WorldWideScience

Sample records for improved energy recovery

  1. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  2. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  3. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  4. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  5. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  6. Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic

    Directory of Open Access Journals (Sweden)

    Shipra Upadhyay

    2013-01-01

    Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.

  7. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  8. Nutritional Improvement and Energy Intake Are Associated with Functional Recovery in Patients after Cerebrovascular Disorders.

    Science.gov (United States)

    Nii, Maria; Maeda, Keisuke; Wakabayashi, Hidetaka; Nishioka, Shinta; Tanaka, Atsuko

    2016-01-01

    Malnutrition affects the activities of daily living (ADLs) in convalescent patients with cerebrovascular disorders. We investigated the relationship between nutritional improvement, energy intake at admission, and recovery of ADLs. We evaluated 67 patients with cerebrovascular disorders admitted to our rehabilitation hospital between April 2013 and April 2015. These patients received interventions from the rehabilitation nutritional support team according to the following criteria: weight loss of 2 kg or more and body mass index of 19 kg/m(2) or lower. Exclusion criteria included a body mass index of 25 kg/m(2) or higher, duration of intervention of less than 14 days, or transfer to an acute care hospital because of clinical deterioration. We assessed nutritional status using the Geriatric Nutritional Risk Index (GNRI) and ADL using the Functional Independence Measure (FIM) score, FIM gain, and FIM efficiency. The mean age of the patients was 78.7 ± 8.0 years. The numbers of patients in each category of cerebrovascular disorder were 39 with cerebral infarction, 16 with intracerebral hemorrhage, 8 with subarachnoid hemorrhage, and 4 others. Compared with the counterpart group, the group with an improvement in GNRI had a greater gain in FIM (median 17 and 20, respectively; P = .036) and a higher FIM efficiency (.14 and .22, respectively; P = .020). Multivariate stepwise regression analysis showed that an improvement in GNRI, increasing energy intake at admission, and intracerebral hemorrhage were associated independently with greater FIM efficiency. This study suggested that nutritional improvement and energy intake at admission are associated with recovery of ADL after cerebrovascular disorders. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Improving sample recovery

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1995-09-01

    This Engineering Task Plan (ETP) describes the tasks, i.e., tests, studies, external support and modifications planned to increase the recovery of the recovery of the waste tank contents using combinations of improved techniques, equipment, knowledge, experience and testing to better the recovery rates presently being experienced

  10. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  11. Energy recovery from wastes

    International Nuclear Information System (INIS)

    De Stefanis, P.

    1999-01-01

    In this paper are reported analysis of some energy recovery form wastes plants. In this work are considered materials and energy flows, environmental impacts and related treatment costs and financial resources [it

  12. Performance improvement of a slip energy recovery drive system by a voltage-controlled technique

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean [Department of Instrumentation Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama1 Road, Pathumwan, Bangkok 10330 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamwiwit, Jongkol [Department of Control Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-10-15

    This paper introduces the performance improvement of a slip energy recovery drive system for the speed control of a wound rotor induction motor by a voltage-controlled technique. The slip energy occurred in the rotor circuit is transferred back to ac mains supply through a reactor instead of a step up transformer. The objective of the voltage-controlled technique is to increase power factor of the system and to reduce low order harmonics of the input line current. The drive system is designed and implemented using a voltage source inverter in conjunction with a boost chopper for DC link voltage, instead of a conventional drive using a 6 pulse converter or a Scherbius system. The slip power is recovered by the help of a voltage source inverter (VSI) based on a space vector pulse width modulation (SVPWM) technique. In order to keep the speed of the wound rotor induction motor constant over a certain range of operating conditions, the servo state feedback controller designed by a linear quadratic regulator (LQR) is also introduced in this paper. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. The performance improvement of the proposed system is tested in comparison with the conventional Scherbius system and the modified conventional Scherbius system by a 12 pulse converter in conjunction with a chopper at steady state and at dynamic conditions. A 220 W wound motor is employed for testing. It is found that the motor speed can be controlled to be constant in the operating range of 450-1200 rpm at no load and full load. It is also found that the efficiency of the proposed system is remarkably increased since the harmonics of the input ac line current is reduced while the ac line input power factor is increased. (author)

  13. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  14. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  15. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  16. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  17. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  18. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.

    Science.gov (United States)

    Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2010-12-01

    Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.

  1. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  2. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  4. Counterpulse railgun energy recovery circuit

    International Nuclear Information System (INIS)

    Honig, E.M.

    1986-01-01

    This patent describes a counterpulse railgun energy recovery circuit for propelling a projectile along a railgun the counterpulse railgun energy recovery circuit consists of: a railgun having an effective inductance; a source inductor initially charged to an initial current; current means for initially charging the source inductor to the initial current; first current-zero type switching means; second current-zero type switching; third current-zero type switching; muzzle current-zero type switching means; transfer capacitor, the transfer capacitor is for cooperating with the first, second, third, and muzzle current-zero type switching means for providing a resonant circuit for transferring current from the source inductor to the effective inductance of the railgun during the propelling of a projectile along the railgun and for returning current from the effective inductance of the railgun to the source inductance after the projectile has exited the railgun

  5. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Yamaya, Seiji; Ozawa, Hiroshi; Kanno, Haruo; Kishimoto, Koshi N; Sekiguchi, Akira; Tateda, Satoshi; Yahata, Kenichiro; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether low-energy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI. Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord. In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p

  6. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    Science.gov (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  7. Energy Recovery in Existing Water Networks: Towards Greater Sustainability

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-02-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.

  8. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization.

    In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and

  9. Lowering operation costs by energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, W; Hausmann, H; Hausmann, K H

    1976-01-01

    Heat recovery and the heat sources available as well as possible applications of the heat recovered are discussed. Groundwater, shower water and waste air are considered as energy sources. Energy recovery by means of finned-tube systems and the heat pump, and economic aspects of the techniques are described.

  10. Improved NGL recovery designs maximize operating flexibility and product recoveries

    International Nuclear Information System (INIS)

    Wilkinson, J.D.; Hudson, H.M.

    1992-01-01

    This paper reports that the historically cyclical nature in the market for ethane and propane has demonstrated the need for flexible natural gas liquids (NGL) recovery plants. NEwly developed and patented processes are now available which can provide ultra-high recovery of ethane (95%+) when demand for ethane is high and provide essentially complete ethane rejection without the normally concomitant reduction in propane recovery. This provides plant operators the flexibility to respond more readily to NGL market conditions, thus maximizing plant operating profits. The new process designs provide this flexibility without increasing utility requirements. In fact, utility consumption is often lower when compared to conventional designs. This same process technology can also be easily retrofit into existing plants with relatively quick payout of the modifications from both recovery and efficiency improvements

  11. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  12. Energy recovery from plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Atzger, J

    1983-07-01

    The conversion of plastic wastes to energy is suggested as a practicable and advantageous alternative to recycling. A two-stage pilot gasification plant for the pyrolysis of wastes is described and the utilization of the resulting fuel gas discussed.

  13. The market wants small scale plants for energy recovery

    International Nuclear Information System (INIS)

    Lind, Oddvar

    1999-01-01

    The article deals with the development within energy conservation in Europe and describes some projects for energy recovery from wastes in Norway. A brief survey of Norwegian energy policy for and development of waste management and energy recovery is included

  14. Stored energy recovery of irradiated copper

    International Nuclear Information System (INIS)

    Richard, R.T.; Chaplin, R.L.; Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.

    1990-01-01

    The stored energy released in Stage I recovery of reactor neutron irradiated copper was measured by differential thermal analysis calorimetry for three fluences up to a maximum of 3.5 x 10 18 n/cm 2 (E>0.1 MeV) after irradiation at temperatures of less than 10 K. The dependence of the stored energy upon fluence, and a tendency toward saturation, were observed. Theoretical reaction rate processes were compared directly with the experimental rates of stored energy release, and the parameters associated with the theory were compared with results from previous resistivity measurements. Good agreement was found for several parameters, but major differences with previous D + E substage results lead to the conclusion that the point defect model may not describe materials experiencing severe neutron damage. Computer studies of warmup rates were made for first and second order and for correlated recovery processes as a function of defect concentration and of external power input. First and second order processes show definite distortion in their recovery rate curves for high defect concentrations; the correlated recovery process shows a much less pronounced effect. This investigation of stored energy used several new approaches. The use of induced radioactivity within the sample as the heating source, and the use of computer generated theoretical stored energy release curves to analyze the data were unique. (author)

  15. Improved flotation recovery via hydrophobicity adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Philip Ofori; Graham O' Brien; Bruce Firth; Clint McNally; Anh Nguyen [University of Queensland, Qld. (Australia). CSIRO

    2009-03-15

    The main goal of this project was to examine a new approach to maximising the recovery of product specification coal during coal flotation using new generation reagents complemented by the use of the Coal Grain Analysis tool. Laboratory flotation experiments in which the novel reagents were employed as promoters by adding small amounts before adding conventional collector (diesel oil) showed that flotation recovery was significantly increased with only a small product quality (ash%) penalty. The groups of reagents used included surfactants from the group of tri-block copolymers of polyethylene oxide (PEO) and polypropylene oxide (PPO) often denoted as PEO/PPO/PEO or the reverse block copolymer PPO/PEO/PPO. Analysis of the flotation products using the grain analysis technique determined that whilst the recoveries of most grain types were improved, the coarse composite grains which were the components targeted for enhancement showed the most improvement. Plant scale test results confirmed the laboratory findings with remarkable improvements in recovery achieved for all components, especially for coarse inertite and composite grains. The difficult to float coals that are lost at this plant may be recovered without significant modification to the fines circuit by the use of targeted reagents.

  16. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  17. Energy recovery from rivers and oceans

    International Nuclear Information System (INIS)

    2009-01-01

    This book gathers the different projects, systems and technologies allowing to recover the energy from rivers, ocean streams, waves and tides with their economic interest. Content: project of swell and waves energy recovery: Pelamis and Searev projects, buoys and breaking systems; streams and tidal energy: horizontal axis and vertical axis turbines, oscillating column and hydraulic systems; kinematic chains of energy generation systems; terrestrial hydro-energy: small-scale hydro-power, French regulation, opening of energy markets, renewable energy law, the French Pope and Lema laws, exploitation permits, markets and perspectives; small hydro-power technologies: turbines, generator, multiplier; R and D trends: turbines, engines, control systems, combined energies and uses; low-fall technology; duct-embedded systems; other technologies. (J.S.)

  18. Design, Fabrication, and Testing of the INSTAR [INertial STorage And Recovery] System: A Flywheel-based, High Power Energy Storage System for Improved Hybrid Vehicle Fuel Efficiency

    OpenAIRE

    Talancon, Daniel Raul

    2015-01-01

    This thesis describes the development of the INSTAR system: a high-power, cost-effective energy storage system designed to improve HEV regenerative braking capabilities by combining chemical batteries with an electromechanical flywheel. This combination allows the regenerative braking system in hybrid vehicles to recapture more available braking energy at a lower battery pack charging current, increasing vehicle energy efficiency while also potentially increasing battery life.A prototype flyw...

  19. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  20. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The best energy recovery project in Norway?

    International Nuclear Information System (INIS)

    Melaasen, Erik

    2001-01-01

    Norway is one of the world's leading producers of ferro-alloys and silicon metals. The high temperature required in the production process is obtained by using electric energy. The temperature of the waste gases varies between 200 and 900 o C. To recover the energy of hot dust-holding gases from ferro-alloy plants the waste gases are cooled by means of steam production. The ferro-alloy plant Globe Norge AS Hafslund Metall and the energy supply company Birka Energi have signed an agreement to build Norway's largest energy recovery plant. The plant will recover 260 GWh per year. The oil consumption will be reduced by 26000 tonne per year and the annual emission of carbon dioxide by 80000 tonne. Steam from the plant will be supplied to the two companies Borregaard and Glomma Papp. The article describes the plant in some detail

  2. Energy balance for uranium recovery from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  3. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  4. Multiaspect measurement analysis of breaking energy recovery

    International Nuclear Information System (INIS)

    Bartłomiejczyk, Mikołaj; Połom, Marcin

    2016-01-01

    Highlights: • A case study of implementation of eco energy technologies in municipal transport. • The “ready to use” methods are presented. • The “niche” ways of increasing efficiency, e.g. “intelligent heating”. • Novel multi way measurement method using GPS localization system. • Confirmation of the results by means of research and experimental measurement. - Abstract: Nowadays the issue of electric energy saving in public transport is becoming a key area of interest, which is connected both with a growth of environmental awareness in the society and an increase in the prices of fuel and electricity. That is why the reduction of energy consumption by increasing electrified urban transport, such as trams, trolleybuses, light rail and underground is becoming an increasingly important issue. Energy recovery during braking is possible in all modern electric vehicles, but in many cases this possibility is not fully taken advantage of, inter alia, because of an inadequate power supply structure. The aim of this article is to present practical examples of implementation of eco-friendly solutions in urban municipal transport. The article shows a thorough analysis of braking energy dispatch in the urban traction power supply system, which was based on extensive measurement research conducted in Gdynia trolleybus network. The authors applied multi way measurement method using Global Positioning System. The optimal conditions for implementation of several methods of energy recovery (storage energy systems, reconfiguration of supply system, using auxiliaries) have been shown. Great emphasis has been put on the confirmation of the results by means of research and experimental measurement.

  5. Waste energy recovery in the industry in the ECE region

    International Nuclear Information System (INIS)

    1985-01-01

    In the ECE region industry accounts for about 44 per cent of total final energy consumption, 50-55 per cent of which is ''lost''. Since the early 1970s the efficiency of energy use has improved by 5 or 6 percentage points. The potential for further cost-effective savings is estimated at 10 to 20 percentage points, depending on the type of industrial activity, kind of waste energy, availability of outlets, investment strategies, awareness of the significantly improved technical possibilities and degree of co-operation between energy specialists and production engineers, equipment manufacturers, and industrial sectors at the national and international levels. The present publication argues the case for secondary energy recovery (SER) by end-users and international co-operation in technical, economic, environmental and methodological fields. It is based on data compiled by the secretariat of the Economic Commission for Europe on 1 June 1984 and given general distribution. Refs, figs and tabs

  6. A new approach for concurrently improving performance of South Korean food waste valorization and renewable energy recovery via dry anaerobic digestion under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Nguyen, Dinh Duc; Yeop, Jeong Seong; Choi, Jaehoon; Kim, Sungsu; Chang, Soon Woong; Jeon, Byong-Hun; Guo, Wenshan; Ngo, Huu Hao

    2017-08-01

    Dry semicontinuous anaerobic digestion (AD) of South Korean food waste (FW) under four solid loading rates (SLRs) (2.30-9.21kg total solids (TS)/m 3 day) and at a fixed TS content was compared between two digesters, one each under mesophilic and thermophilic conditions. Biogas production and organic matter reduction in both digesters followed similar trends, increasing with rising SLR. Inhibitor (intermediate products of the anaerobic fermentation process) effects on the digesters' performance were not observed under the studied conditions. In all cases tested, the digesters' best performance was achieved at the SLR of 9.21kg TS/m 3 day, with 74.02% and 80.98% reduction of volatile solids (VS), 0.87 and 0.90m 3 biogas/kg VS removed , and 0.65 (65% CH 4 ) and 0.73 (60.02% CH 4 ) m 3 biogas/kg VS fed , under mesophilic and thermophilic conditions, respectively. Thermophilic dry AD is recommended for FW treatment in South Korea because it is more efficient and has higher energy recovery potential when compared to mesophilic dry AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  8. Modeling and Simulation of Energy Recovery from a Photovoltaic ...

    African Journals Online (AJOL)

    Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.

  9. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  10. Energy recovery as a key technology for future mobility

    Energy Technology Data Exchange (ETDEWEB)

    Zellbeck, Hans; Risse, Silvio [Technische Univ. Dresden (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2011-07-01

    Internal and external combustion engines in both stationary and mobile applications represent an essential, basic module for a functioning economy and society. In ensuring mobility worldwide by land and by sea, the combustion engine plays the dominant role. Customer requirements to be fulfilled are manifold. Accordingly a downward trend in the demand for or indeed the abandonment of the combustion engine in personal or freight transport is in the near future unforeseeable. With regard to the continuously increasing need for mobility subject to limited resources and rising environmental consciousness, the combustion engine and the means to improve its efficiency and sustainability are under intensive investigation. Along with the application of CO{sub 2}-neutral fuels, improvements in the system itself will be valuable to its future. More specifically, compared to many other techniques the recovery of energy losses resulting from the operation of these engines promises a very high degree of optimization. An overview of the current and predicted number of combustion engines in both stationary and mobile applications is given at the beginning of the paper. Furthermore, a differentiation between personal and freight traffic must be made since there is not only a difference in their respective power requirements but also in their lifecycles. The energy losses through exhaust gases and coolants, for example, are quantified and rated in terms of their capabilities on the basis of certain fields of application and utilization profiles. With regard to additional specific boundary conditions, various concepts ranging from recuperation in theory to actual recovery in practice under conditions approximating actual production are analysed in different application scenarios for their efficiency, ecological benefit, and economy. Retroactive or synergistic effects which may follow from their integration into the complete system are considered precisely with the help of examples

  11. CW Energy Recovery Operation of XFELs

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; S. Bogacz; Dave Douglas; Peter Kneisel; Gwyn P. Wiliams; Massimo Ferrario; Luca Serafini; Ilan Ben-Zvi; James Rose; Triveni Srinivasan-Rao; Patrick Colestock; Wolf-Dietrich Moeller; Bernd Petersen; Dieter Proch; S. Simrock; James B. Rosenzweig

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: What will the next generation of the XFEL facilities look like ? Believing that super-conducting technology offers several advantages over room-temperature technology, such as high quality beams with highly populated bunches and the possibility of energy recovery or higher overall efficiency, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program is required over the next few years to arrive at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power. In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  12. Delta undulator for Cornell energy recovery linac

    Directory of Open Access Journals (Sweden)

    Alexander B. Temnykh

    2008-12-01

    Full Text Available In anticipation of a new era of synchrotron radiation sources based on energy recovery linac techniques, we designed, built, and tested a short undulator magnet prototype whose features make optimum use of the unique conditions expected in these facilities. The prototype has pure permanent magnet (PPM structure with 24 mm period, 5 mm diameter round gap, and is 30 cm long. In comparison with conventional undulator magnets it has the following: (i full x-ray polarization control.—It may generate varying linear polarized as well as left and right circular polarized x rays with photon flux much higher than existing Apple-II–type devices. (ii 40% stronger magnetic field in linear and approximately 2 times stronger in circular polarization modes. This advantage translates into higher x-ray flux. (iii Compactness.—The prototype can be enclosed in a ∼20  cm diameter cylindrical vacuum vessel. These advantages were achieved through a number of unconventional approaches. Among them is control of the magnetic field strength via longitudinal motion of the magnet arrays. The moving mechanism is also used for x-ray polarization control. The compactness is achieved using a recently developed permanent magnet soldering technique for fastening PM blocks. We call this device a “Delta” undulator after the shape of its PM blocks. The presented article describes the design study, various aspects of the construction, and presents some test results.

  13. Exergy recovery during LNG regasification: Electric energy production - Part two

    International Nuclear Information System (INIS)

    Dispenza, Celidonio; Dispenza, Giorgio; Rocca, Vincenzo La; Panno, Giuseppe

    2009-01-01

    In liquefied natural gas (LNG) regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. In a previous paper, the authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved combined heat and power (CHP) plant. Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 x 10 9 standard cubic meters/year. This paper deals with the results of feasibility studies, developed by the authors at DREAM in the context of a research program, on ventures based on thermodynamic and economic analysis of improved CHP cycles and related innovative technology which demonstrate the suitability of the proposal

  14. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  15. Development of energy-efficient processes for natural gas liquids recovery

    International Nuclear Information System (INIS)

    Yoon, Sekwang; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2017-01-01

    A new NGL (natural gas liquids) recovery process configuration is proposed which can offer improved energy efficiency and hydrocarbon recovery. The new process configuration is an evolution of the conventional turboexpander processes with the introduction of a split stream transferring part of the feed to the demethanizer column. In this way additional heat recovery is possible which improves the energy efficiency of the process. To evaluate the new process configuration a number of different NGL recovery process configurations are optimized and compared using a process simulator linked interactively with external optimization methods. Process integration methodology is applied as part of the optimization to improve energy recovery during the optimization. Analysis of the new process configuration compared with conventional turbo-expander process designs demonstrates the benefits of the new process configuration. - Highlights: • Development of a new energy-efficient natural gas liquids recovery process. • Improving energy recovery with application of process integration techniques. • Considering multiple different structural changes lead to considerable energy savings.

  16. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Energy recovery tests performed on an injector of energetic neutral atoms in which the ion source is operated at the ground potential and the neutralizer is biased at the high energy potential corresponding to the desired neutral beam energy, are presented. The operation of the suppressor grid is studied in two different experiments. These tests underline the problems to be solved for an efficient recovery of the energy of the unneutralized beam fraction

  17. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  18. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  19. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  20. Agriculture/municipal/industrial waste management and resource recovery feasibility study : renewable energy clusters and improved end-use efficiency : a formula for sustainable development[Prepared for the North Okanagan Waste to Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    The North Okanagan Waste to Energy Consortium initiated a study that evaluated the technical, environmental and economic feasibility of a proposed biomass to renewable energy eco-system, using the technologies of anaerobic digestion (AD), cogeneration and hydroponics in a centralized waste treatment and recovery facility. The Okanagan Valley is well suited for the demonstration plant because of its concentration of food producers and processors and abundance of rich organic waste stream. The agricultural, municipal and industrial waste management consortium consisted of a dairy farm, 5 municipalities and local waste handlers. The consortium proposed to combine several organic waste streams such as dairy manure, slaughterhouse offal and source separated municipal solid waste (MSW) to produce biogas in an anaerobic digester. The methane would be processed into renewable energy (heat and electricity) for a hydroponics barley sprout operation. It is expected that the synergies resulting from this project would increase productivity, end-use efficiency and profitability. This study reviewed the basics of AD technology, technological options and evaluated several technology providers. The type and quantity of waste available in the area was determined through a waste audit and analysis. The potential to market the system by-products locally was also reviewed as well as the general economic viability of a centralized system. The study also evaluated site selection, preliminary design and costing, with reference to proximity to feedstock and markets, access to roads, impacts on neighbours and insurance of minimal environmental impact. 84 refs., 82 figs., 10 appendices.

  1. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  2. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  3. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Binggang Cao

    2010-10-01

    Full Text Available Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H∞ robust control, a H2/H∞ controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  4. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Min Ye [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Sengjie Jiao [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Binggang Cao [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an (China)

    2010-09-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H-infinity robust control, a H2/H-infinity controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  5. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ye, M.; Jiao, S. [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang' an University, Xi' an 710064 (China); Cao, B. [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-10-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H{sub 2} optimal control and H{sub {infinity}} robust control, a H{sub 2}/H{sub {infinity}} controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source. (authors)

  6. Motivational interviewing for improving recovery after stroke.

    Science.gov (United States)

    Cheng, Daobin; Qu, Zhanli; Huang, Jianyi; Xiao, Yousheng; Luo, Hongye; Wang, Jin

    2015-06-03

    Psychological problems are common complications following stroke that can cause stroke survivors to lack the motivation to take part in activities of daily living. Motivational interviewing provides a specific way for enhancing intrinsic motivation, which may help to improve activities of daily living for stroke survivors. To investigate the effect of motivational interviewing for improving activities of daily living after stroke. We searched the Cochrane Stroke Group's Trials Register (November 2014), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 1), MEDLINE (1948 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), AMED (1985 to March 2015), PsycINFO (1806 to March 2015), PsycBITE (March 2015) and four Chinese databases. In an effort to identify further published, unpublished and ongoing trials, we searched ongoing trials registers and conference proceedings, checked reference lists, and contacted authors of relevant studies. Randomised controlled trials (RCTs) comparing motivational interviewing with no intervention, sham motivational interviewing or other psychological therapy for people with stroke were eligible. Two review authors independently selected studies for inclusion, extracted eligible data and assessed risk of bias. Outcome measures included activities of daily living, mood and death. One study involving a total of 411 participants, which compared motivational interviewing with usual care, met our inclusion criteria. The results of this review did not show significant differences between groups receiving motivational interviewing or usual stroke care for participants who were not dependent on others for activities of daily living, nor on the death rate after three-month and 12-month follow-up, but participants receiving motivational interviewing were more likely to have a normal mood than those who received usual care at three-months and 12-months follow-up. There is insufficient evidence to support

  7. Improved timing recovery in wireless mobile receivers

    CSIR Research Space (South Africa)

    Olwal, TO

    2007-06-01

    Full Text Available are transmitted to the receiver. In the proposed method, the receiver exploits the soft decisions computed at each turbo decoding iteration to provide reliable estimates of a soft timing signal, which in turn, improves the decoding time. The derived method... as ( ) ( )( )1 2 1 2, ,..., , ,...,Q Qk k k k k k k k ka a x x x P a x x xη∗ ∗∈Β= ∑ (29) where ( )1 2, ,..., Qk k kx x x are the Q coded bits in a multilevel symbol modulation scheme [32]. According to [29], the soft information demapper computes posteriori...

