N-te...

  17. Beneficial impact of aerobic exercises on bone mineral density in obese premenopausal women under caloric restriction.

    Science.gov (United States)

    Hosny, Iman Abbas; Elghawabi, Hamed Samir; Younan, Wael Bahat Fahmy; Sabbour, Adly Aly; Gobrial, Mona Abdel Messih

    2012-04-01

    The aim of this study was to assess the impact of caloric restriction diet versus caloric restriction diet combined with aerobic exercises on bone mineral density (BMD) in obese premenopausal women. Forty premenopausal obese women were classified randomly into two groups equal in number. The first group (group A) received caloric restriction diet, while the second (group B) received caloric restriction diet combined with a program of aerobic exercises, over 3 months. The variables measured in this study included age, weight, height, body mass index, fat weight, lean mass, fat percent, basal metabolic rate, and BMD. The comparison between group A and group B showed significantly higher post-treatment lean mass, basal metabolic rate, and BMD in weight-bearing bones (L2-L4 lumbar spine and total hip) in group B compared to group A. In contrast to the BMD of the weight-bearing bones, the BMD of the radius showed significant decrease between the pre- and post-treatment results in groups A and B with no significant differences between the two groups. A greater improvement in the BMD of weight-bearing bones was observed in obese premenopausal women undergoing caloric restriction combined with exercise than in those not undergoing exercise. Anaerobic exercises incorporated into weight loss programs help offset the adverse effects of dietary restriction on bone.

  18. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    Science.gov (United States)

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  19. Implications of improved Higgs mass calculations for supersymmetric models.

    Science.gov (United States)

    Buchmueller, O; Dolan, M J; Ellis, J; Hahn, T; Heinemeyer, S; Hollik, W; Marrouche, J; Olive, K A; Rzehak, H; de Vries, K J; Weiglein, G

    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, [Formula: see text], in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyse the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of [Formula: see text]and ATLAS searches for [Formula: see text] events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours [Formula: see text], though not in the NUHM1 or NUHM2.

  20. Implications of improved Higgs mass calculations for supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Dolan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Theory Group; Ellis, J. [King' s College, London (United Kingdom). Theoretical Particle Physics and Cosmology Group; and others

    2014-03-15

    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, M{sub h}, in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyze the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of BR(B{sub s}→μ{sup +}μ{sup -}) and ATLAS searches for E{sub T} events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours tan β

  1. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  2. Role and mechanism of action of Sclerostin in bone

    Science.gov (United States)

    Delgado-Calle, Jesus; Sato, Amy Y.; Bellido, Teresita

    2016-01-01

    After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression. PMID:27742498

  3. Effects of Growth Hormone on Bone.

    Science.gov (United States)

    Tritos, Nicholas A; Klibanski, Anne

    2016-01-01

    Describe the effects of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) on the skeleton. The GH and IGF-1 axis has pleiotropic effects on the skeleton throughout the lifespan by influencing bone formation and resorption. GH deficiency leads to decreased bone turnover, delayed statural growth in children, low bone mass, and increased fracture risk in adults. GH replacement improves adult stature in GH deficient children, increases bone mineral density (BMD) in adults, and helps to optimize peak bone acquisition in patients, during the transition from adolescence to adulthood, who have persistent GH deficiency. Observational studies suggest that GH replacement may mitigate the excessive fracture risk associated with GH deficiency. Acromegaly, a state of GH and IGF-1 excess, is associated with increased bone turnover and decreased BMD in the lumbar spine observed in some studies, particularly in patients with hypogonadism. In addition, patients with acromegaly appear to be at an increased risk of morphometric-vertebral fractures, especially in the presence of active disease or concurrent hypogonadism. GH therapy also has beneficial effects on statural growth in several conditions characterized by GH insensitivity, including chronic renal failure, Turner syndrome, Prader-Willi syndrome, postnatal growth delay in patients with intrauterine growth retardation who do not demonstrate catchup growth, idiopathic short stature, short stature homeobox-containing (SHOX) gene mutations, and Noonan syndrome. GH and IGF-1 have important roles in skeletal physiology, and GH has an important therapeutic role in both GH deficiency and insensitivity states. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Clinical review: Ethnic differences in bone mass--clinical implications.

    Science.gov (United States)

    Leslie, William D

    2012-12-01

    Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.

  5. Bone conditioned media (BCM) improves osteoblast adhesion and differentiation on collagen barrier membranes.

    Science.gov (United States)

    Fujioka-Kobayashi, Masako; Caballé-Serrano, Jordi; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel; Miron, Richard J

    2016-07-04

    red staining at 14 days. The results from the present study suggest that the osteoconductive properties of porcine-derived barrier membranes could be further improved by BCM by significantly increasing cell attachment, differentiation and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of BCM for guided bone regeneration.

