WorldWideScience

Sample records for improved laser trapping

  1. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  2. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    International Nuclear Information System (INIS)

    Rowe, Mary A.

    1999-01-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21 Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21 Na to the experiment. Efficient manipulation of the 21 Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21 Na. She measured the 3S 1/2 (F=1,m=0)-3S 1/2 (F=2,m=0) atomic level splitting of 21 Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms

  3. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  4. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  5. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  6. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  7. Laser trapping of radioactive francium atoms

    International Nuclear Information System (INIS)

    Sprouse, G.D.; Orozco, L.A.; Simsarian, J.E.; Shi, W.; Zhao, W.Z.

    1997-01-01

    The difficult problem of quickly slowing and cooling nuclear reaction products so that they can be injected into a laser trap has been solved by several groups and there are now strong efforts to work with the trapped atoms. The atoms are confined in the trap to a small spatial volume of the order of 1 mm 3 , but more importantly, they are also confined in velocity, which makes them an ideal sample for spectroscopic measurements with other lasers. We have recently trapped radioactive francium and have embarked on a program to further study the francium atom as a prelude to a test of the Standard Model analogous to previous work with Cs. Our sample of 3 min 210 Fr now contains over 20 000 atoms, and is readily visible with an ordinary TV camera. We work on-line with the accelerator, and continuously load the trap to replace losses due to decay and collisions with background gas. We have maintained a sample of Fr atoms in the trap for over 10 hours, with occasional adjustment of the trapping laser frequency to account for drifts. The proposed test of the Standard Model will require accurate calculation of its atomic properties. We are currently testing these calculations by measuring other predicted quantities. (orig.)

  8. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  9. Laser spectroscopy with an electrostatic ConeTrap

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S., E-mail: sam.kelly@postgrad.manchester.ac.uk; Campbell, P. [University of Manchester, Nuclear Physics Group, Schuster Laboratory, Brunswick Street (United Kingdom); Cheal, B., E-mail: Bradley.Cheal@Liverpool.ac.uk [University of Liverpool, Oliver Lodge Laboratory (United Kingdom); Eronen, T.; Geldhof, S.; Jokinen, A.; Moore, I. D.; Penttilä, H.; Pohjalainen, I.; Rinta-Antila, S.; Sonnenschein, V.; Voss, A. [JYFL, University of Jyväskylä (Finland)

    2017-11-15

    A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10{sup −6} mbar will extend storage times beyond 100 ms.

  10. Laser cooling and trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.

    1998-01-01

    The article is a translation of the lecture given on the occasion of the 1997 Nobel Prize awarding ceremony. The history of the discovery of laser cooling and trapping of neutral atoms is described. An explanation of this phenomenon is presented and the author's personal contribution to the discovery is highlighted. The article is completed by Dr. Phillips' autobiography. (Z.J.)

  11. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  12. Continuous magnetic trapping of laser cooled atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Lafyatis, G.; Martin, A.G.; Raab, E.L.; Landry, J.; Ahmad-Bitar, R.N.; Pritchard, D.E.

    1987-01-01

    The authors present here initial results of the deceleration of a thermal atomic beam from -- 1000 to -- 100 m/s. The experiment was conducted in the 1.4-m long vertical superconducting solenoid which produced the slowing field. The fluorescence of the slowed atomic beam has been studied as a function of laser frequency. Figure 2 is a 12-GHz scan showing the fluorescence at a position 150 cm from the beginning of the solenoid. The wide peak corresponds to unslowed atoms with generally the initial velocity distribution. The second, narrower, peak corresponds to slowed atoms with a velocity of -- 150 m/s. Similar spectra have been obtained for various positions along the magnetic slower and trap. These data should allow better understanding of the cooling process and will be compared to computer models

  13. Applications of laser cooling and trapping

    International Nuclear Information System (INIS)

    Kasevich, M.; Moler, K.; Riis, E.; Sunderman, E.; Weiss, D.; Chu, S.

    1991-01-01

    Recent work done at Stanford in the manipulation of atoms and particles is summarized. Techniques to further increase our control of neutral particles such as atomic fountains, funnels, and trampolines have been demonstrated. These techniques are now being combined with a new type of velocity selection in order to study atom/surface interactions and to improve the limit on the charge neutrality of atoms. Trapping techniques have also allowed us to manipulate single molecules of DNA in aqueous solution while observing the molecules in fluorescence

  14. Perspectives: The Continuous Improvement Trap

    Science.gov (United States)

    Arnold, David L.

    2011-01-01

    Accrediting agencies, legislators, pundits, and even higher educational professionals have become enamored with applying the language of continuous improvement to learning outcomes. The Southern Association of Colleges and Schools Commission on Colleges specifically uses the term "continuing improvement" in Core Standard 2.5, one of its…

  15. Rapid localized crystallization of lysozyme by laser trapping.

    Science.gov (United States)

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  16. Simplified atom trap using a single microwave modulated diode laser

    International Nuclear Information System (INIS)

    Newbury, N.R.; Myatt, C.J.; Wieman, C.E.

    1993-01-01

    We have demonstrated microwave modulation of a diode laser which is operated with optical feedback from a diffraction grating. By directly modulating the diode laser current at frequencies up to 6.8 GHz, we observed 2-30% of the laser power in a single sideband for 20mW of microwave power. Using such a diode laser modulated at 6.6GHz, we have trapped 87 Rb in a vapor cell. With 10mW of microwave power, the number of trapped atoms was only 15% smaller than the number obtained using two lasers in the conventional manner. A microwave modulated diode laser should also be useful for driving stimulated Raman transitions between the hyperfine levels of Rb or Cs

  17. Post-filament self-trapping of ultrashort laser pulses.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2014-08-15

    Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

  18. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    Science.gov (United States)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  19. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  20. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Winn, J.S.

    1980-10-01

    Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions

  1. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    KAUST Repository

    Masuhara, Hiroshi

    2015-02-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid–liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  2. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

    KAUST Repository

    Masuhara, Hiroshi; Sugiyama, Teruki; Yuyama, Kenichi; Usman, Anwar

    2015-01-01

    Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid–liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

  3. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  4. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  5. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  6. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K M; Livett, M K; Nugent, K W [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  7. Experiments with trapped ions and ultrafast laser pulses

    Science.gov (United States)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing

  8. Axicon-based annular laser trap for studies on sperm activity

    Science.gov (United States)

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  9. The mass of $^{22}$Mg and a concept for a novel laser ion source trap

    CERN Document Server

    Mukherjee, Manas

    Clean and high-quality radioactive ion beams can be prepared by combining ion trap and resonance laser ionization techniques. A feasibility study for such a laser ion source trap has been carried out which shows enormous improvement in the beam emittance, purity, and in addition allows for a variation of the ion beam time structure. Direct high-precision mass measurements around mass number A=22 are of utmost importance. First, the masses of the superallowed $\\beta$-emitter $^{22}$Mg and its daughter $^{22}$Na are needed to test the conserved-vector-current(CVC) hypothesis and the Cabibbo-Kobayashi-Maskawa(CKM) matrix unitarity, both being predictions of the Standard Model. Second, to calculate the reaction rate of $^{21}$Na($p,\\gamma$)$^{22}$Mg the involved masses are required very accurately. This rate is needed in order to extract an upper limit on the amount of a characteristic $\\gamma$-radiation emitted from classical nova bursts which has been searched for but not yet detected. At the triple trap mass s...

  10. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or leviated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap. Laser desorption has previously been demonstrated in ion trap devices by applying the sample to a probe which is inserted so as to place the sample at the surface of the ring electrode. Our technique requires the placement of a microparticle in the center of the trap. Our initial experiments have been performed on falling microparticles rather than levitated particles to eliminate voltage switching requirements when changing from particle to ion trapping modes

  11. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  12. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or levitated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap

  13. A Penning trap for advanced studies with particles in extreme laser fields

    Science.gov (United States)

    Vogel, M.; Quint, W.; Paulus, G. G.; Stöhlker, Th.

    2012-08-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles' localization and spatial density by use of trap electrodes as 'electrostatic tweezers' and by application of a 'rotating wall', respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser-particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  14. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses

    KAUST Repository

    Chiang, Weiyi

    2014-12-11

    The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process.

  15. Artificial covering on trap nests improves the colonization of trap-nesting wasps

    OpenAIRE

    Taki, Hisatomo; Kevan, Peter G.; Viana, Blandina Felipe; Silva, Fabiana O.; Buck, Matthias

    2008-01-01

    Acesso restrito: Texto completo. p. 225-229 To evaluate the role that a trap-nest cover might have on sampling methodologies, the abundance of each species of trap-nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap-nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae...

  16. A Penning trap for advanced studies with particles in extreme laser fields

    International Nuclear Information System (INIS)

    Vogel, M.; Quint, W.; Paulus, G.G.; Stöhlker, Th.

    2012-01-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles’ localization and spatial density by use of trap electrodes as ‘electrostatic tweezers’ and by application of a ‘rotating wall’, respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser–particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  17. Improving the Optical Trapping Efficiency in the 225Ra Electric Dipole Moment Experiment via Monte Carlo Simulation

    Science.gov (United States)

    Fromm, Steven

    2017-09-01

    In an effort to study and improve the optical trapping efficiency of the 225Ra Electric Dipole Moment experiment, a fully parallelized Monte Carlo simulation of the laser cooling and trapping apparatus was created at Argonne National Laboratory and now maintained and upgraded at Michigan State University. The simulation allows us to study optimizations and upgrades without having to use limited quantities of 225Ra (15 day half-life) in experiment's apparatus. It predicts a trapping efficiency that differs from the observed value in the experiment by approximately a factor of thirty. The effects of varying oven geometry, background gas interactions, laboratory magnetic fields, MOT laser beam configurations and laser frequency noise were studied and ruled out as causes of the discrepancy between measured and predicted values of the overall trapping efficiency. Presently, the simulation is being used to help optimize a planned blue slower laser upgrade in the experiment's apparatus, which will increase the overall trapping efficiency by up to two orders of magnitude. This work is supported by Michigan State University, the Director's Research Scholars Program at the National Superconducting Cyclotron Laboratory, and the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  18. Magnetic Trapping and Coherent Control of Laser-Cooled Molecules

    Science.gov (United States)

    Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2018-04-01

    We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5 ×103 molecules for almost 2 s at a temperature of 70 (8 ) μ K and a density of 1.2 ×105 cm-3. We measure the state-specific loss rate due to collisions with background helium.

  19. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  20. Laser Cooling without Repumping: A Magneto-Optical Trap for Erbium Atoms

    International Nuclear Information System (INIS)

    McClelland, J.J.; Hanssen, J.L.

    2006-01-01

    We report on a novel mechanism that allows for strong laser cooling of atoms that do not have a closed cycling transition. This mechanism is observed in a magneto-optical trap (MOT) for erbium, an atom with a very complex energy level structure with multiple pathways for optical-pumping losses. We observe surprisingly high trap populations of over 10 6 atoms and densities of over 10 11 atoms cm -3 , despite the many potential loss channels. A model based on recycling of metastable and ground state atoms held in the quadrupole magnetic field of the trap explains the high trap population, and agrees well with time-dependent measurements of MOT fluorescence. The demonstration of trapping of a rare-earth atom such as erbium opens a wide range of new possibilities for practical applications and fundamental studies with cold atoms

  1. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    Science.gov (United States)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  3. Development of Laser-Induced Fluorescence Diagnostic for the Paul Trap Simulator Experiment

    CERN Document Server

    Chung, Moses; Efthimion, Philip; Gilson, Erik P; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. For the in-situ measurement of the transverse ion density profile in the PTSX device, which is essential for the study of beam mismatch and halo particle production, a laser-induced fluorescence diagnostic system is being developed. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. The installation of the barium ion source and the characterization of the tunable dye laser system are discussed. The design of the collection optics with an intensified CCD camera system is also discussed. Finally, initial test results using the laser-induced fluorescence diagnostic will be presented.

  4. Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    International Nuclear Information System (INIS)

    Winters, D.F.A.; Abdulla, A.M.; Castrejon Pita, J.R.; Lange, A. de; Segal, D.M.; Thompson, R.C.

    2005-01-01

    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented

  5. Levitated atoms in a CO2 laser trap: towards BEC with cesium

    International Nuclear Information System (INIS)

    Herbig, J.; Weber, T.; Naegerl, H.-C.; Grimm, R.

    2001-01-01

    Full text: Since the standard approach towards Bose-Einstein condensation has failed for cesium, we are exploring a novel concept employing an optical dipole trap formed by intense CO2 lasers. These provide a conservative and large-volume trapping potential. In order to compensate the gravitational force, a magnetic field gradient along the vertical axis is applied. This counterbalances gravitation for the absolute internal ground state of Cs (F=3, mF=3), effectively levitating those atoms. Other spin states are expelled from the trap, opening up a path for rf exploration. Our approach to trap the lowest spin state at low densities minimizes inelastic processes. The free choice of a magnetic bias field allows exploration of Feshbach resonances to tune scattering properties. (author)

  6. Self-trapping and self-focusing of an elliptical laser beam in a collisionless magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Soni, V S; Nayyar, V P [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-03-14

    The authors have studied the self-trapping and self-focusing-defocusing of an elliptically shaped laser beam in a magnetoplasma. The critical self-trapping power of the beam for the ordinary mode is twice the critical power for the extraordinary mode. On both sides of the critical power required for self-trapping, there are separate values of the critical power for the x-dimension as well as for the y-dimension of the beam. At and above the critical value for the x-dimension, the beam defocuses in both directions while at and below the critical value for the y-dimension, it self-focuses in both directions. Self-trapping is also observed in the case of the ordinary mode at a critical value of the external magnetic field for any power value.

  7. Nuclear laser spectroscopy with on-line ion traps

    International Nuclear Information System (INIS)

    Wada, M.; Nakamura, T.; Ohtani, S.

    1996-01-01

    The hyperfine structure of atoms informs us various static characteristics of nuclei, particularly for electro-magnetic moments and their distributions. We have been developing an experimental method to perform laser-microwave double-resonance spectroscopy for the hyperfine structure of Be and Ca isotopes, including unstable nuclei. The purpose and the status of the experiments are described. (orig.)

  8. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  9. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  10. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  11. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    Science.gov (United States)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  12. Improvements of the ruby laser oscillator system for laser scattering

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Kawakami, Tomohide; Matoba, Tohru; Funahashi, Akimasa

    1978-10-01

    A ruby laser oscillator system is used to measure electron temperatures of the Tokamak plasmas(JFT-2 and JFT-2a). Improvements have been made of the laser oscillator to obtain the correct values. Described are the improvements and the damages of a ruby rod and a KD*P crystal for Q-switching by laser beam. Improvement are the linear Xe lamp replaced by a helical Xe lamp and in the electrical circuit for Q-switching. The damage of an optical component by a laser beam should be clarified from the damage data; the cause is not found yet. (author)

  13. Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)

    Science.gov (United States)

    Zhao, Chenglong; LeBrun, Thomas W.

    2015-08-01

    Gold nanoparticles (GNP) have wide applications ranging from nanoscale heating to cancer therapy and biological sensing. Optical trapping of GNPs as small as 18 nm has been successfully achieved with laser power as high as 855 mW, but such high powers can damage trapped particles (particularly biological systems) as well heat the fluid, thereby destabilizing the trap. In this article, we show that counter propagating beams (CPB) can successfully trap GNP with laser powers reduced by a factor of 50 compared to that with a single beam. The trapping position of a GNP inside a counter-propagating trap can be easily modulated by either changing the relative power or position of the two beams. Furthermore, we find that under our conditions while a single-beam most stably traps a single particle, the counter-propagating beam can more easily trap multiple particles. This (CPB) trap is compatible with the feedback control system we recently demonstrated to increase the trapping lifetimes of nanoparticles by more than an order of magnitude. Thus, we believe that the future development of advanced trapping techniques combining counter-propagating traps together with control systems should significantly extend the capabilities of optical manipulation of nanoparticles for prototyping and testing 3D nanodevices and bio-sensing.

  14. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  15. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Science.gov (United States)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  16. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Block, Michael, E-mail: m.block@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2017-11-15

    The X. international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  17. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    Science.gov (United States)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  18. Key technologies and applications of laser cooling and trapping "8"7Rb atomic system

    International Nuclear Information System (INIS)

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2016-01-01

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain "8"7Rb cold atoms in our experiments are also discussed.

  19. Improving the laser brightness of a commercial laser system

    Science.gov (United States)

    Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2016-02-01

    We investigate the selection of a flat-top beam and a Gaussian beam inside a laser cavity on opposing mirrors. The concept is tested external to the laser cavity in a single pass and double pass regime where the latter mimics a single round trip in the laser. We implement this intra-cavity selection through the use of two 16 level diffractive optical elements. We consider a solid-state diode side-pumped laser resonator in a typical commercial laser configuration that consists of two planar mirrors where the DOEs are positioned at the mirrors. We out couple the Gaussian and flat-top distributions and we show that we improve the brightness of the laser with active mode control. We also demonstrate that the quality of the beam transformations determine the brightness improvement.

  20. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    Science.gov (United States)

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Significant improvement of optical traps by tuning standard water immersion objectives

    International Nuclear Information System (INIS)

    Reihani, S Nader S; Mir, Shahid A; Richardson, Andrew C; Oddershede, Lene B

    2011-01-01

    Focused infrared lasers are widely used for micromanipulation and visualization of biological specimens. An inherent practical problem is that off-the-shelf commercial microscope objectives are designed for use with visible and not infrared wavelengths. Less aberration is introduced by water immersion objectives than by oil immersion ones, however, even water immersion objectives induce significant aberration. We present a simple method to reduce the spherical aberration induced by water immersion objectives, namely by tuning the correction collar of the objective to a value that is ∼ 10% lower than the physical thickness of the coverslip. This results in marked improvements in optical trapping strengths of up to 100% laterally and 600% axially from a standard microscope objective designed for use in the visible range. The results are generally valid for any water immersion objective with any numerical aperture

  2. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    Science.gov (United States)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2018-02-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.

  3. Potentialities of a new sigma(+)-sigma(-)laser configuration for radiative cooling and trapping

    Energy Technology Data Exchange (ETDEWEB)

    Dalibard, J; Reynaud, S; Cohen-Tannoudji, C

    1984-11-28

    In the process of cooling and trapping neutral atoms, a new laser configuration is investigated which consists of two counterpropagating laser beams with orthogonal sigma(+) and sigma(-)polarizations. It is shown that such a configuration looks more promising than an ordinary standing wave (where the two counterpropagating waves have the same polarization), and this result is explained as being due to angular momentum conservation which prevents any coherent redistribution of photons between the two waves. The present conclusions are based on a quantitative calculation of the various parameters (potential depth, friction coefficient, diffusion coefficient) describing the mean value and the fluctuations of the radiative forces experienced, in such a laser configuration, by an atom with a J 0 ground state and a J 1 excited state. 30 references.

  4. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser

    International Nuclear Information System (INIS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Ozeri, Roee

    2015-01-01

    We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped 88 Sr + ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser. We employed a master-slave configuration for the laser, where an ultra low expansion glass Fabry–Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the Mølmer–Sørensen two-qubit entangling gate. (paper)

  5. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse-bead...... interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  6. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  7. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  8. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    Science.gov (United States)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non

  9. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  10. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Ahluwalia, Balpreet Singh

    2008-12-01

    Photothermal response (PTR) is an established pump and probe technique for real-time sensing of biological assays. Continuous and selective PTR monitoring is difficult owing to the Brownian motion changing the relative position of the target with respect to the beams. Integration of laser trapping with PTR is proposed as a solution. The proposed method is verified on red polystyrene microparticles. PTR is continuously monitored for 30 min. Results show that the mean relaxation time variation of the acquired signals is less than 5%. The proposed method is then applied to human red blood cells for continuous and selective PTR.

  11. Optical improvement for laser material processing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; De Keijzer, M.A.; De Kok, C.J.G.M. [ECN Engineering and Services, Petten (Netherlands); Molenaar, R.; Kettelarij, H.

    2010-05-15

    The use of laser technology enables flexibility and new concepts for example solar cell production but also optical moulds. The reason why laser technology is used in these cases is not the laser system itself but the ability to tailor this type of energy to the demands of the production processes. To ensure the full potential of the laser technology it can be improved by adding optical elements like polarizer, cameras, lenses and sensors. Two of these extra optical elements are presented here. First laser pulse energy attenuation. This is used to increase the controllability of laser processes. And second a new camera optic that enables integrated alignment with respect to features on the product. This last option enables marking on existing features and automated compensation of scanner drift. These camera systems can be used for micro welding of polymers and repair of existing markings in moulds.

  12. Improved atom number with a dual color magneto—optical trap

    International Nuclear Information System (INIS)

    Cao Qiang; Luo Xin-Yu; Gao Kui-Yi; Wang Xiao-Rui; Wang Ru-Quan; Chen Dong-Min

    2012-01-01

    We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87 Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems. (rapid communication)

  13. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap.

    Science.gov (United States)

    Liu, Xiaohui; Wang, Haowei; Li, Yinmei; Tang, Yesheng; Liu, Yilei; Hu, Xin; Jia, Peixin; Ying, Kai; Feng, Qi; Guan, Jianping; Jin, Chaoqing; Zhang, Lei; Lou, Liren; Zhou, Zhuan; Han, Bin

    2004-04-29

    We report the development of a laser micromanipulation system and its application in the isolation of individual rice chromosomes directly from a metaphase cell. Microdissection and flow sorting are two major methods for the isolation of single chromosome. These methods are dependent on the techniques of chromosome spread and chromosome suspension, respectively. In the development of this system, we avoided using chromosome spread and cell suspension was used instead. The cell wall of metaphase rice cell was cut by optical scissors. The released single chromosome was captured by an optical trap and transported to an area without cell debris. The isolated single chromosome was then collected and specific library was constructed by linker adaptor PCR. The average insert size of the library was about 300 bp. Two hundred inserts of chromosome 4 library were sequenced, and 96.5% were aligned to the corresponding sequences of rice chromosome 4. These results suggest the possible application of this method for the preparation of other subcellular structures and for the cloning of single macromolecule through a laser microbeam trap.

  14. Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application.

    Science.gov (United States)

    Borisyuk, Petr V; Derevyashkin, Sergey P; Khabarova, Ksenia Y; Kolachevsky, Nikolay N; Lebedinsky, Yury Y; Poteshin, Sergey S; Sysoev, Alexey A; Tkalya, Evgeny V; Tregubov, Dmitry O; Troyan, Viktor I; Vasiliev, Oleg S; Yakovlev, Valery P; Yudin, Valery I

    2017-08-01

    We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th + , Th 2+ and Th 3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm 2 . Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232 Th + , 232 Th 2+ , 232 Th 3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

  15. Improved photoacoustic dosimetry for retinal laser surgery

    Science.gov (United States)

    Dufour, Suzie; Brown, Robert B.; Gallant, Pascal; Mermut, Ozzy

    2018-02-01

    Lasers are employed for numerous medical interventions by exploiting ablative, disruptive or thermal effects. In ocular procedures, lasers have been used for decades to treat diseases such as diabetic retinopathy, macular edema and aged related macular degeneration via photocoagulation of retinal tissues. Although laser photocoagulation is well established in today's practice, efforts to improve clinical outcomes by reducing the collateral damage from thermal diffusion is leading to novel treatments using shorter (μs) laser pulses (e.g. selective retinal therapy) which result in physical rather than thermal damage. However, for these new techniques to be widely utilized, a method is required to ensure safe but sufficient dosage has been applied, since no visible effects can be seen by ophthalmoscopy directly post treatment. Photoacoustic feedback presents an attractive solution, as the signal is dependent directly on absorbed dosage. Here, we present a method that takes advantage of temporal pulse formatting technology to minimize variation in absorbed dose in ophthalmic laser treatment and provide intelligent dosimetry feedback based on photoacoustic (PA) response. This method tailors the pulse to match the frequency response of the sample and/or detection chain. Depending on the system, this may include the absorbing particle size, the laser beam diameter, the laser pulse duration, tissue acoustic properties and the acoustic detector frequency response. A significant improvement (<7x) of photoacoustic signal-to-noise ratio over equivalent traditional pulse formats have been achieved, while spectral analysis of the detected signal provides indications of cavitation events and other sample properties.

  16. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.

    2008-01-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions

  17. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J. M.; Colombano, M.; Doménech, J.; Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Institut für Kernchemie, University of Mainz, 55099 Mainz (Germany); Delahaye, P. [Grand Accélérateur National d’Ions Lourds, 14000 Caen (France)

    2015-10-15

    A special ion trap was initially built up to perform β-ν correlation experiments with radioactive ions. The trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single {sup 40}Ca{sup +} ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on {sup 40}Ca{sup +} ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at radioactive ion beam facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.

  18. Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion

    Science.gov (United States)

    Nguyen, Ba An; Truong, Minh Duc

    We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.