  8. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  9. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Biomass gasification: a strategy for energy recovery and disposal of industrial and municipal wastes. Anurag Pandey, Anupam Shukla. Abstract. Energy from biological organic waste as an aspect of sustainable waste management is probably the most contentious. Solid and liquid wastes are a rapidly growing problem ...

  10. Improved heavy oil recovery by low rate waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Mai, A. [Laricina Energy Ltd., Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Waterflooding techniques are frequently used to recover oil in low viscosity or marginal heavy oil reservoirs. This paper described a low-rate waterflooding oil recovery mechanism. The mechanism was determined by examining the effect of sand permeability on the impact of viscous force contributions. Changes in permeability and injection rates parameters were studied in order to evaluate the significance of imbibition, and a method of quantifying the effect of capillary forces was presented. The mechanism was demonstrated in an experimental study that used sand packs of varying permeabilities wet-packed into cores with overburden pressures. A fixed injection rate was used to investigate waterflooding in the different permeability systems with 2 different oils. Overall recovery rates were examined as a function of injection velocity. An analysis of normalized oil production rates demonstrated that viscous forces are more important during the early phases of waterflooding. The study showed that breakthrough oil recovery values increased with higher permeability values. However, when injection rates were reduced to low frontal velocity values, the correlation between sand permeability and breakthrough oil recovery resulted in low permeability rates. Lower permeability porous media resulted in more restrictive flow conditions. However, the capillary force components increased as a result of the smaller pore sizes, which in turn led to enhanced water imbibition and higher oil recovery values after water breakthrough. It was concluded that waterflooding rates can be modified later in the recovery process in order to improve final oil recovery values. 21 refs., 3 tabs., 11 figs.

  11. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  12. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  13. City of Camden, New Jersey Program offering widespread energy recovery (power): Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, Stanley [City of Camden, NJ (United States). Dept. of Development and Planning Bureau of Housing Services

    2013-12-31

    The Camden Residential POWER Program, Program Offering Widespread Energy Recovery, is a program designed to benefit Camden homeowners, stabilize neighborhoods and put local contractors to work. Camden POWER granted up to $18,600 to fund energy efficient home improvements and necessary life/safety rehabilitation repairs. The program was designed as a self-sustaining, neighborhood approach to bringing long-term energy and financial savings to the community. Valuable home upgrades were completed, including high-efficiency furnaces, hot water heaters, insulation, insulated roofs and blower door guided air-sealing. The goal of all improvements were to reduce energy consumption, lower utility bills, improve property values and promote neighborhood stabilization.

  14. Recovery of energy in a gaseous diffusion plant

    International Nuclear Information System (INIS)

    Ergalant, Jacques; Guais, J.-C.; Perrault, Michel; Vignet, Paul

    1975-01-01

    Any energy recovery, even partial, goes in the direction of savings in energy and should be sought for. The Tricastin plant, now in the course of being built, will be able to deliver several hundreds of MW for the purpose of urban and agricultural heating. The new Coredif project will more completely integrate the valorization of calories in its definition (choice of temperatures, design of the heat exchangers, recovery cycles). In fact the recent evolution in energy costs renders the otpimization of a plant equipped with a heat recovery system (1 to 2% on the cost of the uranium produced) now economically worth-while. In the same way, the choice of the site of the future plant may be conditioned by the possible uses of calories in its vicinity [fr

  15. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  16. Theoretical Thermal Evaluation of Energy Recovery Incinerators

    Science.gov (United States)

    1985-12-01

    Army Logistics Mgt Center, Fort Lee , VA DTIC Alexandria, VA DTNSRDC Code 4111 (R. Gierich), Bethesda MD; Code 4120, Annapolis, MD; Code 522 (Library...Washington. DC: Code (I6H4. Washington. DC NAVSECGRUACT PWO (Code .’^O.’^). Winter Harbor. IVIE ; PWO (Code 4(1). Edzell. Scotland; PWO. Adak AK...NEW YORK Fort Schuyler. NY (Longobardi) TEXAS A&M UNIVERSITY W.B. Ledbetter College Station. TX UNIVERSITY OF CALIFORNIA Energy Engineer. Davis CA

  17. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  18. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  19. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  20. Characterization of secondary electron collection for energy recovery from high energy ions with a magnetic field

    International Nuclear Information System (INIS)

    Hagihara, Shota; Wada, Takayuki; Nakamoto, Satoshi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Furuyama, Yuichi; Taniike, Akira

    2015-01-01

    A traveling wave direct energy converter (TWDEC) is expected to be used as an energy recovery device for fast protons produced during the D- 3 He nuclear fusion reaction. Some protons, however, are not fully decelerated and pass through the device. A secondary electron direct energy converter (SEDEC) was proposed as an additional device to recover the protons passing through a TWDEC. In our previous study, magnetic field was applied for efficient secondary electron (SE) collection, but the SEs were reflected close to the collector due to the magnetic mirror effect and the collection was degraded. Herein, a new arrangement of magnets is proposed to be set away from the collector, and experiments in various conditions are performed. An appropriate arrangement away from the collector resulted in the improvement of SE collection. (author)

  1. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  2. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  3. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  4. Energy analysis of human stumbling: the limitations of recovery

    NARCIS (Netherlands)

    Forner Cordero, A.; Koopman, Hubertus F.J.M.; van der Helm, F.C.T.

    2005-01-01

    This study has analyzed the segmental energy changes in the recovery from a stumble induced during walking on a treadmill. Three strategies emerged according to the behavior of the perturbed limb, elevating, lowering, and delayed lowering. These three strategies showed different changes in the

  5. Assessment of the energy recovery potentials of solid waste ...

    African Journals Online (AJOL)

    Otoigiakih

    The main attributes of waste as a fuel are water content, calorific value, and burnable content. The study was conducted to evaluate the energy recovery potential of solid waste generated in. Akosombo. A total of twelve (12) samples were collected from the township in December, 2012 (dry month) and May, 2013 (Wet ...

  6. Stability Analysis of Static Slip-Energy Recovery Drive via ...

    African Journals Online (AJOL)

    The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...

  7. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  8. Windows with improved energy performance

    DEFF Research Database (Denmark)

    Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

    2002-01-01

    According to the Danish energy protocol, Energy 21, one of the goals with highest priority is to reduce the CO2-emission. Energy consumption for domestic heating is a major contributor to the CO2-emission; hence one of the primary efforts to reach the goal is by saving energy in the households...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

  9. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using Elevated Temperatures

    KAUST Repository

    Zhang, Fang

    2015-02-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA. A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72°C produced a power density of 236±8 Wm-2, with a linear decrease in power to 95±5 Wm-2 at 23°C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Whm-3 at a discharge energy efficiency of 54% and a temperature of 37°C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers.

  10. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  11. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  12. Energy recovery from garden waste in a LCA perspective

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2015-01-01

    According to the common strategies regarding waste management and energy supply in EU countries, more efficient utilization of organic waste resources (including garden waste) with both nutrient and energy recovery is desired. Each of the most common treatments applied today – composting, direct...... use on land and incineration – only provides one of the two services. A technology ensuring both nutrient and energy utilization is anaerobic digestion (AD) that has become applicable for treatment of garden waste recently. In this study, life cycle assessment aimed to compare four garden waste...

  13. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  14. A model for improving endangered species recovery programs

    Science.gov (United States)

    Miller, Brian; Reading, Richard; Conway, Courtney; Jackson, Jerome A.; Hutchins, Michael; Snyder, Noel; Forrest, Steve; Frazier, Jack; Derrickson, Scott

    1994-09-01

    This paper discusses common organizational problems that cause inadequate planning and implementation processes of endangered species recovery across biologically dissimilar species. If these problems occur, even proven biological conservation techniques are jeopardized. We propose a solution that requires accountability in all phases of the restoration process and is based on cooperative input among government agencies, nongovernmental conservation organizations, and the academic community. The first step is formation of a task-oriented recovery team that integrates the best expertise into the planning process. This interdisciplinary team should be composed of people whose skills directly address issues critical for recovery. Once goals and procedures are established, the responsible agency (for example, in the United States, the US Fish and Wildlife Service) could divest some or all of its obligation for implementing the plan, yet still maintain oversight by holding implementing entities contractually accountable. Regular, periodic outside review and public documentation of the recovery team, lead agency, and the accomplishments of implementing bodies would permit evaluation necessary to improve performance. Increased cooperation among agency and nongovernmental organizations provided by this model promises a more efficient use of limited resources toward the conservation of biodiversity.

  15. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  16. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  17. Aircraft Route Recovery Based on An Improved GRASP Method

    Directory of Open Access Journals (Sweden)

    Yang He

    2017-01-01

    Full Text Available Aircrafts maintenance, temporary airport closures are common factors that disrupt normal flight schedule. The aircraft route recovery aims to recover original schedules by some strategies, including flights swaps, and cancellations, which is a NP-hard problem. This paper proposes an improved heuristic procedure based on Greedy Random Adaptive Search Procedure (GRASP to solve this problem. The effectiveness and high global optimization capability of the heuristic is illustrated through experiments based on large-scale problems. Compared to the original one, it is shown that the improved procedure can find feasible flight recovered schedules with lower cost in a short time.

  18. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  19. Optimal control of Formula One car energy recovery systems

    Science.gov (United States)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  20. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  1. Energy and exergy recovery in a natural gas compressor station – A technical and economic analysis

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Kalina, Jacek; Bargiel, Paweł; Szufleński, Paweł

    2015-01-01

    Highlights: • Energy and exergy flow in a natural gas compressor station. • Operational efficiency only 18.3% vs. 35.1% nominal. • 3 energy/exergy recovery systems proposed. • Up to 168.9 GW h/y electricity and 6.5 GW h/y heat recoverable. • Legal obstacles: operators not allowed to produce electricity. - Abstract: The paper presents possible solutions to improve the thermodynamic performance of a natural gas compressor station equipped with various type of compressor units and operated at part-load conditions. A method for setting a simplified energy and exergy balance based on the available metering information has been presented. For a case study plant, it has been demonstrated that the current part-load operation leads to a significant decrease in energy and exergy efficiency compared to the nominal state of machinery. Three alternative improvement strategies have been proposed: (1) installation of a heat recovery hot water generator for covering the existing heat demand of the plant; (2) installation of a heat recovery thermal oil heater for covering the existing heat demand and driving an organic Rankine cycle (ORC) for electricity generation; (3) installation of a heat recovery thermal oil heater with and ORC and gas expanders for switching into full-load operation of the gas turbine unit. Energy and exergy performance of the proposed strategies as well as their economic feasibility have been analyzed. The second scenario involving an ORC unit provides the highest local energy savings, however, its economic feasibility is not achieved under the current part-load operating conditions. A hypothetic scenario of the same station operated at full-load due to an increased gas transmission capacity demonstrate the economic feasibility (possible under optimistic price conditions). Finally, it has been shown that the possibility of waste energy recovery from natural gas transmission systems (in particular, from compressor stations) depends on legal

  2. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  3. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  4. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  5. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  6. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  7. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  8. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  9. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  10. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  11. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  12. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  13. Energy Recovery from a Non-Linear Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2018-03-01

    Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.

  14. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  15. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  16. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    Science.gov (United States)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  17. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Mariangela Dipaola

    Full Text Available The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD. The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years with bilateral symptoms (H&Y ≥II if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs. Ten healthy subjects (mean age 62±3 years walked both at their 'preferred' and 'slow' speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM of hip, knee and ankle joint angles. We also measured kinetic (Wk, potential (Wp, total (WtotCM energy variations and the energy recovery index (ER. Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components.

  18. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  19. Energy demands during a judo match and recovery.

    Science.gov (United States)

    Degoutte, F; Jouanel, P; Filaire, E

    2003-06-01

    To assess energy demand during a judo match and the kinetics of recovery by measuring the metabolites of the oxypurine cascade, lipolytic activity, and glycolytic pathway. Venous blood samples were taken from 16 national judoists (mean (SEM) age 18.4 (1.6) years), before (T(1)) and three minutes (T(2)), one hour (T(3)), and 24 hours (T(4)) after a match. A seven day diet record was used to evaluate nutrient intake. Nutrient analysis indicated that these athletes followed a low carbohydrate diet. Plasma lactate concentration had increased to 12.3 (1.8) mmol/l at the end of the match. An increase in the levels of extracellular markers of muscle adenine nucleotide catabolism, urea, and creatinine was observed at T(2), while uric acid levels remained unchanged. High concentrations of urea persisted for 24 hours during the recovery period. Ammonia, hypoxanthine, xanthine, and creatinine returned to control levels within the 24 hour recovery period. Uric acid concentrations rose from T(3) and had not returned to baseline 24 hours after the match. The levels of triglycerides, glycerol, and free fatty acids had increased significantly (p<0.05) after the match (T(2)) but returned to baseline values within 24 hours. Concentrations of high density lipoprotein cholesterol and total cholesterol were significantly increased after the match. These results show that a judo match induces both protein and lipid metabolism. Carbohydrate availability, training adaptation, and metabolic stress may explain the requirement for these types of metabolism.

  20. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance....... Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by...

  1. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    Science.gov (United States)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  2. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  3. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  4. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Experimental tests of energy recovery are made on an injector of energetic neutral atoms in which the ion source (the circular periplasmatron) is operated at the ground potential and the neutralizer is biased at the high negative potential corresponding to the desired neutral beam energy. To prevent the acceleration of the neutralizer plasma electrons toward the collector of the decelerated ions (the recovery electrode), a potential barrier is created by means of a negatively biased long cylindrical grid (called the suppressor grid) surrounding the beam. For a given negative potential (relative to the neutralizer) applied to this grid a plasma sheath develops at the periphery of the beam. At the entry of the grid the width of this sheath is generally much smaller than the beam radius. However, the ions are deflected by the electric field of the sheath outward through the grid. The ion density in the sheath is thus decreasing as the beam propagates and the result is a sheath-widening process which in turn causes more ions to be deflected. If the suppressor grid is sufficiently long the sheath will eventually fill the whole section of the beam, the potential on the axis will fall below the neutralizer potential and stop the electrons. Concurrently, most of the ions are deflected out of the suppressor. These ions can be decelerated and collected outside the region where the neutral beam propagates. A drawing of such a system is shown

  5. Selection and application of microorganisms to improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.F.; Moreira, R.S.; Almeida, R.C.C.; Guimaraes, A.K.; Carvalho, A.S. [Laboratorio de Biotecnologia e Ecologia de Microrganismos da Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, s/n, Vale do Canela, CEP 41.160-100 Salvador BA (Brazil); Quintella, C.; Esperidia, M.C.A. [Instituto de Quimica da Universidade Federal da Bahia, Rua Barao de Geremoabo, s/n, Campus Universitario de Ondina, CEP 40.170-290, Salvador BA (Brazil); Taft, C.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, Urca, 22290-180, Rio de Janeiro (Brazil)

    2004-08-01

    Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Reconcavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt-tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas-producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic

  6. Solutions for energy recovery of animal waste from leather industry

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe; Pană, Constantin; Mihaescu, Lucian; Cernat, Alexandru; Negurescu, Niculae; Mocanu, Raluca; Negreanu, Gabriel

    2017-01-01

    Highlights: • Animal fats in blend with diesel fuel for energy valorification through combustion. • Animal waste from tanneries as fuel and for biogas production. • Experimental tests using animal fats as fuel for diesel engines. • Experimental tests modifying the characteristic parameters. - Abstract: Secondary products from food and leather industries are regarded as animal wastes. Conversion of these animal wastes into fuels represents an energy recovery solution not only because of their good combustion properties, but also from the viewpoint of supply stability. A tannery factory usually processes 60–70 t/month of crude leathers, resulting in 12–15 t/month of waste. Fats, which can be used as the input fuel for diesel engines (in crude state or as biodiesel), represent 10% of this animal waste, while the rest are proteins that can be used to generate biogas through anaerobic digestion. Herein, we analyse two approaches to the use of animal waste from tanneries: as fuel for diesel engines and for biogas generation for heat production. Diesel fuelling and fuelling by animal wastes are compared in terms of the engine performance and pollutant emissions. The effects of animal waste usage on the pollutant emissions level, exhaust gas temperature, indicated mean effective pressure, maximum pressure, and engine efficiency are analysed. The energy recovery technologies for animal waste, which are analysed in this work, can be easily implemented and can simultaneously solve the problem posed by animal wastes by using them as an alternative to fossil fuels. Animal fats can be considered an excellent alternative fuel for diesel engines without major constructive modifications.

  7. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  8. What is an energy recovery linac, and why there might be one in your future

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, Geoffrey [Jefferson Laboratory, Newport News, VA (United States); Old Dominion University, Norfolk, VA (United States)

    2016-07-01

    Applying beam energy recovery allows a class of novel accelerators to be built with performance characteristics beyond that possible in ring accelerators or non-recirculated linear accelerators. Although the idea was published 50 years ago, and was explored and developed as a result of ''Star Wars'' strategic defense programs in the 1980s and 1990s, renewed interest in energy recovery linacs (ERLs) has flowered as a result of continuous development and improvement of superconducting beam acceleration systems. Many applications to electron accelerators where the very best beam quality is required at high average current have been and are being explored. Examples include advanced X-ray sources, electron sources for electron ion colliders, internal target experiments and applications, lithography, and other topics. Examples highlighting new performance possibilities and the present perception on the limits of ERLs are given.

  9. Methanation and energy recovery from biogas: mutually beneficial?

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2000-01-01

    Biogas is credited with a development potential of 18 million tons of oil equivalent by 2020 for the European Union. In terms of scale, this corresponds to the quantity of natural gas consumed today in France. Ten per cent of these resources are today being used, with wide variations from one country to another. If we compare this production to the population levels, it is the Northern European countries of Denmark, Sweden and the Netherlands which emerge at the top of the list. Recovery of biogas is proportionally three times higher in these states than in France or in Belgium and six times that of Southern Europe. At a time when biogas appears in the European 'campaign for takeoff' as a sector likely to produce 'MW' in the short term, the identification of factors (including subsidies, purchase prices for energy and tax incentives) that have influenced the growth of methanation and recovery of biogas in certain countries hold valuable lessons for us all. (authors)

  10. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  11. Cholecalciferol (vitamin D₃ improves myelination and recovery after nerve injury.

    Directory of Open Access Journals (Sweden)

    Jean-Francois Chabas

    Full Text Available Previously, we demonstrated i that ergocalciferol (vitamin D2 increases axon diameter and potentiates nerve regeneration in a rat model of transected peripheral nerve and ii that cholecalciferol (vitamin D3 improves breathing and hyper-reflexia in a rat model of paraplegia. However, before bringing this molecule to the clinic, it was of prime importance i to assess which form - ergocalciferol versus cholecalciferol - and which dose were the most efficient and ii to identify the molecular pathways activated by this pleiotropic molecule. The rat left peroneal nerve was cut out on a length of 10 mm and autografted in an inverted position. Animals were treated with either cholecalciferol or ergocalciferol, at the dose of 100 or 500 IU/kg/day, or excipient (Vehicle, and compared to unlesioned rats (Control. Functional recovery of hindlimb was measured weekly, during 12 weeks, using the peroneal functional index. Ventilatory, motor and sensitive responses of the regenerated axons were recorded and histological analysis was performed. In parallel, to identify the genes regulated by vitamin D in dorsal root ganglia and/or Schwann cells, we performed an in vitro transcriptome study. We observed that cholecalciferol is more efficient than ergocalciferol and, when delivered at a high dose (500 IU/kg/day, cholecalciferol induces a significant locomotor and electrophysiological recovery. We also demonstrated that cholecalciferol increases i the number of preserved or newly formed axons in the proximal end, ii the mean axon diameter in the distal end, and iii neurite myelination in both distal and proximal ends. Finally, we found a modified expression of several genes involved in axogenesis and myelination, after 24 hours of vitamin supplementation. Our study is the first to demonstrate that vitamin D acts on myelination via the activation of several myelin-associated genes. It paves the way for future randomised controlled clinical trials for peripheral

  12. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  13. Completing the cycle : Energy and Resource Recovery Centres

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, D. [Pearl Earth Sciences, Corp., Ajax, Ontario (Canada)]. E-mail: ddickson@pearlearth.com

    2006-07-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline.

  14. Fast ferroelectric phase shifters for energy recovery linacs

    Directory of Open Access Journals (Sweden)

    S. Yu Kazakov

    2010-11-01

    Full Text Available Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ∼10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL. Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ∼30  ns for 77 deg, corresponding to <0.5  ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc. are discussed.

  15. Completing the cycle : Energy and Resource Recovery Centres

    International Nuclear Information System (INIS)

    Dickson, D.

    2006-01-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline

  16. Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Directory of Open Access Journals (Sweden)

    Yang Runkuan

    2011-11-01

    Full Text Available Abstract Background Acetaminophen (APAP overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0, the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose. Methods C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline. Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours. Results 72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration. Conclusion RLS improves liver recovery from APAP hepatotoxicity.

  17. IMPROVEMENT OF BIOFUEL ETHANOL RECOVERY USING THE PERVAPORATION SEPARATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Nilufer Durmaz Hilmioglu [Kocaeli University Chemical Engineering Department Veziroglu Campus, Kocaeli (Turkey)

    2008-09-30

    The climatic impact of carbon dioxide emissions from the burning of fossil fuels have become a major problem. The production of renewable biofuels from biomass has received increasing attention. Because of the economic and environmental benefits of fuel ethanol's use it is considered one of the most important renewable fuels. In ethanol fermentations inhibition of the microorganism by ethanol limits the amount of substrate in the feed that can be converted. In a process high feed concentrations are desirable to minimize the flows. Such high feed concentrations can be realized in integrated processes in which ethanol is recovered by pervaporation from the fermentation broth as it is formed. The hybrid process is an attractive process to increase ethanol production economics and to decrease environmental pollution. The separaiton of alcohol from mixtures with ethanol produced by fermentation is usually carried out by distillation and the energy consumption is very high when azeotropic concentration is reached, which corresponds to 5% water in ethanol/water mixture. The pervaporation process provides an economical alternative to the existing distillation technique. A continous recovery of alcohol could be achieved by using the pervaporation process during fermentation, making the process more energy efficient. In this work, for the purposes of membrane material development for pervaporation; zeolite filled and unfilled cellulose acetate membranes were prepared. Zeolite types were 4A, 13X. The effect of incorporation of nano-sized zeolites prepared in a colloidal form in membranes was also investigated. From the sorption tests it is concluded that, ethanol/water azeotropy can be breaked by pervaporation.

  18. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  19. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  20. Improved timing recovery in wireless mobile receivers | Olwal ...

    African Journals Online (AJOL)

    The problem of timing recovery in wireless mobile receiver systems is critical. This is partly because timing recovery functions must follow rapid parameter changes inherent in mobile systems and partly because both bandwidth and power must be conserved in low signal to noise ratio communication channels. The ultimate ...

  1. Sensory stimulation programme to improve recovery in comatose patients.

    Science.gov (United States)

    Oh, Hyunsoo; Seo, Whasook

    2003-05-01

    The purpose of this study was to examine whether positive changes in consciousness level after applying a sensory stimulation programme exceed natural recovery. A single experimental group interrupted time series design was used. Subjects were brain-injured patients who were hospitalized at a university hospital in South Korea. The sensory stimulation programme was composed of auditory, visual, olfactory, gustatory, tactile and physical stimulation. Levels of consciousness were evaluated using the Glasgow Coma Scale. The intervention was carried out twice, first for 4 weeks, then a recession period was allowed for 4 weeks, and immediately after this the second intervention was implemented for 4 weeks. Results showed significant alterations in consciousness levels 2 weeks after starting intervention 1. This effect increased gradually and was maintained for 3-4 weeks. However, consciousness levels began to decrease 2 weeks after terminating intervention 1 and this decrement continued until starting intervention 2. The pattern of improvement of intervention 1 could be represented as a gradual onset and temporary duration model. At the beginning of intervention 2, consciousness levels were maintained at a low level. However, they began to increase again after 2 weeks and this increment continued even after terminating intervention 2. Therefore, the effect of intervention 2 could be represented as a gradual onset and permanent duration model. These results suggest that an intervention programme should be applied for more than 1 month to achieve a permanent effect on consciousness levels and that at least 2 weeks are required for any significant effect.