  6. State of the Art Systematic Review of Bone Disease in Anorexia Nervosa

    Science.gov (United States)

    Misra, Madhusmita; Golden, Neville H.; Katzman, Debra K.

    2016-01-01

    Objective Low bone mineral density (BMD) is a known consequence of anorexia nervosa (AN) and is particularly concerning during adolescence, a critical time for bone accrual. A comprehensive synthesis of available data regarding impaired bone health, its determinants, and associated management strategies in AN is currently lacking. This systematic review aims to synthesize information from key physiologic and prospective studies and trials, and provide a thorough understanding of impaired bone health in AN and its management. Method Search terms included “anorexia nervosa” AND “bone density” for the period 1995–2015, limited to articles in English. Papers were screened manually based on journal impact factor, sample size, age of participants, and inclusion of a control group. When necessary, we included seminal papers published before 1995. Results AN leads to low BMD, impaired bone quality and increased fracture risk. Important determinants are low lean mass, hypogonadism, IGF-1 deficiency, and alterations in other hormones that impact bone health. Weight gain and menses restoration are critical for improving bone outcomes in AN. Physiologic estrogen replacement as the transdermal patch was shown to increase bone accrual in one study in adolescent females with AN; however, residual deficits persist. Bisphosphonates are potentially useful in adults with AN. Discussion To date, evidence suggests that the safest and most effective strategy to improve bone health in AN is normalization of weight with restoration of menses. Pharmacotherapies that show promise include physiologic estradiol replacement (as the transdermal estradiol patch), and in adults, bisphosphonates. Further studies are necessary to determine the best strategies to normalize BMD in AN. PMID:26311400

  7. Similar effects of long-term exogenous growth hormone (GH) on bone and muscle parameters: a pQCT study of GH-deficient and small-for-gestational-age (SGA) children.

    Science.gov (United States)

    Schweizer, Roland; Martin, David D; Haase, Martin; Roth, Johannes; Trebar, Branko; Binder, Gerhard; Schwarze, C Philipp; Ranke, Michael B

    2007-11-01

    Treatment with GH in short children has focused on height development. Little is known about the concomitant changes in muscle mass, bone structure and bone strength. Muscle area as well as parameters of bone architecture (bone mineral content, BMC; volumetric cortical density, total bone area, TBA; cortical area, cortical thickness, CT; and marrow area) were measured by means of pQCT (Stratec) at 65% of the proximal length of the forearm. The strength-strain index (SSI) was calculated as an indicator of bone strength. Prepubertal children with GHD (mean values: age; 7.2 years; height SDS=-2.9 SDS; GH dose: 30 microg/kg/d) were followed at 0, 6, 12 (n=74) and 24 (n=55) months. Prepubertal children with SGA (mean values: age: 7.1 years; height SDS=-3.4 SDS; GH dose: 55 mug/kg/d) were followed at 0, 6, 12 (n=47) and 24 (n=35) months. Both groups showed a similar increase in height. At GH start, muscle mass and bone characteristics were lower than normal but similar in SGA vs. GHD. Muscle area (mean values, SDS) increased from -3.0 to -1.5 in SGA and from -2.4 to -1.0 in GHD. Bone geometry changed in a biphasic mode, with an increase in total bone area and lowering of bone mineral content (BMC) during the first 12 months, followed by an increase of BMC and CT thereafter. SSI (mean values, mm(3)) improved from 78 to 114 in GHD and from 62 to 101 in SGA after 24 months on GH. The increment in terms of SDS did not reach significance in SGA. SSI correlated positively with muscle area before and during GH treatment. Bone strength and muscle mass are impaired in prepubertal children with GHD and SGA. Exogenous GH can indirectly improve bone structure and strength by inducing an increase in muscle mass. Our findings support the assumption that, in SGA, there is impaired tissue responsiveness to GH.

  8. Osteoporosis diagnosis improvement on systems Esinga 2D digital flat-panel, by morphometry and bone architecture analysis

    International Nuclear Information System (INIS)

    Dinten, J.M.

    2004-01-01

    The objective of the project is to explore the complementary diagnosis elements of the fracture risk that could give simultaneously on a same system the measure of the bone mineral density and an image with a radiological quality. This project has explored two improvement ways of the fracture risk diagnosis: the vertebral and femoral morphometry, the characterization of the bone micro-architecture from projected radiographs. (N.C.)

  9. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    Science.gov (United States)

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for b