  19. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    CERN Document Server

    Rodriguez, D; Scheidenberger, C; Kreim, S; Gomez-Hornillos, M B; Aysto, J; Dickel, T; Geppert, C; Novikov, Y N; Tain, J L; Garcia-Ramos, J E; Bollen, G; Hobein, M; Audi, G; Beck, D; Winkler, M; Jesch, C; Vasiliev, A; Sanchez, R; Neidherr, D; Huber, G; Weber, C; Suhonen, M; Reinhard, P G; Jokinen, A; Lapierre, A; Bender, M; Martinez, T; Solders, A; Huyse, M; Matos, M; Szerypo, J; Seliverstov, M; Cortes, G; Cakirli, R B; Van Duppen, P; George, S; Block, M; Ahammed, M; Herfurth, F; Neyens, G; Habs, D; Thirolf, P G; Flanagan, K T; Roux, C; Schneider, D; Brodeur, M; Yordanov, D; Marx, G; Koudriavtsev, I; De, A; Boehm, C; Noertershaeuser, W; Blaum, K; Schabinger, B; Ettenauer, S; Plass, W R; Wendt, K; Nagy, S; Vorobjev, G; Minaya-Ramirez, E; Heenen, P-H; Quint, W; Kester, O; Le Blanc, F; Ray, A; Billowes, J; Kuehl, T; Kraemer, J; Lunney, D; Kolhinen, V; Rubio, B; Brunner, T; Nesterenko, D; Ferrer, R; Algora, A; Repp, J; Naimi, S; Eberhardt, K; Ziegler, F; Popov, A; Krieger, A; Campbell, P; Gartzke, E; Ketelaer, J; Heinz, S; Delheij, P; Ullrich, J; Dax, A; Crespo Lopez-Urrutia, J R; Eliseev, S; Das, P; Cano-Ott, D; Petrick, M; Moore, I; Litvinov, Y A; Schwarz, S; Dilling, J; Geissel, H; Bushaw, B A; Gusev, Y; Lallena, A M; Schweikhard, L; Schuch, R; Herlert, A

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ``fingerprint{''}. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for ...

  20. IMPROVEMENT OF THE CERN SPS ELECTROSTATIC SEPTA ION TRAPS

    CERN Multimedia

    Balhan, Bruno; Barlow, Roger Andrew; Raffaele, Graziano

    2016-01-01

    At CERN, the SPS synchrotron is equipped with a slow extraction channel towards the fixed target beam lines in the North Area This channel includes five consecutive electrostatic septa, where the field free region and the active high field region are separated by an array of tungsten-rhenium wires. The field-free region provides for the circulating beam, while the high field region is used to deflect the extracted beam. Since the residual gas can be ionized by the orbiting beam, low energy ions could cross the wire array and enter the high field region and cause high voltage breakdown when accelerated onto the cathode. To prevent low energy ions from entering this high electric field region, a vertical field is applied to the orbiting beam using so-called ‘ion traps’ for active protection. The vertical field is created by electrodes placed inside the region containing the circulating beam. Due to electromagnetic coupling onto the ion trap electrodes observed with the high frequency LHC beam (25 ns spaced ...

  1. Fluorescence profiles and cooling dynamics of laser-cooled Mg+ ions in a linear rf ion trap

    International Nuclear Information System (INIS)

    Zhao Xianzhen; Ryjkov, Vladimir L.; Schuessler, Hans A.

    2006-01-01

    Fluorescence line profiles and their implications on the cooling dynamics of the Mg + ions stored in a linear rf trap are studied. The line profile is dictated by the temperature of the ion cloud at different laser detunings. The upper bound of the lowest temperature was estimated for different values of the rf trapping potential amplitude and the buffer gas pressure. A general trend of this ultimate temperature to increase with the rf trapping voltage and buffer gas pressure is expected, with an abrupt change at some critical value corresponding to the transition to and from a strongly correlated liquid or crystal state. While on the one hand this expectation was confirmed when the buffer gas pressure was varied; on the other hand the influence of the amplitude of the trapping voltage on the ultimate temperature shows an interesting new feature of first dipping down before the sharp increase occurs

  2. Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.

    2009-01-01

    A suite of three-dimensional (3D) VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of 'at scale' 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.

  3. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric

    2018-04-24

    The neutrons emitted following the  decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the -decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the timedependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticality calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved -delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayedneutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality -delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation

  4. Artificial lights improve the catchability of snow crab (Chionoecetes opilio traps

    Directory of Open Access Journals (Sweden)

    Khanh Q. Nguyen

    2017-05-01

    Full Text Available This study investigated the behaviour and commercial catchability of snow crab (Chionoecetes opilio in response to different low-powered LED lights under laboratory and field conditions. We created a novel choice-experiment in a laboratory setting in which we investigated the behaviour of snow crab in response to coloured LED lights. The results showed that snow crab movement was dependent on light colour, with animals choosing to move toward blue and white lights, away from purple lights, and no detectable effect for green and red lights. We then conducted two field experiments to investigate the effect of the same LED lights on the catch rates of commercial traps during the 2016 snow crab fishery on the east coast of Newfoundland and Labrador. Results from the first field experiment showed that adding white and purple LED lights into baited traps significantly improved Catch Per Unit Effort (CPUE by 77% and 47% respectively. Results from the second field experiment showed that unbaited traps equipped with only LED lights (no bait, could also catch snow crab in comparable amounts to traditional baited traps, with soak time and depth explaining some of the variation in CPUE. Taken together, these experiments suggest that fishing enterprises can improve their catching performance and profitability by adding LED lights to their traps, or by using LED lights as a bait replacement.

  5. Forbidden atomic transitions driven by an intensity-modulated laser trap.

    Science.gov (United States)

    Moore, Kaitlin R; Anderson, Sarah E; Raithel, Georg

    2015-01-20

    Spectroscopy is an essential tool in understanding and manipulating quantum systems, such as atoms and molecules. The model describing spectroscopy includes the multipole-field interaction, which leads to established spectroscopic selection rules, and an interaction that is quadratic in the field, which is not often employed. However, spectroscopy using the quadratic (ponderomotive) interaction promises two significant advantages over spectroscopy using the multipole-field interaction: flexible transition rules and vastly improved spatial addressability of the quantum system. Here we demonstrate ponderomotive spectroscopy by using optical-lattice-trapped Rydberg atoms, pulsating the lattice light and driving a microwave atomic transition that would otherwise be forbidden by established spectroscopic selection rules. This ability to measure frequencies of previously inaccessible transitions makes possible improved determinations of atomic characteristics and constants underlying physics. The spatial resolution of ponderomotive spectroscopy is orders of magnitude better than the transition frequency would suggest, promising single-site addressability in dense particle arrays for quantum computing applications.

  6. Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography

    Directory of Open Access Journals (Sweden)

    Omar Tricinci

    2017-12-01

    Full Text Available Salvinia leaves represent an extraordinary example of how nature found a strategy for the long term retainment of air, and thus oxygen, on a surface, the so-called ‘Salvinia effect’, thanks to the peculiar three-dimensional and hierarchical shape of the hairs covering the leaves. Here, starting from the natural model, we have microfabricated hairs inspired by those present on the Salvinia molesta leaves, by means of direct laser lithography. Artificial hairs, like their natural counterpart, are composed of a stalk and a crown-like head, and have been reproduced in the microscale since this ensures, if using a proper design, an air-retaining behavior even if the bulk structural material is hydrophilic. We have investigated the capability of air retainment inside the heads of the hairs that can last up to 100 h, demonstrating the stability of the phenomenon. For a given dimension of the head, the greater the number of filaments, the greater the amount of air that can be trapped inside the heads since the increase in the number of solid–air interfaces able to pin the liquid phase. For this reason, such type of pattern could be used for the fabrication of surfaces for controlled gas retainment and gas release in liquid phases. The range of applications would be quite large, including industrial, medical, and biological fields.

  7. Spatio-temporal powder formation and trapping in RF silane plasmas using 2-D polarization-sensitive laser scattering

    International Nuclear Information System (INIS)

    Dorier, J.L.; Hollenstein, C.; Howling, A.A.

    1994-09-01

    Powder formation studies in deposition plasmas are motivated by the need to reduce contamination in the plasma and films. Models for the force acting upon particles in rf discharges suffer from a lack of quantitative experimental data for comparison in the case of silane-containing plasmas. In this work, a cross-section of the parallel-plate capacitor discharge is illuminated with a polarized beam-expanded laser and global spatio-temporal scattered light and extinction are recorded by CCD cameras. Spatially-regular periodic bright/dark zones due to constructive/destructive Mie interference are visible over large regions of the powder layers, which shows the uniform nature of particle growth in silane plasmas. For particles trapped in an argon plasma, as for steady-state conditions in silane, spatial size segregation is demonstrated by fringes which reverse according to the polarisation of scattered light. The method allow a self-consistent estimation of particle size and number density throughout the discharge volume from which strong particle Coulomb coupling (Γ>40) is suggested to influence powder dynamics. Correction must be made to the plasma emission profile for the extinction by powder. In conclusion, this global diagnostics improves understanding of particle growth and dynamics in silane rf discharges and provides experimental input for testing the validity of models. (author) 6 figs., 43 refs

  8. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  9. Information entropy of a time-dependent three-level trapped ion interacting with a laser field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2005-01-01

    Trapped and laser-cooled ions are increasingly used for a variety of modern high-precision experiments, frequency standard applications and quantum information processing. Therefore, in this communication we present a comprehensive analysis of the pattern of information entropy arising in the time evolution of an ion interacting with a laser field. A general analytic approach is proposed for a three-level trapped-ion system in the presence of the time-dependent couplings. By working out an exact analytic solution, we conclusively analyse the general properties of the von Neumann entropy and quantum information entropy. It is shown that the information entropy is affected strongly by the time-dependent coupling and exhibits long time periodic oscillations. This feature attributed to the fact that in the time-dependent region Rabi oscillation is time dependent. Using parameters corresponding to a specific three-level ionic system, a single beryllium ion in a RF-(Paul) trap, we obtain illustrative examples of some novel aspects of this system in the dynamical evolution. Our results establish an explicit relation between the exact information entropy and the entanglement between the multi-level ion and the laser field. We show that different nonclassical effects arise in the dynamics of the ionic population inversion, depending on the initial states of the vibrational motion/field and on the values of Lamb-Dicke parameter η

  10. Improved Laser performance through Planar Waveguide Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a laser technology development to improve efficiency and performance for a variety of science applications including: Lunar Ice, 2-Step Laser Tandem Mass...

  11. Improving detection tools for the emerald ash borer (Coleoptera: Buprestidae): comparison of prism and multifunnel traps at varying population densities.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Crook, Damon J; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2013-12-01

    The current emerald ash borer survey trap used in the United States is a prism trap constructed from a stock purple corrugated plastic. In recent years, several colors (particularly shades of green and purple) have been shown to be more attractive to the emerald ash borer than this stock color. Our goal was to determine if plastics produced with these colors and incorporated into prism traps can improve and serve as a new alternative to plastics already in use for the emerald ash borer survey. The plastics were tested in moderate to heavily infested areas in Michigan in two initial studies to test their effectiveness at catching the emerald ash borer. Because results from studies performed in heavily infested sites may not always correspond with what is found along the edges of the infestation, we compared trap catch and detection rates (recording at least one catch on a trap over the course of the entire trapping season) of several trap types and colors at sites outside the core of the currently known emerald ash borer infestation in a nine-state detection tool comparison study. Two of the new plastics, a (Sabic) purple and a medium-dark (Sabic) green were incorporated into prism traps and tested alongside a standard purple prism trap and a green multifunnel trap. In areas with lower emerald ash borer density, the new purple (Sabic) corrugated plastic caught more beetles than the current purple prism trap, as well as more than the medium-dark green (Sabic) prism and green multifunnel traps. Sabic purple traps in the detection tools comparison study recorded a detection rate of 86% compared with 73, 66, and 58% for the standard purple, Sabic green, and green multifunnel traps, respectively. These detection rates were reduced to 80, 63, 55, and 46%, respectively, at low emerald ash borer density sites.

  12. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication

    Science.gov (United States)

    Matsuura, Toshiki; Takai, Takanari; Iwata, Futoshi

    2017-10-01

    We describe a novel three-dimensional fabrication technique using local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator (SLM). In a solution containing nanometer-scale colloidal Au particles, multiple laser spots formed on a conductive substrate by the SLM gathered the nanoparticles together, and then the nanoparticles were electrophoretically deposited onto the substrate by an applied electrical field. However, undesirable sub-spots often appeared due to optical interference from the multiple laser spots, which deteriorated the accuracy of the deposition. To avoid the appearance of undesirable sub-spots, we proposed a method using quasi-multiple spots, which we realized by switching the position of a single spot briefly using the SLM. The method allowed us to deposit multiple dots on the substrate without undesirable sub-dot deposition. By moving the substrate downward during deposition, multiple micro-pillar structures could be fabricated. As a fabrication property, the dependence of the pillar diameter on laser intensity was investigated by changing the number of laser spots. The smallest diameter of the four pillars fabricated in this study was 920 nm at the laser intensity of 2.5 mW. To demonstrate the effectiveness of the method, multiple spiral structures were fabricated. Quadruple spirals of 46 µm in height were successfully fabricated with a growth rate of 0.21 µm/s using 2200 frames of the CGH patterns displayed in the SLM at a frame rate of 10 fps.

  13. Influence of energy and duration of laser pulses on stability of dielectric nanoparticles in optical trap

    International Nuclear Information System (INIS)

    Ho Quang Quy; Mai Van Luu; Hoang Dinh Hai

    2010-01-01

    In this article the gradient force of optical trap using two counter- propagating pulsed Gaussian beam and the Brownian motion in optical force field are investigated. The influence of the energy and duration time of optical pulsed Gaussian beams on stability of nano-particle in trap is simulated and discussed. (author)

  14. Laboratory X-ray Studies with Trapped Highly Charged Ions Using Synchrotrons and Free-electron Lasers

    Science.gov (United States)

    Crespo López-Urrutia, José R.

    2018-06-01

    Laboratory studies on highly charged ions (HCI) using electron beam ion traps (EBITs) can cover all charge states and chemical elements found in astrophysical sources. Since their introduction in 1986, a wealth of emission measurements from the optical to the x-ray range has been carried out by different groups. In most of the work, electron-impact excitation was the driving mechanism, and high resolution spectrometers were used for the diagnostic of the emitted radiation. Other recent studies included x-ray emission following charge exchange, a mechanism which is present in many astrophysical environments and can help explain some of the unknown spectral features at 3.55 keV.In the last decade, excitation and photoionization have also been investigated by exposing HCI trapped in an EBIT to intense, monochromatic radiation from free-electron lasers and synchrotron sources. Here, advanced monochromators in powerful undulator beamlines allowed us to work at photon energies from 50 eV to 15 keV while resolving the natural linewidths of x-ray transitions like the Kα complex of Fe up to the highest charge states, and to measure the oscillator strengths of, e. g., the neonlike Fe16+ spectrum. Photoionization studies have been performed for those species as well. Very recently, our novel compact EBIT with an off-axis electron gun allows for simultaneously using the photon beam downstream, enabling exact wavelength determinations referenced to HCI with accurately calculable transitions. We have performed a recalibration of the molecular and atomic oxygen soft x-ray absorption lines in the 500 eV range with an uncertainty estimate of 30 meV. This revealed a 600 meV calibration error that propagated through the literature for decades with the consequence of a 200 km/s misfit of the velocity in interstellar oxygen absorbers. Other possibilities for the compact EBIT are investigations of resonant photorecombination processes with excellent energy resolution. With the

  15. High Contrast Coherent Population Trapping Resonances in Cs Vapour Cells with a Simple-Architecture Laser System

    International Nuclear Information System (INIS)

    Liu, Xiaochi

    2013-01-01

    This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-split by 9.192 GHz and a Michelson delay-line system to produce a bi-chromatic optical field that alternates between right and left circular polarization. This polarization pumping scheme, first proposed by Happer's group in Princeton on K atoms, allows to optically pump a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast was measured to be increased until a saturation effect with the laser power at the expense of the CPT line broadening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT resonances in vapor cells to combine high-contrast and narrow line width of the CPT resonances. In this setup, the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey fringes of 166 Hz line width with a contrast better than 30% were detected with this setup. This laser system will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. (author)

  16. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. In-Source Laser Spectroscopy with the Laser Ion Source and Trap: First Direct Study of the Ground-State Properties of ^{217,219}Po

    Directory of Open Access Journals (Sweden)

    D. A. Fink

    2015-02-01

    Full Text Available A Laser Ion Source and Trap (LIST for a thick-target, isotope-separation on-line facility has been implemented at CERN ISOLDE for the production of pure, laser-ionized, radioactive ion beams. It offers two modes of operation, either as an ion guide, which performs similarly to the standard ISOLDE resonance ionization laser ion source (RILIS, or as a more selective ion source, where surface-ionized ions from the hot ion-source cavity are repelled by an electrode, while laser ionization is done within a radio-frequency quadrupole ion guide. The first physics application of the LIST enables the suppression of francium contamination in ion beams of neutron-rich polonium isotopes at ISOLDE by more than 1000 with a reduction in laser-ionization efficiency of only 20. Resonance ionization spectroscopy is performed directly inside the LIST device, allowing the study of the hyperfine structure and isotope shift of ^{217}Po for the first time. Nuclear decay spectroscopy of ^{219}Po is performed for the first time, revealing its half-life, α-to-β-decay branching ratio, and α-particle energy. This experiment demonstrates the applicability of the LIST at radioactive ion-beam facilities for the production and study of pure beams of exotic isotopes.

  18. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    Science.gov (United States)

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  19. Improving the Selectivity of the ISOLDE Resonance Ionization Laser Ion Source and In-Source Laser Spectroscopy of Polonium

    CERN Document Server

    Fink, Daniel Andreas; Jochim, Selim

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientic elds such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was impleme...

  20. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  1. Laser spectroscopy of the 4s4p(3) P-2-4s3d(1) D-2 transition on magnetically trapped calcium atoms

    NARCIS (Netherlands)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-01-01

    Laser excitation of the 4s4p(3) P-2-4s3d(1) D-2 transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p(3) P-2 atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only

  2. Dynamics of optical matter creation and annihilation in colloidal liquids controlled by laser trapping power.

    Science.gov (United States)

    Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A

    2008-11-15

    We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

  3. Laser Cooling and Trapping of Neutral Strontium for Spectroscopic Measurements of Casimir-Polder Potentials

    Science.gov (United States)

    Cook, Eryn C.

    Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.

  4. Study on elemental analysis of metal and ceramic samples by using laser ablation ion trap mass spectrometry(LAITMS)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Park, Hyun Kook; Lee, Sang Chun; SONG, Kyu Seok

    2002-01-01

    Laser ablation ion trap mass spectrometry (LAITMS) was developed for the analysis of metal and ceramic samples. For this study, XeCl excimer laser (308 nm) was used for ablating the samples and ITMS was used as a detector. Samples were introduced from outside of a ring electrode and this way of sample introduction was very effective for solid samples when laser ablation was employed. Helium gas was used as a buffer gas, and its effect on sensitivity and some parameters (buffer gas pressure, ion storage time, and cut-off RF voltage) were studied. The optimized conditions were 1 x 10 - 4 Torr of buffer gas pressure, 100 ms of ion storage time and 1150 V p- p of cut-off RF voltage. From that results, copper (Cu) and molybdenum(Mo) metals were tested with LAITMS and the mass spectra of these pure metals were compared with the natural abundance of isotope ratio. We also examined ceramic samples (Al 2 O 3 , ZrO 2 ) and represented the result of elements analysis

  5. Increasing Laser Stability with Improved Electronic Instruments

    Science.gov (United States)

    Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.

    2010-03-01

    We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.

  6. Low-loss, low-confinement GaAs-AlGaAs DQW laser diode with optical trap layer for high-power operation

    NARCIS (Netherlands)

    Buda, M.; Vleuten, van der W.C.; Iordache, G.; Acket, G.A.; Roer, van de T.G.; Es, van C.M.; Roy, van B.H.; Smalbrugge, E.

    1999-01-01

    A low-confinement asymmetric GaAs-AlGaAs double-quantum-well molecular-beam-epitaxy grown laser diode structure with optical trap layer is characterized, The value of the internal absorption coefficient is as low as 1.4 cm-1, while keeping the series resistance at values comparable cm with

  7. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  8. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  9. Applying low-energy multipulse excimer laser annealing to improve charge retention of Au nanocrystals embedded MOS capacitors

    International Nuclear Information System (INIS)

    Shen, Kuan-Yuan; Chen, Hung-Ming; Liao, Ting-Wei; Kuan, Chieh-Hsiung

    2015-01-01

    The low-energy multipulse excimer laser annealing (LEM-ELA) is proposed to anneal the nanostructure of nanocrystal (NC) embedded in a SiO 2 thin film without causing atomic diffusion and damaging the NCs, since the LEM-ELA combining the advantages of laser annealing and UV curing features rapid heating and increasing oxide network connectivity. A Fourier transform infrared spectroscopy (FTIR) characterization of SiO 2 thin films annealed using LEM-ELA indicated that the quality was improved through the removal of water-related impurities and the reconstruction of the network Si–O–Si bonds. Then, LEM-ELA was applied to a SiO 2 thin film embedded with Au NCs, which were fabricated as MOS capacitors. The charge retention was greatly improved and the percentage of retained charges was about 10% after 3  ×  10 8  s. To investigate and differentiate the effects of LEM-ELA on charges stored in both oxide traps and in the Au NCs, a double-mechanism charge relaxation analysis was performed. The results indicated that the oxide traps were removed and the confinement ability of Au NCs was enhanced. The separated memory windows contributed from the charges in Au NCs and those in oxide traps were obtained and further confirmed that the LEM-ELA removed oxide traps without damaging the Au NCs. (paper)

  10. New Technique for Improving Performance of LDPC Codes in the Presence of Trapping Sets

    Directory of Open Access Journals (Sweden)

    Mohamed Adnan Landolsi

    2008-06-01

    Full Text Available Trapping sets are considered the primary factor for degrading the performance of low-density parity-check (LDPC codes in the error-floor region. The effect of trapping sets on the performance of an LDPC code becomes worse as the code size decreases. One approach to tackle this problem is to minimize trapping sets during LDPC code design. However, while trapping sets can be reduced, their complete elimination is infeasible due to the presence of cycles in the underlying LDPC code bipartite graph. In this work, we introduce a new technique based on trapping sets neutralization to minimize the negative effect of trapping sets under belief propagation (BP decoding. Simulation results for random, progressive edge growth (PEG and MacKay LDPC codes demonstrate the effectiveness of the proposed technique. The hardware cost of the proposed technique is also shown to be minimal.

  11. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Science.gov (United States)

    O'Connor, Kelly M; Nathan, Lucas R; Liberati, Marjorie R; Tingley, Morgan W; Vokoun, Jason C; Rittenhouse, Tracy A G

    2017-01-01

    Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1) by different sizes of camera arrays deployed (1-10 cameras), and (2) by total season length (1-365 days). Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128%) from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored) detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori identify

  12. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.

    Directory of Open Access Journals (Sweden)

    Kelly M O'Connor

    Full Text Available Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1 by different sizes of camera arrays deployed (1-10 cameras, and (2 by total season length (1-365 days. Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus, bobcat (Lynx rufus, raccoon (Procyon lotor, and Virginia opossum (Didelphis virginiana. For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128% from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori

  13. Measurement of the beta-neutrino correlation in laser trapped 21Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas David [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Trapped radioactive atoms are an appealing source for precise measurements of the beta-neutrino correlation coefficient, a, since the momentum of the neutrino can be inferred from the detection of the unperturbed low-energy recoil daughter nucleus. Sodium-21 is produced on-line at the 88'' cyclotron at Lawrence Berkeley National Laboratory, and 8e5 atoms have been maintained in a magneto-optical trap. A static electric field draws daughter Neon-21 ions to a microchannel plate detector and betas are detected in coincidence with a plastic scintillator beta detector. The Neon-21 time-of-flight distribution determines the beta neutrino correlation coefficient, a. The resulting charge-state distribution is compared to a simple model based on the sudden approximation which suggests a small but important contribution from nuclear recoil-induced ionization. A larger than expected fraction of the daughters are detected in positive charge-states, but no dependence on either the beta or recoil nucleus energy was observed. We find a = 0.5243 plus or minus 0.0092, which is in 3.6 sigma disagreement with the Standard Model prediction of a = 0.559 plus or minus 0.003. Aside from a deviation from the Standard Model, a possible explanation for the discrepancy is that the branching ratio to the first excited state is in error.

  14. Management strategy evaluation of pheromone-baited trapping techniques to improve management of invasive sea lamprey

    Science.gov (United States)

    Dawson, Heather; Jones, Michael L.; Irwin, Brian J.; Johnson, Nicholas; Wagner, Michael C.; Szymanski, Melissa

    2016-01-01

    We applied a management strategy evaluation (MSE) model to examine the potential cost-effectiveness of using pheromone-baited trapping along with conventional lampricide treatment to manage invasive sea lamprey. Four pheromone-baited trapping strategies were modeled: (1) stream activation wherein pheromone was applied to existing traps to achieve 10−12 mol/L in-stream concentration, (2) stream activation plus two additional traps downstream with pheromone applied at 2.5 mg/hr (reverse-intercept approach), (3) trap activation wherein pheromone was applied at 10 mg/hr to existing traps, and (4) trap activation and reverse-intercept approach. Each new strategy was applied, with remaining funds applied to conventional lampricide control. Simulating deployment of these hybrid strategies on fourteen Lake Michigan streams resulted in increases of 17 and 11% (strategies 1 and 2) and decreases of 4 and 7% (strategies 3 and 4) of the lakewide mean abundance of adult sea lamprey relative to status quo. MSE revealed performance targets for trap efficacy to guide additional research because results indicate that combining lampricides and high efficacy trapping technologies can reduce sea lamprey abundance on average without increasing control costs.

  15. Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps

    Science.gov (United States)

    Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.

    2018-06-01

    Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

  16. Line-Trapping of Codling Moth (Lepidoptera: Tortricidae): A Novel Approach to Improving the Precision of Capture Numbers in Traps Monitoring Pest Density.