  2. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  3. The FFAG return loop for the CBETA Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-28

    The CBETA energy recovery linac uses a single xed eld alternating gradient (FFAG) beam line to return the beam for electron beams with four energies, ranging from 42 MeV to 150 MeV. To keep the beam line compact, the ends of the return line have a small radius of curvature, but the central part of the return line is straight. These are connected by transition lines that adiabatically change from one to the other. We rst describe the design or the arc cell. We then describe how a straight cell is created to be a good match to this arc cell. We then describe the design of the transition line between them. The design process makes use of eld maps for the desired magnets. Because we switch magnet types as we move from the arc, through the transition, and into the straight, there are discrete jumps in the elds that degrade the adiabaticity of the transition, and we describe corrections to manage that.

  4. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ENERGY RECOVERY FOR CONTINUOUS DYEING PROCESS IN TEXTILE INDUSTRY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper ascertains and presents alteration in the energy consumption as a consequence of utilizing the low-temperature waste streams commonly used in the lines of continuous dyeing at the finishing shops of textile enterprises of Belarus. The utilization realizes through the engagement of lithium-bromide absorption heat pumps with various energy characteristics such as the heating coefficient (relative conversion ratio COPhp = 1,15; 1,7; 2,2 and the heating capacity. The latter associates with the converted heat-flow energy utilization variant with the heat-transfer medium heating system scheme (one-, twoand multistage heating. The article considers transition to previously not applied service-water preheating due to the technological acceptance of feeding higher temperature water into the dyeing machine and widening specification of the heattransfer media. The authors adduce variants of internal and external energy use and their evaluation based on the relative energy and exergy characteristics. With results of the thermodynamic analysis of the modernized production effectiveness the researchers prove that alongside with traditional and apparent interior utilization of the energy associated with the stream heat recuperation, it is advisable to widen the range of applied heat-transfer media. The transition to the service water twoand multi-stage preheating is feasible. The study shows that the existing energy supply efficiency extremely low index-numbers improve by one or two degrees. Since they are conditioned, inter alia, by the machinery design, traditional approach to energy supply and heat-medium usage as well as the enterprise whole heating system answering requirements of the bygone era of cheap energy resources. The authors examine the continuous dyeing line modernization options intending considerable investments. Preliminary economic assessment of such inevitable modernization options for the enterprise entire heat-and-power system

  6. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  7. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  8. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Trucks, Daimler [Daimler Trucks North America Llc, Portland, OR (United States)

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  9. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process

    Directory of Open Access Journals (Sweden)

    Janet L. Rachlow

    2013-08-01

    Full Text Available United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1 if a current population size was given, (2 if a measure of uncertainty or variance was associated with current estimates of population size and (3 if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.

  10. Proposed continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    J. Sekutowicz; S. A. Bogacz; D. Douglas; P. Kneisel; G. P. Williams; M. Ferrario; L. Serafini; I. Ben-Zvi; J. Rose; J. Smedley; T. Srinivasan-Rao; W.-D. Moeller; B. Petersen; D. Proch; S. Simrock; P. Colestock; J. B. Rosenzweig

    2004-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  11. Continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; Bogacz, S. A.; Douglas, D.; Kneisel, Peter; Williams, G. P.; Ferrario, M.; Serafini, L.; Ben-Zvi, I.; Rose, J.; Srinivasan-Rao, T.; Mueller, W.-D.; Petersen, B.; Proch, D.; Simrock, S.; Colestock, P.; Rosenzweig, J. B.

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  12. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  13. Can energy forecasts be improved?

    International Nuclear Information System (INIS)

    Rech, O.; Alban, P.

    2000-01-01

    Within the present day context of energy, characterized by the gap between short term trends and long term risks, forecasting takes on particular interest. We based our study on the evaluation of the results of some of these long term (2020) and very long term (2050) forecasts. This article looks at the overall demand for energy, whereas the evolution of each primary energy will be handled in a future article. We are restricting our analysis to a global level despite the inherent limitations of such a choice. Our approach mainly concentrates on the dynamics of the phenomena. Thus, we have noticed a simultaneous slowing down since the 1960's of the demography, economy and energy. The revenue and energy consumption per capita do not elude this tendency. At the same time, energy production leads a steep downward tendency. All in all, the forecasts have a tendency to conflict more or less with these changes. In the majority of the scenarios the anticipated rhythms of economic change and energy consumption would indicate a sudden and abrupt inverse of current dynamics. We have noticed that the single use of the average annual rate of change is insufficient to clearly present the long term tendencies that follow curved and not linear paths. Diagnostic errors made in past analyses are likely to affect the models for forecasting, for which the inferred dynamics have not been fully apprehended

  14. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  16. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  17. Don't fix it, make it better! : using frontline service employees to improve recovery performance

    NARCIS (Netherlands)

    Heijden, van der G.A.H.; Schepers, J.J.L.; Nijssen, E.J.; Ordanini, A.

    2013-01-01

    This study examines how frontline service employees (FSEs) can learn from recovery services and improve their performance accordingly. While research recognizes that FSEs can fulfill an innovation role by sourcing customer knowledge and developing ideas for performance improvement, it remains

  18. Improved energy efficiency in sawmill drying system

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2014-01-01

    Highlights: • A heating system at a sawmill was investigated and improved. • Different impacts of external technologies at the energy usage were explored. • The heat and electricity consumption was analysed separate between technologies type. • The result point out a significant decrease of the biomass consumptions. - Abstract: The worldwide use of biomass has increased drastically during the last decade. At Swedish sawmills about half of the entering timber becomes lumber, with the remainder considered as by-product (biomass). A significant part of this biomass is used for internal heat production, mainly for forced drying of lumber in drying kilns. Large heat losses in kilns arise due to difficulties in recovering evaporative heat in moist air at low temperatures. This paper addresses the impact of available state-of-the-art technologies of heat recycling on the most common drying schemes used in Swedish sawmills. Simulations of different technologies were performed on an hourly basis to compare the heat and electricity demand with the different technologies. This was executed for a total sawmill and finally to the national level to assess the potential effects upon energy efficiency and biomass consumption. Since some techniques produce a surplus of heat the comparison has to include the whole sawmill. The impact on a national level shows the potential of the different investigated techniques. The results show that if air heat exchangers were introduced across all sawmills in Sweden, the heat demand would decrease by 0.3 TWh/year. The mechanical heat pump technology would decrease the heat demand by 5.6 TWh/year and would also produce a surplus for external heat sinks, though electricity demand would increase by 1 TWh/year. The open absorption system decreases the heat demand by 3.4 TWh/year on a national level, though at the same time there is a moderate increase in electricity demand of 0.05 TWh/year. Introducing actual energy prices in Sweden gives an

  19. Artificial Knee Joints Actuators with Energy Recovery Capabilities: A Comparison of Performance

    Directory of Open Access Journals (Sweden)

    Roberta Alò

    2016-01-01

    Full Text Available The human knee absorbs more energy than it expends in level ground walking. For this reason it would be useful if the actuation system of a wearable robot for lower limbs was able to recover energy thus improving portability. Presently, we recognize three promising technologies with energy recovery capabilities already available in the literature: the Series Elastic Actuator (SEA, the Clutchable Series Elastic Actuator (C-SEA, and the flywheel Infinitely Variable Transmission (F-IVT actuator. In this paper, a simulation model based comparison of the performance of these actuators is presented. The focus is on two performance indexes: the energy consumed by the electric motor per gait and the peak torque/power requested to the electric motor. Both quantities are related to the portability of the device: the former affects the size of the batteries for a given desired range; the latter affects the size and the weight of the electric motor. The results show that, besides some well-explained limitations of the presented methodology, the C-SEA is the most energy efficient whereas the F-IVT allows cutting down the motor torque/peak power strongly. The analysis also leads to defining how it is possible to improve the F-IVT to achieve a reduction of the energy consumption.

  20. Processes of energy recovery / energy valorization at low temperature levels. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Manificat, A.; Megret, O.

    2012-09-01

    This study aims to realize a state of art of the processes of energy recovery at low level of temperature and their valorizations. The information provided will target particularly the thermal systems of waste and biomass treatment. After reminding the adequate context of development with these solutions and define the scope of the current work, the study begins with the definition of different concepts such as low-grade heat (fatal energy) and exergy, and also the presentation of the fiscal environment as well as the economic and regulatory situation, with information about the TGAP, prices of energy and energy efficiency. The second chapter focuses on the different sources of energy at low temperature level that can be recoverable in order to assess their potentials and their characteristics. The Determination of the temperature range of these energy sources will be put in relation with the needs and demands of users from different industrial sectors. The third part of the study is a review of various technologies for energy recovery and valorization at low temperature. It is useful to distinguish different types of heat exchangers interesting to implement. Moreover, innovative processes allow us to consider new perspectives other than a direct use of heat recovered. For example, we can take into account systems for producing electricity (ORC cycle, hot air engines, thermoelectric conversion), or cold generation (sorption refrigeration machine, Thermo-ejector refrigeration machine) or techniques for energy storage with PCM (Phase Change Material). The last chapter deals to the achievement of four study cases written in the form of sheet and aimed at assess the applicability of the processes previously considered, concerning the field of waste. (authors)

  1. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  2. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus

    OpenAIRE

    Ashlynn S. Stillwell; David C. Hoppock; Michael E. Webber

    2010-01-01

    This manuscript uses data from the U.S. Environmental Protection Agency to analyze the potential for energy recovery from wastewater treatment plants via anaerobic digestion with biogas utilization and biosolids incineration with electricity generation. These energy recovery strategies could help offset the electricity consumption of the wastewater sector and represent possible areas for sustainable energy policy implementation. We estimate that anaerobic digestion could save 628 to 4,940 mil...

  3. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  4. Improving the energy labelling scheme

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup

    This report summarises the main results of an EU project on consumer response to energy labels in buildings. This report is mainly directed at Danish policy makers. The main focus is therefore on results that are relevant from a Danish point of view and on how they can be used to further strengthen...

  5. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  6. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  7. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    Science.gov (United States)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  8. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  9. Improving Energy Efficiency of Auxiliaries

    International Nuclear Information System (INIS)

    Carl T. Vuk

    2001-01-01

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines

  10. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    Science.gov (United States)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  11. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  13. Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure.

    Science.gov (United States)

    Pedizzi, C; Noya, I; Sarli, J; González-García, S; Lema, J M; Moreira, M T; Carballa, M

    2018-04-20

    The application of livestock manure on agricultural land is being restricted due to its significant content of phosphorus (P) and nitrogen (N), leading to eutrophication. At the same time, the growing demand for N and P mineral fertilizers is increasing their production costs and causing the depletion of natural phosphate rock deposits. In the present work, seven technologically feasible treatment schemes for energy (biogas) and nutrient recovery (e.g., struvite precipitation) and/or removal (e.g., partial nitritation/anammox) were evaluated from an environmental perspective. In general, while approaches based solely on energy recovery and use of digestate as fertilizer are commonly limited by community regulations, strategies pursuing the generation of high-quality struvite are not environmentally sound alternatives. In contrast, schemes that include further solid/liquid separation of the digestate improved the environmental profile, and their combination with an additional N-removal stage would lead to the most environmental-friendly framework. However, the preferred scenario was identified to be highly dependent on the particular conditions of each site, integrating environmental, social and economic criteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Potentials and limitations of energy recovery from municipal solid waste in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Schulenburg, Hong Giang

    2012-11-01

    The major aim of study is the evaluation of the potentials and limitations of energy recovery from MSW in Vietnam through a comparative assessment of the climate change impacts (via CO2-eq.) among waste-to-energy (WtE) options in order to select the suitable technique for waste management. Recovered energy by these waste management options is assumed to replace the energy from fossil fuels-based sources, including three power possibilities. A survey on national legal and institutional framework for solid waste management was therefore undertaken to point out the strength and weakness and suggest the developing and improvement policies in this field. A view on economic benefit is also one important objective and it represented in terms of ''CO2- Avoidance Cost'' among different investment options. Sensitivity analysis has been carried out with regard to the optimum technical parameters and the change of energy mix in 2020-2030 in order to assess the variations of overall GHGs impacts in Vietnam. Due to waste composition, the energy mix and legal framework on solid waste management at national level are not robust, therefore the outcomes of this study do not aim to select the best waste management approach or to pose the Vietnamese waste managers or decision makers under pressure. Instead, it endeavors to indicate the potential of GHGs savings and the economic benefits that could be gained by introducing WtE practices. It also aims to suggest the improvement of national legal framework in solid waste management and energy development plan in order to transfer the technical knowledge and experience on WtE technology from developed countries to Vietnam.

  15. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  16. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan; Ren, Lijiao; Siegert, Michael; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment

  17. Computational and experimental optimization of the exhaust air energy recovery wind turbine generator

    International Nuclear Information System (INIS)

    Tabatabaeikia, Seyedsaeed; Ghazali, Nik Nazri Bin Nik; Chong, Wen Tong; Shahizare, Behzad; Izadyar, Nima; Esmaeilzadeh, Alireza; Fazlizan, Ahmad

    2016-01-01

    Highlights: • Studying the viability of harvesting wasted energy by exhaust air recovery generator. • Optimizing the design using response surface methodology. • Validation of optimization and computation result by performing experimental tests. • Investigation of flow behaviour using computational fluid dynamic simulations. • Performing the technical and economic study of the exhaust air recovery generator. - Abstract: This paper studies the optimization of an innovative exhaust air recovery wind turbine generator through computational fluid dynamic (CFD) simulations. The optimization strategy aims to optimize the overall system energy generation and simultaneously guarantee that it does not violate the cooling tower performance in terms of decreasing airflow intake and increasing fan motor power consumption. The wind turbine rotor position, modifying diffuser plates, and introducing separator plates to the design are considered as the variable factors for the optimization. The generated power coefficient is selected as optimization objective. Unlike most of previous optimizations in field of wind turbines, in this study, response surface methodology (RSM) as a method of analytical procedures optimization has been utilised by using multivariate statistic techniques. A comprehensive study on CFD parameters including the mesh resolution, the turbulence model and transient time step values is presented. The system is simulated using SST K-ω turbulence model and then both computational and optimization results are validated by experimental data obtained in laboratory. Results show that the optimization strategy can improve the wind turbine generated power by 48.6% compared to baseline design. Meanwhile, it is able to enhance the fan intake airflow rate and decrease fan motor power consumption. The obtained optimization equations are also validated by both CFD and experimental results and a negligible deviation in range of 6–8.5% is observed.

  18. THE CALCULATION OF THE ENERGY RECOVERY ELECTRIFIED URBAN TRANSPORT DURING THE INSTALLATION DRIVE FOR TRACTION SUBSTATION

    Directory of Open Access Journals (Sweden)

    A. A. Sulim

    2014-01-01

    Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

  19. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trumbo, Bradly A. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Ahmann, Martin L. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Renholods, Jon F. [U.S. Army Corp. of Engineers, Walla Walla, WA (United States); Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  20. Enhanced Recovery Pathways for Improving Outcomes After Minimally Invasive Gynecologic Oncology Surgery.

    Science.gov (United States)

    Chapman, Jocelyn S; Roddy, Erika; Ueda, Stefanie; Brooks, Rebecca; Chen, Lee-Lynn; Chen, Lee-May

    2016-07-01

    To estimate whether an enhanced recovery after surgery pathway facilitates early recovery and discharge in gynecologic oncology patients undergoing minimally invasive surgery. This was a retrospective case-control study. Consecutive gynecologic oncology patients undergoing laparoscopic or robotic surgery between July 1 and November 5, 2014, were treated on an enhanced recovery pathway. Enhanced recovery pathway components included patient education, multimodal analgesia, opioid minimization, nausea prophylaxis as well as early catheter removal, ambulation, and feeding. Cases were matched in a one-to-two ratio with historical control patients on the basis of surgery type and age. Primary endpoints were length of hospital stay, rates of discharge by noon, 30-day hospital readmission rates, and hospital costs. There were 165 patients included in the final cohort, 55 of whom were enhanced recovery pathway patients. Enhanced recovery patients were more likely to be discharged on postoperative day 1 compared with patients in the control group (91% compared with 60%, Pcontrol patients (P=.03). Postoperative pain scores decreased (2.6 compared with 3.12, P=.03) despite a 30% reduction in opioid use. Average total hospital costs were decreased by 12% in the enhanced recovery group ($13,771 compared with $15,649, P=.01). Readmission rates, mortality, and reoperation rates did not differ between the two groups. An enhanced recovery pathway in patients undergoing gynecologic oncology minimally invasive surgery is associated with significant improvements in recovery time, decreased pain despite reduced opioid use, and overall lower hospital costs.

  1. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  2. Heart rate recovery improves after weight loss in overweight and obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Thomson, Rebecca L; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M; Norman, Robert J; Brinkworth, Grant D

    2010-03-01

    To determine the effects of weight loss on heart rate recovery (HRR) in overweight women with polycystic ovary syndrome (PCOS). A 10-week prospective clinical intervention. Clinical research unit. Fifty-seven overweight and obese women with PCOS (age: 29.8 +/- 0.8 years; body mass index [BMI] 36.2 +/- 0.7 kg/m(2)). A dietary plan of 5-6 MJ/day ( approximately 30% energy restricted). Heart rate recovery (defined as the reduction in heart rate after 1 minute from peak heart rate after a graded treadmill test to exhaustion), weight, waist circumference, blood pressure, glucose, insulin, homeostasis model assessment of insulin resistance, and sex steroids before and after the intervention. The mean percentage of weight loss was (-6.7 +/- 0.4%). There were significant reductions in waist circumference (-6.9 +/- 0.6 cm), blood pressure (-4.9/-2.5 +/- 1.2/1.2 mm Hg), fasting insulin (-3.4 +/- 0.7 mU/L), fasting glucose (-0.17 +/- 0.05 mmol/L), homeostasis model assessment of insulin resistance (-0.43 +/- 0.09), T (-0.38 +/- 0.07 nmol/L), free androgen index (-2.86 +/- 0.58), and an increase in sex hormone-binding globulin [SHBG] (5.86 +/- 1.12 nmol/L). The HRR improved from 30.9 +/- 1.1 to 38.0 +/- 1.1 beats/min and that was related to the reduction in body weight (r = -0.34) and waist circumference (r = -0.27). Weight loss in overweight and obese women with PCOS is associated with improvements in HRR, which suggests improved autonomic function. This highlights the importance of weight loss to reduce the cardiovascular disease risk in these women. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  3. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  4. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    Science.gov (United States)

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  5. Variation in emission and energy recovery concerning incident angle in a scheme recovering high energy ions by secondary electrons

    International Nuclear Information System (INIS)

    Wada, Takayuki; Konno, Shota; Nakamoto, Satoshi; Takeno, Hiromasa; Furuyama, Yuichi; Taniike, Akira

    2016-01-01

    As an energy recovery device for fast protons produced in D- 3 He nuclear fusion, secondary electron (SE) direct energy converter (SEDEC) was proposed in addition to traveling wave direct energy converter (TWDEC). Some protons passing through a TWDEC come into an SEDEC, where protons penetrate to a number of foil electrodes and emitted SEs are recovered. Following to a development of SE orbit control by magnetic field, dependence on incident angle of protons was examined to optimize structure of SEDEC. Based on a theoretical expectation, experiments were performed by changing incident angle of protons and variation in emission and energy recovery were measured. Both emission and energy recovery increased as the angle increased, and differences with theoretical expectation are discussed. (author)

  6. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  7. Possibilities of using energy recovery in underground mines

    Directory of Open Access Journals (Sweden)

    Obracaj Dariusz

    2018-01-01

    Full Text Available In underground mines, there are many sources of energy that are often irrecoverably lost and which could be used in the energy structure of a mine. Methane contained in the ventilation air, the water from the dewatering of the mines and the exhaust air from the mine shafts are the most important sources of energy available to a mine. Among other sources of energy available in a mine, you can also distinguish waste energy from the process of the desalination of water or energy from the waste. The report reviewed the sources of energy available in a mine, assessed the amount of recoverable energy and indicated the potential for its use.

  8. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  9. Australian mental health consumers contributions to the evaluation and improvement of recovery-oriented service provision.

    Science.gov (United States)

    Marshal, Sarah L; Oades, Lindsay G; Growe, Trevor P

    2010-01-01

    One key component of recovery-oriented mental health services, typically overlooked, involves genuine collaboration between researchers and consumers to evaluate and improve services delivered within a recovery framework. Eighteen mental health consumers working with staff who had received training in the Collaborative Recovery Model (CRM) took part in in-depth focus group meetings, of approximately 2.5 hours each, to generate feedback to guide improvement of the CRM and its use in mental health services. Consumers identified clear avenues for improvement for the CRM both specific to the model and broadly applicable to recovery-oriented service provision. Findings suggest consumers want to be more engaged and empowered in the use of the CRM from the outset. Improved sampling procedures may have led to the identification of additional dissatisfied consumers. Collaboration with mental health consumers in the evaluation and improvement of recovery-oriented practice is crucial with an emphasis on rebuilding mental health services that are genuinely oriented to support recovery.

  10. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  11. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  12. Improved surfactants formulation for remediation of oil sludge recovery

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Shahidan Radiman

    2000-01-01

    Surfactant enhanced remediation based on mobilisation of the residual NAPLs (oil sludge) which is radioactive depends on the tendency of the surfactants to lower interfacial tension. Mobilisation has greater potential than solubilisation to increase the rate of remediation. Optimised surfactants formulation was determined with concentration of Aqua 2000 and D Bond of 1% wt respectively, sodium chloride concentration of 2 gmL -1 and addition of 3% wt butanol as cosolvent. The formulation was of benefit not only able to decrease further the interfacial tension of aqueous solution containing oil emulsion, but also to make possible to be more mobile and destruction of mixed liquid crystals that formed. Formation of liquid crystals can hinders significantly recovery efficiency of aqueous solution containing oil emulsion in field remediation work. In a 100 litres soil column experiment conducted containing oil emulsion in field sludge soil and using the surfactants formulation for flushing, miniemulsion formed sizes maintained at average size between 125 nm and 280 nm before and after remediation. Total oil and grease concentration removed from the soil were significant due to the decreased in oil emulsion sizes, increase mobility and solubility. (Author)

  13. Design and Control of a Multi-Functional Energy Recovery Power Accumulator Battery Pack Testing System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-03-01

    Full Text Available In this paper, aiming at the energy loss and harmonic problems in the conventional power accumulator battery pack testing system (PABPTS, an improved multi-functional energy recovery PABPTS (ERPABPTS for electric vehicles (EVs was proposed. The improved system has the functions of harmonic detection, suppression, reactive compensation and energy recovery. The ERPABPTS, which contains a bi-directional buck-boost direct current (DC-DC converter and a bi-directional alternating current (AC-DC converter with an inductor-capacitor-inductor (LCL type filter interfacing to the AC-grid, is proposed. System configuration and operation principle of the combined system are discussed first, then, the reactive compensation and harmonic suppression controller under balanced grid-voltage condition are presented. Design of a fourth order band-pass Butterworth filter for current harmonic detection is put forward, and the reactive compensator design procedure considering the non-linear load is also illustrated. The proposed scheme is implemented in a 175-kW prototype in the laboratory. Simulation and experimental results show that the combined configuration can effectively realize energy recovery for high accuracy current test requirement, meanwhile, can effectively achieve reactive compensation and current harmonic suppression.

  14. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  15. Maximizing recovery of energy and nutrients from urban wastewaters

    International Nuclear Information System (INIS)

    Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J.

    2016-01-01

    Historically, UWWs (urban wastewaters) that contain high levels of organic carbon, N (nitrogen), and P (phosphorous) have been considered an environmental burden and have been treated at the expense of significant energy input. With the advent of new pollution abatement technologies, UWWs are now being regarded as a renewable resource from which, useful chemicals and energy could be harvested. This study proposes an integrated, algal-based system that has the potential to treat UWWs to the desired discharge standards in a sustainable manner while recovering high fraction of its energy content as well as its N- and P-contents for use as fertilizers. Key embodiments of the system being proposed are: i) cultivation of an extremophile microalga, Galdieria sulphuraria, in UWW for removal of carbon, N, and P via single-step by mixotrophic metabolism; ii) extraction of energy-rich biocrude and biochar from the cultivated biomass via hydrothermal processing; and, iii) enhancement of biomass productivity via partial recycling of the nutrient-rich AP (aqueous product) from hydrothermal-processed biomass to the cultivation step to optimize productivity, and formulation of fertilizers from the remaining AP. This paper presents a process model to simulate this integrated system, identify the optimal process conditions, and establish ranges for operational parameters. - Highlights: • Developed model for algal system for wastewater treatment/energy production. • Evaluated energy efficiency in algal wastewater treatment/energy production. • Optimized algal wastewater treatment/energy production. • Demonstrated feasibility of energy-positive wastewater treatment.

  16. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  17. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    International Nuclear Information System (INIS)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  18. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  19. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Kuric, Enida; Liu, Yawei

    2013-01-01

    cell-derived factor-1 (CXCL12). To mimic beneficial effects of EE, we studied the impact of inhibiting CXCL12 action on functional recovery after transient MCAO (tMCAO). Rats treated with the specific CXCL12 receptor antagonist 1-[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl]-1......After stroke, brain inflammation in the ischemic hemisphere hampers brain tissue reorganization and functional recovery. Housing rats in an enriched environment (EE) dramatically improves recovery of lost neurologic functions after experimental stroke. We show here that rats housed in EE after......,4,8,11-tetrazacyclo-tetradecan (AMD3100) showed improved recovery compared with saline-treated rats after tMCAO, without a concomitant reduction in infarct size. This was accompanied by a reduction of infiltrating immune cells in the ischemic hemisphere, particularly cluster of differentiation 3-positive (CD3...

  20. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    Science.gov (United States)

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Improving older frail hip fracture patients’ experience and recovery:

    DEFF Research Database (Denmark)

    Bagger, Bettan; Taylor Kelly, Hélène; Kjøller varmarken, Tine

    Background: An Interregional Project named Pro-hip aims at improving hip surgery patients’ outcomes based on best evidence in relation to rehabilitation; nutrition; urine retention; delirium and pressure ulcers. This presentation is an introduction to a new evidence based standard developed...

  2. Improved optimum condition for recovery and measurement of 210 ...

    African Journals Online (AJOL)

    The aim of this study was to determine the optimum conditions for deposition of 210Po and evaluate the accuracy and precision of the results for its determination in environmental samples. To improve the technique for measurement of polonium-210(210Po) in environmental samples. The optimization of five factors (volume ...

  3. Optimized energy recovery in line with balancing of an ATES

    NARCIS (Netherlands)

    Behi, M.; Mirmohammadi, S.A.; Suma, A.B.; Palm, B.E.

    2014-01-01

    The present study explores the potential imbalance problem of the Aquifer Thermal Energy Storage (ATES) system at the Eindhoven University of Technology (TU/e) campus, Eindhoven. This ATES is one of the largest European aquifer thermal energy storage systems, and has a seasonal imbalance problem.

  4. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  5. Recovery Act. Development of a Model Energy Conservation Training Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  6. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  7. Methods and compositions for improving secondary recovery of oil

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, B.; Raymond, R.L.; Douros, J.D. Jr.

    1964-12-22

    In a waterflood process, the waterflood is improved by incorporating with it a microorganism growth-inhibiting amount of a di-substituted naphthalene of the structure: wherein R and R's are substituents selected from the group consisting of (1) hydroxy, (2) hydroxyalkyl, (3) carboxy, (4) the salts of carboxy, and (5) the oxides of hydroxynaphthalene (the hydroxyalkyl and carboxy substituents each having from 1 to 6 carbon atoms). (7 claims)

  8. Surfactant-Polymer Interaction for Improved Oil Recovery; FINAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-01

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering

  9. The new paradigm of recovery from schizophrenia: cultural conundrums of improvement without cure.

    Science.gov (United States)

    Jenkins, Janis H; Carpenter-Song, Elizabeth

    2005-12-01

    This article is a qualitative investigation of the subjective experience of recovery from the perspective of persons living with schizophrenia-related disorders. An NIMH-sponsored ethnographic study of community outpatient clinics was completed for 90 persons taking second-generation antipsychotic medications. Research diagnostic criteria and clinical ratings were obtained in tandem with an anthropologically developed Subjective Experience of Medication Interview (SEMI) that elicits narrative data on everyday life and activities, medication and treatment, management of symptoms, expectations concerning recovery, and stigma. Ethnographic observations from diverse settings (clinics, public transportation, restaurants, homes) were also obtained. The primary findings are that recovery was experienced in relation to low levels of symptoms, the need to take medications to avoid hospitalization or psychotic episodes, and personal agency to struggle against the effects of illness. The majority of participants articulated their sense of illness recovery and expectation that their lives would improve. Improvement and recovery is an incremental, yet definitively discernable subjective process. Several problems were identified as part of this process surrounding cultural conflicts that generate the experience of ambivalence analyzed here as the "paradox of recovery without cure," irreconcilable "catch-22" dilemmas involving sacrifice (e.g., one must be "fat" or be "crazy"), and substantial stigma despite improvement in illness and everyday life experience.

  10. Energy upgrading measures improve also indoor climate

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Knudsen, Henrik Nellemose

    2014-01-01

    A new survey shows that the economy is what motivates Danish owners of single-family houses the most to start energy upgrading, and that improved indoor climate is also an important factor. After the upgrading, homeowners experience both improved economy and indoor climate. In a strategy...... to increase the number of homeowners who venture into a major energy upgrading of their house, the demonstrated positive side effects, more than energy savings, should be included in the communication to motivate homeowners. The barriers should be reduced by “taking the homeowners by the hand” and helping...... them to choose relevant energy-saving solutions as well as clarifying the financial consequences and opportunities....

  11. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems

    NARCIS (Netherlands)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Heijne, ter Annemiek; Sleutels, Tom H.J.A.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At

  12. 76 FR 71082 - Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application...

    Science.gov (United States)

    2011-11-16

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-9091; NRC-2011-0148] Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application; Notice of Intent To Prepare a... intent to prepare a supplemental environmental impact statement. SUMMARY: Strata Energy, Inc. (Strata...

  13. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  14. Centrifugal washing and recovery as an improved method for obtaining lignin precipitated from South African kraft mill black liquor

    CSIR Research Space (South Africa)

    Namane, M

    2015-10-01

    Full Text Available This study describes centrifugal recovery as an improved method for collection of lignin isolated from black liquor obtained from a South African kraft mill. Precipitation of lignin was achieved by utilising 6 M sulphuric acid. Recovery...

  15. A regional synergy approach to energy recovery: The case of the Kwinana industrial area, Western Australia

    International Nuclear Information System (INIS)

    Beers, D. van; Biswas, W.K.

    2008-01-01

    Energy is a key issue in the Kwinana industrial area, Western Australia's major heavy industrial region, where the major energy consuming industries consume upto 80 PJ/yr of energy in their processes. Over the past decade, significant progress has been made towards the reduction of energy consumption and reduction of greenhouse gases in Kwinana. One way to further advance sustainable energy use is through the realisation of regional synergies. These concern the capture, recovery and reuse of by-products, water and energy between industries in close proximity. Kwinana is recognised as a leading edge example in regional synergy development, but more synergy opportunities appear to exist. The centre for sustainable resource processing (CSRP) is undertaking research to develop new synergies in Kwinana, including energy utility synergies. As part of the research, a methodology was developed and applied to identify and evaluate the economic, technical, and environmental feasibility of collaborative energy recovery opportunities from industry flue gases in Kwinana. The trial application demonstrated the significant potential to mitigate CO 2 emissions through energy recovery from flue gases by applying technologies to convert the embedded energy into useful thermal and electric applications. This article discusses the methodology and outcomes from the trial applications, including the impact of carbon taxes, reducing costs of emerging technologies, and increasing energy prices

  16. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  17. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  18. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  19. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  20. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption

    International Nuclear Information System (INIS)

    Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus

    2010-01-01

    This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.

  1. Improving coal flotation recovery using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Peter Koh [CSIRO Minerals (Australia)

    2009-06-15

    This work involves using the latest advances in computational fluid dynamics (CFD) to increase understanding of the hydrodynamics in coal flotation and to identify any opportunities to improve design and operation of both the Microcel column and Jameson cell. The CSIRO CFD model incorporates micro-processes from cell hydrodynamics that affect particle-bubble attachments and detachments. CFD simulation results include the liquid velocities, turbulent dissipation rates, gas hold-up, particle-bubble attachment rates and detachment rates. This work has demonstrated that CFD modelling is a cost effective means of developing an understanding of particle-bubble attachments and detachments, and can be used to identify and test potential cell or process modifications.

  2. Development of NMRI spectroscopy for improved petroleum recovery, Annex 6

    Energy Technology Data Exchange (ETDEWEB)

    Barrufet, M.A.; Flumerfelt, R.W.; Jennings, J.W.; Walsh, M.P.; Watson, A.T.

    1991-01-01

    The overall objectives are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are to: (1) develop NMRI procedures for measuring porosity, permeability, pore size distribution, capillary pressure, and wetting characteristics, (2) apply imaging methods for improved methods of determining two- and three-phase relative permeability functions, (3) apply NMRI for development of a better understanding of dispersed phase displacement processes, and (4) apply imaging methods to develop a better understanding of saturation distribution and fingering during miscible displacements. The objectives have been organized into four subtasks. Annual progress reports for each subtask are provided.

  3. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  4. Energy uses and recovery in sludge disposal, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [Stanford Research Inst., Menlo Park, CA; Bomberger, D C; Lewis, F M

    1977-08-01

    Capital and operating costs were compared for 3 plant capacities having average dry weather flows of 10, 100, and 500 mgd. Five sludge handling options were considered. They were chemical conditioning with vacuum filtration, low pressure wet air oxidation, high pressure wet air oxidation aerobic and anaerobic digestion, and chemical oxidation with filter press dewatering. The plant sizes considered generated 11.5, 77, and 384 TPD of sludge. High pressure wet air oxidation and aerobic digestion operating costs were the most sensitive to electrical power costs, while the 2 incineration options without heat treatment were the least sensitive. Sludge drying and incineration of a 20% solids cake were the most sensitive to fuel costs, while aerobic and anaerobic digestion were not directly affected. Heat treatment of sludge and dewatering to a 40% cake had the lowest fuel requirements of the 3 incineration options but increased the total plant electric power consumption by >25%. The net Btus consumed were compared. The net consumption was lowest for anaerobic digestion, filter press plus incineration, and heat treatment plus incineration. Excluding heat recovery credit except for steam required in sludge heat treating, these 3 options are still lowest in net Btus consumed.

  5. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    of the temperature dependence of the oil recovery indicated that the interaction of the ions contained in brine with the rock cannot be the only determining mechanism of enhanced recovery. We observed no substitution of Ca2+ ions with Mg2+ ions at high temperatures for both rocks. Not only the injection brine......In recent years, many core displacement experiments of oil by seawater performed on chalk rock samples have reported SO42–, Ca2+, and Mg2+ as potential determining ions for improving oil recovery. Most of these studies were carried out with outcrop chalk core plugs. The objective of this study...... is to investigate the potential of the advanced waterflooding process by carrying out experiments with reservoir chalk samples. The study results in a better understanding of the mechanisms involved in increasing the oil recovery with potential determining ions. We carried out waterflooding instead of spontaneous...

  6. Energy recovery ventilation as a radon mitigation method for Navy family housing in Guam

    International Nuclear Information System (INIS)

    1993-12-01

    Energy recovery ventilation involves the exchange of contaminated indoor air with fresh, uncontaminated outdoor air with recovery of energy. During radon mitigation diagnostics, air change measurements were performed within three typical Navy family houses, and some were found to be well below recommended minimum standards. The only practical way to solve the indoor air quality problem was to increase the ventilation rate. Options were evaluated, and it was decided to install energy recovery ventilation (ERV) systems. An ERV system is a packaged unit complete with blower fans, controls, and air-to-air heat exchanger. However, because of economical limits on the quantity of conditioned air that can be exchanged, ERV has a finite range of application in radon abatement. In Guam, ERV has potential applications in up to 370 units and in an additional 154 units if the mechanical systems are moved indoors. The performance of ERV systems were evaluated during a demonstration program to determine the removal efficiency of radon

  7. Improvements for conventional clean energies: hydroelectric power

    International Nuclear Information System (INIS)

    Henry, P.

    1991-01-01

    Hydro-electric energy offers considerable possibilities and advantages which should be exploited before considering the construction of power which use fossil fuels. In fact: - hydro-electric is the only renewable energy available in very large quantities at competitive prices, - there are still many possibilities for producing it since at present only 14% is exploited, - hydraulic machines have been considerably improved over recent years, - the improvements make it possible to use watercourses in successive stages thus considerably reducing damage to the environment, - hydro-electric installations have a regulating effect, - vast areas of uncultivated land can be irrigated using the water reserves created by the artificial lakes. All these reasons favour intensive exploitation of hydro-electric energy reserves, in spite of the initial investment costs, which are sometimes higher than those for constructing fuel/driven power stations. (author) 9 figs., 1 tab., 3 refs

  8. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  9. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  10. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  11. Energy recovery from air flow in underground railway systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, B.; Mariani, A. [Seconda Univ. degli studi di Napoli, Aversa (Italy). Dept. of Aerospace and Mechanical Engineering; Costanzo, M.L. [Tecnosistem spa, Napoli (Italy)

    2010-07-01

    The 20-20-20 energy policy of the European Union commits members to reduce carbon dioxide (CO{sub 2}) emissions by 20 per cent by 2020, and stipulates that 20 per cent of final-use energy is to be supplied by renewable energy sources. This paper proposed the concept of recovering energy from underground trains by using the air flow inside tunnels to drive energy conversion systems such as turbines to generate electricity. Underground trains use much of their power to overcome the aerodynamic resistance moving the air in front of the train, creating a piston effect when travelling inside tunnels at relatively low speed. Numerical simulations were used in this study to determine how much electricity could be produced. A one-dimensional numerical analysis of a specific subway train track was used to evaluate the air flow magnitude inside the tunnel. Once the air flow features were detected, the potential electricity production was evaluated by considering the characteristics of a Wells turbine. Two types of 3-dimensional models of the tunnel and train were presented. One considered a long straight tunnel with a train running in it, and a small portion of a bypass tunnel. The other considered a large part of an opposite tunnel connected to the main one through the by-pass tunnel. Both the 3D models revealed a maximum flow rate of 2.5 x 105 m{sup 3}/h, while the 1D model showed an air flow of 1.5 x 105 m{sup 3}/h. The difference was due primarily to the presence of fans in the 1D Model and different modelling assumptions. It was concluded that one single Wells type turbine placed in a by-pass tunnel can produce 32.6 kWh per day, or about 10 MWh per year, resulting in a CO{sub 2} savings of about 5.5 tons per year. 8 refs., 1 tab., 11 figs.

  12. Energy recovery from municipal solid waste, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.L.

    1976-06-01

    The environmental and safety aspects of processing municipal solid wastes to recover energy and materials are reviewed in some detail. The state of the art in energy recovery, energy potential for the near and long-term, and constraints to commercialization are discussed. Under the environmental and safety aspects the state of the art, need for research and development, and need for coordination among federal agencies and private industry are considered. Eleven principal types of refuse-to-energy processes are described and a projected energy balance is derived for each process. (JSR)

  13. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  14. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  15. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  16. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  17. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  18. Improvement of powertrain efficiency through energy breakdown analysis

    International Nuclear Information System (INIS)

    Damiani, Lorenzo; Repetto, Matteo; Prato, Alessandro Pini

    2014-01-01

    Highlights: • Energy breakdown analysis for the vehicular powertrain. • Model for road vehicles simulation in different missions. • Implemented powertrain management strategies: intelligent gearbox, Stop and Start, free wheel. • Innovative hybrid powertrain turned to engine thermodynamic cycles minimization. • Evaluation of fuel savings associated to each management strategy. - Abstract: A vehicular powertrain can be thought as an energy conversion chain, each component being characterized by its efficiency. Significant global efficiency improvements can be achieved once is identified the system energy breakdown, individuating the losses connected to each powertrain component; it is then possible to carry out the most appropriate interventions. This paper presents a simulation study of a diesel-fuelled commercial vehicle powertrain based on the above summarized point of view. The work aims at individuating the energy flows involved in the system during different missions, proposing an intelligent combination of technical solutions which minimize fuel consumption. Through a validated Matlab–Simulink model, able to indicate the powertrain energy breakdown, simulations are carried out to evaluate the fuel saving associated to a series of powertrain management logics which lead to the minimization of engine losses, the recovery of reverse power in deceleration and braking, the elimination of useless engine cycles. Tests were performed for different real missions (urban, extra-urban and highway). The results obtained point out a –23% fuel consumption (average value for urban, extra-urban and highway missions) compared to the traditional powertrain. Clearly, such result affects positively the CO 2 emission

  19. Special Report "The American Recovery and Reinvestment Act and the Department of Energy"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or

  20. PV in Japan - improving energy security?

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    Currently, almost 80% of Japan's primary energy is imported and about 50% of this comes from politically unstable countries. The Japanese are now working hard to improve energy security in a clean and sustainable fashion. Since the wind patterns are not favourable for wind power, the emphasis is on photovoltaics (PVs), and many companies that once manufactured integrated circuits are now working on solar cells where their knowledge and experience of mass production, quality control, sales and marketing stand them in good stead. It is expected that the Japanese will be world leaders in the making and export of solar equipment, as well as one of the world's greatest users

  1. Thermoelectric energy recovery at ionic-liquid/electrode interface

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salez, Thomas J. [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée (France)

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  2. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    Science.gov (United States)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  3. Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

    OpenAIRE

    Lu, Hongjiang

    2009-01-01

    Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the san...

  4. Improving energy efficiency in handheld biometric applications

    Science.gov (United States)

    Hoyle, David C.; Gale, John W.; Schultz, Robert C.; Rakvic, Ryan N.; Ives, Robert W.

    2012-06-01

    With improved smartphone and tablet technology, it is becoming increasingly feasible to implement powerful biometric recognition algorithms on portable devices. Typical iris recognition algorithms, such as Ridge Energy Direction (RED), utilize two-dimensional convolution in their implementation. This paper explores the energy consumption implications of 12 different methods of implementing two-dimensional convolution on a portable device. Typically, convolution is implemented using floating point operations. If a given algorithm implemented integer convolution vice floating point convolution, it could drastically reduce the energy consumed by the processor. The 12 methods compared include 4 major categories: Integer C, Integer Java, Floating Point C, and Floating Point Java. Each major category is further divided into 3 implementations: variable size looped convolution, static size looped convolution, and unrolled looped convolution. All testing was performed using the HTC Thunderbolt with energy measured directly using a Tektronix TDS5104B Digital Phosphor oscilloscope. Results indicate that energy savings as high as 75% are possible by using Integer C versus Floating Point C. Considering the relative proportion of processing time that convolution is responsible for in a typical algorithm, the savings in energy would likely result in significantly greater time between battery charges.

  5. Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that

  6. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Energy Technology Data Exchange (ETDEWEB)

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  7. Incomplete reporting of enhanced recovery elements and its impact on achieving quality improvement

    DEFF Research Database (Denmark)

    Day, R W; Fielder, S; Calhoun, J

    2015-01-01

    per cent), length of stay (47, 94 per cent) and mortality (45, 90 per cent). CONCLUSION: The current standard of reporting is frequently incomplete. To transfer knowledge and facilitate implementation of pathways that demonstrate improvements in perioperative care and recovery, a consistent structured...

  8. Platforms for energy and nutrient recovery from domestic wastewater: A review.

    Science.gov (United States)

    Batstone, D J; Hülsen, T; Mehta, C M; Keller, J

    2015-12-01

    Alternative domestic wastewater treatment processes that recover energy and nutrients while achieving acceptable nutrient limits (650mgCODL(-1). PRR offers the possibility for recovery of nitrogen and other nutrients (including potassium) through assimilative recovery. However, the energetic overhead of this is substantial, requiring 5kWhkgN(-1) as electricity, which compares to ammonia fixation costs. The lower energy costs, and near to market status of LEM treatment make it likely as a recovery platform in the shorter term, while ability to recover other elements such as nitrogen and potassium, as well as enhance favourability on concentrated wastewaters may enhance the desirability of partitioning in the longer term. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thermal comfort analysis of a low temperature waste energy recovery system. SIECHP

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Martin, R. [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain); Rey Martinez, F.J.; Velasco Gomez, E. [Departamento de Ingenieria Energetica y Fluidomecanica, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-07-01

    The use of a recovery device is justified in terms of energy savings and environmental concerns. But it is clear that the use of a recovery system also has to lead to controlling indoor environmental quality, nowadays a priority concern. In this article, experimental research has been carried out whose aim is to study the thermal comfort provided by a combined recovery equipment (SIECHP), consisting of a ceramic semi-indirect evaporative cooler (SIEC) and a heat pipe device (HP) to recover energy at low temperature in air-conditioning systems. To characterize this device empirically in terms of thermal comfort (TC), Fanger's predicted mean vote (PMV), draught rate, and vertical air temperature difference were used in this study as the TC criteria. (author)

  10. Energy saving certificates: an improved instrument

    International Nuclear Information System (INIS)

    2016-02-01

    This report first presents Energy Saving Certificates as one of among other instruments aimed at reducing energy consumption, and indicates how the French consumer is concerned. The benefits of this instrument are outlined: low cost, autonomy, awareness-raising, quantitative assessment of achieved energy savings. Its objectives and results since its creation in 2006 are commented, and the report outlines that this type of instrument is spreading over Europe. The authors show that its efficiency has been improved along the years due to a periodic review of standardised operation sheets, a simplification of the declaration, and an optimization of related programmes. Besides, targets have been better identified. The report outlines that assessment and controls must however be strengthened in order to reduce financial risks and potential drifts. Answers to this report by the concerned minister and ADEME are provided

  11. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  12. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  13. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    Science.gov (United States)

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  14. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  15. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  16. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  17. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  18. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  19. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Roepstorff, Carsten; Brandt, Nina

    2009-01-01

    This study evaluated whether improved insulin-stimulated glucose uptake in recovery from acute exercise coincides with reduced malonyl-CoA (MCoA) content in human muscle. Furthermore, we investigated whether a high-fat diet [65 energy-% (Fat)] would alter the content of MCoA and insulin action...... to be compromised, although to a minor extent, by the Fat diet. Collectively, this study indicates that reduced muscle MCoA content in recovery from exercise may be part of the adaptive response leading to improved insulin action on glucose uptake after exercise in human muscle....

  20. Feasibility study on energy conservation and environmental improvement at Pakistan Steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Feasibility study on energy conservation and environmental improvement was carried out with the aim of considering the realization of the CDM (clean development mechanism) project for reduction of global warming gas emissions and contributing to the environmental improvement and economic growth in Pakistan. In the study, projects on the following were studied: coke oven coal moisture control (CMC), sinter cooler waste heat recovery, blast furnace hot stove waste heat recovery, blast furnace pulverized coal injection (PCI), blast furnace top pressure recovery turbine (TRT), hot strip mill reheating furnace regenerative type burner, coke oven environmental improvement, and blast furnace cast house dust collection. As a result of the study, the implementation of the following three projects was regarded as promising in terms of energy conservation and economical effects: blast furnace pulverized coal injection, blast furnace top pressure recovery turbine and hot strip mill reheating furnace regenerative type burner. Further, the reduction in poisonous gas by the coke oven environmental improvement project was made a top priority. In Pakistan, the price of energy is kept low, and therefore, effects of energy conservation projects are not very much expected. However, the PCI project has an effect of substitution of low-priced domestic coal for imported coal. (NEDO)

  1. Anaerobic Digestion Performance in the Energy Recovery of Kiwi Residues

    Science.gov (United States)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    World production and trade of fruits generate losses in the harvest, post-harvest, handling, distribution and consumption phases, corresponding to 6.8% of total production. These residues present high potential as a substrate for the anaerobic digestion process and biogas generation. Thus, the energy valuation of the agro-industrial residues of kiwi production was evaluated by anaerobic digestion, aiming at optimizing the biogas production and its quality. Ten assays were carried out in a batch reactor (500 mL) under mesophilic conditions and varying a number of operational factors: different substrate/inoculum ratios; four distinct values for C: N ratio; inoculum from different digesters; and inoculum collected at different times of the year. The following parameters were used to control and monitor the process: pH, alkalinity, volatile fatty acids (VFA), volatile solids (VS) and chemical oxygen demand (COD). Among the tests performed, the best result obtained for the biogas production corresponded to the use of 2 g of substrate and 98 mL of inoculum of the anaerobic digester of the Wastewater Treatment Plant (WWTP) of Bragança, with addition of 150 mg of bicarbonate leading to a production of 1628 L biogas.kg-1 VS (57% methane). In relation to the biogas quality, the best result was obtained with 20 g of substrate and 380 mL of inoculum from the anaerobic digester sludge of WWTP of Ave (with addition 600 mg of sodium bicarbonate), presenting a value of 85% of CH4, with a production of 464 L biogas.kg-1 VS.