    Science.gov (United States)

    Adams, C G; McGhee, P S; Schenker, J H; Gut, L J; Miller, J R

    2017-08-01

    This field study of codling moth, Cydia pomonella (L.), response to single versus multiple monitoring traps baited with codlemone demonstrates that precision of a given capture number is alarmingly poor when the population is held constant by releasing moths. Captures as low as zero and as high as 12 males per single trap are to be expected where the catch mode is three. Here, we demonstrate that the frequency of false negatives and overestimated positives for codling moth trapping can be substantially reduced by employing the tactic of line-trapping, where five traps were deployed 4 m apart along a row of apple trees. Codling moth traps spaced closely competed only slightly. Therefore, deploying five traps closely in a line is a sampling technique nearly as good as deploying five traps spaced widely. But line trapping offers a substantial savings in time and therefore cost when servicing aggregated versus distributed traps. As the science of pest management matures by mastering the ability to translate capture numbers into estimates of absolute pest density, it will be important to employ a tactic like line-trapping so as to shrink the troublesome variability associated with capture numbers in single traps that thwarts accurate decisions about if and when to spray. Line-trapping might similarly increase the reliability and utility of density estimates derived from capture numbers in monitoring traps for various pest and beneficial insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Improved density measurement by FIR laser interferometer on EAST tokamak

    International Nuclear Information System (INIS)

    Shen, Jie; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-01-01

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported

  18. Improved density measurement by FIR laser interferometer on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jie, E-mail: shenjie1988@ipp.ac.cn; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-11-15

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported.

  19. Improving executive function using transcranial infrared laser stimulation.

    Science.gov (United States)

    Blanco, Nathaniel J; Maddox, W Todd; Gonzalez-Lima, Francisco

    2017-03-01

    Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy-density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett and Gonzalez-Lima (2013, Neuroscience, 230, 13) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task that is considered the gold standard of executive function and is compromised in normal ageing and a number of neuropsychological disorders. We used a laser of a specific wavelength (1,064 nm) that photostimulates cytochrome oxidase - the enzyme catalysing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal ageing. © 2015 The British Psychological Society.

  20. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    Science.gov (United States)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  1. Improving the indoor air quality by using a surface emissions trap

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  2. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  3. Skin optical clearing for improvement of laser tattoo removal

    Science.gov (United States)

    Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.; Altshuler, G. B.

    2009-06-01

    The possibility of improvement of laser tattoo removal due to the optical clearing of human skin is investigated. It is shown experimentally that previously perforation of skin stratum corneum allows increasing tattoo image contrast at topical administration of immersion agent in contrast with non-perforated skin. Computer Monte Carlo simulation shows that at the optical clearing of upper skin layers the tattoo image contrast and the photon fraction absorbed in the tattoo area at the depths of 0.5 or 1.0 mm increase, that allows significant decreasing of the power of laser radiation used at laser thermolysis.

  4. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  5. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities.

    Science.gov (United States)

    Crook, Damon J; Francese, Joseph A; Rietz, Michael L; Lance, David R; Hull-Sanders, Helen M; Mastro, Victor C; Silk, Peter J; Ryall, Krista L

    2014-08-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) that has caused devastating mortality since it was first identified in North America in 2002. In 2012, we conducted field trapping assays that tested the efficacy of purple prism and fluon-coated green multifunnel (Lindgren funnel) traps. Traps were baited with combinations of several lures that were previously shown to be attractive to A. planipennis: manuka oil--a sesquiterpene-rich oil, (3Z)-hexenol--a green leaf volatile, or (3Z)-dodecen-12-olide [= (3Z)-lactone], a sex pheromone. Eighty-nine blocks (trap lines) were tested throughout nine states along the outer edges of the currently known A. planipennis infestation in North America. Trap catch was highest on fluon-coated green multifunnel traps, and trap detections at sites with low A. planipennis population density ranged from 72 to 76% for all trap and lure types tested. (3Z)-hexenol and (3Z)-lactone baited traps functioned as well as (3Z)-hexenol and manuka oil-baited traps. Independent of the lure used, detection rates on green fluon-coated multifunnel traps were comparable with glued purple prism traps in areas with low A. planipennis population densities.

  6. An improved analytical model of 4H-SiC MESFET incorporating bulk and interface trapping effects

    Science.gov (United States)

    Hema Lata Rao, M.; Narasimha Murty, N. V. L.

    2015-01-01

    An improved analytical model for the current—voltage (I-V) characteristics of the 4H-SiC metal semiconductor field effect transistor (MESFET) on a high purity semi-insulating (HPSI) substrate with trapping and thermal effects is presented. The 4H-SiC MESFET structure includes a stack of HPSI substrates and a uniformly doped channel layer. The trapping effects include both the effect of multiple deep-level traps in the substrate and surface traps between the gate to source/drain. The self-heating effects are also incorporated to obtain the accurate and realistic nature of the analytical model. The importance of the proposed model is emphasised through the inclusion of the recent and exact nature of the traps in the 4H-SiC HPSI substrate responsible for substrate compensation. The analytical model is used to exhibit DC I-V characteristics of the device with and without trapping and thermal effects. From the results, the current degradation is observed due to the surface and substrate trapping effects and the negative conductance introduced by the self-heating effect at a high drain voltage. The calculated results are compared with reported experimental and two-dimensional simulations (Silvaco®-TCAD). The proposed model also illustrates the effectiveness of the gate—source distance scaling effect compared to the gate—drain scaling effect in optimizing 4H-SiC MESFET performance. Results demonstrate that the proposed I-V model of 4H-SiC MESFET is suitable for realizing SiC based monolithic circuits (MMICs) on HPSI substrates.

  7. An improved analytical model of 4H-SiC MESFET incorporating bulk and interface trapping effects

    International Nuclear Information System (INIS)

    Rao, M. Hema Lata; Murty, N. V. L. Narasimha

    2015-01-01

    An improved analytical model for the current—voltage (I–V) characteristics of the 4H-SiC metal semiconductor field effect transistor (MESFET) on a high purity semi-insulating (HPSI) substrate with trapping and thermal effects is presented. The 4H-SiC MESFET structure includes a stack of HPSI substrates and a uniformly doped channel layer. The trapping effects include both the effect of multiple deep-level traps in the substrate and surface traps between the gate to source/drain. The self-heating effects are also incorporated to obtain the accurate and realistic nature of the analytical model. The importance of the proposed model is emphasised through the inclusion of the recent and exact nature of the traps in the 4H-SiC HPSI substrate responsible for substrate compensation. The analytical model is used to exhibit DC I–V characteristics of the device with and without trapping and thermal effects. From the results, the current degradation is observed due to the surface and substrate trapping effects and the negative conductance introduced by the self-heating effect at a high drain voltage. The calculated results are compared with reported experimental and two-dimensional simulations (Silvaco®-TCAD). The proposed model also illustrates the effectiveness of the gate—source distance scaling effect compared to the gate—drain scaling effect in optimizing 4H-SiC MESFET performance. Results demonstrate that the proposed I–V model of 4H-SiC MESFET is suitable for realizing SiC based monolithic circuits (MMICs) on HPSI substrates. (semiconductor devices)

  8. QUALITY IMPROVEMENT OF MANGOSTEEN FOR EXPORT THROUGH DRIP IRRIGATION SYSTEM AND YELLOW FLUORESCENT STICKY TRAP INSTALLATION

    Directory of Open Access Journals (Sweden)

    Affandi

    2011-10-01

    Full Text Available Mangosteen (Garcinia mangostana Linn. dubbed as “finest fruit of the world”, has potential for both domestic market and export. However, this potential is threatened by low fruit quality caused by production of yellow latex and fruit scarring. The research objective was to obtain technology to reduce yellow latex and control Scirtothrips dorsalis, a pest that causes scarring on mangosteen. A randomized block design with four treatments and 14 replications was used in this research. Significant differences among the treatments were calculated using the Honestly Significant Difference (HSD test. The results showed that treatment of drip irrigation system in combination with removing weeds under the canopy (A or removing weeds followed by minimum tillage under the canopy (B or removing weeds then covering with rice hay mulch under the canopy (C, where N, P, K, Ca, Mg fertilizer and yellow fluorescent sticky trap were applied could reduce scarring intensity and percentage of yellow latex on the fruit peel. However, the treatments did not significantly impact fruit diameter or percentage of yellow latex inside the fruit. Nevertheless, treatment C improved mangosteen quality by as much as 67.79% fulfilling export standard requirements.

  9. Improvements in the injection system of the Canadian Penning trap mass spectrometer

    CERN Document Server

    Clark, J; Boudreau, C; Buchinger, F; Crawford, J E; Gulick, S; Hardy, J C; Heinz, A; Lee, J K P; Moore, R B; Savard, G; Seweryniak, D; Sharma, K S; Sprouse, G; Vaz, J; Wang, J C; Zhou, Z

    2003-01-01

    The Canadian Penning Trap (CPT) mass spectrometer is designed to make precise mass measurements on a variety of stable and short-lived isotopes. Modifications to the injection system of the CPT have been implemented in recent months, the purpose being to more efficiently collect and transfer weakly-produced reaction products from the target to the Penning trap. These include a magnetic triplet situated after the target chamber to increase the acceptance of the Enge spectrograph, a velocity filter to more effectively separate the beam from the reaction products and the replacement of the Paul trap with a linear trap resulting in more efficient capture and accumulation of ions from the ion cooler. This paper will discuss these recent modifications and how they have increased our ability in making mass measurements on isotopes of low abundance, including those from a sup 2 sup 5 sup 2 Cf fission source.

  10. Bait station devices can improve mass trapping performance for the control of the Mediterranean fruit fly

    OpenAIRE

    Navarro-Llopis, Vicente; Primo Millo, Jaime; Vacas González, Sandra

    2015-01-01

    BACKGROUNDThe use of traps and other attract-and-kill devices in pest management strategies to reduce Mediterranean fruit fly populations has proved to be efficient. Nevertheless, many farmers are concerned about the effect of these devices on the trees where they are hung. Direct field observations have revealed that fruit damage is higher in trees with traps than in trees without them. This work evaluates the efficacy of different types of attract-and-kill device to protect fruit of the sin...

  11. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  12. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  13. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  14. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  15. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention

    Science.gov (United States)

    Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.

    2018-03-01

    Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).

  16. Improved formulas for trapped-ion anomalous transport in tokamaks without and with shear

    International Nuclear Information System (INIS)

    Sardei, F.; Wimmel, H.K.

    1980-12-01

    More refined numerical calculations of trapped-ion anomalous transport in a 2-D slab, trapped-fluid model suggest an anomalous diffusion coefficient D approx. 3.5 x 10 -2 delta 0 a 2 νsub(i)sup(e)sup(f)sup(f) for a tokamak plasma without shear. This supersedes earlier results. The new formula is independently confirmed by two different analytical calculations. One of them uses a similarity analysis of unabridged Kadomtsev-Pogutse-type trapped-fluid equations and the multiperiodic spatial structure of the saturated trapped-ion wave found in both the earlier and the recent numerical calculations. The other calculation yields a class of exact nonlinear solutions of the trapped-fluid equations. The new shearless result is used to derive the anomalous diffusion with shear effect by a method described in an earlier paper. The new transport formulas have been numerically evaluated for several tokamaks in an IPP report, where the results are shown in graph form. (orig.)

  17. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  18. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  19. Applying and improving a sedimentary facies model for exploration of stratigraphic traps in the Austrian Molasse basin

    Energy Technology Data Exchange (ETDEWEB)

    Hinsch, R.; Kofler, N. [Rohoel-Aufsuchungs AG (RAG), Vienna (Austria); Hubbard, S. [Calgary Univ., Calgary (Canada). Dept. of Geology and Geophysics

    2007-09-13

    In the Molasse foreland basin of Upper Austria gas is produced from deep-water sandstones and conglomerates of the Puchkirchen and basal Hall formations (Oligocene-Lower Miocene). The basin is mature, with >750 wells drilled by RAG to date. An extensive 3-D seismic reflection dataset that covers much of the paleo-basin foredeep has been acquired in the study area over the last 15 years. Seismic stratigraphic analysis has revealed that deepwater sedimentation in the basin was dominated by a channel belt up to 5 km wide that transported sediment derived from the Central and Eastern Alps eastward along the basin axis (Linzer, 2001; de Ruig, 2003). Based on these findings, a detailed sedimentary facies model has been developed, outlining several distinct depositional elements that reveal numerous possible stratigraphic trap types (de Ruig and Hubbard, 2006). This depositional model is currently being applied and tested in exploration and refined by ongoing research. Channel abandonment and migration are important processes that resulted in stratigraphic configurations consisting of coarse-grained sandstones and conglomerates overlain by channel and overbank mudstones. This represents ideal reservoir architecture, including porous reservoir facies sealed by impermeable deposits. Additional stratigraphic trapping conditions can result from special spatial arrangements of depositional elements, for example a sandstone-filled tributary channel that is sealed by an overlying mudstone-filled abandonment channel. Recognizing and further improving such stratigraphic trapping configurations are important for future exploration in Upper Austria, where most of the structural traps have been drilled. (orig.)

  20. Remote Laser Cutting of CFRP: Improvements in the Cut Surface

    Science.gov (United States)

    Stock, Johannes; Zaeh, Michael F.; Conrad, Markus

    In the automotive industry carbon fibre reinforced plastics (CFRP) are considered as a future key material to reduce the weight of the vehicle. Therefore, capable production techniques are required to process this material in mass industry. E.g., state of the art methods for cutting are limited by the high tool wear or the feasible feed rate. Laser cutting processes are still under investigation. This paper presents detailed new studies on remote laser cutting of CFRP focusing on the influence of the material properties and the quality of the cut surface. By adding light absorbing soot particles to the resin of the matrix, the cutting process is improved and fewer defects emerge.

  1. Laser surface modification of Ti implants to improve osseointegration

    International Nuclear Information System (INIS)

    Marticorena, M; Corti, G; Olmedo, D; Guglielmotti, M B; Duhalde, S

    2007-01-01

    Commercially Pure Titanium foils, were irradiated using a pulsed Nd:YAG laser under ambient air, in order to produce and characterize a well controlled surface texture (roughness and waviness) that enhances osseointegration. To study the 'peri-implant' reparative process response, the laser treated Ti foils were implanted in the tibia of 10 male Wistar rats. At 14 days post-implantation, the histological analysis showed a tendency to more bone formation compared to the untreated control implants. The formation of a layer of TiN on the surface and the obtained roughness, have been demonstrated to improve bone response

  2. Performance improvement of charge-trap memory by using a stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer

    International Nuclear Information System (INIS)

    Tang, Zhenjie; Hu, Dan; Zhang, Xiwei; Zhao, Yage; Li, Rong

    2016-01-01

    The postdeposition annealing (PDA)-treated charge-trap flash memory capacitor with stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer flanked by a SiO_2 tunneling oxide and an Al_2O_3 blocking oxide was fabricated and investigated. It is observed that the memory capacitor exhibits prominent memory characteristics with large memory windows 12.8 V in a ±10 V gate sweeping voltage range, faster program/erase speed, and good data-retention characteristics even at 125 C compared to a single charge-trapping layer (Zr_0_._4_6Si_0_._5_4O_2, Zr_0_._7_9Si_0_._2_1O_2, and Zr_0_._4_6Al_1_._0_8O_2_._5_4). The quantum wells and introduced interfacial traps of the stacked trapping layer regulate the storage and loss behavior of charges, and jointly contribute to the improved memory characteristics. Hence, the memory capacitor with a stacked trapping layer is a promising candidate in future nonvolatile charge-trap memory device design and application. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Performance improvement of charge-trap memory by using a stacked Zr{sub 0.46}Si{sub 0.54}O{sub 2}/Al{sub 2}O{sub 3} charge-trapping layer

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenjie; Hu, Dan; Zhang, Xiwei; Zhao, Yage [College of Physics and Electronic Engineering, Anyang Normal University, Anyang 455000 (China); Li, Rong [School of Mathematics and Statistics, Anyang Normal University, Anyang 455000 (China)

    2016-11-15

    The postdeposition annealing (PDA)-treated charge-trap flash memory capacitor with stacked Zr{sub 0.46}Si{sub 0.54}O{sub 2}/Al{sub 2}O{sub 3} charge-trapping layer flanked by a SiO{sub 2} tunneling oxide and an Al{sub 2}O{sub 3} blocking oxide was fabricated and investigated. It is observed that the memory capacitor exhibits prominent memory characteristics with large memory windows 12.8 V in a ±10 V gate sweeping voltage range, faster program/erase speed, and good data-retention characteristics even at 125 C compared to a single charge-trapping layer (Zr{sub 0.46}Si{sub 0.54}O{sub 2}, Zr{sub 0.79}Si{sub 0.21}O{sub 2}, and Zr{sub 0.46}Al{sub 1.08}O{sub 2.54}). The quantum wells and introduced interfacial traps of the stacked trapping layer regulate the storage and loss behavior of charges, and jointly contribute to the improved memory characteristics. Hence, the memory capacitor with a stacked trapping layer is a promising candidate in future nonvolatile charge-trap memory device design and application. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application

    Science.gov (United States)

    Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui

    2018-06-01

    In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.

  5. Greater vertical spot spacing to improve femtosecond laser capsulotomy quality.

    Science.gov (United States)

    Schultz, Tim; Joachim, Stephanie C; Noristani, Rozina; Scott, Wendell; Dick, H Burkhard

    2017-03-01

    To evaluate the effect of adapted capsulotomy laser settings on the cutting quality in femtosecond laser-assisted cataract surgery. Ruhr-University Eye Clinic, Bochum, Germany. Prospective randomized case series. Eyes were treated with 1 of 2 laser settings. In Group 1, the regular standard settings were used (incisional depth 600 μm, pulse energy 4 μJ, horizontal spot spacing 5 μm, vertical spot spacing 10 μm, treatment time 1.2 seconds). In Group 2, vertical spot spacing was increased to 15 μm and the treatment time was 1.0 seconds. Light microscopy was used to evaluate the cut quality of the capsule edge. The size and number of tags (misplaced laser spots, which form a second cut of the capsule with high tear risk) were evaluated in a blinded manner. Groups were compared using the Mann-Whitney U test. The study comprised 100 eyes (50 eyes in each group). Cataract surgery was successfully completed in all eyes, and no anterior capsule tear occurred during the treatment. Histologically, significant fewer tags were observed with the new capsulotomy laser setting. The mean score for the number and size of free tags was significantly lower in this group than with the standard settings (P laser settings improved cut quality and reduced the number of tags. The modification has the potential to reduce the risk for radial capsule tears in femtosecond laser-assisted cataract surgery. With the new settings, no tags and no capsule tears were observed under the operating microscope in any eye. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. ISTC projects devoted to improving laser beam quality

    Science.gov (United States)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  7. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  8. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  9. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  10. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    Science.gov (United States)

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  11. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    Science.gov (United States)

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  12. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    International Nuclear Information System (INIS)

    Herfurth, F.; Dilling, J.; Kellerbauer, A.

    2000-05-01

    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. (orig.)

  13. Can laser treatment improve quality of life of hirsute women?

    Directory of Open Access Journals (Sweden)

    Alizadeh N

    2017-10-01

    Full Text Available Narges Alizadeh,1 Sharad Ayyoubi,2 Mohammadreza Naghipour,3 Rasool Hassanzadeh,2 Zahra Mohtasham-Amiri,3 Shirin Zaresharifi,4 Kaveh Gharaei Nejad1 1Dermatology Department, School of Medicine, Guilan University of Medical Sciences, 2General Practice, School of Medicine, Guilan University of Medical Sciences, 3Community Medicine Department, School of Medicine, Guilan University of Medical Sciences, Rasht, 4General Practitioner, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Background: Hirsutism can have negative impacts on psychosocial aspects of women’s lives and reduce their quality of life (QOL. The aim of this study was to assess the QOL of these women during laser treatment. Patients and methods: Eighty-eight women with unwanted facial hair underwent laser therapy. Each patient completed a questionnaire consisting of a modified Dermatology Life Quality Index (DLQI and visual analog scale (VAS before the first, third, and fifth sessions of laser therapy. Interval between the sessions was 4–6 weeks. Statistical analyses were done using SPSS software version18. Results: The DLQI scores before treatment, and at third and fifth sessions were 7.75±2.36, 5.55±1.88, and 4.14±0.64, respectively (P<0.0001. Also, VAS scores had a decreasing trend between the first and second treatment sessions as the mean patient VAS score fell from 10±0.04 to 5.53±2.41 (P<0.0001. The DLQI scores were significantly different according to areas of hair growth and number of involved areas. There were no significant differences with regard to response to treatment and mean of DLQI score according to the level of education, marital status, and employment status. Conclusion: Hair removal with laser therapy can improve the QOL in hirsute women. Also, socioeconomic status does not affect the satisfaction rate of laser therapy for hair removal. Keywords: hirsutism, laser, quality of life, satisfaction, psychosocial

  14. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping

    KAUST Repository

    Li, Ming

    2012-10-18

    This article presents a dielectrophoresis (DEP)-based microfluidic device with the three-dimensional (3D) microelectrode configuration for concentrating and separating particles in a continuous throughflow. The 3D electrode structure, where microelectrode array are patterned on both the top and bottom surfaces of the microchannel, is composed of three units: focusing, aligning and trapping. As particles flowing through the microfluidic channel, they are firstly focused and aligned by the funnel-shaped and parallel electrode array, respectively, before being captured at the trapping unit due to negative DEP force. For a mixture of two particle populations of different sizes or dielectric properties, with a careful selection of suspending medium and applied field, the population exhibits stronger negative DEP manipulated by the microelectrode array and, therefore, separated from the other population which is easily carried away toward the outlet due to hydrodynamic force. The functionality of the proposed microdevice was verified by concentrating different-sized polystyrene (PS) microparticles and yeast cells dynamically flowing in the microchannel. Moreover, separation based on size and dielectric properties was achieved by sorting PS microparticles, and isolating 5 μm PS particles from yeast cells, respectively. The performance of the proposed micro-concentrator and separator was also studied, including the threshold voltage at which particles begin to be trapped, variation of cell-trapping efficiency with respect to the applied voltage and flow rate, and the efficiency of separation experiments. The proposed microdevice has various advantages, including multi-functionality, improved manipulation efficiency and throughput, easy fabrication and operation, etc., which shows a great potential for biological, chemical and medical applications. © 2012 Springer-Verlag Berlin Heidelberg.

  15. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  16. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    Science.gov (United States)

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  17. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  18. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  19. Trapping and dark current in plasma-based accelerators

    International Nuclear Information System (INIS)

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-01-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed

  20. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kotsifaki, D. G., E-mail: dkotsif@eie.gr; Kandyla, M. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, 11635 Athens (Greece); Lagoudakis, P. G. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-11-23

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  1. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  2. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  3. Laser spectroscopy of short-lived radionuclides in an ion trap: MIRACLS’ proof-of-principle experiment

    CERN Document Server

    Maier, Franziska Maria

    2017-01-01

    Since 1978 Collinear Laser Spectroscopy is done at COLLAPS [1], which is located at ISOLDE,CERN’sfacilityforsynthesizingradioactiveions,toexplorethenuclearshell structure of the most exotic atomic nuclides far away from stability. At COLLAPS a laser beam is overlapped with a radioactive ion beam. If the wavelength of the laser corresponds to the energy difference of the electronic transitions, the laser excites the ions. The excited ions decay back to the ionic ground state and emit fluorescence photons that can be detected with photomultiplier tubes (PMTs). By measuring the hyperfine structure of the involved ionic states one obtains information about the nuclear spin, the nuclear magnetic dipole moment and the nuclear electric quadrupole moment. This hyperfine splitting is caused by the interaction of the bound electrons withtheatomicnucleus. Theelectronsinduceanelectromagneticfieldattheplaceof the nucleus that interacts with the electromagnetic nuclear moments and the nuclear spin. By calculating th...

  4. Improved performance of photoconductive gain hybrid UV detector by trap state engineering of ZnO nanoparticles

    Science.gov (United States)

    Azadinia, M.; Fathollahi, M. R.; Mosadegh, M.; Boroumand, F. A.; Mohajerani, E.

    2017-10-01

    With the purpose of examining the impact of donor polymer on the performance of nanocomposite photodetectors (PDs) and to better understand the underlying physics, different wide-bandgap semiconducting polymers, poly(N-vinylcarbazole), poly(9, 9-di-n-octylfluorenyl-2, 7-diyl) , and [9,9'-dioctyl-fluorene-2,7-diyl]-copoly[diphenyl-p-tolyl-amine-4,4'-diyl] (BFE), are mixed with ZnO nanoparticles (NPs) to fabricate hybrid UV PDs. Three different polymer matrix nanocomposites were investigated that differ in the electron-trap depth in the nanocomposite and also the carrier tunneling energy at the interface. All the fabricated PDs exhibit strong photoconductive gain characteristics which can be attributed to trapped electron accumulation and band bending at the cathode interface. Experimental results show that the manipulation of the photoactive nanocomposite improves the PD properties simultaneously, namely, the external quantum efficiency (EQE, ˜104%), the maximum detectivity (D*, ˜1013 Jones), and the linear dynamic range (LDR, ˜85 dB). In addition, the gain bandwidth product of the device improves more than 50 times. Furthermore, the effect of the photogenerated carrier profile within the active layer is investigated experimentally by changing the direction of the incident light using a transparent cathode. Interestingly, under illumination through the Al cathode, faster photocurrent response, wider spectral range toward the deep UV region, and higher EQE in relatively low voltages are observed. These considerations might provide a general strategy to fabricate low-cost photoconductive PDs with a reasonably good combination of gain, response speed, LDR, and selectivity.