  2. Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing

    DEFF Research Database (Denmark)

    Govindan, Kannan; Jha, P. C.; Garg, Kiran

    2016-01-01

    that emerge from that business’s economical, environmental and social dimensions. In this paper, we propose a multi-objective mixed integer mathematical problem for a generic closed-loop supply chain (CLSC) network to rationalise how a system’s product recovery helps to improve manufacturing sustainability....... The CLSC network proposed in this study consists of a hybrid manufacturing facility, warehouse, distribution centres, collection centres and a hybrid recovery facility (HRF). The proposed model determines the best location for the HRF and optimal flow of products, recovered parts and material...

  3. Improving Vibration Energy Harvesting Using Dynamic Magnifier

    Directory of Open Access Journals (Sweden)

    Almuatasim Alomari

    2016-01-01

    Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.

  4. Feasibility analysis of a small-scale ORC energy recovery system for vehicular application

    International Nuclear Information System (INIS)

    Capata, Roberto; Toro, Claudia

    2014-01-01

    Highlights: • We analyzed the feasibility of an “on-board” ORC recovery system to power auxiliaries. • Performance of the ORC cycle has been simulated with CAMEL-Pro™. • Several relevant ORC components have been designed. • Approximate characteristics dimensions of HRSG and evaporator have been calculated and a preliminary layout provided. • The evaluation of a possible assembling of the system has been developed. - Abstract: This paper analyses the feasibility of an “on-board” innovative and patented ORC recovery system. The vehicle thermal source can be either a typical diesel engine (1400 cc) or a small gas turbine set (15–30 kW). The sensible heat recovered from the exhaust gases feeds the energy recovery system that can produce sufficient extra power to sustain the conditioning system and other auxiliaries. The concept is suitable for all types of thermally propelled vehicles, but it is studied here for automotive applications. The characteristics of the organic cycle-based recovery system are discussed, and a preliminary design of the main components, such as the heat recovery exchanger, the evaporator and the pre-heater is presented. The main challenge are the imposed size and weight limitations that require a particular design for this compact recovery system. A possible system layout is analyzed and the requirements for a prototypal application are investigated

  5. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  6. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  7. Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave

    International Nuclear Information System (INIS)

    Shooshtari, S.H. Rajaee; Shahsavand, A.

    2017-01-01

    Natural gases provide around a quarter of energy consumptions around the globe. Supersonic separators (3S) play multifaceted role in natural gas industry processing, especially for water and hydrocarbon dew point corrections. These states of the art devices have minimum energy requirement and favorable process economy compared to conventional facilities. Their relatively large pressure drops may limit their application in some situations. To maximize the energy recovery of the dew point correction facility, the pressure loss across the 3S unit should be minimized. The optimal structure of 3s unit (including shock wave location and diffuser angle) is selected using simultaneous combination of normal shock occurrence and condensation in the presence of nucleation and growth processes. The condense-free gas enters the non-isentropic normal shock wave. The simulation results indicate that the normal shock location, pressure recovery coefficient and onset position strongly vary up to a certain diffuser angle (β = 8°) with the maximum pressure recovery of 0.88 which leads to minimum potential energy loss. Computational fluid dynamic simulations show that separation of boundary layer does not happen for the computed optimal value of β and it is essentially constant when the inlet gas temperatures and pressures vary over a relatively broad range. - Highlights: • Supersonic separators have found numerous applications in oil and gas industries. • Maximum pressure recovery is crucial for such units to maximize energy efficiency. • Simultaneous condensation and shock wave occurrence are studied for the first time. • Diverging nozzle angle of 8° can provide maximum pressure recovery of 0.88. • The optimal diffuser angle remains constant over a broad range of inlet conditions.

  8. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  9. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-10-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower in water systems is being analysed to improve the overall energy efficiency. In this line, the present research is focused on the proposal and development of a novel optimization strategy for increasing the energy efficiency in pressurized irrigation networks by energy recovering. The recovered energy is maximized considering different objective functions, including feasibility index: the best energy converter must be selected, operating in its best efficiency conditions by variation of its rotational speed, providing the required flow in each moment. These flows (previously estimated through farmers’ habits are compared with registered values of flow in the main line with very suitable calibration results, getting a Nash–Sutcliffe value above 0.6 for different time intervals, and a PBIAS index below 10% in all time interval range. The methodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66% of the available energy, improving the recovered energy values between 141 and 184% when comparing to energy recovery considering a constant rotational speed. The proposal of this strategy shows the real possibility of installing micro hydropower machines to improve the water–energy nexus management in pressurized systems.

  10. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  11. MIOR - Microbial Improved Oil Recovery. Basics studies on the suitability of microorganisms for improved oil recovery. Final report; MIOR - Microbial Improved Oil Recovery. Grundlagen der Eignung von Mikroorganismen fuer die Verbesserung der Erdoelgewinnung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Naeveke, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Mikrobiologie; Fischer, K. [Technische Univ. Braunschweig (Germany). Inst. fuer Mikrobiologie; Timmis, K.N. [Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig (Germany); Yakimov, M. [Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig (Germany); Kroeger, A. [Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig (Germany); Bosecker, K. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Kruckemeyer, I. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Mengel-Jung, G. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Bock, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Schink, B. [Konstanz Univ. (Germany). Fachgebiet Mikrobielle Oekologie; Denger, K. [Konstanz Univ. (Germany). Fachgebiet Mikrobielle Oekologie; Kessel, D. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Amro, M. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Jacobs, G. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Hoffmann, G.G. [Institut fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Wagner, M. [Erdoel - Erdgas Gommern GmbH (Germany); Ziran, B. [Erdoel - Erdgas Gommern GmbH (Germany); Nowak, H.U. [Erdoel - Erdgas Gommern GmbH (Germany); Eins, I. [Erdoel - Erdgas Gommern GmbH (Germany); Rosenspiess, K. [Erdoel - Erdgas Gommern GmbH (Germany); Lungershausen, D. [Erdoel - Erdgas Gommern GmbH (Germany)

    1996-03-01

    Microbial improved oil recovery (MIOR) is the use of microorganisms or microbial products that are injected into the oil reservoir to improve oil flow. The aim of this project was the application of MIOR in case of clastic reservoir rocks of the type encountered typically in Northern Germany. Microorganisms were concentrated, insolated and characterized from samples that were taken from oil production wells, oil processing facilities and soil contaminated with hydrocarbons. More than 500 bacteria strains were investigated for ability to grow under anaerobic conditions, halotolerance, heat tolerance and production of substances that increase viscosity or are surface active. 39 strains were selected for specific tests and genetic investigations. The two bacteria strains Bacillus licheniformis BNP 29 and Sporohalobacter showed to the capable for MIOR. Dynamic flooding experiments were carried out under realistic reservoir conditions, in order to quantify the ability of the microorganisms to mobilize residual oil in place, as well as to investigate the oil mobilizing mechanisms in more detail. It could be shown that the injectivity and migration of the bacteria in porous media are ensured. The microorganisms are able to grow under reservoir conditions as present in oil reservoirs of Northern Germany. Their application in flooding experiments leads to a significant increase of oil recovery. The most important factors influencing the oil recovery are the reduction of the permeability of the reservoir pores and changes in the wettability because of the bacterial growth. A suitable nutrient medium with an acid buffer was developed for the application of MIOR in sandstone reservoirs. An executive summary is prublished in DGMK-Report 441-2/1. (orig.) [Deutsch] MIOR (microbial improved oil recovery)-Verfahren dienen dazu, den Entoelungsgrad einer Erdoellagerstaette durch den gezielten in-situ-Einsatz von geeigneten Mikroorganismen und deren Stoffwechselprodukten zu erhoehen

  12. Energy recovery from waste processing; La recuperation de l'energie issue du traitement des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, H.

    2000-07-15

    This report discusses the feasibility of energy production by waste reprocessing. After an analysis of the situation, the different steps of the methane and gas production, are detailed. Many scenari of energy efficiency are compared. The report proposes also solutions to enhance the treatment units of energy production. Propositions are discussed around five main axis: the energy improvement and the product improvement, the safety and the public health, the compensation by economical tools of the greenhouse effect impacts, the competition equilibrium between energy produced by the wastes and other energy forms and the decrease of the processing cost of wastes producing energy. (A.L.B.)

  13. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Science.gov (United States)

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  14. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  15. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  16. Community energy storage and distribution SCADA improvements

    International Nuclear Information System (INIS)

    Riggins, M.

    2010-01-01

    The mission of American Electric Power (AEP) is to sustain the real time balance of energy supply and demand. Approximately 2.5 percent of energy generated in the United States (USA) is stored as pumped hydro, compressed air, or in batteries and other devices. This power point presentation discussed the use of SCADA for improving community energy storage (CES) and distribution systems. CES is a distributed fleet of small energy units connected to the transformers in order to serve houses or small commercial loads. CES is operated as a fleet offering multi-megawatt (MW) multi-hour storage. The benefits of CES include backup power, flicker mitigation, and renewable integration. Benefits to the electricity grid include power factor correct, ancillary services, and load leveling at the substation level. SCADA is being used to determine when emergency load reductions are required or when emergency inspections on fans, oil pumps or other devices are needed. An outline of AEP's monitoring system installation plan was also included. tabs., figs.

  17. A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Seyedsaeed Tabatabaeikia

    2016-05-01

    Full Text Available Recovering energy from exhaust air systems of building cooling towers is an innovative idea. A specific wind turbine generator was designed in order to achieve this goal. This device consists of two Giromill vertical axis wind turbines (VAWT combined with four guide vanes and two diffuser plates. It was clear from previous literatures that no comprehensive flow behavior study had been carried out on this innovative device. Therefore, the working principle of this design was simulated using the Analysis System (ANSYS Fluent computational fluid dynamics (CFD package and the results were compared to experimental ones. It was perceived from the results that by introducing the diffusers and then the guide vanes, the overall power output of the wind turbine was improved by approximately 5% and 34%, respectively, compared to using VAWT alone. In the case of the diffusers, the optimum angle was found to be 7°, while for guide vanes A and B, it was 70° and 60° respectively. These results were in good agreement with experimental results obtained in the previous experimental study. Overall, it can be concluded that exhaust air recovery turbines are a promising form of green technology.

  18. Energy saving in the baking industry by more selective use of energy and by recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, L.; Nieman, W.; Rouwen, W.

    1986-01-01

    Approximately 7000 Tj energy are used yearly by the bakery industry in the Netherlands. Until now, very little is known about energy use in this sector, this being partly due to the extremely decentralised production. The aim of the study is to pinpoint and evaluate methods for energy saving and heat recovery in the bakery. Priority was given to the procedures or places where a large amount of energy is used or is lost. A second important part of the study is to identify the situations where energy can easly be saved in very simple ways. The study was subsidised by the European Economic Community, the Industry group for bakeries and the Dutch Ministry for Economic Affairs. Monitoring was in the hands of a committee, with representation by the Nederlandse Bakkerijstichting (Dutch Bakery Organisation), the Stichting Voorlichting Energiebesparing Nederland (Organisation for Information about Energy Conservation), the Ministry of Agriculture/Fisheries and the Ministry of Economic Affairs.

  19. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  20. Improving Service Utilization for Parents with Substance Abuse Problems: Experimenting with Recovery Coaches in Child Welfare.

    Science.gov (United States)

    Choi, Sam

    2015-01-01

    Substance abusers often face substantial systematic and personal barriers to receiving required substance abuse treatment services as well as other services; hence, various linkage mechanisms have been proposed for drug abuse treatment programs to overcome such barriers. Although there is a growing interest in the use of case management with a substance abuse background, its effectiveness in child welfare has yet to be explored. In this study the author attempts to investigate the effectiveness of case management in service utilization by systematically evaluating the five-year Alcohol and Other Drug Abuse (AODA) waiver demonstration project with Recovery Coaches in Illinois. A classic experimental design with a control group was used. Random assignment occurs at the agency level. Parents in the experimental group (N = 1562) received recovery coaches in addition to traditional child welfare services while parents in the control group (N = 598) only received traditional child welfare services. Bivariate and multivariate analyses (Ordinary Last Square regressions) were used. Compared to parents in the control group, parents in the experimental group were more likely to utilize substance abuse treatment. The results suggest that gender, education level, employment status, and the number of service needs were significantly associated with service utilization. Controlling other factors, recovery coaches improved overall service utilization. Because the outcome of child welfare often depends on the improvement of risks or resolution, it is important for parents to utilize the needed services. Future studies need to address what aspects of recovery coaches facilitate the services utilization.

  1. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Solar Energy for a Solvent Recovery Stage in a Biodiesel Production Process

    Directory of Open Access Journals (Sweden)

    José A. León

    2016-01-01

    Full Text Available Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year.

  3. Energetic recovery from LNG gasification plant : cold energy utilization in agro-alimentary industry

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.

    2009-01-01

    It is known how the complete gasification of liquefied natural gas (LNG) can return about 230 kWh/t of energy. Nevertheless out of 51 gasification plants in the world, only 31 of them are equipped with systems for the partial recovery of the available energy. At the moment most of these plants mainly produce electric energy; however the employment of the cold energy results very interesting, in fact, it can be recovered for agrofood transformation and conservation as well as for some loops in the cold chain. Cold energy at low temperatures requires high amounts of mechanical energy and it unavoidably increases as the required temperature diminishes. Cold energy recovery from LNG gasification would allow considerable energy and economic savings to these applications, as well as environmental benefits due to the reduction of climate-changing gas emissions. The task of this work is to assess the possibility to create around a gasification plant an industrial site for firms working on the transformation and conservation of agrofood products locally grown. The cold recovered from gasification would be distributed to those firms through an opportune liquid Co 2 network distribution capable of supplying the cold to the different facilities. A LNG gasification plant in a highly agricultural zone in Sicily would increase the worth of the agrofood production, lower transformation and conservation costs when compared to the traditional systems and bring economic and environmental benefits to the interested areas. [it

  4. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  5. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  6. Efficient recovery of uranium using genetically improved microalgae; Recuperacion eficaz de uranio utilizando microalgas geneticamente mejoradas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodas, V.; Conde Vilda, E.; Garcia-Balboa, C.

    2015-07-01

    We propose an alternative process for the efficient recovery of dissolved uranium based on genetically improved microalgae. We isolate Chlamydomonas cf. fonticola from a pond extremely contaminated by uranium (∼ 25 ppm) from ENUSA U-mine, Saelices (Salamanca, Spain). After a process of genetic improvement we obtained a strain capable to recover 115 mg of U per g of dry weight, by mean of bio-adsorption on the cell wall (mostly) and intra-cytoplasm bioaccumulation. Such a genetically improved microalgae resist extremes of acidity and pollution, but even its dead biomass is still able to recover a large amount of uranium. (Author)

  7. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  8. Walking but not barking improves verb recovery: implications for action observation treatment in aphasia rehabilitation.

    Directory of Open Access Journals (Sweden)

    Paola Marangolo

    Full Text Available Recent studies have shown that action observation treatment without concomitant verbal cue has a positive impact on the recovery of verb retrieval deficits in aphasic patients. In agreement with an embodied cognition viewpoint, a hypothesis has been advanced that gestures and language form a single communication system and words whose retrieval is facilitated by gestures are semantically represented through sensory-motor features. However, it is still an open question as to what extent this treatment approach works. Results from the recovery of motor deficits have suggested that action observation promotes motor recovery only for actions that are part of the motor repertoire of the observer. The aim of the present experiment was to further investigate the role of action observation treatment in verb recovery. In particular, we contrasted the effects induced by observing human actions (e.g. dancing, kicking, pointing, eating versus non human actions (e.g. barking, printing. Seven chronic aphasic patients with a selective deficit in verb retrieval underwent an intensive rehabilitation training that included five daily sessions over two consecutive weeks. Each subject was asked to carefully observe 115 video-clips of actions, one at a time and, after observing them, they had to produce the corresponding verb. Two groups of actions were randomly presented: humans versus nonhuman actions. In all patients, significant improvement in verb retrieval was found only by observing video-clips of human actions. Moreover, follow-up testing revealed long-term verb recovery that was still present two months after the two treatments had ended. In support of the multimodal concept representation's proposal, we suggest that just the observation of actions pertaining to the human motor repertoire is an effective rehabilitation approach for verb recovery.

  9. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  10. Improved Oil Recovery in Chalk. Spontaneous Imbibition affected by Wettability, Rock Framework and Interfacial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Milter, J.

    1996-12-31

    The author of this doctoral thesis aims to improve the oil recovery from fractured chalk reservoirs, i.e., maximize the area of swept zones and their displacement efficiencies. In order to identify an improved oil recovery method in chalk, it is necessary to study wettability of calcium carbonate and spontaneous imbibition potential. The thesis contains an investigation of thin films and wettability of single calcite surfaces. The results of thin film experiments are used to evaluate spontaneous imbibition experiments in different chalk types. The chalk types were described detailed enough to permit considering the influence of texture, pore size and pore throat size distributions, pore geometry, and surface roughness on wettability and spontaneous imbibition. Finally, impacts of interfacial tension by adding anionic and cationic surfactants to the imbibing water phase are studied at different wettabilities of a well known chalk material. 232 refs., 97 figs., 13 tabs.

  11. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  13. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  14. Level of satiety: In vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery

    International Nuclear Information System (INIS)

    Kasser, T.R.; Harris, R.B.; Martin, R.J.

    1989-01-01

    Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake)

  15. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  16. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  17. CONSTRUCTIVE MODELLING FOR ZONE OF RECOVERY ENERGY DISTRIBUTION OF DC TRACTION

    Directory of Open Access Journals (Sweden)

    V. I. Shynkarenko

    2016-10-01

    Full Text Available Purpose.The article is aimed to develop the means and methods of forming a plurality of real and potential structural diagrams for zones of energy recovery and different locations of trains for further training neuro-fuzzy networks on the basis of expert solutions and also for the formation of good control. Methodology. Methodology of mathematical and algorithmic constructivism for modeling the structural diagrams of the electric supply system and modes of traction power consumption and the train’s locations in zones of energy recovery was applied. This approach involves the development of constructive-synthesizing structures (CSS with transformation by specialization, interpretation, specification and implementation. Development CSS provides an extensible definition media, relations and the signature of operations and constructive axiomatic. The most complex and essential part of the axioms is the set formed by the substitution rules defining the process of withdrawal of the corresponding structures. Findings. A specialized and specified CSS, which allows considering all the possibilities and features, that supply power traction systems with modern equipment, stations and trains location was designed. Its feature: the semantic content of the terminal alphabet images of electrical traction network and power consumers with relevant attributes. A special case of the formation of the structural diagram shows the possibilities CSS in relation to this problem. Originality. A new approach to solving the problem of rational use of energy recovery, which consists in application of the methods and means of artificial neural networks, expert systems, fuzzy logic and mathematical and algorithmic constructivism. This paper presents the methods of constructive simulation of a production-distribution of energy recovery zone structure in the system of the DC traction. Practical value. The tasks decision of the rational use of energy recovery can

  18. Improvement of Particle Recovery Method for Uranium Isotope Analysis Using SIMS

    International Nuclear Information System (INIS)

    Kim, Taehee; Park, Jinkyu; Lee, Chi-Gyu; Lim, Sang Ho; Han, Sun-Ho

    2017-01-01

    In this study, we developed a new design of vacuum-suction impactor with wider inlet nozzle and outlet nozzle for guiding particles to disperse the particles on the surface of carbon planchet. We prepared simulated samples with lead dioxide and examined particle recovery yield and degree of dispersion using the conventional vacuum impactor and the newly designed ones with different inlet nozzle diameters. We tried to improve the inlet part of vacuum impactor, in order to increase the recovery yield and disperse the collected particle on carbon planchet. As the diameter of inlet nozzle became larger, the collected particles were better dispersed on planchet. In addition, when the inner diameter of the impactor was 3 mm or 5 mm, the recovery yield was higher than that of conventional impactor. Considering the degree of dispersion and recovery yield, we used the impactor with 5 mm exit diameter and recovered the mixed uranium standard materials for SIMS measurement. We were able to reduce the mixing effect and measure the isotopic ratio more accurately and precisely.

  19. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  20. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  1. Federal role in resource recovery will focus on waste-to-energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R.A.

    1981-05-01

    Virtually all of the federal programs created in recent years to sponsor resource recovery R and D have been slated for budget cuts or termination by the administration of President Ronald Reagan. The only programs that will survive revised fiscal budgets will be waste-to-energy R and D studies sponsored by DOE and EPA. Differing reactions to such cuts are apparent: the affected agencies are protesting, while private industry welcomes this hands-off policy.

  2. A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

    OpenAIRE

    Wang, Meng (Rachel); Danzl, Per; Mahulkar, Vishal; Piyabongkarn, Damrongrit (Neng); Brenner, Paul

    2016-01-01

    Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer pay...

  3. The European investment bank and financing the installation of urban refuse treatment plants with energy recovery

    International Nuclear Information System (INIS)

    Marty-Gauquie, H.

    1992-01-01

    The European Investment Bank (BEI), the world's leading international financing institution, with an annual loans total of 15.3 billion Ecus in 1991, every year finances a number of projects for the treatment of refuse, with energy recovery from waste and heat distribution. This article describes the missions of the BEI and the parameters taken into account for authorizing investment. (author). 2 figs., 2 tabs

  4. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  5. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  6. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  7. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Murphy, Mark B.

    1999-01-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry

  9. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  10. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  11. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    International Nuclear Information System (INIS)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2

  12. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents

  13. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient.

    Science.gov (United States)

    Jang, Sung Ho

    2013-01-01

    We report on a chronic stroke patient who showed motor recovery by improvement of limb-kinetic apraxia (LKA) after undergoing intensive rehabilitation for a period of one month, which was demonstrated by diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 50-year-old male patient presented with severe paralysis of the left extremities at the onset of thalamic hemorrhage. At thirty months after onset, the patient exhibited moderate weakness of his left upper and lower extremities. In addition, he exhibited a slow, clumsy, and mutilated movement pattern during grasp-release movements of his left hand. During a one-month period of intensive rehabilitation, which was started at thrity months after onset, the patient showed 22% motor recovery of the left extremities. The slow, clumsy, and mutilated movement pattern of the left hand almost disappeared. DTTs of the corticospinal tract (CST) in both hemispheres originated from the cerebral cortex, including the primary motor cortex, and passed along the known CST pathway. The DTT of the right CST was located anterior to the old hemorrhagic lesion. TMS study performed at thirty and thirty-one months after onset showed normal and similar findings for motor evoked potential in terms of latency and amplitude of the left hand muscle. We think that the motor weakness of the left extremities in this patient was mainly ascribed to LKA and that most of the motor recovery during a one-month period of rehabilitation was attributed to improvement of LKA.

  14. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    Science.gov (United States)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  15. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  16. A role for nuclear energy in the recovery of oil from the tar sands of Alberta

    International Nuclear Information System (INIS)

    Puttagunta, V.R.; Sochaski, R.O.; Robertson, R.F.S.

    1976-12-01

    Techniques of oil recovery from the tar sands and the energy requirements of this operation are described. Fossil fuels, and CANDU reactors are examined as competitive sources of energy for the tar sands plants. The CANDU-OCR reactor appears to have the necessary flexibility to fit into many of the possible methods of recovering oil from the tar sands. Cost comparisons of fossil and nuclear sources show that, for the supply of process steam, the nuclear source is competitive under the criteria of debt financing or low discount rates on capital, continued escalation, and long plant capital write-off period. (author)

  17. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  18. Passive solar energy recovery in non-transparent facades; Passive solare Energiegewinnung im nicht-transparenten Fassadenbereich

    Energy Technology Data Exchange (ETDEWEB)

    Liersch, K.W. [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl fuer Baukonstruktion und Bauphysik

    1999-10-01

    Evaluation of theoretical and practical studies has shown that non-bearing glass facades of reduced transparency hold a considerable potential for energy recovery. The most important factors governing this process are solar irradiation and inhibition of reflection in the long-wave range. Net energy recovery can be expressed in terms of the decrease of the mean effective heat transmission coefficient. The achievable gains are the smaller the more effective the heat insulating properties of the wall are, i.e. the lower the U-value of the non-transparent wall is. In the case of outer walls with additional heat insulation and a heat transmission coefficient of less than k{sub w} = approx. 0.25 W/ (m-2K) energy recovery is practically negligible, with little scope for improvement through facade orientation. [Deutsch] Die Auswertung der theoretischen und messtechnischen Untersuchungen zeigt, dass mittels einer vorgehaengten, reduziert transparenten Glasfassade betraechtliche Waermegewinne zu erzielen sind. Diese ergeben sich aus der Sonnenzustrahlung sowie der Behinderung langwelliger Waermeabstrahlung. Die Gewinne lassen sich durch eine Abminderung des mittleren effektiven Waermedurchgangskoeffizienten darstellen. Die zu erzielenden Gewinne sind allerdings um so geringer, je besser die sonstige waermeschutztechnische Ausruestung der betreffenden Wand, d.h. je niedriger der k-Wert der nicht-transparenten Wandflaeche ist. Das bedeutet, dass bei Aussenwaenden mit Zusatzdaemmung und einem Waermedurchgangskoeffizienten unterhalb k{sub W}{approx}0,25 W/(m{sup 2}K) der Gewinn nicht mehr nennenswert ist, wobei dann auch die Ausrichtung der Fassade zur Himmelsrichtung das Ergebnis nur noch in geringem Umfang beeinflusst. (orig.)

  19. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    DEFF Research Database (Denmark)

    Tonini, Davide; Dorini, Gianluca Fabio; Astrup, Thomas Fruergaard

    2014-01-01

    Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials...

  20. Multi-fuctional heat recovery systems. Really energy saving; Multifunktionale Waermerueckgewinnung. Wie man wirklich Energie spart

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Heinz [SEW Systemtechnik fuer Energierecycling und Waermeflussbegrenzung GmbH, Kempen (Germany)

    2009-10-15

    An energy saving leeds only to a correct optimized operation, if a demand-oriented total design is integrated into the building. In special for air-conditioning energy saving measures are presented and essential criteria named, to save in fact effectively, efficiently, reliably and profitably energy and enhance simultanously user quality. (orig./GL)

  1. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  2. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    Keiser, J.R.

    2001-01-01

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  3. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information

    Science.gov (United States)

    Aghakouchak, Amir; Tourian, Mohammad J.

    2015-04-01

    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014

  4. The effects of swimming and running on energy intake during 2 hours of recovery.

    Science.gov (United States)

    Lambert, C P; Flynn, M G; Braun, W A; Boardley, D J

    1999-12-01

    To determine energy intake in the 2 hrs after swimming (S) and running (R) at the same relative exercise intensity and duration (71.8 +/- 2.5% VO2max; 45 min) to evaluate whether a difference in recovery energy intake could explain the greater body fat observed in swimmers relative to runners. this was a randomized crossover design. running exercise was conducted on a motorized treadmill (Quinton) while swimming was conducted in a 45.7 m pool. eight well-trained competitive male triathletes participated in this investigation. subjects were blinded to the purpose of the study and swam and ran on separate occasions for 45 min at 71.8 +/- 2.5% of VO2max. Subjects were then placed in a room with a variety of foods and beverages for 2 hrs after R and S. energy intake (kJ/2 hrs and kcal/2 hrs) was determined by weighing and measuring the food remaining in the room after 2 hrs of postexercise recovery. Expired gases, heart rates, and Ratings of Perceived Exertion were obtained at 15 min intervals throughout exercise. Blood samples for serum glucose and lactate were obtained preexercise and immediately, 15 min, and 135 min postexercise. Perceived hunger and thirst ratings were obtained after the subjects were seated in the room containing the food. Serum glucose was significantly (p energy intake (4584 +/- 611 kJ/2 hrs; 1095 +/- 146 kcal/2 hrs for R and 4383 +/- 484 kJ/2 hrs; 1047 +/- 116 kcal for S) or blood lactate. The type of exercise, swimming or running, did not significantly influence energy intake during 2 hours of postexercise recovery.

  5. Visualized study of thermochemistry assisted steam flooding to improve oil recovery in heavy oil reservoir with glass micromodels

    NARCIS (Netherlands)

    Lyu, X.; Liu, Huiqing; Pang, Zhanxi; Sun, Zhixue

    2018-01-01

    Steam channeling, one serious problem in the process of steam flooding in heavy oil reservoir, decreases the sweep efficiency of steam to cause a lower oil recovery. Viscosity reducer and nitrogen foam, two effective methods to improve oil recovery with different mechanism, present a satisfactory

  6. Thermodynamic optimization opportunities for the recovery and utilization of residual energy and heat in China's iron and steel industry: A case study

    International Nuclear Information System (INIS)

    Chen, Lingen; Yang, Bo; Shen, Xun; Xie, Zhihui; Sun, Fengrui

    2015-01-01

    Analyses and optimizations of material flows and energy flows in iron and steel industry in the world are introduced in this paper. It is found that the recovery and utilization of residual energy and heat (RUREH) plays an important role for energy saving and CO 2 emission reduction no matter what method is used. Although the energy cascade utilization principle is carried out, the efficiency of RUREH in China's iron and steel industry (CISI) is only about 30%–50%, while the international advanced level is higher than 90%, such as USA, Japan, Sweden, etc. An important reason for the low efficiency of RUREH in CISI is that someone ignores the thermodynamic optimization opportunities for the energy recovery or utilization equipment, such as electricity production via waste heat boiler, sintering ore sensible heat recovery, heat transfer through heat exchangers, etc. A case study of hot blast stove flue gas sensible heat recovery and utilization is presented to illustrate the viewpoint above. The results show that before the heat conductance distribution optimization, the system can realize energy saving 76.2 kgce/h, profit 68.9 yuan/h, and CO 2 emission reduction 187.2 kg/h. While after the heat conductance distribution optimization, the system can realize energy saving 88.8 kgce/h, profit 92.5 yuan/h, and CO 2 emission reduction 218.2 kg/h, which are, respectively, improved by 16.5%, 34.2% and 16.5% than those before optimization. Thermodynamic optimization from the single equipment to the whole system of RUREH is a vital part in the future energy conservation work in CISI. - Highlights: • Material flows and energy flows in iron and steel industry are introduced. • Recovery and utilization of residual energy and heat plays an important role. • A case study of hot blast stove flue gas sensible heat recovery is presented. • Thermodynamic optimization for the system is performed. • Energy saving, profit, and CO 2 emission reduction improvements

  7. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    applied to highly load-fluctuating real WWTPs. To improve the overall efficiency of the heat recovery system, although the heat pump is the largest energy-consuming component, taking up 56.0–68.5% of the total energy, new efforts to develop a novel design are also needed to make the heat exchanger more energy-efficient.

  8. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    Science.gov (United States)

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-05-01

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An improved CO_2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO_2-based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO_2’s specific heat capacity. The supercritical property of CO_2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  10. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  11. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  12. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  13. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    Science.gov (United States)

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  14. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management....... In this study, focusing on recovery from waste-to-energy plants with basic and advanced BA treatment, the goal is to give an indication about quality of selected recovered resources (Fe, Al, and Cu) by means of exergy analysis. Metal flows are modeled through both incineration scenarios, and then chemical....... The results indicate that exergy losses due to mixing are insignificant as compared to chemical exergies of metals in all flows. Total exergy losses for Fe, Al, and Cu recovery in the two WtE systems range from 38% to 90%....

  16. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  17. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater desalination, and biosensors. Although the technologies are promising, a number of hurdles need to be overcome before that field applications are economically feasible. The main purpose of this work was to improve the performance, reduce the construction cost, and expand the application scopes of MFC-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main removal mechanism of nitrogen and phosphorus was algae biomass uptake, while nitrification and denitrification process contributed to part of nitrogen removal. The key factors such as algae concentration, COD/N ratios and photoperiod were systemically studied. A self-powered submersible microbial electrolysis cell was developed for in situ biohydrogen production from anaerobic reactors. The hydrogen production increased along with acetate and buffer concentration. The hydrogen production rate of 32.2 mL/L/d and yield of 1.43 mol-H2/mol-acetate were achieved. Alternate exchanging the function between the two cell units was found to be an effective approach to inhibit methanogens. A sensor, based on a submersible microbial fuel cell, was developed for in situ monitoring of microbial activity and biochemical oxygen demand in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Temperature, pH, conductivity and inorganic solid content were significantly affecting the sensitivity of the sensor. The sensor showed

  18. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis.

    Science.gov (United States)

    Wang, Junjuan; Wang, Jiaqiu; Lu, Ping; Cai, Youzhi; Wang, Yafei; Hong, Lan; Ren, Hao; Heng, Boon Chin; Liu, Hua; Zhou, Jing; Ouyang, Hongwei

    2015-09-01

    FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  20. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  1. Energy recovery in SUDS towards smart water grids: A case study

    International Nuclear Information System (INIS)

    Ramos, Helena M.; Teyssier, Charlotte; Samora, Irene; Schleiss, Anton J.

    2013-01-01

    The development of a methodology for urban flood adaptation and energy recovery solutions is resting on the concept of Sustainable Urban Drainage Systems (SUDS) as a measure to reduce risks of urban flooding while fully utilizing the available resources. Flood drainage systems are infrastructures essential in urban areas, which include retention ponds that can be used as water storage volumes to damp floods and simultaneously to produce energy, constituting innovative solutions to be integrated in future smart water grid′s designs. The consideration of urban flooding as a problem caused by excess water that can be harvested and re-used is expected to provide a comprehensive representation of a water-energy nexus for future urban areas. The study comprises an optimization of energy recovery in SUDS of a small district area of Lisbon down-town through the use of a low-head hydropower converter. The status-quo solution based on a basin catchment for the average expected runoff is analysed, with influence of the tidal backwater effect of the Atlantic Ocean which causes difficulties to the drainage of excess flow. The methodology used to reach the flow damping and the optimized solution for energy production is presented. -- Highlights: •An innovative solution for Sustainable Urban Drainage Systems (SUDS). •Use of retention ponds to reduce risks of urban flooding while producing energy. •Use of recently developed hydropower converters for low heads. •Solution to be integrated in future smart water networks for increasing efficiency. •Water and energy nexus for sustainable operation towards future smart cities

  2. Improving the rate of Cu+2 recovery from industrial wastewater using a vertical array of reciprocating perforated zin

    Directory of Open Access Journals (Sweden)

    A.H. El-Shazly

    2015-03-01

    Full Text Available This work investigates the possibility of improving the rate of Cu+2 recovery and/or removal from industrial wastewater by cementation technique using an array of pulsating horizontal perforated zinc discs. The results show that the rate of cementation was found to increase by increasing frequency and amplitude of oscillation (vibrating velocity; disc diameter; copper ion concentration and solution temperature while decreasing by increasing the disc separation. Under certain conditions using pulsating array of perforated zinc discs was found to increase the rate of mass transfer by a factor of 17 times the stagnant discs. The activation energy of the reaction was found to be 8.948 kcal/mol which indicates that under the present conditions cementation takes place under mixed control, i.e. the reaction is partially diffusion control. As such no overall mass transfer correlation could be obtained.

  3. Recovery of nitrogen fertilizer by traditional and improved rice cultivars in the Bhutan Highlands

    DEFF Research Database (Denmark)

    Ghaley, Bhim Bahadur; Jensen, Henning Høgh; Christiansen, Jørgen Lindskrog

    2010-01-01

    The recovery of soil derived nitrogen (NDFS) and fertilizer N (NDFF) was investigated in highland rice (Oryza sativa L.) fields in Bhutan, characterized by high inputs of farmyard manure (FYM). The effect of 60 kg N ha-1 (60 N) applied in two splits to a traditional and an improved cultivar......% respectively, with no difference between cultivars, but REN decreased with increasing FYM inputs. Fertilizer N recommendations that allow for previous FYM inputs combined with applications timed to coincide with maximum crop demand (45 DAT), and the use of improved cultivars, could enhance N fertilizer......, popular among the farmers, was investigated using the 15N isotope dilution technique. No differences were found between cultivars with respect to the uptake of NDFS and NDFF, but the improved cultivar yielded 27% more (P¿=¿0.05) grain compared with the traditional cultivar. This was largely due to its...

  4. Combining bleach and mild predigestion improves ancient DNA recovery from bones

    DEFF Research Database (Denmark)

    Boessenkool, Sanne; Hanghøj, Kristian Ebbesen; Nistelberger, Heidi M.

    2017-01-01

    library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre-extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains...... aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750-1350 cal. years before present. Using high...

  5. Improvement in deuterium recovery from water–isotope mixture by thermal diffusion in the device of branch columns

    International Nuclear Information System (INIS)

    Hsu, Ching-Chun; Yeh, Ho-Ming

    2014-01-01

    Highlights: • Recovery of deuterium by thermal diffusion from water–isotope mixture has been investigated. • The undesirable remixing effect can be reduced by employing the device of branch columns. • Deuterium recoveries were compared with that in a single column of the same total column length. • Considerable recovery improvement is obtainable in the device of branch columns, instead of in a single-column device. - Abstract: Deuterium recovery from water–isotopes mixture using thermal diffusion can be improved by employing the branch column device, instead of single column devices, with the same total column length. The remixing effect due to convection currents in a thermal diffusion column for heavy water enrichment is thus reduced and separation improvement increases when the flow rate or the total column length increases. The improvement in separation can reach about 50% for the numerical example given

  6. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    KAUST Repository

    Werner, Craig M.

    2013-02-01

    A microbial osmotic fuel cell (MOFC) has a forward osmosis (FO) membrane situated between the electrodes that enable desalinated water recovery along with power generation. Previous designs have required aerating the cathode chamber water, offsetting the benefits of power generation by power consumption for aeration. An air-cathode MOFC design was developed here to improve energy recovery, and the performance of this new design was compared to conventional microbial fuel cells containing a cation (CEM) or anion exchange membrane (AEM). Internal resistance of the MOFC was reduced with the FO membrane compared to the ion exchange membranes, resulting in a higher maximum power production (43W/m3) than that obtained with an AEM (40W/m3) or CEM (23W/m3). Acetate (carbon source) removal reached 90% in the MOFC; however, a small amount of acetate crossed the membrane to the catholyte. The initial water flux declined by 28% from cycle 1 to cycle 3 of operation but stabilized at 4.1L/m2/h over the final three batch cycles. This decline in water flux was due to membrane fouling. Overall desalination of the draw (synthetic seawater) solution was 35%. These results substantially improve the prospects for simultaneous wastewater treatment and seawater desalination in the same reactor. © 2012 Elsevier B.V.

  7. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  8. Improving access to important recovery information for heart patients with low health literacy: reflections on practice-based initiatives.

    Science.gov (United States)

    Naccarella, Lucio; Biuso, Catuscia; Jennings, Amanda; Patsamanis, Harry

    2018-05-29

    Evidence exists for the association between health literacy and heart health outcomes. Cardiac rehabilitation is critical for recovery from heart attack and reducing hospital readmissions. Despite this, literacy. This brief case study reflects and documents practice-based initiatives by Heart Foundation Victoria to improve access to recovery information for patients with low literacy levels. Three key initiatives, namely the Six Steps To Cardiac Recovery resource, the Love Your Heart book and the nurse ambassador program, were implemented informed by mixed methods that assessed need and capacity at the individual, organisational and systems levels. Key outcomes included increased access to recovery information for patients with low health literacy, nurse knowledge and confidence to engage with patients on recovery information, improved education of patients and improved availability and accessibility of information for patients in diverse formats. Given the challenges involved in addressing heart health literacy, multifaceted practice-based approaches are essential to improve access to recovery information for patients with low literacy levels. What is known about the topic? Significant challenges exist for patients with lower health literacy receiving recovery information after a heart attack in hospitals. What does this paper add? This case study provides insights into a practice-based initiative by Heart Foundation Victoria to improve access to recovery information for patients with low literacy levels. What are the implications for practitioners? Strategies to improve recovery through increased heart health literacy must address the needs of patients, nursing staff and the health system within hospitals. Such strategies need to be multifaceted and designed to build the capacity of nurses, heart patients and their carers, as well as support from hospital management.

  9. Improving Recovery and Outcomes Every Day after the ICU (IMPROVE): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Wang, Sophia; Hammes, Jessica; Khan, Sikandar; Gao, Sujuan; Harrawood, Amanda; Martinez, Stephanie; Moser, Lyndsi; Perkins, Anthony; Unverzagt, Frederick W; Clark, Daniel O; Boustani, Malaz; Khan, Babar

    2018-03-27

    Delirium affects nearly 70% of older adults hospitalized in the intensive care unit (ICU), and many of those will be left with persistent cognitive impairment or dementia. There are no effective and scalable recovery models to remediate ICU-acquired cognitive impairment and its attendant elevated risk for dementia or Alzheimer disease (AD). The Improving Recovery and Outcomes Every Day after the ICU (IMPROVE) trial is an ongoing clinical trial which evaluates the efficacy of a combined physical exercise and cognitive training on cognitive function among ICU survivors 50 years and older who experienced delirium during an ICU stay. This article describes the study protocol for IMPROVE. IMPROVE is a four-arm, randomized controlled trial. Subjects will be randomized to one of four arms: cognitive training and physical exercise; cognitive control and physical exercise; cognitive training and physical exercise control; and cognitive control and physical exercise control. Facilitators administer the physical exercise and exercise control interventions in individual and small group formats by using Internet-enabled videoconference. Cognitive training and control interventions are also facilitator led using Posit Science, Inc. online modules delivered in individual and small group format directly into the participants' homes. Subjects complete cognitive assessment, mood questionnaires, physical performance batteries, and quality of life scales at baseline, 3, and 6 months. Blood samples will also be taken at baseline and 3 months to measure pro-inflammatory cytokines and acute-phase reactants; neurotrophic factors; and markers of glial dysfunction and astrocyte activation. This study is the first clinical trial to examine the efficacy of combined physical and cognitive exercise on cognitive function in older ICU survivors with delirium. The results will provide information about potential synergistic effects of a combined intervention on a range of outcomes and mechanisms

  10. Improved methods to evaluate realised energy savings

    NARCIS (Netherlands)

    Boonekamp, P.G.M.

    2005-01-01

    This thesis regards the calculation of realised energy savings at national and sectoral level, and the policy contribution to total savings. It is observed that the results of monitoring and evaluation studies on realised energy savings are hardly applied in energy saving policy. Causes are the lack

  11. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  12. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspec...

  13. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    Science.gov (United States)

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  14. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  15. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    International Nuclear Information System (INIS)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Highlights: ► We model the environmental impact of recycling and incineration of household waste. ► Recycling of paper, glass, steel and aluminium is better than incineration. ► Recycling and incineration of cardboard and plastic can be equally good alternatives. ► Recyclables can be transported long distances and still have environmental benefits. ► Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  16. Improving Energy Security for Air Force Installations

    Science.gov (United States)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  17. Longitudinal transport measurements in an energy recovery accelerator with triple bend achromat arcs

    Directory of Open Access Journals (Sweden)

    F. Jackson

    2016-12-01

    Full Text Available Longitudinal properties of electron bunches (energy spread and bunch length and their manipulation are of importance in free electron lasers (FELs, where magnetic bunch length compression is a common feature of beam transport. Recirculating accelerators and energy recovery linac accelerators (ERLs have been used as FEL drivers for several decades and control of longitudinal beam transport is particularly important in their magnet lattices. We report on measurements of longitudinal transport properties in an ERL-FEL, the ALICE (Accelerators and Lasers in Combined Experiments accelerator at Daresbury Laboratory. ALICE is an energy recovery research accelerator that drives an infrared free electron laser. By measuring the time of arrival of electron bunches, the canonical longitudinal transport quantities were measured in the beam transport and bunch compression sections of the lattice. ALICE includes a four-dipole bunch compression chicane providing fixed longitudinal transport, and triple bend achromat arcs including sextupole magnets where the first and second order longitudinal transport can be adjusted. The longitudinal transport properties in these lattice sections were measured and compared with the theoretical model of the lattice. A reasonable level of agreement has been found. The effect of sextupoles in second order, as well as first order, longitudinal correction is considered, with the measurements indicating the level of alignment of the beam to the center of the sextupole.

  18. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  19. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    Science.gov (United States)

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  1. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  2. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition...... transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept...

  3. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  4. An ecologically-controlled exoskeleton can improve balance recovery after slippage

    Science.gov (United States)

    Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S.

    2017-05-01

    The evolution to bipedalism forced humans to develop suitable strategies for dynamically controlling their balance, ensuring stability, and preventing falling. The natural aging process and traumatic events such as lower-limb loss can alter the human ability to control stability significantly increasing the risk of fall and reducing the overall autonomy. Accordingly, there is an urgent need, from both end-users and society, for novel solutions that can counteract the lack of balance, thus preventing falls among older and fragile citizens. In this study, we show a novel ecological approach relying on a wearable robotic device (the Active Pelvis Orthosis, APO) aimed at facilitating balance recovery after unexpected slippages. Specifically, if the APO detects signs of balance loss, then it supplies counteracting torques at the hips to assist balance recovery. Experimental tests conducted on eight elderly persons and two transfemoral amputees revealed that stability against falls improved due to the “assisting when needed” behavior of the APO. Interestingly, our approach required a very limited personalization for each subject, and this makes it promising for real-life applications. Our findings demonstrate the potential of closed-loop controlled wearable robots to assist elderly and disabled subjects and to improve their quality of life.

  5. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  6. Energy Balance and Performance Indices for Kraft Recovery Boilers; Standardmetod foer beraekning av energibalans oever sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders

    2007-09-15

    It has been recognized that different rules exist in calculating energy flows to and from a Recovery boiler. In this report definitions are given with the intention that the branch should adopt a common position in reporting power production for the Swedish system with charge on emission of nitrogen oxides, for the EU Emissions Trading Scheme and for the electricity certificate system. Legislation and guidelines are described as also different standards for determination of boiler efficiency. The definition of the liquor heating value is discussed as also the different ways in which an energy balance could be set up. For the Emissions Trading Scheme a literature survey of interpretations made in other countries has been made. The recommendation is to define the heat input as the product of the virgin liquor flow and the net calorific value of virgin liquor. A net calorific value as defined in SS-ISO 1928 is determined in an environment with excess of oxygen and is consequently named net calorific value in oxidizing condition. In a Recovery boiler part of that heat is required for reduction of sulfur and a net calorific value in reducing condition are therefore defined in a branch specific way. The flow of liquor could be calculated using a heat balance based on steam generation. The envelope for that heat balance could be selected as to fit each individual installation; however some general recommendations are given. In reporting energy flow for the EU Emissions Trading Scheme and to EPA it is recommended to use the net calorific value in oxidizing condition. This definition should also be good for reporting to Statistics Sweden, Swedish Forest Industries Federation and for internal use. For reporting to the electricity certificate system the part of the total power production with origin from biofuel should be stated. The heat of reduction is not available for power production and consequently the recommendation is to use the net calorific value in reducing

  7. Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration

    Science.gov (United States)

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...

  8. Energy efficient recovery and dehydration of ethanol from fermentation broths by Membrane Assisted Vapor Stripping technology

    Science.gov (United States)

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower ...

  9. Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes

    KAUST Repository

    Wan, Chun Feng

    2015-11-11

    Pressure retarded osmosis (PRO) is a promising technology to reduce the specific energy consumption of a seawater reverse osmosis (SWRO) plant. In this study, it is projected that 25.6-40.7millionkWh/day of energy can be recovered globally, if the brines from SWRO are used as the draw solution and diluted to the seawater level in a PRO system. Detailed integrated SWRO-PRO processes are developed in this study with the option to form a closed-loop SWRO-PRO process that can substantially reduce the pretreatment cost of desalination. The governing mathematical models that describe both the transport phenomena on a module level and the energy flow on a system level are developed to evaluate the performances of the SWRO-PRO processes. The model aims to investigate the performance of the hollow fibers as dilution occurs and provides guidelines on hollow fiber module design and process operation. Determining the dilution factor and the corresponding operating pressure of PRO is the key to optimize the integrated process. The specific energy consumptions of three SWRO-involved processes; namely, (1) SWRO without a pressure exchanger, (2) SWRO with a pressure exchanger, and (3) SWRO with pressure exchangers and PRO are compared. The results show that the specific energy consumptions for the above three processes are 5.51, 1.79 and 1.08kWh/(m of desalinated water) for a 25% recovery SWRO plant; and 4.13, 2.27 and 1.14kWh/(m of desalinated water) for a 50% recovery SWRO plant, using either freshwater or wastewater as the feed solution in PRO.

  10. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  11. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  12. Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.

    Science.gov (United States)

    De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka

    2013-04-01

    Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; Pwave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.

  13. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...... of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste....