  5. Cold highly charged ions in a cryogenic Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, O. O., E-mail: oscar.versolato@mpi-hd.mpg.de; Schwarz, M.; Windberger, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik (Germany); Schmidt, P. O. [Physikalisch-Technische Bundesanstalt (Germany); Drewsen, M. [University of Aarhus, Department of Physics and Astronomy (Denmark); Crespo Lopez-Urrutia, J. R. [Max-Planck-Institut fuer Kernphysik (Germany)

    2013-03-15

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir{sup 17 + }. However, laser spectroscopy of HCIs is hindered by the large ({approx} 10{sup 6} K) temperatures at which they are produced and trapped. An unprecedented improvement in such laser spectroscopy can be obtained when HCIs are cooled down to the mK range in a linear Paul trap. We have developed a cryogenic linear Paul trap in which HCIs will be sympathetically cooled by {sup 9}Be{sup + } ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will also provide the first experimental input needed for the determination of the transition energies in Ir{sup 17 + }, enabling further laser-spectroscopic investigations of this promising HCI.

  6. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma

    International Nuclear Information System (INIS)

    Heidari, E; Aslaninejad, M; Eshraghi, H

    2010-01-01

    Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.

  7. Unwanted facial hair removal with laser treatment improves quality of life of patients.

    Science.gov (United States)

    Maziar, Ali; Farsi, Nader; Mandegarfard, Manijeh; Babakoohi, Shahab; Gorouhi, Farzam; Dowlati, Yahya; Firooz, Alireza

    2010-02-01

    Unwanted facial hair can have adverse psychological effects on women and reduce their quality of life. To assess the effects of unwanted facial hair removal with laser on improving quality of life. In this study, 70 patients treated for unwanted facial hair by laser were assessed by Dermatology Life Quality Index (DLQI) questionnaire on admission and 3 months later after three sessions of laser treatment. The DLQI score before treatment was 9.42 +/- 5.99, which was reduced to 3.12 +/- 3.40 after laser treatment (p facial hair removal with laser can improve the quality of life of patients.

  8. Tuning the structural and optical properties of gold/silver nanoalloys prepared by laser ablation in liquids for ultra-sensitive spectroscopy and optical trapping

    Directory of Open Access Journals (Sweden)

    F. Neri

    2011-09-01

    Full Text Available The plasmon resonance of metallic Au/Ag alloys in the colloidal state was tuned from 400 nm to 500 nm using a laser irradiated technique, performed directly in the liquid state. Interesting optical nonlinearities, trapping effects and spectroscopic enhancements were detected as function of gold concentration in the nanoalloys. In particular a reduction of the limiting threshold was observed by increasing the gold amount. The SERS activity of the Au/Ag alloys was tested in liquid and in solid state in presence of linear carbon chains as probe molecules. The dependence of the increased Raman signals on the nanoparticle Au/Ag atomic ratio is presented and discussed. Finally preliminary studies and prospects for optical and Raman tweezers experiments are discussed.

  9. Improvement of disfiguring skin conditions by laser therapy

    OpenAIRE

    van Drooge, A.M.

    2014-01-01

    Since their introduction in dermatology, lasers became a welcome addition to the therapeutic armentarium for disfiguring skin conditions. In this thesis, we evaluated laser therapy for the treatment of scars, of benign dermal tumours, and of port-wine stains. For scars, many different laser devices have been proposed. In this thesis, we performed a review that showed the pulsed dye laser most effective in hypertrophic scars. We did not find enough evidence for the efficacy of ablative fractio...

  10. Improvement of disfiguring skin conditions by laser therapy

    NARCIS (Netherlands)

    van Drooge, A.M.

    2014-01-01

    Since their introduction in dermatology, lasers became a welcome addition to the therapeutic armentarium for disfiguring skin conditions. In this thesis, we evaluated laser therapy for the treatment of scars, of benign dermal tumours, and of port-wine stains. For scars, many different laser devices

  11. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    International Nuclear Information System (INIS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-01-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO 2 /Ta 2 O 5 charge-trapping layer. In comparison to a memory capacitor with a single HfO 2 trapping layer, the erase speed of a memory capacitor with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔV FB = 4 V, the device with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO 2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application

  12. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  13. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

    Directory of Open Access Journals (Sweden)

    Wenyi Huo

    2016-01-01

    Full Text Available The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.

  14. Laser photogrammetry improves size and demographic estimates for whale sharks

    Science.gov (United States)

    Richardson, Anthony J.; Prebble, Clare E.M.; Marshall, Andrea D.; Bennett, Michael B.; Weeks, Scarla J.; Cliff, Geremy; Wintner, Sabine P.; Pierce, Simon J.

    2015-01-01

    Whale sharks Rhincodon typus are globally threatened, but a lack of biological and demographic information hampers an accurate assessment of their vulnerability to further decline or capacity to recover. We used laser photogrammetry at two aggregation sites to obtain more accurate size estimates of free-swimming whale sharks compared to visual estimates, allowing improved estimates of biological parameters. Individual whale sharks ranged from 432–917 cm total length (TL) (mean ± SD = 673 ± 118.8 cm, N = 122) in southern Mozambique and from 420–990 cm TL (mean ± SD = 641 ± 133 cm, N = 46) in Tanzania. By combining measurements of stranded individuals with photogrammetry measurements of free-swimming sharks, we calculated length at 50% maturity for males in Mozambique at 916 cm TL. Repeat measurements of individual whale sharks measured over periods from 347–1,068 days yielded implausible growth rates, suggesting that the growth increment over this period was not large enough to be detected using laser photogrammetry, and that the method is best applied to estimating growth rates over longer (decadal) time periods. The sex ratio of both populations was biased towards males (74% in Mozambique, 89% in Tanzania), the majority of which were immature (98% in Mozambique, 94% in Tanzania). The population structure for these two aggregations was similar to most other documented whale shark aggregations around the world. Information on small (sharks, mature individuals, and females in this region is lacking, but necessary to inform conservation initiatives for this globally threatened species. PMID:25870776

  15. Surface improvement for inside surface of small diameter pipes by laser cladding technique

    International Nuclear Information System (INIS)

    Irisawa, Toshio; Morishige, Norio; Umemoto, Tadahiro; Ono, Kazumichi; Hamaoka, Tadashi; Tanaka, Atsushi

    1991-01-01

    A laser cladding technique has been used for surface improvement in controlling the composition of a metal surface. Recent high power YAG laser development gives an opportunity to use this laser cladding technique for various applications. A YAG laser beam can be transmitted through an optical fiber for a long distance and through narrow spaces. YAG laser cladding was studied for developing alloy steel to prevent stress corrosion cracking in austenitic stainless steel piping. In order to make a cladding layer, mixed metal powder was on the inside surface of the piping using an organic binder. Subsequently the powder beds were melted with a YAG laser beam transmitted through an optical fiber. This paper introduces the Laser cladding technique for surface improvement for the inside surface of a small diameter pipe. (author)

  16. Trapping truffle production in holes: a promising technique for improving production and unravelling truffle life cycle

    Directory of Open Access Journals (Sweden)

    Claude Murat

    2016-10-01

    Full Text Available The Périgord black truffle, Tuber melanosporum Vittad., is an ectomycorrhizal fungus that forms edible hypogeous ascomata. It is now harvested in plantations and is recognized as an agricultural product by European policy. Empirical techniques without scientific demonstration of their efficiency are often used to improve the production of truffles in plantations. One of these techniques is “truffle trapping” which consists in practicing holes inside the potential productive area and to fill them with a substrate containing ascospores. We report an experiment in a truffle orchard where 784 holes were set under 196 trees. Two years after the installation of the holes, 95% of the truffles were found inside the holes corresponding to only 5% of the productive area. This study confirms the efficiency of this empirical technique and demonstrates new ways for in situ studies of the truffle life cycle.

  17. Goddard Technology Efforts to Improve Space Borne Laser Reliability

    Science.gov (United States)

    Heaps, William S.

    2006-01-01

    In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.

  18. Optimizing UV laser focus profiles for improved MALDI performance.

    Science.gov (United States)

    Holle, Armin; Haase, Andreas; Kayser, Markus; Höhndorf, Jens

    2006-06-01

    Matrix assisted laser desorption/ionization (MALDI) applications, such as proteomics, genomics, clinical profiling and MALDI imaging, have created a growing demand for faster instrumentation. Since the commonly used nitrogen lasers have throughput and life span limitations, diode-pumped solid-state lasers are an alternative. Unfortunately this type of laser shows clear performance limitations in MALDI in terms of sensitivity, resolution and ease of use, for applications such as thin-layer sample preparations, acceptance of various matrices (e.g. DHB for glycopeptides) and MALDI imaging. While it is obvious that the MALDI process has some dependence on the characteristics of the laser used, it is unclear which features are the most critical in determining laser performance for MALDI. In this paper we show, for the first time, that a spatially structured laser beam profile in lieu of a Gaussian profile is of striking importance. This result enabled us to design diode-pumped Nd : YAG lasers that on various critical applications perform as well for MALDI as the nitrogen lasers and in some respects even better. The modulation of the beam profile appears to be a new parameter for optimizing the MALDI process. In addition, the results trigger new questions directing us to a better understanding of the MALDI process. Copyright (c) 2006 John Wiley & Sons, Ltd.

  19. Improving Selectivity of 1D Bragg Resonator Using Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, Nikolay Yu; Sergeev, A S

    2004-01-01

    A novel 1D Bragg resonator based on coupling propagated and locked (quasi cut-off) modes should be tested in a JINR- IAP FEM-oscillator to improve selectivity over the transverse mode index. In this scheme the electron beam interacts with only propagating wave, and the latter is coupled with a quasi cut-off mode. This coupling can be realized by either helical or azimuthally-symmetric corrugation. The quasi cut-off mode provides the feedback in the system leading to the absolute instability and the self-excitation of the whole system while efficiency in the steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analytical consideration and numerical simulation show that the efficiency of such an FEM can be rather high. The main advantage of this scheme is provision of higher selectivity over the transverse mode index than traditional scheme of Bragg FEL that encourage increasing operating frequency for fixed transverse size of the interaction space.

  20. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    Science.gov (United States)

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Atom Trap Trace Analysis for radiokrypton and radioargon dating

    Science.gov (United States)

    Williams, William; Jiang, Wei; Sun, Yun; Bailey, Kevin; Davis, Andrew; Hu, Shuiming; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas; Purtschert, Roland; Sturchio, Neil

    2011-05-01

    Atom Trap Trace Analysis (ATTA), a MOT-based atom counting method, is used to analyze three noble gas radioisotopes (81Kr, 85Kr, 39Ar) covering a wide range of geological ages and applications in the earth sciences. Their isotopic abundances are extremely low, in the range of 10-16 - 10-11. Yet, ATTA can trap and unmistakably detect these rare isotopes one atom at a time. The system is currently limited by the excitation efficiency of the RF discharge that produces the metastable atoms (Kr* & Ar*) needed for laser trapping. To further improve the MOT loading rate, we plan to replace the RF discharge with a photon excitation scheme that employs a VUV light source at 124 nm. The VUV source can be a lamp or a free electron laser. This work is supported by DOE, Office of Nuclear Physics and by NSF, Division of Earth Sciences.

  2. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  3. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  4. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  5. Developing optical traps for ultra-sensitive analysis

    International Nuclear Information System (INIS)

    Zhao, X.; Vieira, D.J.; Guckert, R.; Crane, S.

    1998-01-01

    The authors describe the coupling of a magneto-optical trap to a mass separator for the ultra-sensitive detection of selected radioactive species. As a proof of principle test, they have demonstrated the trapping of ∼ 6 million 82 Rb (t 1/2 = 75 s) atoms using an ion implantation and heated foil release method for introducing the sample into a trapping cell with minimal gas loading. Gamma-ray counting techniques were used to determine the efficiencies of each step in the process. By far the weakest step in the process is the efficiency of the optical trap itself (0.3%). Further improvements in the quality of the nonstick dryfilm coating on the inside of the trapping cell and the possible use of larger diameter laser beams are indicated. In the presence of a large background of scattered light, this initial work achieved a detection sensitivity of ∼ 4,000 trapped atoms. Improved detection schemes using a pulsed trap and gated photon detection method are outlined. Application of this technology to the areas of environmental monitoring and nuclear proliferation are foreseen

  6. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    Science.gov (United States)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  7. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    International Nuclear Information System (INIS)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  8. CO2 laser and plasma microjet process for improving laser optics

    Science.gov (United States)

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  9. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser

    International Nuclear Information System (INIS)

    Qi, Ying; Qi, Hongxia; Chen, Anmin; Hu, Zhan

    2014-01-01

    Highlights: • The ablation accuracy can be improved by the shaped femtosecond laser pulse. • The ablation rate can be improved by the shaped femtosecond laser pulse with higher laser fluence. • The results can be used to optimize femtosecond micromachining metal. - Abstract: Shaped femtosecond laser pulses with the plain phase (transform-limited pulse) and sine phase (A = 1.2566, T = 30, T = 10, and T = 5) were used to drill Al sheet in vacuum. Using different phase, the number of pulses required to drill through the sheet was different. With lower laser pulse energy, the ablation rate was the highest when plain phase (corresponding to transform limited pulse) was used. With higher laser energy, the optimized ablation rate can be achieved by increasing the time separation between the subpulses of pulse train produced from the sine phase function. And, with the shaped femtosecond laser, the diameter of ablation holes produced was smaller, the ablation precision was also improved. The results showed that shaped femtosecond laser pulse has great advantages in the context of femtosecond laser drilling

  10. Photobiomodulation laser improves the early repair process of hypothyroid rats

    Science.gov (United States)

    Uzêda e Silva, V. D.; Rodriguez, T. T.; Xavier, F. C. A.; dos Santos, J. N.; Vasconcelos, R. M.; Ramalho, L. M. P.

    2018-04-01

    Delay in wound healing has been observed in the hypothyroidism disfunction. Laser light can modulate various biological phenomena acting on different cell types. However, there are few reports in the literature regarding the effects of laser on wound healing of hypothyroid models. This study aimed to evaluate the differences in reepithelialization process of cutaneous wounds on hypothyroid and euthyroid rats treated with laser phototherapy. Forty-eight rats were divided into two main groups: euthyroid (EU) and hypothyroid (HYPO). Hypothyroidism was induced by Thyroidectomy. Each group was divided into subgroups: control (without laser) and laser groups. Standard surgical wound was created on the dorsum of each rat. The irradiation protocols (λ660 nm, 40 mW, CW; 10 J/cm2) was carried out immediately after wounding and repeated every 24h during 3 and 7 days. After animal death, specimens were taken, routinely processed, cut, stained with hematoxylin-eosin, and underwent histological analysis. Three days after the surgery, it was possible to observe initial reepithelialization in more advanced stages in the wound area of the irradiated hypothyroid group when compared to control hypothyroid group (p<0.05). No significant difference was found in the experimental period of 7 days among the groups. It was concluded that the laser light did influence reepithelialization process on hypothyroid rats in early stages of healing process.

  11. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.

    2012-01-01

    We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

  12. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  13. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    Science.gov (United States)

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  14. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  15. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  16. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  17. Improvement of laser irradiation uniformity in GEKKO XII glass laser system

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Matsuoka, Shinichi; Ando, Akinobu; Amano, Shinji; Nakatsuka, Masahiro; Kanabe, Tadashi; Jitsuno, Takahisa; Nakai, Sadao

    1995-01-01

    The uniform laser irradiation is one of key issues in the direct drive laser fusion research. The several key technologies for the uniform laser irradiation are reported. This paper includes the uniformity performance as a result of the introduction of the random phase plate, the partially coherent light and the beam smoothing by spectral dispersion into the New Gekko XI glass laser system. Finally the authors summarize the overall irradiation uniformity on the spherical target surface by considering the power imbalance effect. The technologies developed for the beam smoothing and the power balance control enable them to achieve the irradiation nonuniformities of around 1% level for a foot pulse and of a few % for a main drive pulse, respectively

  18. An improved prism for use in laser resonators

    Science.gov (United States)

    Richards, J.

    1981-08-01

    The use of compound total internal reflection prisms rather than Porro prisms in polarisation coupled lasers is proposed. Performance advantages resulting from the use of these prisms include higher output without the need to bias the Pockels cell, ability to give a larger range of output coupling and independence of performance on the refractive index of the prism. In conventional Q-switched lasers the use of the prism at the Pockels cell end of the resonator instead of the usual 100% reflecting mirror also leads to some advantages including better hold-off, elimination of the need to bias the Pockels cell and insensitivity in one plane to angular misalignment.

  19. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    Science.gov (United States)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  20. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  1. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  2. Improving accuracy and precision of ice core δD(CH4 analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    Directory of Open Access Journals (Sweden)

    M. Bock

    2014-07-01

    Full Text Available Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4 or δ2H(CH4 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4 measurements in (ice core air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping, and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping, both on a carbon-PLOT capillary at −196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL – at standard temperature and pressure (STP – of air with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4 of about 6 mL (STP or about 500 pmol of pure CH4.

  3. APPLICATION OF PULSE-PERIODICAL MODE FOR IMPROVEMENT OF LASER TREATMENT EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available The purpose of the paper is to estimate an application of pulse-periodical mode for improvement of laser treatment efficiency. Laser technologies have been widely used in the processes of material treatment with the purpose to provide them the required surface properties and also for high accuracy cutting of sheet materials. Application of complex treatment is of great interest and especially when it is used for worn-out surfaces with formation of a coating by gas-flame laying of powder mixture of specific composition and subsequent laser fusion.Increase of laser unit capacity is very important task for higher efficiency of laser technology application in mechanical engineering. Nowadays technological processes using lasers with high average power (more than 100 W have been applying only sources that are working in two modes, namely: continuous and pulse- periodical (P-P with pulse repetition rate from some units to several hundred hertz and pulse duration within dozens to hundreds of microseconds and even within milliseconds. On the other hand, in some cases shielding effect of plasma cloud formed during laser alloying, cladding or welding reduces the efficiency of laser treatment up to 50 % depending on plasma composition and laser beam length. High frequency P-P laser systems with high average power working in mode of Q-factor modulation allow to realize principally other mechanism of irradiation interaction with materials that is an ablation. In this case it is possible to provide local energy release both in space and time.The performed analysis has revealed that P-P mode of laser operation for a majority of treatment processes is much better and more efficient from energetic point of view in comparison with the continuous mode. On the basis of the developments it is possible to make a conclusion that there is a possibility to create laser systems working in high frequency P-P mode with high average power above hundreds watt.

  4. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  5. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  6. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  7. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  8. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  9. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  10. Non-ablative fractional laser provides long-term improvement of mature burn scars

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Danielsen, Patricia L; Paulsen, Ida F

    2015-01-01

    BACKGROUND AND OBJECTIVES: Non-ablative fractional laser-treatment is evolving for burn scars. The objective of this study was to evaluate clinical and histological long-term outcome of 1,540 nm fractional Erbium: Glass laser, targeting superficial, and deep components of mature burn scars....... MATERIALS & METHODS: Side-by-side scar-areas were randomized to untreated control or three monthly non-ablative fractional laser-treatments using superficial and extra-deep handpieces. Patient follow-up were at 1, 3, and 6 months. Primary outcome was improvement in overall scar-appearance on a modified...... of scar-appearance. CONCLUSIONS: Combined superficial and deep non-ablative fractional laser-treatments induce long-term clinical and histological improvement of mature burn scars....

  11. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    Science.gov (United States)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  12. Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Clemens Nothegger

    2011-12-01

    Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.

  13. Optical components of adaptive systems for improving laser beam quality

    Science.gov (United States)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  14. Improved beam jitter control methods for high energy laser systems

    OpenAIRE

    Frist, Duane C.

    2009-01-01

    Approved for public release, distribution unlimited The objective of this research was to develop beam jitter control methods for a High Energy Laser (HEL) testbed. The first step was to characterize the new HEL testbed at NPS. This included determination of natural frequencies and component models which were used to create a Matlab/Simulink model of the testbed. Adaptive filters using Filtered-X Least Mean Squares (FX-LMS) and Filtered-X Recursive Least Square (FX-RLS) were then implement...

  15. Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing

    Science.gov (United States)

    McNickle, Alan D.; Etsion, Izhak

    2002-10-01

    This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.

  16. Integrated IoT technology in industrial lasers for the improved user experience

    Science.gov (United States)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    The end users' biggest concern for any industrial equipment is the reliability and the service down-time. This is especially true for industrial lasers as they are typically used in fully or semi- automated processes. Here we demonstrate how to use the integrated Internet of Things (IoT) technology in industrial lasers to address the reliability and the service down-time so to improve end users' experience.

  17. Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining

    Science.gov (United States)

    Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.

    2001-01-01

    A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

  18. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap, E-mail: serap.titretir@inonu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); S Latin-Small-Letter-Dotless-I k, Ahmet Inanc [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); Arslan, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Istiklal Yerleskesi, 15030 Burdur (Turkey); Ataman, O. Yavuz [Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2012-11-15

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 {mu}g L{sup -1} when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: Black-Right-Pointing-Pointer Atom trapping in a quartz tube was used for Sb with flame AAS. Black-Right-Pointing-Pointer An inexpensive, simple and sensitive analytical method was suggested for Sb. Black-Right-Pointing-Pointer Almost no background absorption was observed. Black-Right-Pointing-Pointer Range is in microgram per liter level.

  19. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Titretir, Serap; Şık, Ahmet İnanç; Arslan, Yasin; Ataman, O. Yavuz

    2012-01-01

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 μg L −1 when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: ► Atom trapping in a quartz tube was used for Sb with flame AAS. ► An inexpensive, simple and sensitive analytical method was suggested for Sb. ► Almost no background absorption was observed. ► Range is in microgram per liter level.

  20. Improvement of the beam quality of a diode laser with two active broad-area segments

    DEFF Research Database (Denmark)

    Chi, Mingjun; Thestrup, B.; Mortensen, J.L.

    2003-01-01

    The beam quality of a diode laser with two active segments was improved using an external cavity with collimating optics, a grating, and an output coupler. The beam quality of the output beam, which is the first-order diffractive beam from the grating, was improved by a factor of 2, and at least...... half of the freely running power of the laser was coupled out from the external cavity. The output power can be enhanced further by the feedback from the zeroth-order beam. The possibility of improving the beam quality further is discussed and a new double-external-cavity configuration is suggested....

  1. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  2. Laser surface alloying (LSA) of aluminium (AA 1200) with TiB2 for hardness improvement

    CSIR Research Space (South Africa)

    Popoola, AP

    2010-10-01

    Full Text Available The present work deals with the development of Aluminium metal matrix composite (MMC) using TiB2 reinforcement. The aim is to improve the microhardness property of the substrate. The surface of the aluminium was sand blasted to improve its laser...

  3. New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter

    Science.gov (United States)

    Deutsch, Ariel N.; Neumann, Gregory A.; Head, James W.

    2017-09-01

    The Mercury Laser Altimeter (MLA) measured surface reflectance, rs, at 1064 nm. On Mercury, most water-ice deposits have anomalously low rs values indicative of an insulating layer beneath which ice is buried. Previous detections of surface water ice (without an insulating layer) were limited to seven possible craters. Here we map rs in three additional permanently shadowed craters that host radar-bright deposits. Each crater has a mean rs value >0.3, suggesting that water ice is exposed at the surface without an overlying insulating layer. We also identify small-scale cold traps (rs >0.3 and permanent shadows have biannual maximum surface temperatures <100 K. We suggest that a substantial amount of Mercury's water ice is not confined to large craters but exists within microcold traps, within rough patches and intercrater terrain.

  4. Hydrodynamic properties and distribution of bait downstream of a zooplankton trap

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Larsson, Ann I.

    2017-01-01

    The flow regime around a chemically baited trap is crucial for the trapping process and distribution of bait downstream of traps. We measured the flow field downstream of a trap prototype in flume experiments and mapped the distribution of bait using laser induced fluorescence. The trap produced ...

  5. An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor

    Science.gov (United States)

    Liscombe, Michael

    3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.

  6. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  7. ArF laser surface modification of polyethersulfone film: Effect of laser fluence in improving surface biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.; Azizabadi Farahani, G.

    2011-01-01

    ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.

  8. Laser acupuncture improves memory impairment in an animal model of Alzheimer's disease.

    Science.gov (United States)

    Sutalangka, Chatchada; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Wannanon, Panakaporn; Tong-un, Terdthai

    2013-10-01

    The burden of Alzheimer's disease is continually rising globally, especially in the Asia-Pacific region. Unfortunately, the efficacy of the therapeutic strategy is still very limited. Because the effect of acupuncture at HT7 can improve learning and memory, the beneficial effect of laser acupuncture, a noninvasive form of acupuncture, at HT7 on memory improvement in patients with Alzheimer's disease has been a focus of research. To elucidate this issue, we used AF64A, a cholinotoxin, to induce memory impairment in male Wistar rats, which weighed 180-220 g. Then, the animals were treated with laser acupuncture either at HT7 or at a sham acupoint once daily for 10 minutes for a period of 14 days. Spatial memory assessments were performed at 1, 7, and 14 days after AF64A administration and at the end of the experiment, and the changes in the malondialdehyde (MDA) level and in the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and acetylcholinesterase (AChE) activities in the hippocampus were recorded. The results showed that laser acupuncture significantly suppressed AChE activity in the hippocampus. Although laser acupuncture enhanced SOD and CAT activities, no reduction in MDA level in this area was observed. Therefore, laser acupuncture at HT7 is a potential strategy to attenuate memory impairment in patients with Alzheimer's disease. However, further research, especially on the toxicity of laser acupuncture following repetitive exposure, is essential. Copyright © 2013. Published by Elsevier B.V.

  9. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  10. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  11. Charged particle traps II applications

    CERN Document Server

    Werth, Günther; Major, Fouad G

    2009-01-01

    This, the second volume of Charged Particle Traps, is devoted to applications, complementing the first volume’s comprehensive treatment of the theory and practice of charged particle traps, their many variants and refinements. In recent years, applications of far reaching importance have emerged ranging from the ultra-precise mass determinations of elementary particles and their antiparticles and short-lived isotopes, to high-resolution Zeeman spectroscopy on multiply-charged ions, to microwave and optical spectroscopy, some involving "forbidden" transitions from metastable states of such high resolution that optical frequency standards are realized by locking lasers to them. Further the potential application of trapped ions to quantum computing is explored, based on the extraordinary quantum state coherence made possible by the particle isolation. Consideration is given to the Paul and Penning traps as potential quantum information processors.