  14. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  15. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Directory of Open Access Journals (Sweden)

    Y. M. Saveliev

    2016-09-01

    Full Text Available The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  16. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  17. Emittance growth caused by bends in the Los Alamos free-electron laser energy recovery experiment

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1987-01-01

    Experimentally transporting the beam from the wiggler to the decelerators in the energy recovery experiment (ERX) at the Los Alamos National Laboratory free-electron laser was more difficult than expected because of the large initial emittance in the beam. This emittance was apparently caused in an early 60 0 achromatic bend. To get this beam through subsequent bends without wall interception, the quadrupole focusing had to be changed from the design amount; as a result, the emittance grew further. This paper discusses various mechanisms for this emittance growth in the 60 0 bend, including effects caused by path changes in the bend resulting from wake-field-induced energy changes of particles in the beam and examines emittance filters, ranging from a simple aperture near a beam crossover to more complicated telescope schemes designed to regain the original emittance before the 60 0 bend

  18. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks.

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled

    2015-07-06

    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.

  19. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abdul Razaque

    2015-07-01

    Full Text Available Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1 the operational medium access control (O-MAC hybrid protocol and (2 the pheromone termite (PT model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1 determining the packet generation rate to avoid congestion and (2 pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10 that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.

  20. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  1. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  2. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery

    International Nuclear Information System (INIS)

    Franco, Alessandro; Casarosa, Claudio

    2015-01-01

    In the present paper, after a brief review of the perspectives of the various schemes proposed for electricity generation from the regasification of Liquefied Natural Gas (LNG), a detailed analysis of two particular direct expansion solutions is proposed. The purpose is to identify the upper level of the energy that can be recovered with the aim of electricity production, using configurations with direct expansion. The analysis developed resorting to a simplified thermodynamic model, shows that using a direct expansion configurations with multistage turbine, values of power production typical of optimized ORC plant configurations (120 kJ for each kg of natural gas that flows through the plant) can be obtained. The development of a direct expansion plant with multistage turbine and internal heat recovery systems could permit to approach the production of more than 160 kJ for each kg of flowing liquefied natural gas. Considering values of the mass flow rate typical of LNG gas stations (e.g. 70 kg/s); this corresponds to an output power ranging between 8.3 MW and 11.4 MW. - Highlights: • Recovery of the cold energy contained in Liquefied Natural Gas. • Thermodynamic analysis of systems for electricity generation in regasification. • Direct expansion solutions with multistage expansion. • Comparison of direct expansion solutions with conventional ORC systems. • Power output in conditions typical of existing LNG regasification terminals

  3. Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery

    International Nuclear Information System (INIS)

    El-Emam, Rami Salah; Dincer, Ibrahim

    2014-01-01

    This paper investigates the performance of a RO (reverse osmosis) desalination plant at different seawater salinity values. An energy recovery Pelton turbine is integrated with the desalination plant. Thermodynamic analysis, based on the first and second laws of thermodynamics, as well as a thermo-based economic analysis is performed for the proposed system. The effects of the system components irreversibilities on the economics and cost of product water are parametrically studied through the thermoeconomic analysis. The exergy analysis shows that large irreversibilities occur in the high pressure pump and in the RO module. Both thermodynamic and thermoeconomic performances of the overall system are investigated under different operating parameters. For the base case; the system achieves an exergy efficiency of 5.82%. The product cost is estimated to be 2.451 $/m 3 and 54.2 $/MJ when source water with salinity of 35,000 ppm is fed to the system. - Highlights: • Thermodynamic and exergoeconomic analyses are performed for SWRO with energy recovery. • Parametric studies are done to study effects of operating conditions on performance. • Different seawater sources with different salinity values are tested. • At base case, plant exergy efficiency is 5.82% and product cost is 2.451 $/m 3

  4. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  5. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  6. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    Science.gov (United States)

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  7. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  8. Impact of the resource conservation and recovery act on energy facility siting

    International Nuclear Information System (INIS)

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors

  9. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  10. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  11. Methane productivity and nutrient recovery from manure

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.

    2003-07-01

    The efficient recovery of energy and improvements in the handling of nutrients from manure have attracted increased research focus during recent decades. Anaerobic digestion is a key process in any strategy for the recovery of energy, while slurry separation is an important component in an improved nutrient-handling strategy. This thesis is divided into two parts: the first deals mainly with nutrient recovery strategies and the second examines biological degradation processes, including controlled anaerobic digestion. (au)

  12. Delayed intramuscular human neurotrophin-3 improves recovery in adult and elderly rats after stroke.

    Science.gov (United States)

    Duricki, Denise A; Hutson, Thomas H; Kathe, Claudia; Soleman, Sara; Gonzalez-Carter, Daniel; Petruska, Jeffrey C; Shine, H David; Chen, Qin; Wood, Tobias C; Bernanos, Michel; Cash, Diana; Williams, Steven C R; Gage, Fred H; Moon, Lawrence D F

    2016-01-01

    There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord. This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body. Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3 are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial.

    Science.gov (United States)

    Bellone, John A; Murray, Jeffrey R; Jorge, Paolo; Fogel, Travis G; Kim, Mary; Wallace, Desiree R; Hartman, Richard E

    2018-02-13

    We tested whether supplementing with pomegranate polyphenols can enhance cognitive/functional recovery after stroke. In this parallel, block-randomized clinical trial, we administered commercially-available pomegranate polyphenol or placebo pills twice per day for one week to adult inpatients in a comprehensive rehabilitation setting starting approximately 2 weeks after stroke. Pills contained 1 g of polyphenols derived from whole pomegranate, equivalent to levels in approximately 8 oz of juice. Placebo pills were similar to the pomegranate pills except that they contained only lactose. Of the 163 patients that were screened, 22 were eligible and 16 were randomized (8 per group). We excluded one subject per group from the neuropsychological analyses since they were lost to follow-up, but we included all subjects in the analysis of functional data since outcome data were available. Clinicians and subjects were blinded to group assignment. Neuropsychological testing (primary outcome: Repeatable Battery for the Assessment of Neuropsychological Status) and functional independence scores were used to determine changes in cognitive and functional ability. Pomegranate-treated subjects demonstrated more neuropsychological and functional improvement and spent less time in the hospital than placebo controls. Pomegranate polyphenols enhanced cognitive and functional recovery after stroke, justifying pursuing larger clinical trials.

  14. Evaluation of Synthetic Vision Display Concepts for Improved Awareness in Unusual Attitude Recovery Scenarios

    Science.gov (United States)

    Nicholas, Stephanie

    2016-01-01

    A recent study conducted by the Commercial Aviation Safety Team (CAST) determined 40 percent of all fixed-wing fatal accidents, between 2001 and 2011, were caused by Loss-of-Control (LOC) in flight (National Transportation Safety Board, 2015). Based on their findings, CAST recommended manufacturers develop and implement virtual day-visual meteorological conditions (VMC) display systems, such as synthetic vision or equivalent systems (CAST, 2016). In a 2015 simulation study conducted at NASA Langley Research Center (LaRC), researchers gathered to test and evaluate virtual day-VMC displays under realistic flight operation scenarios capable of inducing reduced attention states in pilots. Each display concept was evaluated to determine its efficacy to improve attitude awareness. During the experiment, Evaluation Pilots (EPs) were shown the following three display concepts on the Primary Flight Display (PFD): Baseline, Synthetic Vision (SV) with color gradient, and SV with texture. The baseline configuration was a standard, conventional 'blue over brown' display. Experiment scenarios were simulated over water to evaluate Unusual Attitude (UA) recovery over 'featureless terrain' environments. Thus, the SV with color gradient configuration presented a 'blue over blue' display with a linear blue color progression, to differentiate attitude changes between sky and ocean. The SV with texture configuration presented a 'blue over blue' display with a black checkerboard texture atop a synthetic ocean. These displays were paired with a Background Attitude Indicator (BAI) concept. The BAI was presented across all four Head-Down Displays (HDDs), displaying a wide field-of-view blue-over-blue attitude indicator. The BAI aligned with the PFD and showed through the background of the navigation displays with opaque transparency. Each EP participated in a two-part experiment series with a total seventy-five trial runs: Part I included a set of twenty-five Unusual Attitude Recovery (UAR

  15. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs

  16. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  17. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    International Nuclear Information System (INIS)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-01-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications

  18. Improved diagnostic model for estimating wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  19. Investigation on thermal environment improvement by waste heat recovery in the underground station in Qingdao metro

    Science.gov (United States)

    Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping

    2018-03-01

    The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.

  20. Improving post-stroke recovery: the role of the multidisciplinary health care team.

    Science.gov (United States)

    Clarke, David J; Forster, Anne

    2015-01-01

    Stroke is a leading cause of serious, long-term disability, the effects of which may be prolonged with physical, emotional, social, and financial consequences not only for those affected but also for their family and friends. Evidence for the effectiveness of stroke unit care and the benefits of thrombolysis have transformed treatment for people after stroke. Previously viewed nihilistically, stroke is now seen as a medical emergency with clear evidence-based care pathways from hospital admission to discharge. However, stroke remains a complex clinical condition that requires health professionals to work together to bring to bear their collective knowledge and specialist skills for the benefit of stroke survivors. Multidisciplinary team working is regarded as fundamental to delivering effective care across the stroke pathway. This paper discusses the contribution of team working in improving recovery at key points in the post-stroke pathway.

  1. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    (Nasiri et al., 2009), working mechanisms are poorly known and understood. The main goal of the present work is to establish possible mechanisms in which enzymes may enhance oil recovery. Improvement of the brine wettability of the rock and decrease of oil adhesion to it by addition of an enzyme is one...... of the possible mechanisms of enzymatic action. This mechanism has been investigated experimentally, by measurements of the contact angles between oil drops and enzyme solutions in brine on the mineral surfaces. Fifteen enzyme samples belonging to different enzyme classes, such as esterases/lipases, carbohydrases......, proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...

  2. Improved AODV route recovery in mobile ad-hoc networks using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ahmad Maleki

    2014-09-01

    Full Text Available An important issue in ad-hoc on-demand distance vector (AODV routing protocols is route failure caused by node mobility in the MANETs. The AODV requires a new route discovery procedure whenever a route breaks and these frequent route discoveries increase transmission delays and routing overhead. The present study proposes a new method for AODVs using a genetic algorithm to improve the route recovery mechanism. When failure occurs in a route, the proposed method (GAAODV makes decisions regarding the QOS parameter to select source or local repair. The task of the genetic algorithm is to find an appropriate combination of weights to optimize end-to-end delay. This paper evaluates the metrics of routing overhead, average end-to-end delay, and packet delivery ratio. Comparison of the new algorithm and AODV (RFC 3561 using a NS-2 simulator shows that GAAODV obtains better results for the QOS parameters.

  3. Energy expenditure in children with cerebral palsy and moderate / severe malnutrition during nutritional recovery.

    Science.gov (United States)

    García-Contreras, Andrea A; Vásquez-Garibay, Edgar M; Romero-Velarde, Enrique; Ibarra-Gutierrez, Ana I; Troyo-Sanroman, Rogelio

    2015-05-01

    To analyze the total energy expenditure (TEE) and resting energy expenditure (REE) in children with cerebral palsy (CP) and moderate or severe malnutrition during nutritional recovery. In an intervention study, thirteen subjects with CP (10 females and 3 males with a mean age of 9y11m ± 2y3m), level V of the Gross Motor Function Classification System and moderate or severe malnutrition were included. Eight were fed by nasogastric tube and five by gastrostomy. They were compared with 57 healthy participants (31 females and 26 males with mean age of 8y7m ± 10m). Anthropometric measurements, body composition and energy expenditure by bioelectrical impedance analysis (BIA) and indirect calorimetry (IC) were performed in both groups. TEE and REE were higher in healthy children than in children with CP in kcal/d and kcal/cm/d but were lower in kcal/kg/d (p children with CP produced a significant increase in energy expenditure. TEE and REE, in children with CP, are lower than in healthy children. Estimating the REE in children with CP and malnutrition is better performed in kcal/kg/d than in kcal/cm/d. Fat-free mass (FFM) is a good predictor of the REE in healthy children and children with CP. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  5. Energy Recovery from Scrap Tires: A Sustainable Option for Small Islands like Puerto Rico

    Directory of Open Access Journals (Sweden)

    Eddie N. Laboy-Nieves

    2014-05-01

    Full Text Available Puerto Rico generates and disposes nearly five million/year scrap tires (ST, of which 4.2% is recycled and 80% is exported. The Island has one of the world highest electrical service tariff ($0.28 kWh, because of its dependency on fossil fuels for power generation. The Government has not considered ST for electricity production, despite more than 13,000 ST are generated daily, and paradoxically exported for that purpose. Theoretically, if ST recycling increases to 10% and assuming that the caloric value of ST be 33 MJ/kg, it was estimated that scrap tires processed with pyrolysis can supply annually about 379 MWh, a potential value that shall not be unnoticed. This paper is a literature review to describe the legal, technical, and economic framework for the viability of ST for power generation in Puerto Rico using pyrolysis, the most recommended process for ST energy recovery. Data of ST from Puerto Rico was used to model the potential of ST for pyrolytic energy conversion. The herein article is intended to invite other insular countries and territories, to join efforts with the academic and scientific community, and with the energy generation sector, to validate ST as a sustainable option for energy generation.

  6. ER@CEBAF: A test of 5-pass energy recovery at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, S. A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dubbe, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Michalski, T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Satogata, T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Spata, M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tiefenback, M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Korysko, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-06-06

    Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energy ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.

  7. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  8. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  9. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  10. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  11. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Borole, Abhijeet P.

    2010-01-01

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  12. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    Science.gov (United States)

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Improving Energy Security for Air Force Installations

    Science.gov (United States)

    2015-09-01

    equipment, and habitat destruction from general construction (DoE, “ Wind Turbine Interactions with Birds , Bats, and Their Habitats,” pgs 2-4). Another...utility-resource-efficiency>, accessed 16 December 2014. Department of Energy, Wind Turbine Interactions with Birds , Bats, and Their Habitats... Wind power is a mature technology, with wind turbines first being used for electricity in the late 19th century. The Air Force operates two wind

  14. Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users; July 2017 - September 2017

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Curtis, Taylor L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [Telluride Energy; Telluride, CO (United States)

    2018-01-11

    Energy recovery hydropower is one of the most cost-effective types of new hydropower development because it is constructed utilizing existing infrastructure, and it is typically able to complete Federal Energy Regulatory Commission (FERC) review in 60 days. Recent changes in federal and state policy have supported energy recovery hydropower. In addition, some states have developed programs and policies to support energy recovery hydropower, including resource assessments, regulatory streamlining initiatives, and grant and loan programs to reduce project development costs. This report examines current federal and state policy drivers for energy recovery hydropower, reviews market trends, and looks ahead at future federal resource assessments and hydropower reform legislation.

  15. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Shekarchian, M.; Zarifi, F.; Moghavvemi, M.; Motasemi, F.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  16. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  17. CAS on Free-Electron Lasers and Energy Recovery Linacs in Hamburg

    CERN Multimedia

    CERN Accelerator School

    2016-01-01

    The CERN Accelerator School (CAS) and DESY held a jointly-organised specialised course on Free-Electron Lasers and Energy Recovery Linacs (FELs and ERLs) in Hamburg, Germany, from 31 May to 10 June 2016.      The course was held in the Hotel Scandic Emporio in Hamburg and was attended by 68 participants of 13 nationalities, coming from countries as far away as China, Iran and Japan. The intensive programme comprised 44 lectures and one seminar. Following introductory lectures on electromagnetism, relativity and synchrotron radiation issues, the basic requirements of linacs and ERLs were discussed. Detailed lectures on the theory of FEL science followed. Undulators and the process of lasing and seeding were covered in some detail along with lectures on various beam dynamics and beam control issues. Case studies, for which seven hours were allocated, completed the academic programme. For these, the students were divided into small groups and tasked with completing the basic desig...

  18. Combustion of used tires for energy recovery. Yozumi taiya shokyaku ni suru netsuriyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, N. (Toyo Tire and Rubber Co. Ltd., Osaka (Japan))

    1993-03-15

    The recycled automobile tires in 1991 amounts to 87%, and the tires are used most effectively for heat generation. The utilization of tires for heat in Japan and in other countries are outlined, and a detailed report is made on the use of used tires as fuel at coal cogeneration plants in tire manufacturing plants. The 'utilization percent for heat' is steadily increasing among the recycling applications of used tires. Energy recovery by dry distillation method and by direct combustion method is discussed. The states of used tire utilization in America, West Germany, and Britain are introduced. A concrete example of utilization for heat of used tires at a tire manufacturing plant is shown. Used tires are chopped into chips, mixed and burned in a coal boiler, the generated steam is used as the heat source for private power generation, and the power is used as the power source for the plant. 15 refs., 5 figs., 7 tabs.

  19. Numerical and experimental investigation on frosting of energy-recovery ventilator

    Science.gov (United States)

    Bilodeau, Stephane; Mercadier, Yves; Brousseau, Patrick

    Frosting of energy-recovery ventilators results in two major problems: increase of pressure losses and reduction of heat transfer rates. Frost formation of heat and mass exchangers used in these ventilation systems is investigated both experimentally and numerically. A numerical model for the prediction of the thermal behavior of the exchanger is presented. The model is validated with experimental data and is then employed to conduct a parametric study. Results indicate that the absolute humidity is the prevailing parameter for characterizing the frosting phenomenon. A frost-mass-fraction chart is established in terms of the absolute humidity of the warm exhaust stream and of the temperature of the cold supply stream. The effect of time and mass flowrate is also evaluated. The transient three-dimensional model shows that the absolute humidity and the temperature of both air flows vary nonlinearly in the frosted zone.

  20. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  1. R'07 World Congress - Recovery of materials and energy for resource efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This final congress report summarises the topics dealt with at the R'07 World Congress on the recovery of materials and energy for resource efficiency. The congress was held in 2007 in Davos, Switzerland. Details on the organisation and participants are given and the experts who held plenary lectures are listed. Brief details are given on oral and poster sessions, along with details on how the proceedings of the congress can be obtained. Workshops held at the conference covered the following topics: Plastics recycling, biofuels and E-waste, workshops on zero wastes, scarce metals and the identification and management of social implications over the product life cycle (footprint). An Internet-address where the results of the sessions can be obtained is given along with a summary of excursions and social events held within the framework of the congress. Finally, participant feedback is presented in graphical form.

  2. Windows with an improved energy balance of 30%

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    means that both energy losses and transmittance of solar radiation is considered.The final goal of the project was to improve the energy balance of a window with at least 30%. As reference is chosen a common low energy glazing mounted in a wooden frame construction measuring 1188 × 1188 mm2...... the main emphasis has been put on improvement of the frame construction and the interaction between frame and glazing. Several theoretical analyses have been carried out and a prototype construction has been made, that meets the goal of a 30% improvement of the energy balance.The prototype has been tested....... A 30% improvement of the energy balance then corresponds to an reduction in net energy loss of 17 kWh/m2 window area.The frame costruction and the joint between glazing and frame is the thermally weak part of modern windows compared to centre values of the new super insulating glazings. As a result...

  3. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation

    International Nuclear Information System (INIS)

    Vale, S.; Heber, L.; Coelho, P.J.; Silva, C.M.

    2017-01-01

    Highlights: • 1-D numerical TEG model in diesel freight vehicles exhaust pipe. • Over 800 W of electrical power for the heavy-duty vehicle. • Plain fins provide better performance than offset strip fins. • The height of the thermocouple legs plays a significant role. • 2% maximum efficiency needs further improvements. - Abstract: A parametric study and optimization approaches of a thermoelectric generator (TEG) for the recovery of energy from the exhaust gas in Diesel vehicles used in freight transport is reported. The TEG is installed in the tailpipe of a commercial vehicle (3.5 tonnes) and a heavy-duty vehicle (40 tonnes). The exhaust gas is used as the heat source and the cooling water as the heat sink. Two different heat exchanger configurations are considered: plain fins and offset strip fins. The influence of the height, length and spacing of the fins on the electrical and net power is analysed for the fixed width and length of the TEG. The influence of the length and width of the TEG and of the height of the thermocouple legs is also investigated. According to the criteria used in this study, plain fins are the best choice, yielding a maximum electrical power of 188 W for the commercial vehicle and 886 W for the heavy-duty vehicle. The best recovery efficiency is about 2%, with an average thermoelectric material efficiency of approximately 4.4%, for the light-duty vehicle. Accordingly, there is significant room for further improvement and optimisation based on the thermoelectric modules and the system design.

  4. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  5. Performance Testing of Unitary Split-System Heat Pump with an Energy Recovery Expansion Device

    OpenAIRE

    Czapla, Nicholas; Inamdar, Harshad; Salts, Nicholas; Groll, Eckhard

    2016-01-01

    Due to the rising demand of using energy resources more efficiently, the HVAC&R industry is constantly facing the challenge of meeting strict energy consumption requirements. This paper presents a study that focuses on improving the efficiency of a residential split-system vapor compression heat pump using R410A as the refrigerant. R410A, when used as any sub-critical refrigerant in a vapor compression cycle, has a meaningful difference in potential energy savings when using a practically ach...

  6. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  7. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  8. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  9. TAS::89 0927::TAS RECOVERY - The Lean Green Energy Controller Machine

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, John; Wang, Gene; Moss, David

    2012-12-30

    Achieving efficiency improvements and providing demand-response programs have been identified as key elements of our national energy initiative. The residential market is the largest, yet most difficult, segment to engage in efforts to meet these objectives. This project developed Energy Management System that engages the consumer and enables Smart Grid services, applications, and business processes to address this need. Our innovative solution provides smart controller providing dynamic optimization of energy consumption for the residential energy consumer. Our solution extends the technical platform to include a cloud based Internet of Things (IoT) aggregation of data sensors and actuators the go beyond energy management and extend to life style services provided through compelling mobile and console based user experiences.

  10. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    Science.gov (United States)

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  12. Improvements in high energy computed tomography

    International Nuclear Information System (INIS)

    Burstein, P.; Krieger, A.; Annis, M.

    1984-01-01

    In computerized axial tomography employed with large relatively dense objects such as a solid fuel rocket engine, using high energy x-rays, such as a 15 MeV source, a collimator is employed with an acceptance angle substantially less than 1 0 , in a preferred embodiment 7 minutes of a degree. In a preferred embodiment, the collimator may be located between the object and the detector, although in other embodiments, a pre-collimator may also be used, that is between the x-ray source and the object being illuminated. (author)

  13. Energy and architecture: improvement of energy performance in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Matthias; Wycmans, Annemie; Solbraa, Anne; Grytli, Eir

    2011-07-01

    This book aims to give an overview of different aspects of retrofitting existing buildings. The target group is students of architecture and building engineering as well as building professionals. Eight out of ten buildings which we will inhabit in 2050 already exist. This means that a great potential for reducing our carbon footprint lies in the existing building stock. Students from NTNU have used the renovation of a 1950s school building at Linesoeya in Soer-Trondelag as a case to increase their awareness and knowledge about the challenges building professionals need to overcome to unite technical details and high user quality into good environmental performance. The students were invited by the building owners and initiators of LIPA Eco Project to contribute to its development: By retrofitting an existing building to passive house standards and combining this with energy generated on site, LIPA Eco Project aims to provide a hands-on example with regard to energy efficiency, architectural design and craftsmanship for a low carbon society. The overall goal for this project is to raise awareness regarding resource efficiency measures in architecture and particularly in existing building mass.(au)

  14. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. Active Recovery between Interval Bouts Reduces Blood Lactate While Improving Subsequent Exercise Performance in Trained Men

    Directory of Open Access Journals (Sweden)

    Harutiun M. Nalbandian

    2017-06-01

    Full Text Available This study aimed to examine the blood lactate and blood pH kinetics during high-intensity interval training. Seventeen well-trained athletes exercised on two different occasions. Exercises consisted of three 30 s bouts at a constant intensity (90% of peak power with 4 min recovery between bouts followed by a Wingate test (WT. The recoveries were either active recovery (at 60% of the lactate threshold intensity or passive recovery (resting at sitting position. During the exercise, blood samples were taken to determine blood gasses, blood lactate, and blood pH, and peak and average power were calculated for the WT. When performing the active recovery trials, blood pH was significantly higher (p < 0.01 and blood lactate was significantly lower (p < 0.01 compared with the passive recovery trials. WT performance was significantly higher in the active recovery trials: peak power was 671 ± 88 and 715 ± 108 watts, and average power was 510 ± 70 and 548 ± 73 watts (passive and active respectively; p < 0.01. However, no statistically significant correlations were found between the increased pH and the increased performance in the active recovery trials. These results suggest that active recovery performed during high-intensity interval exercise favors the performance in a following WT. Moreover, the blood pH variations associated with active recovery did not explain the enhanced performance.