  12. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  13. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ludovic, E-mail: rapp@lp3.univ-mrs.fr [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Cibert, Christophe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nenon, Sebastien [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Alloncle, Anne Patricia [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nagel, Matthias [Empa, Swiss Federal Laboratories for Materials Testing and Reasearch, Laboratory for Functional Polymers, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Lippert, Thomas [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Videlot-Ackermann, Christine; Fages, Frederic [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Delaporte, Philippe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France)

    2011-04-01

    Laser-induced forward transfer (LIFT) has been used to deposit pixels of an organic semiconductor, distyryl-quaterthiophenes (DS4T). The dynamics of the process have been investigated by shadowgraphic imaging for the nanosecond (ns) and picosecond (ps) regime on a time-scale from the laser iradiation to 1.5 {mu}s. The morphology of the deposit has been studied for different conditions. Intermediate sacrificial layer of gold or triazene polymer has been used to trap the incident radiation. Its role is to protect the layer to be transferred from direct irradiation and to provide a mechanical impulse strong enough to eject the material.

  14. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  15. Ripple Trap

    Science.gov (United States)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image. Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  16. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  17. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    Science.gov (United States)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  18. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  19. Research on the compensation of laser launch optics to improve the performance of the LGS spot.

    Science.gov (United States)

    Liu, Jie; Wang, Jianli; Wang, Yuning; Tian, Donghe; Zheng, Quan; Lin, Xudong; Wang, Liang; Yang, Qingyun

    2018-02-01

    To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4.07 arcseconds to 3.52 arcseconds. With the compensation, an improved guide star spot can be obtained, which is crucial for the adaptive optics systems of ground-based large telescopes.

  20. Improving fiber-optic laser beam delivery by incorporating GRADIUM optics

    International Nuclear Information System (INIS)

    Hunter, B.V.; Leong, K.H.

    1997-01-01

    The performance of a fiber-optic laser beam delivery system strongly depends on the fiber and the optics used to image the fiber face on the workpiece. We have compared off-the-shelf homogenous (BK7) and GRADIUM (axial-gradient) singlets to determine what improvement the GRADIUM offers in practice to the typical laser user. The realized benefit for this application, although significant, is much smaller than would be realized by a conventional imaging application. The figure of merit for laser-based materials processing is the 86% energy-enclosure radius, which is not directly supported by commerical ray-tracing software. Therefore empirical rules of thumb are presented to understand when GRADIUM (or any other well-corrected optics) will yield meaningful improvement to the beam delivery system. copyright 1997 Optical Society of America

  1. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  2. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  3. Performance Improvements of Selective Emitters by Laser Openings on Large-Area Multicrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Shih Wang

    2014-01-01

    Full Text Available This study focuses on the laser opening technique used to form a selective emitter (SE structure on multicrystalline silicon (mc-Si. This technique can be used in the large-area (156 × 156 mm2 solar cells. SE process of this investigation was performed using 3 samples SE1–SE3. Laser fluences can vary in range of 2–5 J/cm2. The optimal conversion efficiency of 15.95% is obtained with the SE3 (2 J/cm2 fluence after laser opening with optimization of heavy and light dopant, which yields a gain of 0.48%abs compared with that of a reference cell (without fluence. In addition, this optimal SE3 cell displays improved characteristics compared with other cells with a higher average value of external quantum efficiency (EQEavg = 68.6% and a lower average value of power loss (Ploss = 2.33 mW/cm2. For the fabrication of solar cells, the laser opening process comprises fewer steps than traditional photolithography does. Furthermore, the laser opening process decreases consumption of chemical materials; therefore, the laser opening process decreases both time and cost. Therefore, SE process is simple, cheap, and suitable for commercialization. Moreover, the prominent features of the process render it effective means to promote overall performance in the photovoltaic industry.

  4. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  5. Residual stress improvement mechanism on metal material by underwater laser irradiation

    International Nuclear Information System (INIS)

    Sano, Yuji; Yoda, Masaki; Mukai, Naruhiko; Obata, Minoru; Kanno, Masanori

    2000-01-01

    Residual stress improvement technology for component surface by underwater pulsed laser irradiation has been developed as a method of preventing stress corrosion cracking (SCC) of core components in nuclear reactors. In order to optimize the laser irradiation conditions based on a complete understanding of the mechanism, the propagation of a shock wave induced by the impulse of laser irradiation and the dynamic response of the irradiated material were analyzed through time-dependent elasto-plastic calculations with a finite element program. The calculated results are compared with the measured results obtained by experiments in which laser pulses with an energy of 200 mJ are focused to a diameter of 0.8 mm on a water-immersed test piece of 20% cold-worked Type 304 austenitic stainless steel to simulate neutron irradiation hardening. A residual compressive stress, which is nearly equivalent to the yield stress of the processed material, remains on the material surface after passage of the shock wave with enough amplitude to induce a permanent strain. Multiple irradiation of laser pulses extends the stress-improved depth to about 1 mm, which would be the limit corresponding to the three-dimensional dispersion effect of the shock wave. (author)

  6. An improved algorithm of laser spot center detection in strong noise background

    Science.gov (United States)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  7. Laser alloying of Al with mixed Ti and Ni powders to improve surface properties

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-07-01

    Full Text Available Aluminium is used in industry for various applications due to its low cost, light weight and excellent workability, but lacks wear resistance and hardness. Laser alloying is used to improve surface properties such as hardness and wear resistance...

  8. Improvement of hardness of aluminium AA1200 by laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  9. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  10. Transformed composite sequences for improved qubit addressing

    Science.gov (United States)

    Merrill, J. True; Doret, S. Charles; Vittorini, Grahame; Addison, J. P.; Brown, Kenneth R.

    2014-10-01

    Selective laser addressing of a single atom or atomic ion qubit can be improved using narrow-band composite pulse sequences. We describe a Lie-algebraic technique to generalize known narrow-band sequences and introduce sequences related by dilation and rotation of sequence generators. Our method improves known narrow-band sequences by decreasing both the pulse time and the residual error. Finally, we experimentally demonstrate these composite sequences using 40Ca+ ions trapped in a surface-electrode ion trap.

  11. Resonant Self-Trapping and Absorption of Intense Bessel Beams

    International Nuclear Information System (INIS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    2000-01-01

    We report the observation of resonant self-trapping and enhanced laser-plasma heating resulting from propagation of high intensity Bessel beams in neutral gas. The enhancement in absorption and plasma heating is directly correlated to the spatial trapping of laser radiation. (c) 2000 The American Physical Society

  12. Improving the bulk laser-damage resistance of KDP by baking and pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Rainer, F.

    1981-01-01

    Isolated bulk damage centers are produced when KDP crystals are irradiated by 1-ns 1064-nm pulses. We have tested about 100 samples and find the median threshold to be 7 J/cm 2 when the samples are irradiated only once at each test volume (1-on-1 tests). The median threshold increased to 11 J/cm 2 when the test volumes were first subjected to subthreshold laser irradiation (n-on-1 tests). We baked several crystals at temperatures from 110 to 165 0 C and remeasured their thresholds. Baking increased thresholds in some crystals, but did not change thresholds of others. The median threshold of baked crystals ranged from 8 to 10 J/cm 2 depending on the baking temperature. In crystals that had been baked, subthreshold irradiation produced a large change in the bulk damage threshold, and reduced the volume density of damage centers relative to the density observed in unbaked crystals. The data are summarized in the table

  13. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  14. Diversity combining in laser Doppler vibrometry for improved signal reliability

    International Nuclear Information System (INIS)

    Dräbenstedt, Alexander

    2014-01-01

    Because of the speckle nature of the light reflected from rough surfaces the signal quality of a vibrometer suffers from varying signal power. Deep signal outages manifest themselves as noise bursts and spikes in the demodulated velocity signal. Here we show that the signal quality of a single point vibrometer can be substantially improved by diversity reception. This concept is widely used in RF communication and can be transferred into optical interferometry. When two statistically independent measurement channels are available which measure the same motion on the same spot, the probability for both channels to see a signal drop-out at the same time is very low. We built a prototype instrument that uses polarization diversity to constitute two independent reception channels that are separately demodulated into velocity signals. Send and receive beams go through different parts of the aperture so that the beams can be spatially separated. The two velocity channels are mixed into one more reliable signal by a PC program in real time with the help of the signal power information. An algorithm has been developed that ensures a mixing of two or more channels with minimum resulting variance. The combination algorithm delivers also an equivalent signal power for the combined signal. The combined signal lacks the vast majority of spikes that are present in the raw signals and it extracts the true vibration information present in both channels. A statistical analysis shows that the probability for deep signal outages is largely decreased. A 60 fold improvement can be shown. The reduction of spikes and noise bursts reduces the noise in the spectral analysis of vibrations too. Over certain frequency bands a reduction of the noise density by a factor above 10 can be shown

  15. ISTC Projects from RFNC-VNIIEF Devoted to Improving Laser Beam Quality

    Science.gov (United States)

    Starikov, F.; Kochemasov, G.

    Information is given about the Projects # 1929 and # 2631 supported by ISTC and concerned with improving laser beam quality and interesting for adaptive optics community. One of them, Project # 1929 has been recently finished. It has been devoted to development of an SBS phase conjugation mirror of superhigh conjugation quality employing the kinoform optics for high-power lasers with nanosecond scale pulse duration. With the purpose of reaching ideal PC fidelity, the SBS mirror includes the raster of small lenses that has been traditionally used as the lenslet in Shack-Hartmann wavefront sensor in adaptive optics. The second of them, Project # 2631, is concerned with the development of an adaptive optical system for phase correction of laser beams with wavefront vortex. The principles of operation of modern adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  16. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    Directory of Open Access Journals (Sweden)

    Leticia Ferreira de Freitas BRIANEZZI

    Full Text Available Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC, water sorption (WS, and water solubility (WSB of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU]. Square-shaped specimens were prepared and assigned into 4 groups (n=5: SB and SU (control groups – no laser irradiation and SB-L and SU-L [SB and SU laser (L – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5 of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10 were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm, irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2. Results Laser irradiation immediately before photopolymerization increased the DC (% of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3, only the dentin bonding system (DBS was a significant factor (pSU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  17. Establishment of the laser induced breakdown spectroscopy in a vacuum atmosphere for a accuracy improvement

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Kim, H. D.; Shin, H. S.

    2009-06-01

    This report describes the fundamentals of the Laser Induced Breakdown Spectroscopy(LIBS), and it describes the quantitative analysis method in the vacuum condition to obtain a high measurement accuracy. The LIBS system employs the following major components: a pulsed laser, a gas chamber, an emission spectrometer, a detector, and a computer. When the output from a pulsed laser is focused onto a small spot on a sample, an optically induced plasma, called a laser-induced plasma (LIP) is formed at the surface. The LIBS is a laser-based sensitive optical technique used to detect certain atomic and molecular species by monitoring the emission signals from a LIP. This report was described a fundamentals of the LIBS and current states of research. And, It was described a optimization of measurement condition and characteristic analysis of a LIP by measurement of the fundamental metals. The LIBS system shows about a 0.63 ∼ 5.82% measurement errors and calibration curve for the 'Cu, Cr and Ni'. It also shows about a 5% less of a measurement errors and calibration curve for a Nd and Sm. As a result, the LIBS accuracy for a part was little improved than preexistence by the optimized condition

  18. Improving the forming capability of laser dynamic forming by using rubber as a forming medium

    Science.gov (United States)

    Shen, Zongbao; Liu, Huixia; Wang, Xiao; Wang, Cuntang

    2016-04-01

    Laser dynamic forming (LDF) is a novel high velocity forming technique, which employs laser-generated shock wave to load the sample. The forming velocity induced by the high energy laser pulse may exceed the critical forming velocity, resulting in the occurrence of premature fracture. To avoid the above premature fracture, rubber is introduced in LDF as a forming medium to prolong the loading duration in this paper. Laser induced shock wave energy is transferred to the sample in different forming stages, so the forming velocity can be kept below the critical forming velocity when the initial laser energy is high for fracture. Bulge forming experiments with and without rubber were performed to study the effect of rubber on loading duration. The experimental results show that, the shock wave energy attenuates during the propagation through the rubber layer, the rubber can avoid the premature fracture. So the plastic deformation can continue, the forming capability of LDF is improved. Due to the severe plastic deformation under rubber compression, adiabatic shear bands (ASB) occur in LDF with rubber. The material softening in ASB leads to the irregular fracture, which is different from the premature fracture pattern (regular fracture) in LDF without rubber. To better understand this deformation behavior, Johnson-Cook model is used to simulate the dynamic response and the evolution of ASB of copper sample. The simulation results also indicate the rubber can prolong the loading duration.

  19. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals

    International Nuclear Information System (INIS)

    Ermakov, Victor A; Alaferdov, Andrei V; Vaz, Alfredo R; Moshkalev, Stanislav A; Baranov, Alexander V

    2013-01-01

    The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal–graphene contact. Improvement of the thermal contacts between multi-layer graphene and a silicon oxide surface was also observed, with more efficient heat transfer from graphene as compared with the graphene–metal case. (paper)

  20. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  1. On the improvement of signal repeatability in laser-induced air plasmas

    Science.gov (United States)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  2. Upgrading the Performance of Cholesteric Liquid Crystal Lasers: Improvement Margins and Limitations

    Directory of Open Access Journals (Sweden)

    Josu Ortega

    2017-12-01

    Full Text Available The topic of cholesteric-liquid-crystal lasers is a rapidly expanding research area in the field of soft-matter photonics. The increasing interest in this field is due to the high versatility that these lasers may possibly present and the prospects of giving rise to new miniaturized devices. However, further improvements in their operation capabilities are still required for potential applications. In this paper, we critically analyze the main strategies proposed up to now to optimize their performance. We show theoretically and experimentally that possible innovations in the device structure cannot produce lasers with threshold energies below a certain limit. This limit is determined by the light scattering and absorption losses inside the liquid crystal. Even assuming the case of samples free of defects and perfectly non-absorbing, an intrinsic light scattering, typical of mesogens, still remains. Numerical estimates of the thresholds indicate that these lasers could hardly be driven by compact light sources such as current electroluminescent or light-emitting diodes. Since the improvement possibilities regarding cell architecture seem to be exhausted, the advance must come from the use of new dye molecules. These molecules should show enhanced emission cross-sections and be efficiently integrable within the mesogenic solvent. In addition, the fluorescent systems must present very small quantum yields to triplet states if continuous-wave lasing is sought. In this respect, quantum dots are an alternative to explore for further investigations.

  3. Improvement in quality of life of an oncological patient by laser phototherapy.

    Science.gov (United States)

    Campos, Luana; Simões, Alyne; Sá, Pedro Henrique Rosário Nogueira; Eduardo, Carlos De Paula

    2009-04-01

    Common side effects of radiotherapy (RT) to the head and neck include oral mucositis, xerostomia, and severe pain. The aim of this study is to report improvement in the quality of life of an oncological patient by laser phototherapy (LPT). The patient, a 15-year-old girl diagnosed with mucoepidermoid carcinoma, underwent surgical excision of a tumor of the left palatomaxilla. After that, she was subjected to 35 sessions of RT (2 Gy/d). Clinical examination revealed the spread of severe ulcerations to the jugal mucosa, gums, lips, hard palate, and tongue (WHO mucositis score 3). She had difficulty in moving her tongue and she was unable to eat any solid food. Oral hygiene orientation and LPT were performed throughout all RT sessions. A continuous diode laser, 660 nm, 40 mW, 6 J/cm(2), 0.24 J per point in contact mode, with spot size of 0.04 cm(2) was used in the entire oral cavity. A high-power diode laser at 1 W, 10 sec per cm of mucositis, approximately 10 J/cm(2), was used in defocused mode only on ulcerative lesions. After the first laser irradiation session, decreases in pain and xerostomia were reported; however, a more significant improvement was seen after five sessions. At that point although the mucositis score was still 2, the patient reported that she was free of pain, and consequently a palatine plate could be made to rehabilitate the entire surgical area. Seventeen laser irradiation sessions were necessary to eliminate all oral mucositis lesions. Normal oral function and consequent improvements in the quality of life of this oncologic patient were observed with LPT.

  4. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  5. Servo control of an optical trap.

    Science.gov (United States)

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  6. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  7. Quantized motion of trapped ions

    International Nuclear Information System (INIS)

    Steinbach, J.

    1999-01-01

    This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)

  8. Prostate volume did not affect voiding function improvements in diode laser enucleation of the prostate.

    Science.gov (United States)

    Yang, Stephen Shei-Dei; Hsieh, Cheng-Hsing; Chiang, I-Ni; Lin, Chia-Da; Chang, Shang-Jen

    2013-03-01

    We compared safety and surgical outcomes in patients with different prostate sizes treated with diode laser enucleation of the prostate. From 2008 to 2012 consecutive patients with benign prostatic obstruction undergoing diode laser prostate enucleation at our institution were enrolled for analysis. A single surgeon performed diode laser prostate enucleation with an end firing, continuous wave diode laser (980 nm). Based on preoperative prostate volume on transrectal ultrasound, patients were stratified into 2 groups, including group 1-65 with less than 60 ml and group 2-55 with 60 ml or greater. Baseline and perioperative characteristics, and postoperative surgical outcomes were compared between the 2 groups. A total of 120 men with a mean ± SD age of 70.2 ± 9.0 years were enrolled for analysis. Compared with group 1 patients, those in group 2 had larger mean total prostate volume (85.0 ± 24.6 vs 40.9 ± 10.8 ml), longer mean operative time (117.7 ± 48.2 vs 60.7 ± 25.0 minutes), higher mean retrieved prostate weight (37.3 ± 16.1 vs 12.5 ± 7.3 gm) and a higher mean tissue retrieval ratio (74.4% ± 22.2% vs 58.8% ± 23.2%, p laser energy, voiding function improvements and surgical complication rates of diode laser prostate enucleation were comparable in patients with a larger vs smaller prostate. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Saturation mechanism and improvement of conversion efficiency of free electron laser

    International Nuclear Information System (INIS)

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  10. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    International Nuclear Information System (INIS)

    He Zhigang; Wang Xiaohui; Jia Qika

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved. (authors)

  11. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  12. Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    Science.gov (United States)

    Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-03-01

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  13. Globalisation Trapped

    Directory of Open Access Journals (Sweden)

    João Caraça

    2017-05-01

    Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?

  14. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  15. Winter School on Physics with Trapped Charged Particles - Abstracts and slides

    International Nuclear Information System (INIS)

    Pedersen, T.S.; Thompson, R.C.; Madsen, N.; Champenois, C.; Anderegg, F.; Fajans, J.; Knoop, M.; Scott Hangst, J.; Hilico, L.; Ulmer, S.; Blaum, K.; Drewsen, M.; Roos, C.; Schmidt, P.

    2016-01-01

    This winter school covered various topics of the physics of trapped charged particles. Lectures covered basic trap physics and recent developments in Penning traps, Paul traps..., collective behavior and non-neutral plasmas, as well as applications for fundamental physics, laser cooling, precision spectroscopy and quantum information. This document gathers a booklet of abstracts and the available slides of the presentations

  16. Improved performance of the Aurora KrF/ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Figueira, J.F.

    1990-01-01

    This paper reports on Aurora the Los Alamos National Laboratory short pulse high power krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large scale UV laser systems for short wavelength inertial confinement fusion (ICF) research. The system employs optical angular multiplexing and serial amplification by electron-beam driven KrF laser amplifiers. The 1-5-ns pulse of the Aurora front end is split into ninety-six beams which are angularly and temporally multiplexed to produce a 480-ns pulse train for amplification by four KrF laser amplifiers. The largest amplifier, the large aperture module (LAM), has a 1-m square aperture and a gain length of 2 m. In the present system configuration half (forty-eight) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. The system has not been optimized, and several near term improvements are expected to result in significant increases in both delivered energy and target irradiance. Removing the twelve calorimeters from the lens plate and allowing forty-eight beams to go to target will increase delivered energy by 33%. Relatively minor modifications to the front end should result in a 30% increase in system output energy. Replacement of damaged optics will increase transmission into the preamplifier by at least 25%. New optics and reduction of retro-pulses will allow the preamplifier stage gain to be increased by 50%

  17. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model.

    Science.gov (United States)

    Yu, Mi; Lee, Jun Young

    2017-02-01

    Polydeoxyribonucleotide (PDRN) is an active compound that can promote wound healing. PDRN stimulates wound healing by enhancing angiogenesis and increasing fibroblast growth rates. Laser skin resurfacing is a popular cosmetic procedure for skin rejuvenation. Despite excellent improvement of photo-damaged skin and acne scarring, it is accompanied with drawbacks, such as prolonged erythema and crusting. This study was designed to assess the effect of PDRN on wounds induced by fractional laser resurfacing. Twelve male rats aged 8 weeks were randomly assigned to the PDRN treatment group and the control group. Wounds were induced using a fractional ablative CO 2 laser. The treatment group received daily injections of PDRN and the control group received injections of the vehicle. Wound healing assessed by clinical features and histopathologic findings. The process of wound healing was faster in the treatment group than in the control group. In the histopathological examination, the granulation tissue thickness score of the treatment group was significantly higher than that of the control group. Results of immunohistochemical staining showed a marked increase of VEGF-positive cells and PECAM-1/CD31-positive microvessels in the treatment group. PDRN may be a beneficial option to promote wound healing after laser treatment.

  18. Random noise can help to improve synchronization of excimer laser pulses.

    Science.gov (United States)

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  19. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  20. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin; Alfano, Marco; Lubineau, Gilles; Buttner, Ulrich

    2015-01-01

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  1. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng

    2015-01-01

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  2. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  3. Matrix-assisted laser desorption/ionization time-of-flight and nano-electrospray ionization ion trap mass spectrometric characterization of 1-cyano-2-substituted-benz[f]isoindole derivatives of peptides for fluorescence detection

    DEFF Research Database (Denmark)

    Linnemayr, K; Brückner, A; Körner, R

    1999-01-01

    A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation...... and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions...... by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation...

  4. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  5. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  6. Precision measurements on trapped antihydrogen in the ALPHA experiment

    Science.gov (United States)

    Eriksson, S.

    2018-03-01

    Both the 1S-2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S-2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a relative precision of around 2×10-10. This constitutes the most precise measurement of a property of antihydrogen. The hyperfine spectrum of antihydrogen is determined to a relative uncertainty of 4×10-4. The excited state and the hyperfine spectroscopy techniques currently both show sensitivity at the few 100 kHz level on the absolute scale. Here, the most recent work of the ALPHA collaboration on precision spectroscopy of antihydrogen is presented together with an outlook on improving the precision of measurements involving lasers and microwave radiation. Prospects of measuring the Lamb shift and determining the antiproton charge radius in trapped antihydrogen in the ALPHA apparatus are presented. Future perspectives of precision measurements of trapped antihydrogen in the ALPHA apparatus when the ELENA facility becomes available to experiments at CERN are discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  7. Spectroscopy of a Synthetic Trapped Ion Qubit

    Science.gov (United States)

    Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.

    2017-09-01

    133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.

  8. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  9. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  10. Improved production of Br atoms near zero speed by photodissociating laser aligned Br2 molecules.

    Science.gov (United States)

    Deng, L Z; Yin, J P

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br2 precursors. Adiabatic alignment of Br2 precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrödinger equation. The dynamical fragmentation of adiabatically aligned Br2 precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, ⟨cos(2) θ⟩, the higher the production rate of the decelerated Br atoms near zero speed. For Br2 molecules with an initial rotational temperature of ~1 K, a ⟨cos(2) θ⟩ value of ~0.88 can result in an improvement factor of over ~20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ~1 × 10(12) W/cm(2) for alignment.

  11. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  12. Improvement of the beam quality of a broad-area diode laser using double feedback from two external mirrors

    DEFF Research Database (Denmark)

    Chi, M.; Bøgh, A.-S.; Thestrup, B.

    2004-01-01

    In this letter, a symmetric double-feedback configuration, to improve the beam quality of broad-area diode lasers is demonstrated. With this configuration, a symmetric double-lobed far field can be obtained, and this configuration leads to good beam quality. The beam quality factor M-2 of a diode...... laser with the emitting area 1 mumx200 mum is improved by using both the asymmetric single feedback and the symmetric double feedback. M-2 values of 4.3 for the asymmetric single-feedback laser system and 3.3 for the symmetric double-feedback laser system are obtained, whereas the M-2 value...... of the freely running laser is 42. The far and the near fields are also measured and compared for the three conditions. (C) 2004 American Institute of Physics....

  13. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  14. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  15. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  16. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  17. Enhancements to the timing of the OMEGA laser system to improve illumination uniformity

    Science.gov (United States)

    Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.

    2016-09-01

    Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.

  18. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  19. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  20. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  1. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  2. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    International Nuclear Information System (INIS)

    Wu, Y.; Wang, A.H.; Zheng, R.R.; Tang, H.Q.; Qi, X.Y.; Ye, B.

    2014-01-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  3. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    Science.gov (United States)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  4. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  5. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    Schulz, M.

    2002-12-01

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$ ( 01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the

  6. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  7. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  8. Positional Accuracy in Optical Trap-Assisted Nanolithography

    Science.gov (United States)

    Arnold, Craig B.; McLeod, Euan

    2009-03-01

    The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.

  9. Improving the beam quality of high-power laser diodes by introducing lateral periodicity into waveguides

    Science.gov (United States)

    Sobczak, Grzegorz; DÄ browska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; MalÄ g, Andrzej

    2013-01-01

    Low quality of the optical beam emitted by high-power laser diodes is the main disadvantage of these devices. The two most important reasons are highly non-Gaussian beam profile with relatively wide divergence in the junction plane and the filamentation effect. Designing laser diode as an array of narrow, close to each other single-mode waveguides is one of the solutions to this problem. In such devices called phase locked arrays (PLA) there is no room for filaments formation. The consequence of optical coupling of many single-mode waveguides is the device emission in the form of few almost diffraction limited beams. Because of losses in regions between active stripes the PLA devices have, however, somewhat higher threshold current and lower slope efficiencies compared to wide-stripe devices of similar geometry. In this work the concept of the high-power laser diode resonator consisted of joined PLA and wide stripe segments is proposed. Resulting changes of electro-optical characteristics of PLA are discussed. The devices are based on the asymmetric heterostructure designed for improvement of the catastrophic optical damage threshold as well as thermal and electrical resistances. Due to reduced distance from the active layer to surface in this heterostructure, better stability of current (and gain) distribution with changing drive level is expected. This could lead to better stability of optical field distribution and supermodes control. The beam divergence reduction in the direction perpendicular of the junction plane has been also achieved.

  10. Improving the appearance of all textile products from clothing to home textile using laser technology

    Science.gov (United States)

    Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif

    2005-11-01

    Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a

  11. Dependence of loading time on control parameters in a standard vapour—loaded magneto—optical trap

    International Nuclear Information System (INIS)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    Loading time is one of the most important dynamic characteristics of a magneto—optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto—optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to control the loading time of magneto—optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6. (atomic and molecular physics)

  12. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    International Nuclear Information System (INIS)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai; Li, Zhuguo

    2016-01-01

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  13. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai, E-mail: fengkai@sjtu.edu.cn; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    2016-06-15

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  14. Improved Laser Scribing of Transparent Conductive Oxide for Fabrication of Thin-Film Solar Module

    Science.gov (United States)

    Egorov, F. S.; Kukin, A. V.; Terukov, E. I.; Titov, A. S.

    2018-04-01

    Nonuniform thickness of the front transparent conductive oxide (TCO) used for fabrication of thin-film solar module (TFSM) based on micromorphic technology affects P1 laser scribing (P1 scribing on the TCO front layer). A method for improvement of the thickness uniformity of the front TCO using modification of the existing system for gas supply of the LPCVD (TCO1200) vacuum setup with the aid of gasdistributing tubes is proposed. The thickness nonuniformity of the deposition procedure is decreased from 15.2 to 11.4% to improve uniformity of the resistance of the front TCO and light-scattering factor of TFSM. In addition, the number of P1 laser scribes with inadmissible resistance of insulation (less than 2 MΩ) is decreased by a factor of 7. A decrease in the amount of melt at the P1 scribe edges leads to an increase in the TFSM shunting resistance by 56 Ω. The TFSM output power is increased by 0.4 W due to improvement of parameters of the front TCO related to application of gas-distributing tubes.

  15. Adaptive feedforward control for improving output power response of CO2 laser; Tekiogata feedforward ni yoru laser shutsuryoku oto no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y.; Takahashi, t.; Morita, A. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-03-31

    Feedback control has been used to stabilize the steady-state output power of a CO2 laser to overcome the problems caused by the change in the temperature/deterioration of CO2 gas. The transient response, however, is as slow as a few hundred milliseconds because of the slow dynamics of a thermopile power sensor. When machining conditions of a CO2 laser are changed, this rather slow response requires an extra dwell time, resulting in low productivity of the machining. To cope with this problem, the authors have developed adaptive feedforward control for a CO2 laser in addition to conventional feedback control. The model of a CO2 laser is described as a gain, which is varied by the setting parameters; laser power, pulse frequency and duty factor, as well as gas conditions. In this paper, two new variables, effective discharge power and threshold discharge power, are introduced to obtain a compact and adjustable model. With the proposed control system, the step response time of a laser power is reduced to less than ten milliseconds without overshoot, and can be set to desired constant time. The effects of such a fast and stable response on the machining speed and machining quality are examined. The experimental results show that for thin metal line-cutting, neither the melt-off area nor dross is observed even in the no-dwell time case. For thin metal hole-cutting, the machining speed is improved by 30%. 11 refs., 14 figs., 3 tabs.

  16. Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis

    International Nuclear Information System (INIS)

    Araujo, Marcos A. de; Silva, Rubens; Lima, Emerson de; Pereira, Daniel P.; Oliveira, Paulo C. de

    2009-01-01

    We revisited the well known Khosrofian and Garetz inversion algorithm [Appl. Opt.22, 3406-3410 (1983)APOPAI0003-6935] that was developed to analyze data obtained by the application of the traveling knife-edge technique. We have analyzed the approximated fitting function that was used for adjusting their experimental data and have found that it is not optimized to work with a full range of the experimentally-measured data. We have numerically calculated a new set of coefficients, which makes the approximated function suitable for a full experimental range, considerably improving the accuracy of the measurement of a radius of a focused Gaussian laser beam

  17. Status of THe-trap

    Energy Technology Data Exchange (ETDEWEB)

    Ketter, Jochen; Eronen, Tommi; Hoecker, Martin; Streubel, Sebastian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    Originally developed at the University of Washington and relocated to the Max-Planck-Institut fuer Kernphysik in 2008, the Penning-trap spectrometer THe-Trap is specially tailored for a {sup 3}H/{sup 3}He mass-ratio measurement, from which the Q-value of the beta-decay of {sup 3}H to {sup 3}He can be derived. Improving the current best value by at least an order of magnitude will provide an important independent test parameter for the determination of the electron-antineutrino's mass by the Karlsruhe Tritium Neutrino Experiment (KATRIN). However, Penning-trap mass spectrometry has to be pushed to its limits in a dedicated experiment for a sufficiently accurate mass-ratio measurement with a relative uncertainty of 10{sup -11}. Unlike the closed-envelope, single-trap predecessor, the new spectrometer features an external ion source, owing to the radioactive nature of tritium, and two traps in order to speed up the measurement cycle. While the double-trap technique holds great promise, it also calls for more intricate procedures, such as ion transfer. Details about the recent progress of the experiment are given.

  18. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  19. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  20. Measurement of Secular Motion Frequency in Miniature Paul Trap to Ascertain the Stability Parameters

    International Nuclear Information System (INIS)

    Bin, Guo; Hua, Guan; Qu, Liu; Yao, Huang; Xue-Ren, Huang; Ke-Lin, Gao

    2010-01-01

    40 Ca + ions are trapped and laser cooled in a miniature Paul trap. The secular motion was observed by the radio-frequency resonance of the ion cloud and Zeeman profile sidebands of a single ion experimentally. The trap stability parameters a and q are determined with an uncertainty under 1 % by the secular motion frequency measurement. The trap efficiency is 0.75. A practicable suggestion is given for the benefits of a new trap design. (atomic and molecular physics)

  1. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  2. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  3. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    Science.gov (United States)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  4. Magnetic trapping of NH molecules with 20 s lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tsikata, E; Campbell, W C; Hummon, M T; Lu, H-I; Doyle, J M, E-mail: tsikata@fas.harvard.ed [Department of Physics, Harvard University, Cambridge, MA (United States)

    2010-06-15

    Buffer gas cooling is used to trap NH molecules with 1/e lifetimes exceeding 20 s. Helium vapor generated by laser desorption of a helium film is employed to thermalize 10{sup 5} molecules at a temperature of 500 mK in a 3.9 T magnetic trap. Long molecule trapping times are attained through rapid pumpout of residual buffer gas. Molecules experience a helium background gas density below 1x10{sup 12} cm{sup -3}.

  5. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  6. Evaporative cooling of cold atoms in a surface trap

    International Nuclear Information System (INIS)

    Hammes, M.; Rychtarik, D.; Grimm, R.

    2001-01-01

    Full text: Trapping cold atom close to a surface is a promising route for attaining a two-dimensional quantum gas. We present our gravito-optical surface trap (LOST), which consists of a horizontal evanescent-wave atom mirror in combination with a blue-detuned hollow beam for transverse confinement. Optical pre-cooling based on inelastic reflections from the evanescent wave provides good starting conditions for subsequent evaporative cooling, which can be realized by ramping down the optical potentials of the trap. Already our preliminary experiments (performed at the MPI fuer Kernphysik in Heidelberg) show a 100-fold increase in phase-space density and temperature reduction to 300 nK. Substantial further improvements can be expected in our greatly improved set-up after the recent transfer of the experiment to Innsbruck. By eliminating heating processes, optimizing the evaporation ramp, polarizing the atoms and by using an additional far red-detuned laser beam we expect to soon reach the conditions of quantum degeneracy and/or two-dimensionality. (author)

  7. Efficient optical trapping and visualization of silver nanoparticles

    DEFF Research Database (Denmark)

    Bosanac, Lana; Aabo, Thomas; Bendix, Pól Martin

    2008-01-01

    We performed efficient optical trapping combined with sensitive optical detection of individual silver nanoparticles. The particles ranging in size from 20 to 275 nm in diameter were trapped in three dimensions using low laser power by minimizing spherical aberrations at the focus. The optical fo...

  8. Nanometer-scale optical traps using atomic state localization

    International Nuclear Information System (INIS)

    Yavuz, D. D.; Proite, N. A.; Green, J. T.

    2009-01-01

    We suggest a scheme where a laser beam forms an optical trap with a spatial size that is much smaller than the wavelength of light. The key idea is to combine a far-off-resonant dipole trap with a scheme that localizes an atomic excitation.

  9. A naturally occurring trap for antiprotons

    International Nuclear Information System (INIS)

    Eades, J.; Morita, N.; Ito, T.M.

    1993-05-01

    The phenomenon of delayed annihilation of antiprotons in helium is the first instance of a naturally occurring trap for antimatter in ordinary matter. Recent studies of this effect at CERN are summarized, and plans are described for laser excitation experiments to test its interpretation in terms of metastable exotic helium atom formation. (author)

  10. Design of a marine sediment trap and accessories

    Digital Repository Service at National Institute of Oceanography (India)

    Janakiraman, G.; Fernando, V.; Venkatesan, R.; Rajaraman, V.S.

    The marine sediment trap and the mooring accessories were developed indigenously and were used successfully for the collection of settling sediments in the Arabian Sea The experience gained in using sediment trap and further improvements...

  11. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  12. ATRAP on the way to trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. The shape parameters of the antiproton and positron clouds, the n‐state distribution of the produced Rydberg antihydrogen atoms and the antihydrogen velocity have been studied. Furthermore an alternative method of laser controlled antihydrogen production was successfully applied. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trappi...

  13. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  14. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  15. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  16. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    Science.gov (United States)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  17. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    Science.gov (United States)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  18. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    Science.gov (United States)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  20. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia.

    Science.gov (United States)

    Ivandic, Boris T; Ivandic, Tomislav

    2012-03-01

    The purpose of this study was to examine the effects of low-level laser therapy (LLLT) on visual acuity in adolescent and adult patients with amblyopia. Currently, amblyopia can be treated successfully only in children. In this single-blinded, placebo-controlled study, 178 patients (mean age 46.8 years) with amblyopia caused by ametropia (110 eyes) or strabismus (121 eyes) were included. For LLLT, the area of the macula was irradiated through the conjunctiva from 1 cm distance for 30 sec with laser light (780 nm, 292 Hz, 1:1 duty cycle; average power 7.5 mW; spot area 3 mm(2)). The treatment was repeated on average 3.5 times, resulting in a mean total dose of 0.77 J/cm(2). No occlusion was applied, and no additional medication was administered. Best corrected distant visual acuity was determined using Snellen projection optotypes. In 12 patients (12 eyes), the multifocal visual evoked potential (M-VEP) was recorded. A control group of 20 patients (20 eyes) received mock treatment. Visual acuity improved in ∼90% of the eyes treated with LLLT (pamblyopia caused by ametropia and strabismus, respectively. The treatment effect was maintained for at least 6 months. The mean M-VEP amplitude increased by 1207 nV (pamblyopia caused by ametropia or strabismus.

  1. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    Science.gov (United States)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  2. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  3. Periodic nanostructures formed on a poly-methyl methacrylate surface with a femtosecond laser for biocompatibility improvement

    Science.gov (United States)

    Takenaka, Keisuke; Tsukamoto, Masahiro; Sato, Yuji; Ooga, Takahiro; Asai, Satoru; Murai, Kensuke

    2018-06-01

    Poly(methyl methacrylate) (PMMA) is widely used as a biomaterial. The formation of periodic nanostructures on the surface is necessary to improve the biocompatibility. A method was proposed and developed to form periodic nanostructures on a PMMA surface. A PMMA plate was placed on titanium (Ti) plate, and then the Ti plate was irradiated with a laser through the PMMA plate. We try to effectively produce periodic nanostructures on PMMA with a femtosecond laser at a fundamental wavelength by increasing the contact pressure and using titanium (Ti) plate. The contact pressure between PMMA and Ti required to form a periodic nanostructure is 300 kPa, and for a contact pressure of 2400 kPa, periodic nanostructures are formed in 62% of the laser-irradiated area on the PMMA surface. These results suggest that the formation efficiency of the periodic nanostructure depends on the laser conditions and the contact pressure.

  4. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  5. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  6. Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    Repeatability and reproducibility of parts produced by selective laser melting is a standing issue, and coupled with a lack of standardized quality control presents a major hindrance towards maturing of selective laser melting as an industrial scale process. Consequently, numerical process...... modelling has been adopted towards improving the predictability of the outputs from the selective laser melting process. Establishing the reliability of the process, however, is still a challenge, especially in components having overhanging structures.In this paper, a systematic approach towards...... establishing reliability of overhanging structure production by selective laser melting has been adopted. A calibrated, fast, multiscale thermal model is used to simulate the single track formation on a thick powder bed. Single tracks are manufactured on a thick powder bed using same processing parameters...

  7. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Huang, Tzu-Teng

    2013-01-01

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm −2 ) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm −2 ) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm 2 had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10 3 Ω cm) was lower than that of TA thin films (1.39 × 10 4 Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films

  8. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    Science.gov (United States)

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  10. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    Science.gov (United States)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  11. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.

    Science.gov (United States)

    Van Hooreweder, Brecht; Apers, Yanni; Lietaert, Karel; Kruth, Jean-Pierre

    2017-01-01

    This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials. Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM) are increasingly being used for producing customized porous metallic biomaterials. These biomaterials are regularly used for biomedical implants and hence a long lifetime is required. In this paper, a set of post-built surface and heat treatments is presented that can be used to significantly improve the fatigue life of porous SLM-Ti6Al4V samples. In addition, a novel and efficient analytical local stress method was developed to accurately quantify the influence of the post

  12. Scheme for teleportation of unknown states of trapped ion

    Institute of Scientific and Technical Information of China (English)

    Chen Mei-Feng; Ma Song-She

    2008-01-01

    A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.

  13. Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Hsien; Shen, Chang-Hong; Wang, Hsing-Hsiang; Yang, Chih-Chao; Hsieh, Tung-Ying; Hsieh, Jin-Long; Yeh, Wen-Kuan [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Shieh, Jia-Min, E-mail: jmshieh@narlabs.org.tw, E-mail: jmshieh@faculty.nctu.edu.tw [National Nano Device Laboratories, No. 26, Prosperity Road 1, Hsinchu 30078, Taiwan (China); Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China); Huang, Tzu-En [Departments of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-13

    A doping-free poly-Ge film as channel material was implemented by CVD-deposited nano-crystalline Ge and visible-light laser crystallization, which behaves as a p-type semiconductor, exhibiting holes concentration of 1.8 × 10{sup 18 }cm{sup −3} and high crystallinity (Raman FWHM ∼ 4.54 cm{sup −1}). The fabricated junctionless 7 nm-poly-Ge FinFET performs at an I{sub on}/I{sub off} ratio over 10{sup 5} and drain-induced barrier lowering of 168 mV/V. Moreover, the fast programming speed of 100 μs–1 ms and reliable retention can be obtained from the junctionless poly-Ge nonvolatile-memory. Such junctionless poly-Ge devices with low thermal budget are compatible with the conventional CMOS technology and are favorable for 3D sequential-layer integration and flexible electronics.

  14. Kinetic model of the bichromatic dark trap for atoms

    Science.gov (United States)

    Krasnov, I. V.

    2017-08-01

    A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.

  15. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    Science.gov (United States)

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  16. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  17. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  18. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  19. Improvement in the laser system for the A0 TTF photoinjector

    International Nuclear Information System (INIS)

    Yang, Xi

    2003-01-01

    The production of high charge and high brightness electron beams places increasingly challenging demands on the drive laser used at the A0 photoinjector in the Fermilab. The IR and UV laser pulse lengths need to be optimized for such purpose. We have experimentally investigated two different ways to change the UV laser pulse length on the cathode; either by changing the bandwidth of the oscillator or by changing the distance between two compression gratings, the UV laser pulse length can be varied in the range of 3ps to 30ps. Also the strong correlation between the UV laser energy and the IR laser pulse length has been studied, and the result is applied to achieve the UV laser energy of 18 (micro)J/pulse

  20. Ultrafast state detection and 2D ion crystals in a Paul trap

    Science.gov (United States)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  1. Evaluation of the efficacy of low-level laser in improving the symptoms of burning mouth syndrome.

    Science.gov (United States)

    Arbabi-Kalati, Fateme; Bakhshani, Nour-Mohammad; Rasti, Maryam

    2015-10-01

    Burning mouth syndrome (BMS) is common conditions that affects menopause women, patients suffer from sever burning sensation. Up to now there is no definitive treatment for this disease. Present study was undertaken to evaluate the efficacy of low-level laser (LLL) in improving the symptoms of burning mouth syndrome. Twenty patients with BMS were enrolled in this study; they were divided in two groups randomly. In the laser group, in each patient, 10 areas on the oral mucosa were selected and underwent LLL irradiation at a wavelength of 630 nm, and a power of 30 mW for 10 seconds twice a week for 4 weeks. In the placebo group, silent/off laser therapy was carried out during the same period in the same areas. Burning sensation and quality of life were evaluated. Burning sensation severity and quality of life in the two groups after intervention were different significant statistically, (p= 0.004, p= 0.01 respectively) .Patients in laser group had better results. It can be concluded that low level laser might decrease the intensity of burning mouth syndrome. Pain, low-level laser, burning mouth syndrome, oral mucosa.

  2. He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Chen, Huize; Han, Rong

    2014-01-01

    The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW mm –2 , 2 min d –1 ) on the physiological indexes of wheat seedlings exposed to enhanced UV-B radiation (10 KJ m –2 d –1 ) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. Enhanced UV-B radiation had deleterious effects on wheat photosynthesis parameters including photosystem II (chlorophyll content, Hill reaction, chlorophyll fluorescence parameters, electron transport rate (ETR), and yield), the thylakoid (optical absorption ability, cyclic photophosphorylation, Mg 2+ -ATPase, and Ca 2+ -ATPase) and some enzymes in the dark reaction (phosphoenolpyruvate carboxylase (PEPC), carbonic anhydrase (CA), malic dehydrogenase (MDH), and chlorophyllase). These parameters were improved in UV-B-exposed wheat treated with He-Ne laser irradiation; the parameters were near control levels and the enzyme activities increased, suggesting that He-Ne laser treatment partially alleviates the injury caused by enhanced UV-B irradiation. Furthermore, the use of He-Ne laser alone had a favourable effect on seedling photosynthesis compared with the control. Therefore, He-Ne laser irradiation can enhance the adaptation capacity of crops. (paper)

  3. Optical two-beam trap in a polymer microfluidic chip

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Catak, Darmin; Marie, Rodolphe

    2016-01-01

    An optical two-beam trap, composed from two counter propagating laser beams, is an interesting setup due to the ability of the system to trap, hold, and stretch soft biological objects like vesicles or single cells. Because of this functionality, the system was also named "the optical stretcher...... wish to trap, thereby preventing too many cells to flow below the line of focus of the two counter propagating laser beams that are positioned perpendicular to the direction of flow of the cells. Results will be compared to that from other designs from previous work in the group......." by Jochen Guck, Josep Käs and co-workers some 15 years ago. In a favorable setup, the two opposing laser beams meet with equal intensities in the middle of a fluidic channel in which cells may flow past, be trapped, stretched, and allowed to move on, giving the promise of a high throughput device. Yet...

  4. Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Anderson, Ryan B.; Bell, James F.; Wiens, Roger C.; Morris, Richard V.; Clegg, Samuel M.

    2012-01-01

    We investigated five clustering and training set selection methods to improve the accuracy of quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy (LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO 2 at a stand-off distance of 7 m at 17 mJ per pulse to simulate the operational conditions of the ChemCam LIBS instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set selection methods, which do not require prior knowledge of the chemical composition of the test-set samples, are based on grouping similar spectra and selecting appropriate training spectra for the partial least squares (PLS2) model. These methods were: (1) hierarchical clustering of the full set of training spectra and selection of a subset for use in training; (2) k-means clustering of all spectra and generation of PLS2 models based on the training samples within each cluster; (3) iterative use of PLS2 to predict sample composition and k-means clustering of the predicted compositions to subdivide the groups of spectra; (4) soft independent modeling of class analogy (SIMCA) classification of spectra, and generation of PLS2 models based on the training samples within each class; (5) use of Bayesian information criteria (BIC) to determine an optimal number of clusters and generation of PLS2 models based on the training samples within each cluster. The iterative method and the k-means method using 5 clusters showed the best performance, improving the absolute quadrature root mean squared error (RMSE) by ∼ 3 wt.%. The statistical significance of these improvements was ∼ 85%. Our results show that although clustering methods can modestly improve results, a large and diverse training set is the most reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate standards and specifically

  5. Quantum information processing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Haensel, W.; Rapol, U.; Koerber, T.; Benhelm, J.; Riebe, M.; Chek-al-Kar, D.; Schmidt-Kaler, F.; Becher, C.; Roos, C.; Blatt, R.

    2005-01-01

    Single Ca + ions and crystals of Ca + ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S 1/2 ground state and the metastable D 5/2 excited state of Ca + . Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

  6. Low-level laser therapy improves vision in a patient with retinitis pigmentosa.

    Science.gov (United States)

    Ivandic, Boris T; Ivandic, Tomislav

    2014-03-01

    This case report describes the effects of low-level laser therapy (LLLT) in a single patient with retinitis pigmentosa (RP). RP is a heritable disorder of the retina, which eventually leads to blindness. No therapy is currently available. LLLT was applied using a continuous wave laser diode (780 nm, 10 mW average output at 292 Hz, 50% pulse modulation). The complete retina of eyes was irradiated through the conjunctiva for 40 sec (0.4 J, 0.333 W/cm2) two times per week for 2 weeks (1.6 J). A 55-year-old male patient with advanced RP was treated and followed for 7 years. The patient had complained of nyctalopia and decreasing vision. At first presentation, best visual acuity was 20/50 in each eye. Visual fields were reduced to a central residual of 5 degrees. Tritan-dyschromatopsy was found. Retinal potential was absent in electroretinography. Biomicroscopy showed optic nerve atrophy, and narrow retinal vessels with a typical pattern of retinal pigmentation. After four initial treatments of LLLT, visual acuity increased to 20/20 in each eye. Visual fields normalized except for a mid-peripheral absolute concentric scotoma. Five years after discontinuation of LLLT, a relapse was observed. LLLT was repeated (another four treatments) and restored the initial success. During the next 2 years, 17 additional treatments were performed on an "as needed" basis, to maintain the result. LLLT was shown to improve and maintain vision in a patient with RP, and may thereby have contributed to slowing down blindness.

  7. Study on improvement of laser system performance for uranium isotope separation

    International Nuclear Information System (INIS)

    Fujii, Takashi

    1998-01-01

    For the purpose of reducing the cost of Atomic Vapor Laser Isotope Separation (AVLIS), I developed the following laser technologies. (1) I developed a solid-state pulse power supply, of which output power was the almost highest value achieved for a copper vapor laser in 1989, using a GTO as a switching device and a magnetic pulse compression circuit. (2) I developed a new technique of tuning the laser wavelength to an atomic absorption band using high-speed wavelength shift of a laser diode by direct modulation. (3) I developed a new technique of stabilizing the laser wavelength at an absorption band of a target atom, by locking the sideband generated by phase modulation of a laser beam to a Fabry-Perot interferometer. (4) I proposed the Cr 4+ -doped forsterite laser system as an all solid-state laser system for the AVLIS. I obtained the slope efficiency of 25%, which was the highest value achieved in the case of pulse operation of the Cr 4+ -doped forsterite laser in 1995, using the forsterite with high Cr 4+ -ion concentration. (author)

  8. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  9. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  10. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  11. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  12. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  13. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  14. Research and development of improving the pumping efficiency of phosphate laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.

    1985-01-01

    It is well known that Pt inclusion in laser glass remarkably lowers the damage threshold by laser beam. Present commercial laser glasses are produced so as to minimize the Pt inclusion. However, the damage due to small Pt inclusion, which has never seriously caused the laser damage in a lower fluence level, is getting to be a problem as the output fluence of laser increases. In NOVA system, most of laser glasses were damaged at fluence of 3 to 4 J/cm 2 . Since NOVA has been planned to operate at 10 J/cm 2 , this damage threshold is absolutely unacceptable and it should be increased. In this report we will show the basic conception to make a Pt inclusion free glass and its experimental results

  15. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  16. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  17. Linear correlation for identification of materials by laser induced breakdown spectroscopy: Improvement via spectral filtering and masking

    Energy Technology Data Exchange (ETDEWEB)

    Gornushkin, I.B., E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Panne, U. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Winefordner, J.D. [University of Florida, Gainesville, Florida (United States)

    2009-10-15

    The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples.