  16. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2016-01-01

    Highlights: • Comparison between two braking methods for an EV maximizing the energy recovery. • Wheels slip ratio control based on robust sliding mode and ECE R13 control methods. • Regenerative braking control strategy. • Energy recovery of a HESS with respect to road surface type and road condition. - Abstract: This paper presents the comparison between two braking methods for a two-wheel front driven Electric Vehicle maximizing the energy recovery on the Hybrid Energy Storage System. The first method consists in controlling the wheels slip ratio while braking using a robust sliding mode controller. The second method will be based on ECE R13H constraints for an M1 passenger vehicle. The vehicle model used for simulation is a simplified five degrees of freedom model. It is driven by two 30 kW permanent magnet synchronous motor (PMSM) recovering energy during braking phases. Several simulation results for extreme braking conditions will be performed and compared on various road type surfaces using Matlab/Simulink®. For an initial speed of 80 km/h, simulation results demonstrate that the difference of energy recovery efficiency between the two control braking methods is beneficial to the ECE constraints control method and it can vary from 3.7% for high friction road type to 11.2% for medium friction road type. At low friction road type, the difference attains 6.6% due to different reasons treated in the paper. The stability deceleration is also discussed and detailed.

  17. Comprehensive care improves physical recovery of hip-fractured elderly Taiwanese patients with poor nutritional status.

    Science.gov (United States)

    Liu, Hsin-Yun; Tseng, Ming-Yueh; Li, Hsiao-Juan; Wu, Chi-Chuan; Cheng, Huey-Shinn; Yang, Ching-Tzu; Chou, Shih-Wei; Chen, Ching-Yen; Shyu, Yea-Ing L

    2014-06-01

    The effects of nutritional management among other intervention components have not been examined for hip-fractured elderly persons with poor nutritional status. Accordingly, this study explored the intervention effects of an in-home program using a comprehensive care model that included a nutrition-management component on recovery of hip-fractured older persons with poor nutritional status at hospital discharge. A secondary analysis of data from a randomized controlled trial with 24-month follow-up. A 3000-bed medical center in northern Taiwan. Subjects were included only if they had "poor nutritional status" at hospital discharge, including those at risk for malnutrition or malnourished. The subsample included 80 subjects with poor nutritional status in the comprehensive care group, 87 in the interdisciplinary care group, and 85 in the usual care group. The 3 care models were usual care, interdisciplinary care, and comprehensive care. Usual care provided no in-home care, interdisciplinary care provided 4 months of in-home rehabilitation, and comprehensive care included management of depressive symptoms, falls, and nutrition as well as 1 year of in-home rehabilitation. Data were collected on nutritional status and physical functions, including range of motion, muscle power, proprioception, balance and functional independence, and analyzed using a generalized estimating equation approach. We also compared patients' baseline characteristics: demographic characteristics, type of surgery, comorbidities, length of hospital stay, cognitive function, and depression. Patients with poor nutritional status who received comprehensive care were 1.67 times (95% confidence interval 1.06-2.61) more likely to recover their nutritional status than those who received interdisciplinary and usual care. Furthermore, the comprehensive care model improved the functional independence and balance of patients who recovered their nutritional status over the first year following discharge

  18. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.

    Science.gov (United States)

    Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan

    2010-04-01

    Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  20. Improved optimum condition for recovery and measurement of 210Po in environmental samples

    International Nuclear Information System (INIS)

    Zal Uyun Wan Mahmood; Norfaizal Mohamed; Nik Azlin Nik Ariffin; Abdul Kadir Ishak

    2012-01-01

    An improved laboratory technique for measurement of polonium-210( 210 Po) in environmental samples has been developed in Radiochemistry and Environmental Laboratory (RAS), Malaysian Nuclear Agency. To further improve this technique, a study with the objectives to determine the optimum conditions for 210 Po deposition and; evaluate the accuracy and precision results for the determination of 210 Po in environmental samples was carried-out. Polonium-210 which is an alpha emitter obtained in acidic solution through total digestion and dissolution of samples has been efficiently plated onto one side of the silver disc in the spontaneous plating process for measurement of its alpha activity. The optimum conditions for deposition of 210 Po were achieved using hydrochloric acid (HCl) media at acidity of 0.5 M with the presence of 1.0 gram hydroxyl ammonium chloride and the plating temperature at 90 degree Celsius. The plating was carried out in 80 ml HCl solution (0.5 M) for 4 hours. The recorded recoveries obtained using 209 Po tracers in the CRM IAEA-385 and environmental samples were 85 % - 98% whereby the efficiency of the new technique is a distinct advantage over the existing techniques. Therefore, optimization of deposition parameters is a prime importance to achieve accuracy and precision results as well as economy and time saving. (author)

  1. A linear programming approach for the optimal planning of a future energy system. Potential contribution of energy recovery from municipal solid wastes

    DEFF Research Database (Denmark)

    Xydis, George; Koroneos, C.

    2012-01-01

    In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...

  2. Improvements to thermal plants for generating energy

    International Nuclear Information System (INIS)

    Pacault, P.H.

    1975-01-01

    Said invention relates to a procedure for superheating steam intended for steam cycled thermal plants of energy production, and particularly nuclear power plants. Said procedure combines two different working modes. According to the first working mode, the live steam is taken from the steam generator, mechanically compressed and the heat is partly transferred to the working fluid. According to the second working mode the heat is taken from an auxiliary fluid heated by an independent thermal source, distinct from the principal thermal source of the plant and this heat is partly transferred to the working fluid. A combination of both working modes enables the superheating of the working fluid to be obtained before it inflows the turbine and/or between two stages of said turbine [fr

  3. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  4. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  5. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  6. Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage

    International Nuclear Information System (INIS)

    Leon, Juan A.; Palacios-Bereche, Reynaldo; Nebra, Silvia A.

    2016-01-01

    In the ethanol production process from sugarcane molasses, the distillation process is a high-energy demand stage. The distillation energy efficiency is strongly associated with the alcoholic fermentation performance in the process. The final ethanol concentration in the alcoholic wines has a direct impact on consumption of thermal energy in ethanol separation. In this paper, ethanol production with a H-SBMF (Hybrid-Simple Batch Membrane Fermenter) using PDMS (polydimethylsiloxane) pervaporation membrane was modelled and simulated, in order to determine its influence on energy consumption in distillation. Steam in distillation and electrical energy needs in permeate recovery were mainly influenced by membrane adaptation. The H-SBMF achieved a higher ethanol production in the range of 10–13% compared to the conventional batch fermenter, and an increase in productivity of 150%. The distillation system consisted of two sets of columns: the ethanol recovery column and the rectification column. The permeate recovery system (i.e. vacuum and compression) was regarded in order to evaluate the electrical energy requirement, and the thermal energy demand was evaluated. A decrease in steam consumption was evidenced by the adaptation of the membrane to the fermenter. Higher energy efficiencies were achieved in distillation with larger membrane areas, achieving almost 17% steam reduction. - Highlights: • Higher and faster ethanol productions were achieved by fermenter hybridization. • Multi-stage permeate compression and inter-stage heat recovery were assumed. • Energy demand was studied based on an integrated fermentation and distillation scheme. • High-energy efficiency was attained in the distillation to produce hydrated alcohol.

  7. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    International Nuclear Information System (INIS)

    Deal, John R. Grizz; Pearson, Cody

    2010-01-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining; remote communities lacking

  8. Demonstration of low emittance in the Cornell energy recovery linac injector prototype

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2013-07-01

    Full Text Available We present a detailed study of the six-dimensional phase space of the electron beam produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high repetition rate (1.3 GHz DC photoemission source designed to drive a hard x-ray energy recovery linac (ERL. A complete simulation model of the injector has been constructed, verified by measurement, and optimized. Both the horizontal and vertical 2D transverse phase spaces, as well as the time-resolved (sliced horizontal phase space, were simulated and directly measured at the end of the injector for 19 and 77 pC bunches at roughly 8 MeV. These bunch charges were chosen because they correspond to 25 and 100 mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90% normalized transverse emittances for 19   (77  pC/bunch were 0.23±0.02 (0.51±0.04  μm in the horizontal plane, and 0.14±0.01 (0.29±0.02  μm in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of 2.1±0.1 (3.0±0.2  ps, respectively. In each case the rms momentum spread was determined to be on the order of 10^{-3}. Excellent overall agreement between measurement and simulation has been demonstrated. Using the emittances and bunch length measured at 19  pC/bunch, we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at least a factor of 20 times better than that of existing storage rings when the rms energy spread of each device is considered. These results represent a milestone for the field of high-brightness, high-current photoinjectors.

  9. Energy and advanced exergy analysis of an existing hydrocarbon recovery process

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Lazemzade, Roozbeh; Sadaghiani, Mirhadi S.; Parishani, Hossein

    2016-01-01

    Highlights: • Advanced exergoeconomic analysis is performed for propane refrigerant system. • Avoidable/unavoidable & endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: An advanced exergy analysis of the Ethane recovery plant in the South Pars gas field is presented. An industrial refrigeration cycle with propane refrigerant is investigated by the exergy analysis method. The equations of exergy destruction and exergetic efficiency for the main cycle units such as evaporators, condensers, compressors, and expansion valves are developed. Exergetic efficiency of the refrigeration cycle is determined to be 33.9% indicating a high potential for improvements. The simulation results reveal that the exergy loss and exergetic efficiencies of the air cooler and expansion sections respectively are the lowest among the compartments of the cycle. The coefficient of performance (COP) is obtained as 2.05. Four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) are calculated for the units with highest inefficiencies. The advanced exergy analysis reveals that the exergy destruction has two major contributors: (1) 59.61% of the exergy is lost in the unavoidable form in all units and (2) compressors contribute to 25.47% of the exergy destruction. So there is a high potential for improvement for these units, since 63.38% of this portion is avoidable.

  10. Cold-Water Immersion and Contrast Water Therapy: No Improvement of Short-Term Recovery After Resistance Training.

    Science.gov (United States)

    Argus, Christos K; Broatch, James R; Petersen, Aaron C; Polman, Remco; Bishop, David J; Halson, Shona

    2017-08-01

    An athlete's ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process. To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session. Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery. Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period. CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.

  11. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  12. Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Ahmad Fazlizan

    2015-06-01

    Full Text Available A vertical axis wind turbine (VAWT was positioned at the discharge outlet of a cooling tower electricity generator. To avoid a negative impact on the performance of the cooling tower and to optimize the turbine performance, the determination of the VAWT position in the discharge wind stream was conducted by experiment. The preferable VAWT position is where the higher wind velocity matches the positive torque area of the turbine rotation. With the proper matching among the VAWT configurations (blade number, airfoil type, operating tip-speed-ratio, etc. and exhaust air profile, the turbine system was not only able to recover the wasted kinetic energy, it also reduced the fan motor power consumption by 4.5% and increased the cooling tower intake air flow-rate by 11%. The VAWT had a free running rotational speed of 479 rpm, power coefficient of 10.6%, and tip-speed-ratio of 1.88. The double multiple stream tube theory was used to explain the VAWT behavior in the non-uniform wind stream. For the actual size of a cooling tower with a 2.4 m outlet diameter and powered by a 7.5 kW fan motor, it was estimated that a system with two VAWTs (side-by-side can generate 1 kW of power which is equivalent to 13% of energy recovery.

  13. New halo formation mechanism at the KEK compact energy recovery linac

    Science.gov (United States)

    Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota

    2018-02-01

    The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.

  14. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  15. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    Science.gov (United States)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  16. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  17. Potential Use of Microbial Electrolysis Cells in Domestic Wastewater Treatment Plants for Energy Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Escapa, Adrián; San-Martín, María Isabel; Morán, Antonio, E-mail: amorp@unileon.es [Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León (Spain)

    2014-06-06

    Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW) treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical systems (BESs) in general and microbial electrolysis cells (MECs) in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in domestic wastewater treatment plants (dWWTPs) to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1–4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it need not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  18. POTENTIAL USE OF MICROBIAL ELECTROLYSIS CELLS (MECs IN DOMESTIC WASTEWATER TREATMENT PLANTS FOR ENERGY RECOVERY

    Directory of Open Access Journals (Sweden)

    Adrian eEscapa

    2014-06-01

    Full Text Available Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical Systems (BESs in general and microbial electrolysis cells (MECs in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in dWW treatment plants (dWWTPs to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWW treatment plants (dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1-4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it needs not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  19. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network

    International Nuclear Information System (INIS)

    Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto

    2014-01-01

    Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat

  20. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    Science.gov (United States)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  1. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  2. Comparison of energy and material recovery of household waste management from the environmental point of view - Case Kaunas, Lithuania

    International Nuclear Information System (INIS)

    Luoranen, Mika; Soukka, Risto; Denafas, Gintaras; Horttanainen, Mika

    2009-01-01

    The results of life cycle assessment of five different energy recovery-based waste management system options are presented. The system options were designed for the city of Kaunas, Lithuania. The Kaunas model was formed according to the Simple Integrated System Management concept developed at Lappeenranta University of Technology. CML2001 was selected as the method according to which the life cycle impact assessment profiles were compiled and analyzed. The results suggest that energy recovery from biowaste, paper and cardboard derived from households could be a more recommendable waste management option than material recovery of the fractions (composting of biowaste and recycling of paper and cardboard). The calculations were carried out with limited process information, and cannot thus be generalized in all parts

  3. Thermal Energy Recovery through Optimal Salt concentration in a Parabolic Trough Systems

    Directory of Open Access Journals (Sweden)

    Ramsurn Rikesh

    2018-01-01

    Full Text Available Making a PVT system hybrid is to support the use of thermal and electrical energy simultaneously or independently, to control the thermal effect to improve electrical efficiency or vice-versa. This project makes use of the Parabolic Trough design with emphasis on making the system to be sustainable and also increasing the thermal efficiency of the system. Polystyrene and acrylic foam is utilized to maximize the heat retention capability of the system. To power, the pump that moves the heat transfer fluid (tested with salt water proportions within the copper tube, a set of solar PV panel is to support its power demand making it sustainable. The closed loop setup designed achieved an improved thermal efficiency level of 66.2%, which contributes to having a reliable heat energy source for applications such as hot showers. The novel setup design also makes use of PV cells to support other energy demands through power electronic control designs. Using a similar heat dissipation technique, a novel setup has been designed to improve the voltage supply by making use of liquid cooling and translucent glass PV panels. Cooling the PV panel restored up to 11.7% of its rated voltage supply. This is achieved by keeping the PV panels within its best thermal operating conditions using an energy efficient electronically controlled cooling system.

  4. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  5. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  6. Community-Based Rehabilitation to Improve Stroke Survivors' Rehabilitation Participation and Functional Recovery.

    Science.gov (United States)

    Ru, Xiaojuan; Dai, Hong; Jiang, Bin; Li, Ninghua; Zhao, Xingquan; Hong, Zhen; He, Li; Wang, Wenzhi

    2017-07-01

    The aim of this study was to evaluate the effectiveness of a community-based rehabilitation appropriate technique (CRAT) intervention program in increasing rehabilitation participation and improving functional recovery of stroke survivors. This study followed a quasi-experimental design. In each of 5 centers servicing approximately 50,000 individuals, 2 communities were designated as either the intervention or control community. A CRAT intervention program, including 2-year rehabilitation education and 3-month CRAT treatment, was regularly implemented in the intervention communities, whereas there was no special intervention in the control community. Two sampling surveys, at baseline and after intervention, were administered to evaluate the rehabilitation activity undertaken. In intervention communities, stroke survivor's motor function, daily activity, and social activity were evaluated pretreatment and posttreatment, using the Fugl-Meyer Motor Function Assessment, Barthel index, and Social Functional Activities Questionnaire. The proportion of individuals participating in rehabilitation-related activity was increased significantly (P rehabilitation (P 0.05). Community-based rehabilitation appropriate technique increases rehabilitation participation rates and enhances motor function, daily activity, and social activity of stroke survivors.

  7. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability.

    Science.gov (United States)

    Wang, Xu; McCarty, Perry L; Liu, Junxin; Ren, Nan-Qi; Lee, Duu-Jong; Yu, Han-Qing; Qian, Yi; Qu, Jiuhui

    2015-02-03

    Global expectations for wastewater service infrastructure have evolved over time, and the standard treatment methods used by wastewater treatment plants (WWTPs) are facing issues related to problem shifting due to the current emphasis on sustainability. A transition in WWTPs toward reuse of wastewater-derived resources is recognized as a promising solution for overcoming these obstacles. However, it remains uncertain whether this approach can reduce the environmental footprint of WWTPs. To test this hypothesis, we conducted a net environmental benefit calculation for several scenarios for more than 50 individual countries over a 20-y time frame. For developed countries, the resource recovery approach resulted in ∼154% net increase in the environmental performance of WWTPs compared with the traditional substance elimination approach, whereas this value decreased to ∼60% for developing countries. Subsequently, we conducted a probabilistic analysis integrating these estimates with national values and determined that, if this transition was attempted for WWTPs in developed countries, it would have a ∼65% probability of attaining net environmental benefits. However, this estimate decreased greatly to ∼10% for developing countries, implying a substantial risk of failure. These results suggest that implementation of this transition for WWTPs should be studied carefully in different temporal and spatial contexts. Developing countries should customize their approach to realizing more sustainable WWTPs, rather than attempting to simply replicate the successful models of developed countries. Results derived from the model forecasting highlight the role of bioenergy generation and reduced use of chemicals in improving the sustainability of WWTPs in developing countries.

  8. Improving post-stroke recovery: the role of the multidisciplinary health care team

    Directory of Open Access Journals (Sweden)

    Clarke DJ

    2015-09-01

    Full Text Available David J Clarke, Anne Forster Academic Unit of Elderly Care and Rehabilitation, Bradford Institute for Health Research, Bradford, UK Abstract: Stroke is a leading cause of serious, long-term disability, the effects of which may be prolonged with physical, emotional, social, and financial consequences not only for those affected but also for their family and friends. Evidence for the effectiveness of stroke unit care and the benefits of thrombolysis have transformed treatment for people after stroke. Previously viewed nihilistically, stroke is now seen as a medical emergency with clear evidence-based care pathways from hospital admission to discharge. However, stroke remains a complex clinical condition that requires health professionals to work together to bring to bear their collective knowledge and specialist skills for the benefit of stroke survivors. Multidisciplinary team working is regarded as fundamental to delivering effective care across the stroke pathway. This paper discusses the contribution of team working in improving recovery at key points in the post-stroke pathway. Keywords: stroke care, rehabilitation, multidisciplinary, interdisciplinary, team working

  9. Improved recovery potential in mature heavy oil fields by Alkali-surfactant flooding

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Primary and secondary alkali surfactant (AS) chemical flooding techniques were optimized in this study. Core flooding experiments were conducted in order to investigate the formation of emulsions in bulk liquid system due to flow through rock pores. Cores were dried and then saturated with water or brine in order to measure permeability. The floods were then performed at various injection rates followed by the AS solution. Solutions were also injected without previous waterflooding. Individual oil and water mobilities were then calculated using the experimental data. Individual phase mobilities were calculated using the total pressure gradient measured across the core. Nuclear magnetic resonance (NMR) studies were conducted in order to determine emulsion formation within porous media from in situ flooding tests at 4 different locations. Data from the NMR studies were used to calculate fluid distributions and measurements of in situ emulsification during the chemical floods. The study demonstrated that the use of the surfactants resulted in the in situ formation of oil-water and water-oil emulsions. Responses from de-ionized alkali and brine AS systems were similar. The recovery mechanism blocked off water channels and provided improved sweep efficiency in the core. It was concluded that injection rates and pressure gradients for chemical floods should be lowered in order to optimize their efficiency. 26 refs., 6 tabs., 15 figs.

  10. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  11. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes.

    Science.gov (United States)

    de Lara, Lucas S; Michelon, Mateus F; Miranda, Caetano R

    2012-12-20

    In our paper, we study the interface wettability, diffusivity, and molecular orientation between crude oil and different fluids for applications in improved oil recovery (IOR) processes through atomistic molecular dynamics (MD). The salt concentration, temperature, and pressure effects on the physical chemistry properties of different interfaces between IOR agents [brine (H(2)O + % NaCl), CO(2), N(2), and CH(4)] and crude oil have been determined. From the interfacial density profiles, an accumulation of aromatic molecules near the interface has been observed. In the case of brine interfaced with crude oil, our calculations indicate an increase in the interfacial tension with increasing pressure and salt concentration, which favors oil displacement. On the other hand, with the other fluids studied (CO(2), N(2), and CH(4)), the interfacial tension decreases with increasing pressure and temperature. With interfacial tension reduction, an increase in fluid diffusivity in the oil phase is observed. We also studied the molecular orientation properties of the hydrocarbon and fluids molecules in the interface region. We perceived that the molecular orientation could be affected by changes in the interfacial tension and diffusivity of the molecules in the interface region with the increased pressure and temperature: pressure (increasing) → interfacial tension (decreasing) → diffusion (increasing) → molecular ordering. From a molecular point of view, the combination of low interfacial tension and high diffusion of molecules in the oil phase gives the CO(2) molecules unique properties as an IOR fluid compared with other fluids studied here.

  12. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are

  13. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    Science.gov (United States)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effective energy planning for improving the enterprise’s energy performance

    Directory of Open Access Journals (Sweden)

    Păunescu Carmen

    2016-09-01

    Full Text Available The global pressing need to protect the environment, save energy and reduce greenhouse gas emissions worldwide has prompted the enterprises to implementing both individual energy saving measures and a more systematic approach to improve the overall enterprise’s energy performance. Energy management is becoming a priority as enterprises strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. As such, enterprises are encouraged to manage their energy related matters in a systematic manner and a more harmonized way, to ensure continual improvement on their energy efficiency. Despite the increasing interest in energy management standards, a gap persists between energy management literature and current implementation practices. The release of the ISO 50001 international standard was meant to help the organizations develop sound energy management systems and effective process-based energy management structures that could be recognized through third-party certification. Building on the energy management literature and energy management standards, the current paper presents the essential steps the enterprises should take to practically design a sustainable energy management system. Also, by using multiple case studies of enterprises that have implemented an ISO 50001 energy management system, it introduces a structured approach that companies can use to effectively develop their energy planning and improve energy performance. The key components of the enterprise’s energy planning are discussed, as well as practical examples of energy objectives and performance indicators from various industries are offered. The paper shows that by establishing an effective energy planning system, this will efficiently meet demands for achieving energy performance indicators and international certification.

  15. Rosiglitazone Improves Survival and Hastens Recovery from Pancreatic Inflammation in Obese Mice

    Science.gov (United States)

    Pini, Maria; Rhodes, Davina H.; Castellanos, Karla J.; Cabay, Robert J.; Grady, Eileen F.; Fantuzzi, Giamila

    2012-01-01

    Obesity increases severity of acute pancreatitis (AP) by unclear mechanisms. We investigated the effect of the PPAR-gamma agonist rosiglitazone (RGZ, 0.01% in the diet) on severity of AP induced by administration of IL-12+ IL-18 in male C57BL6 mice fed a low fat (LFD) or high fat diet (HFD), under the hypothesis that RGZ would reduce disease severity in HFD-fed obese animals. In both LFD and HFD mice without AP, RGZ significantly increased body weight and % fat mass, with significant upregulation of adiponectin and suppression of erythropoiesis. In HFD mice with AP, RGZ significantly increased survival and hastened recovery from pancreatic inflammation, as evaluated by significantly improved pancreatic histology, reduced saponification of visceral adipose tissue and less severe suppression of erythropoiesis at Day 7 post-AP. This was associated with significantly lower circulating and pancreas-associated levels of IL-6, Galectin-3, osteopontin and TIMP-1 in HFD + RGZ mice, particularly at Day 7 post-AP. In LFD mice with AP, RGZ significantly worsened the degree of intrapancreatic acinar and fat necrosis as well as visceral fat saponification, without affecting other parameters of disease severity or inflammation. Induction of AP lead to major suppression of adiponectin levels at Day 7 in both HFD and HFD + RGZ mice. In conclusion, RGZ prevents development of severe AP in obese mice even though it significantly increases adiposity, indicating that obesity can be dissociated from AP severity by improving the metabolic and inflammatory milieu. However, RGZ worsens selective parameters of AP severity in LFD mice. PMID:22815875

  16. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  17. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  18. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow

    International Nuclear Information System (INIS)

    Tunesi, Simonetta

    2011-01-01

    An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The

  19. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  20. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Bio