  18. Direct Emissivity Measurements of Painted Metals for Improved Temperature Estimation During Laser Damage Testing

    Science.gov (United States)

    2014-03-27

    policy or position of the United States Air Force, the Department of Defense, or the United States Government . This material is declared a work of the...U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-43 DIRECT EMISSIVITY MEASUREMENTS OF PAINTED METALS FOR...Source The laser probe in use for this test is a Daylight Solutions Unicorn II quantum cascade laser operating at 3.77 µm. According to the laser

  19. An Improved Thermal Blooming Model for the Laser Performance Code Anchor

    Science.gov (United States)

    2016-06-01

    over which a laser beam can maintain transverse coherence throughout its propagation distance. Typical values of ro are on the order of a few...G. Gebhardt, “Twenty-five years of thermal blooming: An overview,” in Proceedings of SPIE 1221 Propagation of High-Energy Laser Beams Through the...TERMS thermal blooming, atmospheric propagation , laser , scaling code, Strehl ratio, ANCHOR, COAMPS, NAVSLaM, LEEDR 15. NUMBER OF PAGES 77 16

  20. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  1. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  2. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  3. Trapped charged particles a graduate textbook with problems and solutions

    CERN Document Server

    Madsen, Niels; Thompson, Richard C

    2016-01-01

    At Les Houches in January 2015, experts in the field of particle trapping came together to discuss the fundamental physics of traps and the different types of applications. This textbook collates the lectures delivered there; the Second Winter School on Physics with Trapped Charged Particles. Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps, RF traps and particle accelerators, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling including laser cooling. Finally, individual chapters deal with the different areas of application listed above. Each ...

  4. Laser-Ablated Beryllium Ions for Cold Antihydrogen in ALPHA

    CERN Document Server

    Sameed, Muhammed; Charlton, Michael

    One of the best ways to study antimatter is to investigate antihydrogen, the bound state of an antiproton and a positron. Antihydrogen atoms do not exist naturally and must be synthesized in the lab by merging carefully-prepared plasmas of positrons and antiprotons. If the atoms are created in a magnetic trap like the one used by the ALPHA experiment at CERN, then a fraction of the coldest atoms remain trapped, while the rest escape and annihilate on the trap walls. The trapped atoms may then be probed using microwaves or lasers to make high-precision comparisons with hydrogen. Increasing the trapping rate would allow us to perform precision measurements on antihydrogen in a shorter period of time and with better systematics. Particle simulations indicate that by sympathetically cooling positrons using laser-cooled beryllium ions, we have the ability to improve the antihydrogen trapping rate by up to two orders of magnitude. This thesis describes the effort to design and qualify a beryllium ion source that is...

  5. IMPROVEMENT OF 3D MONTE CARLO LOCALIZATION USING A DEPTH CAMERA AND TERRESTRIAL LASER SCANNER

    Directory of Open Access Journals (Sweden)

    S. Kanai

    2015-05-01

    Full Text Available Effective and accurate localization method in three-dimensional indoor environments is a key requirement for indoor navigation and lifelong robotic assistance. So far, Monte Carlo Localization (MCL has given one of the promising solutions for the indoor localization methods. Previous work of MCL has been mostly limited to 2D motion estimation in a planar map, and a few 3D MCL approaches have been recently proposed. However, their localization accuracy and efficiency still remain at an unsatisfactory level (a few hundreds millimetre error at up to a few FPS or is not fully verified with the precise ground truth. Therefore, the purpose of this study is to improve an accuracy and efficiency of 6DOF motion estimation in 3D MCL for indoor localization. Firstly, a terrestrial laser scanner is used for creating a precise 3D mesh model as an environment map, and a professional-level depth camera is installed as an outer sensor. GPU scene simulation is also introduced to upgrade the speed of prediction phase in MCL. Moreover, for further improvement, GPGPU programming is implemented to realize further speed up of the likelihood estimation phase, and anisotropic particle propagation is introduced into MCL based on the observations from an inertia sensor. Improvements in the localization accuracy and efficiency are verified by the comparison with a previous MCL method. As a result, it was confirmed that GPGPU-based algorithm was effective in increasing the computational efficiency to 10-50 FPS when the number of particles remain below a few hundreds. On the other hand, inertia sensor-based algorithm reduced the localization error to a median of 47mm even with less number of particles. The results showed that our proposed 3D MCL method outperforms the previous one in accuracy and efficiency.

  6. Improvement of pitting corrosion resistance of AISI 304L stainless steel by nano-pulsed laser surface melting

    International Nuclear Information System (INIS)

    Pacquentin, W.; Blanc, C.; Caron, N.; Thro, P.Y.; Cheniere, A.; Tabarant, M.; Moutiers, G.; Miserque, F.; Plouzennec, H.; Oltra, R.

    2013-01-01

    The stainless steel 304L is widely used, however, in particular conditions, it may be sensitive to pitting corrosion. Nano-pulsed laser surface melting is a surface treatment which allows improving the corrosion resistance of this steel. This treatment consists in focusing a laser beam on the surface of the material, involving its quite immediately melting through a few microns depth, then an ultra-fast solidification occurs with cooling rate about 1011 K/s. The laser parameters control the modifications of the physico-chemical properties. In particular, we studied the influence of the impacts overlap of an ytterbium laser-fiber on the corrosion resistance of a 304L stainless steel in conditions of an aerated and agitated solution of NaCl (concentration of 30 g/L). We obtained an increase of the pitting potential of 220 mV, highlighting an improvement of the corrosion resistance. The study of the chemical and structural modifications is not enough to explain the improvement of the corrosion resistance. Other phenomena must be taken into account, as the quality of the oxide layer, in terms of physico-chemical and mechanical properties. (authors)

  7. Fractional non-ablative laser-assisted drug delivery leads to improvement in male and female pattern hair loss.

    Science.gov (United States)

    Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano

    2018-02-16

    Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.

  8. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  9. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  10. Laser composite surfacing of A681 steel with WC + Cr + Co for improved wear resistance

    Directory of Open Access Journals (Sweden)

    Moisés Felipe Teixeira

    2017-01-01

    Full Text Available Laser surface alloying (LSA is a surface treatment technique. It involves the near surface melting by a powerful laser beam with a pre-deposited or concomitantly added alloying element along with a part of the underlying substrate to form a surface alloyed zone. In this paper, it is reported the treatment by laser surface alloying of a cold work steel ASTM A681 substrate simultaneously fed with a powder mixture of 86 wt.% WC + 8 wt.% Cr + 6 wt.% Co. It was carried out using a continuous wave λ = 1064 nm fiber-coupled diode laser with five different laser intensities – resulting in five specimens – and then studied and analyzed their microstructure, phases, composition and microhardness. One of these configurations was applied to enhance a deep drawing tool for automotive steel sheet stamping. The process modified the specimens near surface layer, from a ferritic structure into an austenitic matrix with a refined dendritic microstructure, with an enhanced surface hardness from 250 HV to ∼560 HV. The treated deep drawing tool showed remarkable wear improvement compared to a non-treated one after one thousand stamps. This result allows the process for industrial applications.

  11. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    International Nuclear Information System (INIS)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-01-01

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A -1 . Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  12. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  13. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  14. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  15. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  16. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  17. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  18. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  19. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  20. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  1. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  2. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  3. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-01-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10 17 m −3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  4. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  5. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Huang, Tzu-Teng

    2013-06-15

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm{sup −2}) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm{sup −2}) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm{sup 2} had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10{sup 3} Ω cm) was lower than that of TA thin films (1.39 × 10{sup 4} Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films.

  6. Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ryan B., E-mail: randerson@astro.cornell.edu [Cornell University Department of Astronomy, 406 Space Sciences Building, Ithaca, NY 14853 (United States); Bell, James F., E-mail: Jim.Bell@asu.edu [Arizona State University School of Earth and Space Exploration, Bldg.: INTDS-A, Room: 115B, Box 871404, Tempe, AZ 85287 (United States); Wiens, Roger C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663 MS J565, Los Alamos, NM 87545 (United States); Morris, Richard V., E-mail: richard.v.morris@nasa.gov [NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 (United States); Clegg, Samuel M., E-mail: sclegg@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663 MS J565, Los Alamos, NM 87545 (United States)

    2012-04-15

    We investigated five clustering and training set selection methods to improve the accuracy of quantitative chemical analysis of geologic samples by laser induced breakdown spectroscopy (LIBS) using partial least squares (PLS) regression. The LIBS spectra were previously acquired for 195 rock slabs and 31 pressed powder geostandards under 7 Torr CO{sub 2} at a stand-off distance of 7 m at 17 mJ per pulse to simulate the operational conditions of the ChemCam LIBS instrument on the Mars Science Laboratory Curiosity rover. The clustering and training set selection methods, which do not require prior knowledge of the chemical composition of the test-set samples, are based on grouping similar spectra and selecting appropriate training spectra for the partial least squares (PLS2) model. These methods were: (1) hierarchical clustering of the full set of training spectra and selection of a subset for use in training; (2) k-means clustering of all spectra and generation of PLS2 models based on the training samples within each cluster; (3) iterative use of PLS2 to predict sample composition and k-means clustering of the predicted compositions to subdivide the groups of spectra; (4) soft independent modeling of class analogy (SIMCA) classification of spectra, and generation of PLS2 models based on the training samples within each class; (5) use of Bayesian information criteria (BIC) to determine an optimal number of clusters and generation of PLS2 models based on the training samples within each cluster. The iterative method and the k-means method using 5 clusters showed the best performance, improving the absolute quadrature root mean squared error (RMSE) by {approx} 3 wt.%. The statistical significance of these improvements was {approx} 85%. Our results show that although clustering methods can modestly improve results, a large and diverse training set is the most reliable way to improve the accuracy of quantitative LIBS. In particular, additional sulfate standards and

  7. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    Energy Technology Data Exchange (ETDEWEB)

    Morace, A. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Bellei, C.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Bartal, T.; Kim, J.; Beg, F. N. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Willingale, L.; Maksimchuk, A.; Krushelnick, K. [University of Michigan, 2200 Bonisteel Blvd. Ann Arbor, Michigan 48109 (United States); Wei, M. S. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); Batani, D. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Piovella, N. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Stephens, R. B. [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  9. Three-dimensional cavity cooling and trapping in an optical lattice

    International Nuclear Information System (INIS)

    Murr, K.; Nussmann, S.; Puppe, T.; Hijlkema, M.; Weber, B.; Webster, S. C.; Kuhn, A.; Rempe, G.

    2006-01-01

    A robust scheme for trapping and cooling atoms is described. It combines a deep dipole-trap which localizes the atom in the center of a cavity with a laser directly exciting the atom. In that way one obtains three-dimensional cooling while the atom is dipole-trapped. In particular, we identify a cooling force along the large spatial modulations of the trap. A feature of this setup, with respect to a dipole trap alone, is that all cooling forces keep a constant amplitude if the trap depth is increased simultaneously with the intensity of the probe laser. No strong coupling is required, which makes such a technique experimentally attractive. Several analytical expressions for the cooling forces and heating rates are derived and interpreted by analogy to ordinary laser cooling

  10. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  11. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  12. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  13. Laser surface melting of 304 stainless steel for pitting corrosion resistance improvement

    CSIR Research Space (South Africa)

    Seleka, TS

    2006-11-01

    Full Text Available optical emission spectroscopy (GDOES) was utilized for chemical analysis. Changes in hardness were observed by using a Vickers microhardness tester. Pitting corrosion tests on laser treated and untreated samples were conducted according to ASTM G48...

  14. Laser deposition of (Cu + Mo) alloying reinforcements on AA1200 substrate for corrosion improvement

    CSIR Research Space (South Africa)

    Popoola, API

    2011-10-01

    Full Text Available Poor corrosion performance of aluminium alloys in marine environment has been a subject of intensive research recently. Aluminium substrate was alloyed with a combination of two metallic powders (Cu + Mo) using an Nd: YAG solid state laser...

  15. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  16. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  17. Improved response time of laser etched polymer optical fiber Bragg grating humidity sensor

    OpenAIRE

    Zhang, Wei; Chen, Xianfeng; Liu, Chen; Lu, Yuanfu; Cardoso, Marcos; Webb, David J.

    2015-01-01

    The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in...

  18. Improved air trapping evaluation in chest computed tomography in children with cystic fibrosis using real-time spirometric monitoring and biofeedback

    DEFF Research Database (Denmark)

    Kongstad, Thomas; Buchvald, Frederik F; Green, Kent

    2013-01-01

    CTs were evaluated. Mean (95%CI) change in inspiratory-expiratory lung density differences was 436 Hounsfield Units (HU) (408 to 464) in the COP cohort with spirometric breath hold monitoring versus 229 HU (188 to 269) in the GOT cohort with unmonitored breath hold manoeuvres (p...BACKGROUND: The quality of chest Computed Tomography (CT) images in children is dependent upon a sufficient breath hold during CT scanning. This study evaluates the influence of spirometric breath hold monitoring with biofeedback software on inspiratory and expiratory chest CT lung density measures......, and on trapped air (TA) scoring in children with cystic fibrosis (CF). This is important because TA is an important component of early and progressive CF lung disease. METHODS: A cross sectional comparison study was completed for chest CT imaging in two cohorts of CF children with comparable disease severity...

  19. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  20. Spatial mismatch between sea lamprey behaviour and trap location explains low success at trapping for control

    Science.gov (United States)

    Rous, Andrew M.; McLean, Adrienne R.; Barber, Jessica; Bravener, Gale; Castro-Santos, Theodore; Holbrook, Christopher M.; Imre, Istvan; Pratt, Thomas C.; McLaughlin, Robert L.

    2017-01-01

    Crucial to the management of invasive species is understanding space use and the environmental features affecting space use. Improved understanding of space use by invasive sea lamprey (Petromyzon marinus) could help researchers discern why trap success in large rivers is lower than needed for effective control. We tested whether manipulating discharge nightly could increase trap success at a hydroelectric generating station on the St. Marys River. We quantified numbers of acoustically tagged sea lampreys migrating up to, and their space use at, the hydroelectric generating station. In 2011 and 2012, 78% and 68%, respectively, of tagged sea lampreys reached the generating station. Sea lampreys were active along the face, but more likely to occur at the bottom and away from the traps near the surface, especially when discharge was high. Our findings suggest that a low probability of encountering traps was due to spatial (vertical) mismatch between space use by sea lamprey and trap locations and that increasing discharge did not alter space use in ways that increased trap encounter. Understanding space use by invasive species can help managers assess the efficacy of trapping and ways of improving trapping success.

  1. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer

    International Nuclear Information System (INIS)

    Trinh, Thanh Thuy; Nguyen, Van Duy; Ryu, Kyungyul; Jang, Kyungsoo; Lee, Wonbeak; Baek, Seungshin; Raja, Jayapal; Yi, Junsin

    2011-01-01

    An amorphous InGaZnO film fabricated by radio frequency magnetron sputtering in only an Ar-reactive gas shows high conductivity, and a thin-film transistors (TFTs)-based IGZO active layer expresses a poor on/off current ratio with a high off current and high subthreshold swing (SS). This paper presents the post-annealing effects on IGZO thin films to compensate the oxygen deficiencies in films as well as on TFT devices to reduce the densities of the interface trap between the active layer and insulator. The ratio of oxygen vacancies over total of oxygen (O 2 /O tot ) in IGZO estimated by the XPS measurement shows that they significantly diminish from 24.75 to 17.68% when increasing the temperature treatment to 350 °C, which is related to the enhancement in resistivity of IGZO. The TFT characteristics of IGZO treated in air at 350 °C show a high I ON /I OFF ratio of ∼1.1 × 10 7 , a high field-effect mobility of 7.48 cm 2 V −1 s −1 , and a low SS of 0.41 V dec −1 . The objective of this paper is to achieve a successful reduction in the interface trap density, ΔD it , which has been reduced about 3.1 × 10 12 cm −2 eV −1 and 2.0 × 10 12 cm −2 eV −1 for the 350 and 200 °C treatment samples compared with the as-deposited one. The resistivity of the IGZO films can be adjusted to the appropriate value that can be used for TFT applications by controlling the treatment temperature

  2. Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study.

    Science.gov (United States)

    Elhilali, Mostafa M; Badaan, Shadie; Ibrahim, Ahmed; Andonian, Sero

    2017-06-01

    To evaluate in vitro and in vivo effects of Moses technology in Holmium laser and to compare it with the Regular mode in terms of lithotripsy efficiency and laser-tissue interactions. The Lumenis ® Pulse™ P120H holmium laser system together with Moses D/F/L fibers were used to compare the Regular mode with the Moses modes in stone retropulsion by using a high-speed camera, and stone ablation efficiency. In addition, a porcine ureteroscopy model was used to assess stone fragmentation and dusting as well as laser-tissue interaction with the ureteral wall. After a laser pulse, in vitro stone displacement experiments showed a significant reduction in retropulsion when using the Moses mode. The stone movement was reduced by 50 times at 0.8 J and 10 Hz (p technology resulted in more efficient laser lithotripsy, in addition to significantly reduced stone retropulsion, and displayed a margin of safety that may result in a shorter procedural time and safer lithotripsy.

  3. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    Science.gov (United States)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  4. Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter.

    Science.gov (United States)

    Tannenbaum, Dana P; Hoffman, Douglas; Lemij, Hans G; Garway-Heath, David F; Greenfield, David S; Caprioli, Joseph

    2004-02-01

    The presently available scanning laser polarimeter (SLP) has a fixed corneal compensator (FCC) that neutralizes corneal birefringence only in eyes with birefringence that matches the population mode. A prototype variable corneal compensator (VCC) provides neutralization of individual corneal birefringence based on individual macular retardation patterns. The aim of this study was to evaluate the relative ability of the SLP with the FCC and with the VCC to discriminate between normal and glaucomatous eyes. Prospective, nonrandomized, comparative case series. Algorithm-generating set consisting of 56 normal eyes and 55 glaucomatous eyes and an independent data set consisting of 83 normal eyes and 56 glaucomatous eyes. Sixteen retardation measurements were obtained with the SLP with the FCC and the VCC from all subjects. Dependency of parameters on age, gender, ethnic origin, and eye side was sought. Logistic regression was used to evaluate how well the various parameters could detect glaucoma. Discriminant functions were generated, and the area under the receiver operating characteristic (ROC) curve was determined. Discrimination between normal and glaucomatous eyes on the basis of single parameters was significantly better with the VCC than with the FCC for 6 retardation parameters: nasal average (P = 0.0003), superior maximum (P = 0.0003), ellipse average (P = 0.002), average thickness (P = 0.003), superior average (P = 0.010), and inferior average (P = 0.010). Discriminant analysis identified the optimal combination of parameters for the FCC and for the VCC. When the discriminant functions were applied to the independent data set, areas under the ROC curve were 0.84 for the FCC and 0.90 for the VCC (PFCC and 0.90 for the VCC (P<0.016). Individual correction for corneal birefringence with the VCC significantly improved the ability of the SLP to distinguish between normal and glaucomatous eyes and enabled detection of patients with early glaucoma.

  5. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  6. Laser trapping and spatial light modulators

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    INVITED: Robotics at the macro-scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro-scale regime creates opportunities for exploiting optical f...

  7. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  8. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  9. Structural elucidation of AgAsS2 glass by the analysis of clusters formed during laser desorption ionisation applying quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Alberti, Milan; Zhang, Bo; Fraenkl, Max; Wagner, Tomas; Havel, Josef

    2016-03-15

    The structure of AgA(s)S2 glass, which has a broad range of applications, is still not well understood and a systematic mass spectrometric analysis of AgA(s)S2 glass is currently not available. Elucidation of the structure should help in the development of this material. The AgA(s)S2 glass was prepared by the melt-quenched technique. Laser desorption ionisation (LDI) using quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to follow the generation of Ag(m)As(n)S(x) clusters. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modelling of isotopic patterns. The AgA(s)S2 glass was characterised by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The LDI of AgA(s)S2 glass leads to the formation of unary (Ag+/− and As(3+)) species, 38 binary (As(n)S(x), Ag(m)S(x)), and 98 ternary (Ag(m)As(n)S(x)) singly charged clusters. The formation of silver-rich nano-grains during AgA(s)S2 glass synthesis has been identified using TEM analysis and also verified by QIT-TOFMS. TOFMS was shown to be a useful technique to study the generation of Ag(m)As(n)S(x )clusters. SEM, TEM and EDX analysis proved that the structure of AgA(s)S2 glass is ‘grain-like’ where grains are either: (1) Silver-rich ‘islands’ (Ag(m,) m up to 39) connected by arsenic and/or sulfur or arsenic sulfide chains or (2) silver sulfide (Ag2S)m (m = 9-20) clusters also similarly inter-connected. This obtained structural information may be useful for the development of ultra-high-density phase-change storage and memory devices using this kind of glass as a base.

  10. Observation of a new magneto-optical trap

    International Nuclear Information System (INIS)

    Emile, O.; Bardou, F.; Salomon, C.; Laurent, P.; Nadir, A.; Clairon, A.

    1992-01-01

    We report on the observation of a new laser trap for neutral atoms. It uses three orthogonal pairs of counterpropagating laser beams having linear polarizations at 45deg and a quadrupole magnetic field. 10 8 cesium atoms were thus confined in a 0.15 mm 3 volume at a temperature of 60 μK, a factor of 2 below the Doppler cooling limit. We interpret this trapping as being due to the new magneto-optical force recently observed by Grimm et al. and which is essentially a dipole force rectified by the magnetic field. This trap opens new possibilities for increasing the phase-space density of laser-cooled atoms. (orig.)

  11. Trapping and Probing Antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan [UC Berkeley and LBNL

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  12. EBIT trapping program

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beck, B.; Beiersdorfer, P.; Church, D.; DeWitt, D.; Knapp, D.K.; Marrs, R.E.; Schneider, D.; Schweikhard, L.

    1993-01-01

    The LLNL electron beam ion trap provides the world's only source of stationary highly charged ions up to bare U. This unique capability makes many new atomic and nuclear physics experiments possible. (orig.)

  13. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  14. Fractional Carbon Dioxide Laser and its Combination with Subcision in Improving Atrophic Acne Scars.

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Faghihi, Gita; Jaffary, Fariba; Haftbaradaran, Elaheh; Hoseini, Sayed Mohsen; Mazaheri, Nafiseh

    2017-01-01

    Acne is a very common skin disease in which scars are seen in 95% of the patients. Although numerous treatments have been recommended, researchers are still searching for a single modality to treat the complication due to its variety in shape and depth. We compared the effects of fractional carbon dioxide (CO 2 ) laser alone and in combination with subcision in the treatment of atrophic acne scars. This clinical trial study was performed in Skin Diseases and Leishmaniasis Research Center (Isfahan, Iran) during 2011-2012. Eligible patients with atrophic acne scars were treated with fractional CO 2 laser alone (five sessions with 3-week interval) on the right side of the face and fractional CO 2 laser plus subcision (one session using both with four sessions of fractional CO 2 laser, with 3-week interval) on the left side. The subjects were visited 1, 2, and 6 months after the treatment. Patient satisfaction rate was analyzed using SPSS 20 software. The average of recovery rate was 54.7% using the combination method and 43.0% using laser alone ( P < 0.001). The mean patient satisfaction was significantly higher with the combination method than laser alone (6.6 ± 1.2 vs. 5.2 ± 1.8; P < 0.001). Bruising was only seen with the combination method and lasted for 1 week in 57.0% and for 2 weeks in 43.0%. Erythema was seen in both methods. Postinflammatory pigmentation and hyperpigmentation were associated with combination method. No persistent side effects were seen after 6 months. Using a combination of subcision and laser had suitable results regarding scar recovery and satisfaction rate.

  15. Improved photochemotherapy of malignant cells with daunomycin and the KTP laser.

    Science.gov (United States)

    Paiva, M B; Saxton, R E; Graeber, I P; Jongewaard, N; Eshraghi, A A; Suh, M J; Paek, W H; Castro, D J

    1998-01-01

    Laser photochemotherapy of malignancies may become an effective palliative treatment for advanced had and neck cancer using light-sensitive, chemotherapeutic drugs activated in tumors via interstitial laser fiberoptics. Previously, it was reported that cultured human P3 squamous cells incubated 2 hours with daunomycin (Dn) exhibited tenfold enhanced cytotoxicity after exposure to argon laser light at 514 nm. This short-term uptake leads to drug localization in cytoplasmic and membrane sites prior to nuclear accumulation and daunomycin topoisomerase inhibition. In the current study phototoxicity of Dn-sensitized human cancer cells was tested using broad-spectrum white light compared to monochromatic green-wavelength light. Drug uptake and laser energy levels were optimized for maximum synergy. To test light-enhanced chemotherapy in vitro, the kinetics of cell uptake and toxicity of daunomycin was measured at 1, 2, and 5 microg/ml in three human tumor cell lines: P3 squamous-cell carcinoma, M26 melanoma, and TE671 fibrosarcoma. After 2 hr Dn uptake, all cell lines were tested for phototherapy response by exposure to 300- to 900-nm visible light from a xenon lamp or monochromatic 532-nm green light from a KTP laser. When the KTP laser output was varied from 0 to 120 Joules in Dn-sensitized tumor cells, a linear phototherapy response was seen with energy as low as 12 J inducing drug phototoxicity. These results provide evidence that daunomycin cytotoxicity is enhanced when exposed to 532-nm laser illumination in the three tumor types tested and confirm that the response is related to both energy level and drug dose.

  16. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  17. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  18. Coherent population trapping magnetometer by differential detecting magneto–optic rotation effect

    International Nuclear Information System (INIS)

    Zhang Fan; Tian Yuan; Zhang Yi; Gu Si-Hong

    2016-01-01

    A pocket coherent population trapping (CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated. Using the differential detecting magneto–optic rotation effect, a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained. The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order, and the ability to detect weak magnetic fields is extended one-fold. Therefore, the proposed scheme is suited to realize a pocket-size CPT magnetometer. (paper)

  19. Ar-39 Detection at the 10^-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    OpenAIRE

    Jiang, W.; Williams, W. D.; Bailey, K.; Davis, A. M.; Hu, S. -M.; Lu, Z. -T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-01-01

    Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, has been applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope with an isotopic abundance of 8x10^-16. In addition to the superior selectivity demonstrated in this work, counting rate and efficiency of ATTA have been improved by two orders of magnitude over prior results. Significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the develop...

  20. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    Science.gov (United States)

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (pirrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  1. Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation

    Science.gov (United States)

    Bermudez, A.; Xu, X.; Nigmatullin, R.; O'Gorman, J.; Negnevitsky, V.; Schindler, P.; Monz, T.; Poschinger, U. G.; Hempel, C.; Home, J.; Schmidt-Kaler, F.; Biercuk, M.; Blatt, R.; Benjamin, S.; Müller, M.

    2017-10-01

    A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.

  2. An optical trap for relativistic plasma

    International Nuclear Information System (INIS)

    Zhang Ping; Saleh, Ned; Chen Shouyuan; Sheng Zhengming; Umstadter, Donald

    2003-01-01

    The first optical trap capable of confining relativistic electrons, with kinetic energy ≤350 keV was created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration laser pulses (≤2.4x10 18 W/cm 2 ) in plasma. Analysis and computer simulation predicted that the plasma density was greatly modulated, reaching a peak density up to 10 times the background density (n e /n 0 ∼10) at the interference minima. Associated with this charge displacement, a direct-current electrostatic field of strength of ∼2x10 11 eV/m was excited. These predictions were confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were predictions that the electron density grating acted as a multi-layer mirror to transfer energy between the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50% increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude. The experimental results showed that the number of high energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor of 3 and electron temperature was increased ∼100 keV as compared with single-beam illumination

  3. Atomic and nuclear physics with stored particles in ion traps

    CERN Document Server

    Kluge, H J; Herfurth, F; Quint, W

    2002-01-01

    Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching.

  4. Observation of the v′=8←v=0 vibrational overtone in cold trapped HD +

    NARCIS (Netherlands)

    J.C.J. Koelemeij; D.W.E. Noom; D. de Jong; M.A. Haddad; W. Ubachs

    2011-01-01

    textabstractWe report the observation of the hitherto undetected v′=8←v=0 vibrational overtone in trapped HD+molecular ions, sympathetically cooled by laser-cooled Be+ions. The overtone is excited using 782 nm laser radiation, after which HD+ions in v=8 are photodissociated by the 313 nm laser used

  5. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-01-01

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed

  6. Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, V. M., E-mail: borisov@triniti.ru; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Yakushin, V. L.; Dzhumayev, P. S. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature (T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al{sub 2}O{sub 3}, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.

  7. Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation.

    Science.gov (United States)

    Liedtke, Sascha; Seifert, Luzia; Ahlmann, Norman; Hariharan, Chandrasekhara; Franzke, Joachim; Vautz, Wolfgang

    2018-07-30

    The investigation of volatile compounds in the headspace of liquid samples can often be used for detailed and non-destructive characterisation of the sample. This has great potential for process control or the characterisation of food samples, such as olive oil. We investigated, for the first time, the plume of substances released from olive oil droplets by laser desorption in a feasibility study and applied ion mobility spectrometry coupled to rapid GC pre-separation to enhance selectivity. Our investigation demonstrated that significantly more substances can be detected and quantified via laser desorption than in the usual headspace, enabling a rapid (5-10 min), sensitive (low ng/g range) and comprehensive analysis of the sample, with the potential for quality control and fraud identification. Therefore, laser desorption provides a useful sampling tool for characterising liquids in many applications, requiring only a few µL of sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement

    Science.gov (United States)

    Pfennigbauer, Martin; Ullrich, Andreas

    2010-04-01

    Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.

  9. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng, E-mail: wangfeng@shnu.edu.cn; Yang, Haifeng

    2017-01-15

    Highlights: • AgCl/PDA/AgNPs (polydopamine (PDA) adlayer covered cubic AgCl core inlaid with Ag nanoparticles (AgNPs)) was fabricated for in-situ SERS detection. • Such SERS substrate shows in-situ laser improving Raman scattering effect due to the generation of more AgNPs. • Enhancement factor could reach 10{sup 7}. • Such SERS substrate shows good reproducibility and long term stability. - Abstract: We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 10{sup 7}. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  10. Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating

    International Nuclear Information System (INIS)

    Nieto, Daniel; Gómez-Varela, Ana Isabel; Martín, Yolanda Castro; O’Connor, Gerard M.; Flores-Arias, María Teresa

    2015-01-01

    Highlights: • Microlens arrays were fabricated on soda-lime glass using a Ti:Sapphire laser. • A SiO 2 coating prepared via sol–gel route was used to improve the microlens quality. • The sol–gel coating was deposited at the microlens top surface using a dip coating. • Optical properties of the microlenses were improved by the coating. - Abstract: We present a simple, repeatable and non-contaminant method to improve the optical and morphological properties of microlens arrays. It consists on depositing hybrid SiO 2 (TEOS, MTES) coatings via sol–gel route onto microlens arrays fabricated using a Ti:Sapphire Femtosecond Amplitude Systems S-pulse HP laser operating at 1030 nm. The deposited silica sol–gel layer reduces the surface roughness (quantified as the root mean square) and increases the quality of the interstices between the microlenses generated by the ablation process, thus improving the contrast and homogeneity of the foci of the microlens array. The proposed technique allows us to obtain microlenses with a diameter in the range of 15–20 μm and a depth of 1.5–15 μm. For the characterization of the micro-optical structures, the UV–visible spectroscopy, spectral ellipsometry, confocal microscopy and beam profilometry were used. The proof-of-principle presented in this paper can be used to improve the optical and morphological properties of micro-optical systems of different nature by tailoring the parameters involved in both the laser ablation and sol–gel processes comprising the starting materials, solvent and catalysts nature and concentration, hydrolysis ratio, aging time and/or deposition conditions

  11. Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Daniel, E-mail: daniel.nieto@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Gómez-Varela, Ana Isabel [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain); Martín, Yolanda Castro [Instituto de Cerámica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); O’Connor, Gerard M. [School of Physics, National Centre for Laser Applications, National University of Ireland, University Road, Galway (Ireland); Flores-Arias, María Teresa, E-mail: maite.flores@usc.es [Microoptics and GRIN Optics Group, Applied Physics Department, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela E15782 (Spain)

    2015-10-01

    Highlights: • Microlens arrays were fabricated on soda-lime glass using a Ti:Sapphire laser. • A SiO{sub 2} coating prepared via sol–gel route was used to improve the microlens quality. • The sol–gel coating was deposited at the microlens top surface using a dip coating. • Optical properties of the microlenses were improved by the coating. - Abstract: We present a simple, repeatable and non-contaminant method to improve the optical and morphological properties of microlens arrays. It consists on depositing hybrid SiO{sub 2} (TEOS, MTES) coatings via sol–gel route onto microlens arrays fabricated using a Ti:Sapphire Femtosecond Amplitude Systems S-pulse HP laser operating at 1030 nm. The deposited silica sol–gel layer reduces the surface roughness (quantified as the root mean square) and increases the quality of the interstices between the microlenses generated by the ablation process, thus improving the contrast and homogeneity of the foci of the microlens array. The proposed technique allows us to obtain microlenses with a diameter in the range of 15–20 μm and a depth of 1.5–15 μm. For the characterization of the micro-optical structures, the UV–visible spectroscopy, spectral ellipsometry, confocal microscopy and beam profilometry were used. The proof-of-principle presented in this paper can be used to improve the optical and morphological properties of micro-optical systems of different nature by tailoring the parameters involved in both the laser ablation and sol–gel processes comprising the starting materials, solvent and catalysts nature and concentration, hydrolysis ratio, aging time and/or deposition conditions.

  12. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...

  13. Improved air trapping evaluation in chest computed tomography in children with cystic fibrosis using real-time spirometric monitoring and biofeedback.

    Science.gov (United States)

    Kongstad, Thomas; Buchvald, Frederik F; Green, Kent; Lindblad, Anders; Robinson, Terry E; Nielsen, Kim G

    2013-12-01

    The quality of chest Computed Tomography (CT) images in children is dependent upon a sufficient breath hold during CT scanning. This study evaluates the influence of spirometric breath hold monitoring with biofeedback software on inspiratory and expiratory chest CT lung density measures, and on trapped air (TA) scoring in children with cystic fibrosis (CF). This is important because TA is an important component of early and progressive CF lung disease. A cross sectional comparison study was completed for chest CT imaging in two cohorts of CF children with comparable disease severity, using spirometric breath hold monitoring and biofeedback software (Copenhagen (COP)) or unmonitored breath hold manoeuvres (Gothenburg (GOT)). Inspiratory-expiratory lung density differences were calculated, and TA was scored to assess the difference between the two cohorts. Eighty-four chest CTs were evaluated. Mean (95%CI) change in inspiratory-expiratory lung density differences was 436 Hounsfield Units (HU) (408 to 464) in the COP cohort with spirometric breath hold monitoring versus 229 HU (188 to 269) in the GOT cohort with unmonitored breath hold manoeuvres (pchildren with comparable CF lung disease, spirometric breath hold monitoring during examination yielded a large difference in lung volume between inhalation and exhalation, and allowed for a significantly greater measured change in lung density and TA score, compared to unmonitored breath hold maneuvers. This has implications to the clinical use of chest CT, especially in children with early CF lung disease. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  15. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available from any defects like micro-porosities or cracks. Furthermore, the average surface roughness was increased from 7.5 ?m to 15 ?m when the scan speed of laser was decreased from 0.04 to 0.012 m/s. The increased surface roughness at a lower scan speed... width from one corner to other evidences that there is no deflection of laser beam. Presence of micro-pores was also observed on the surface with the presence of few unmelted particles on the surface causing formation of rough surface. The defect...

  16. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    International Nuclear Information System (INIS)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-01-01

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (∼100 W/cm 2 ) and comparatively small detunings (∼1000-10 000 linewidths), trap depths of ∼1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  17. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    International Nuclear Information System (INIS)

    Fei Xiang; Snow, W.M.

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles

  18. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    CERN Document Server

    Fei Xiang

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles.

  19. Demonstration of Cold 40Ca+ Ions Confined in a Microscopic Surface-Electrode Ion Trap

    International Nuclear Information System (INIS)

    Chen Liang; Wan Wei; Xie Yi; Wu Hao-Yu; Zhou Fei; Feng Mang

    2013-01-01

    40 Ca + ions are successfully confined, under the cooling of a red-detuned laser, in a home-built microscopic surface-electrode (MSE) trap. With all electrodes deposited on a low-rf-loss substrate, our 500-μm-scale MSE trap is designed involving three potential wells and manufactured by the standard technique of the printed circuit board. Both linear and two-dimensional crystals of 40 Ca + are observed in the trap after preliminary micromotion compensation is carried out. The development of the MSE trap aims at large-scale trapped-ion quantum information processing

  20. Accurate absolute measurement of trapped Cs atoms in a MOT

    International Nuclear Information System (INIS)

    Talavera O, M.; Lopez R, M.; Carlos L, E. de; Jimenez S, S.

    2007-01-01

    A Cs-133 Magneto-Optical Trap (MOT) has been developed at the Time and Frequency Division of the Centro Nacional de Metrologia, CENAM, in Mexico. This MOT is part of a primary frequency standard based on ultra-cold Cs atoms, called CsF-1 clock, under development at CENAM. In this Cs MOT, we use the standard configuration (σ + - σ - ) 4-horizontal 2-vertical laser beams 1.9 cm in diameter, with 5 mW each. We use a 852 nm, 5 mW, DBR laser as a master laser which is stabilized by saturation spectroscopy. Emission linewidth of the master laser is l MHz. In order to amplify the light of the master laser, a 50 mW, 852 nm AlGaAs laser is used as slave laser. This slave laser is stabilized by light injection technique. A 12 MHz red shift of the light is performed by two double passes through two Acusto-Optic Modulators (AOMs). The optical part of the CENAMs MOT is very robust against mechanical vibration, acoustic noise and temperature changes in our laboratory, because none of our diode lasers use an extended cavity to reduce the linewidth. In this paper, we report results of our MOT characterization as a function of several operation parameters such as the intensity of laser beams, the laser beam diameter, the red shift of light, and the gradient of the magnetic field. We also report accurate absolute measurement of the number of Cs atoms trapped in our Cs MOT. We found up to 6 x 10 7 Cs atoms trapped in our MOT measured with an uncertainty no greater than 6.4%. (Author)

  1. Improvement of light-current characteristic linearity in a quantum well laser with asymmetric barriers

    DEFF Research Database (Denmark)

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.

    2014-01-01

    The effect of asymmetric barriers on the light-current characteristic (LCC) of a quantum well laser was studied theoretically and experimentally. It is shown that the utilization of asymmetric barriers in a waveguide prevents the nonlinearity of LCC and, consequently, allows rising of the maximum...

  2. Laser alloying of Al with Ti and Ni based powders to improve wear resistance and hardness

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2008-10-01

    Full Text Available /s and 0.012m/s scanning speeds • The was no sufficient melting and infusion of the powder into the substrate obtained at high laser scanning speed • The thickness of the alloyed layer was ~0.52mm Results © CSIR 2008 www...

  3. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  4. Physics with Trapped Antihydrogen

    Science.gov (United States)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  5. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  6. Femtosecond laser microstructured Alumina toughened Zirconia: A new strategy to improve osteogenic differentiation of hMSCs

    Science.gov (United States)

    Carvalho, Angela; Cangueiro, Liliana; Oliveira, Vítor; Vilar, Rui; Fernandes, Maria H.; Monteiro, Fernando J.

    2018-03-01

    The use of topographic patterns has been a continuously growing area of research for tissue engineering and it is widely accepted that the surface topography of biomaterials can influence and modulate the initial biological response. Ultrafast lasers are extremely powerful tools to machine and pattern the surface of a wide range of biomaterials, however, only few work has been performed on ceramics with the intent of biomedical applications, and the biological characterization of these structured materials is scarce. In this work, relevance is given to the biological performance of such materials. A femtosecond laser ablation technique was used to modify Alumina toughened Zirconia (ATZ) surface topography, developing surfaces structured at the micro and nanoscale levels (μATZ), in a controlled and reproducible manner. Materials characterization was performed before and after laser treatment, and both materials were compared in terms of osteogenic response of human bone marrow derived mesenchymal stem cells cultured under basal conditions, expecting that the micro/nanofeatures will improve the biological response of cells. Cells metabolic activity and proliferation increased with the culture time and surface microtopography modulated cells alignment and guided proliferation. The modified surface, displayed significantly higher expression of osteogenic transcription factors and genes and, additionally, the formation of a mineralized extracellular matrix, when compared to the control surface, i.e. unmodified ATZ.

  7. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics

    International Nuclear Information System (INIS)

    Jiang Lan; Tsai, H.-L.

    2008-01-01

    It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. By combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted ablation depths and shapes in fused silica, by using (1) the plasma model only and (2) the plasma model plus the two-temperature equation, are both in agreement with published experimental data. The widely used assumptions for threshold fluence, ablation depth, and shape in the plasma model based on free electron density are validated by the comparison study and experimental data

  8. Transverse confinement in stochastic cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ivanov, D; Wallentowitz, S

    2004-01-01

    Stochastic cooling of trapped atoms is considered for a laser-beam configuration with beam waists equal to or smaller than the extent of the atomic cloud. It is shown that various effects appear due to this transverse confinement, among them heating of transverse kinetic energy. Analytical results of the cooling in dependence on size and location of the laser beam are presented for the case of a non-degenerate vapour

  9. Ion trap device

    Science.gov (United States)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  10. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  11. Control of the conformations of ion Coulomb crystals in a Penning trap

    Science.gov (United States)

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  12. Time and financial costs of programs for live trapping feral cats.

    Science.gov (United States)

    Nutter, Felicia B; Stoskopf, Michael K; Levine, Jay F

    2004-11-01

    To determine the time and financial costs of programs for live trapping feral cats and determine whether allowing cats to become acclimated to the traps improved trapping effectiveness. Prospective cohort study. 107 feral cats in 9 colonies. 15 traps were set at each colony for 5 consecutive nights, and 5 traps were then set per night until trapping was complete. In 4 colonies, traps were immediately baited and set; in the remaining 5 colonies, traps were left open and cats were fed in the traps for 3 days prior to the initiation of trapping. Costs for bait and labor were calculated, and trapping effort and efficiency were assessed. Mean +/- SD overall trapping effort (ie, number of trap-nights until at least 90% of the cats in the colony had been captured or until no more than 1 cat remained untrapped) was 8.9 +/- 3.9 trap-nights per cat captured. Mean overall trapping efficiency (ie, percentage of cats captured per colony) was 98.0 +/- 4.0%. There were no significant differences in trapping effort or efficiency between colonies that were provided an acclimation period and colonies that were not. Overall trapping costs were significantly higher for colonies provided an acclimation period. Results suggest that these live-trapping protocols were effective. Feeding cats their regular diets in the traps for 3 days prior to the initiation of trapping did not have a significant effect on trapping effort or efficiency in the present study but was associated with significant increases in trapping costs.

  13. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  14. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  15. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    International Nuclear Information System (INIS)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-01-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated

  16. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of); BongChul, Kang, E-mail: kbc@kumoh.ac.kr [Department of Inteligent Mechanical Engineering, Kumoh National Institute of Technology, Gumi (Korea, Republic of); HyunChul, Kim, E-mail: mechkhc@inje.ac.kr [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-05-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  17. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  18. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy.

    Science.gov (United States)

    Ho, Allen L; Sussman, Eric S; Pendharkar, Arjun V; Le, Scheherazade; Mantovani, Alessandra; Keebaugh, Alaine C; Drover, David R; Grant, Gerald A; Wintermark, Max; Halpern, Casey H

    2018-04-01

    OBJECTIVE MR-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive method for thermal destruction of benign or malignant tissue that has been used for selective amygdalohippocampal ablation for the treatment of temporal lobe epilepsy. The authors report their initial experience adopting a real-time MRI-guided stereotactic platform that allows for completion of the entire procedure in the MRI suite. METHODS Between October 2014 and May 2016, 17 patients with mesial temporal sclerosis were selected by a multidisciplinary epilepsy board to undergo a selective amygdalohippocampal ablation for temporal lobe epilepsy using MRgLITT. The first 9 patients underwent standard laser ablation in 2 phases (operating room [OR] and MRI suite), whereas the next 8 patients underwent laser ablation entirely in the MRI suite with the ClearPoint platform. A checklist specific to the real-time MRI-guided laser amydalohippocampal ablation was developed and used for each case. For both cohorts, clinical and operative information, including average case times and accuracy data, was collected and analyzed. RESULTS There was a learning curve associated with using this real-time MRI-guided system. However, operative times decreased in a linear fashion, as did total anesthesia time. In fact, the total mean patient procedure time was less in the MRI cohort (362.8 ± 86.6 minutes) than in the OR cohort (456.9 ± 80.7 minutes). The mean anesthesia time was significantly shorter in the MRI cohort (327.2 ± 79.9 minutes) than in the OR cohort (435.8 ± 78.4 minutes, p = 0.02). CONCLUSIONS The real-time MRI platform for MRgLITT can be adopted in an expedient manner. Completion of MRgLITT entirely in the MRI suite may lead to significant advantages in procedural times.

  19. Image analysis as an improved melting criterion in laser-heated diamond anvil cell

    OpenAIRE

    Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran

    2015-01-01

    The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500K, our setup allows studying the melt...

  20. How the Laser Helped to Improve the Test of Special Theory of Relativity?

    Science.gov (United States)

    Singh, Satya Pal

    2013-01-01

    In this paper of I have reviewed the test done for validating the special theory of relativity using masers and lasers in last one century. Michelson-Morley did the first experimental verification for the isotropy of space for the propagation of light in 1887. It has an accuracy of 1/100th of a fringe shift. The predicted fringe shift on the basis…

  1. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    Science.gov (United States)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  2. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi

    2013-09-19

    We demonstrate that laser pulse duration, which determines its impulsive peak power, is an effective parameter to control the number of optically trapped dielectric nanoparticles, their ejections along the directions perpendicular to polarization vector, and their migration distances from the trapping site. This ability to controllably confine and eject the nanoparticle is explained by pulse width-dependent optical forces exerted on nanoparticles in the trapping site and ratio between the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly of the optically confined nanoparticles, partial ejection of the assembly, and subsequent filling of the trapping site. The understanding of optical trapping and directional ejections by ultrashort laser pulses paves the way to optically controlled manipulation and sorting of nanoparticles. © 2013 American Chemical Society.

  3. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  4. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  5. Laser cladding of nickel base alloy on SS316L for improved wear and corrosion behaviour

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kushwaha, R.P.; Chandra, Kamlesh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2013-01-01

    Laser cladding by an Nd:YAG laser was employed to deposit Ni base alloy (Ni-Mo-Cr-Si) on stainless steel-316 L substrate. The resulting defect-free clad with minimum dilution of the substrate was characterized by optical microscopy, scanning electron microscopy, X-ray diffraction and Vickers microhardness test. Dry sliding wear of the cladding and the substrate was evaluated using a ball-on-plate reciprocating wear tester against different counter bodies (WC and 52100 Cr steel). The reciprocating sliding wear resistance of the coating was evaluated as a function of the normal load, keeping the sliding amplitude and sliding speed constant. Wear mechanisms were analyzed by observation of wear track morphology using SEM-EDS. The electrochemical corrosion behavior of clad layer was studied in reducing environment (HCl) to estimate the general corrosion resistance of the laser clad layer in comparison with the substrate SS-316L. The clad layer showed higher wear resistance under reducing condition than that of the substrate material stainless steel 316L. (author)

  6. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  7. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  8. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  9. Improving the performance of nickel-coated fluorine-doped tin oxide thin films by magnetic-field-assisted laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing 225400 (China)

    2015-10-01

    Highlights: • Ni/FTO films were prepared by sputtering Ni layers on commercial FTO glass. • The as-prepared Ni/FTO films underwent magnetic-field-assisted laser annealing. • Magnetic field and laser fluence were crucial for improving quality of the films. • All Ni/FTO films displayed enhanced compactness after magnetic laser annealing. • Magnetic laser annealing using a fluence of 0.9 J/cm{sup 2} led to the best film quality. - Abstract: Nickel-coated fluorine-doped tin oxide (Ni/FTO) thin films were prepared by sputtering Ni layers on commercial FTO glass. The as-prepared Ni/FTO films underwent nanosecond pulsed laser annealing in an external magnetic field (0.4 T). The effects of the presence of magnetic field and laser fluence on surface morphology, crystal structure and photoelectric properties of the films were investigated. All the films displayed enhanced compactness after magnetic-field-assisted laser annealing. It was notable that both crystallinity and grain size of the films gradually increased with increasing laser fluence from 0.6 to 0.9 J/cm{sup 2}, and then decreased slightly with an increase in laser fluence to 1.1 J/cm{sup 2}. As a result, the film obtained by magnetic-field-assisted laser annealing using a fluence of 0.9 J/cm{sup 2} had the best overall photoelectric property with an average transmittance of 81.2%, a sheet resistance of 5.5 Ω/sq and a figure of merit of 2.27 × 10{sup −2} Ω{sup −1}, outperforming that of the film obtained by pure laser annealing using the same fluence.

  10. WATER-TRAPPED WORLDS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2013-01-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO 2 as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe

  11. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  12. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  13. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  14. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds

    Science.gov (United States)

    Juan, Mathieu L.; Bradac, Carlo; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas

    2017-03-01

    Optical trapping is a powerful tool to manipulate small particles, from micrometre-size beads in liquid environments to single atoms in vacuum. The trapping mechanism relies on the interaction between a dipole and the electric field of laser light. In atom trapping, the dominant contribution to the associated force typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the polarizability of the bulk material. Here, we show that for nanoscale diamond crystals containing a large number of artificial atoms, nitrogen-vacancy colour centres, the contributions from both the nanodiamond and the colour centres to the optical trapping strength can be simultaneously observed in a noisy liquid environment. For wavelengths around the zero-phonon line transition of the colour centres, we observe a 10% increase of overall trapping strength. The magnitude of this effect suggests that due to the large density of centres, cooperative effects between the artificial atoms contribute to the observed modification of the trapping strength. Our approach may enable the study of cooperativity in nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation.

  15. Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching

    International Nuclear Information System (INIS)

    Taguchi, K; Okada, J; Nomura, Y; Tamura, K

    2012-01-01

    In this paper, chemically etched fiber probe was proposed for laser trapping and manipulation of cells. We fabricated tapered fiber probe by dynamic chemical etching technique. Three-Dimensional optical trap of a yeast cell dispersed in water solution could be formed by the fiber tip with 17deg tip. Optical forces were sufficient to move the yeast cell for trapping and manipulation. From these experimental results, it was found that our proposed tapered fiber tip was a promising tool for cell isolation.

  16. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  17. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice.

    Science.gov (United States)

    Salehpour, Farzad; Ahmadian, Nahid; Rasta, Seyed Hossein; Farhoudi, Mehdi; Karimi, Pouran; Sadigh-Eteghad, Saeed

    2017-10-01

    Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm 2 ) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm 2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm 2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm 2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    International Nuclear Information System (INIS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-01-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape

  19. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    Energy Technology Data Exchange (ETDEWEB)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth, E-mail: rsignorell@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland)

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  20. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.