WorldWideScience

Sample records for improved electron injection

  1. Improvement of tokamak performance by injection of electrons

    Ono, Masayuki.

    1992-12-01

    Concepts for improving tokamak performance by utilizing injection of hot electrons are discussed. Motivation of this paper is to introduce the research work being performed in this area and to refer the interested readers to the literature for more detail. The electron injection based concepts presented here have been developed in the CDX, CCT, and CDX-U tokamak facilities. The following three promising application areas of electron injection are described here: 1. Non-inductive current drive, 2. Plasma preionization for tokamak start-up assist, and 3. Charging-up of tokamak flux surfaces for improved plasma confinement. The main motivation for the dc-helicity injection current drive is in its efficiency that, in theory, is independent of plasma density. This property makes it attractive for driving currents in high density reactor plasmas

  2. Improving Charge Injection in Organic Electronic Devices Using Self-Assembled Monolayers

    Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    Organic electronic devices consist of one or more insulating organic layers contacted by metallic conductors. The Schottky energy barrier between the metal and the organic material is determined by the work function of the metal contact as described in the ideal Schottky model. The magnitude of the metal/organic Schottky energy barrier controls charge injection from the metal into the organic layer. Previously, polar alkane-thiol based self-assembled monolayers (SAMs) were used to change the Schottky energy barrier between the metal and an organic film by more than 1 eV. In these SAMs, the large energy gap of the alkane molecules blocks charge injection into the organic layer despite the decrease of the Schottky energy barrier. Here, we demonstrate improved charge injection into the organic material by using conjugated self-assembled monolayers. The conjugated SAMs have modest energy gaps which allow improved charge injection into the organic layer. We present measurements of current-voltage characteristics and metal/organic Schottky energy barriers for device structures both with and without conjugated SAMs.

  3. Syringe injectable electronics

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  4. Syringe-injectable electronics.

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  5. Electron injection in microtron

    Axinescu, S.

    1977-01-01

    A review of the methods of injecting electrons in the microtron is presented. A special attention is paid to efficient injection systems developed by Wernholm and Kapitza. A comparison of advantages and disadvantages of both systems is made in relation to the purpose of the microtron. (author)

  6. Improved electron injection into Alq{sub 3} based devices using a thin Erq{sub 3} injection layer

    Shakya, P; Desai, P; Gillin, W P [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Curry, R J [Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-04-21

    The role of a thin erbium(III) tris(8-hydroxyquinoline) (Erq{sub 3}) interface layer on the electron injection into aluminium(III) tris(8-hydroxyquinoline) (Alq{sub 3}) based organic light emitting devices (OLEDs) has been investigated. It has been shown that the use of a 40 A interface layer can increase the efficiency of a simple Alq{sub 3} OLED with an Al cathode to a level comparable with other, well established, high-efficiency cathodes such as LiF/Al. We also show that, despite the bulk HOMO and LUMO positions for Erq{sub 3} being little different from those for Alq{sub 3}, the presence of an interfacial layer makes the devices turn-on voltage almost independent of the cathode metal. This is explained by there being a vacuum level shift for Erq{sub 3} which is dependent on the work function of the cathode metal.

  7. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  8. Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles

    Li, Jingling; Guo, Qiling; Jin, Hu; Wang, Kelai; Xu, Dehua; Xu, Yongjun; Xu, Gang; Xu, Xueqing

    2017-10-01

    In a typical light emitting diode (QD-LED), with ZnO nanoparticles (NPs) serving as the electron transport layer (ETL) material, excessive electron injection driven by the matching conduction band maximum (CBM) between the QD and this oxide layer usually causes charge imbalance and degrades the device performance. To address this issue, the electronic structure of ZnO NPs is modified by the yttrium (Y) doping method. We demonstrate that the CBM of ZnO NPs has a strong dependence on the Y-doping concentration, which can be tuned from 3.55 to 2.77 eV as the Y doping content increases from 0% to 9.6%. This CBM variation generates an enlarged barrier between the cathode and this ZnO ETL benefits from the modulation of electron injection. By optimizing electron injection with the use of a low Y-doped (2%) ZnO to achieve charge balance in the QD-LED, device performance is significantly improved with maximum luminance, peak current efficiency, and maximal external quantum efficiency increase from 4918 cd/m2, 11.3 cd/A, and 4.5% to 11,171 cd/m2, 18.3 cd/A, and 7.3%, respectively. This facile strategy based on the ETL modification enriches the methodology of promoting QD-LED performance.

  9. Advanced diesel electronic fuel injection and turbocharging

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  10. Injection into electron plasma traps

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  11. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  12. Electron injection in semiconductor drift detectors

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  13. Giant tunnel-electron injection in nitrogen-doped graphene

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  14. Electron injection in diodes with field emission

    Denavit, J.; Strobel, G.L.

    1986-01-01

    This paper presents self-consistent steady-state solutions of the space charge, transmitted current, and return currents in diodes with electron injection from the cathode and unlimited field emission of electrons and ions from both electrodes. Time-dependent particle simulations of the diode operation confirm the analytical results and show how these steady states are reached. The results are applicable to thermionic diodes and to photodiodes

  15. Efficient Injection of Electron Beams into Magnetic Guide Fields

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.

    1999-01-01

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  16. Diffusive scattering of electrons by electron holes around injection fronts

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Krasnoselskikh, V. V.; Bonnell, J. W.

    2017-03-01

    Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of ≲5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L ˜ 5-8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

  17. Percutaneous spine injection: considerations for improving treatment

    Lee, Joon Woo; Kim, Sung Hyun; Lee, In Sook; Choi, Jung Ah; Yoon, Chang Jin; Hwang, Sung Il; Kang, Heung Sik; Choi, Ja Young; Koh, Young Hwan; Hong, Sung Hwan

    2005-01-01

    To discuss the causes of treatment failure in percutaneous spine injections for low back pain or radiculopathy by analyzing patients who have experienced negative treatment effect on their first visit and a positive treatment effect on their second visit. The authors reviewed the cases of 24 patients who visited the pain intervention outpatient department in our hospital due to back pain or radiculopathy. All patients reviewed experienced a negative treatment effect following their first spine injection, but a positive treatment effect following the second injection. The dates of the cases range from June 2003 to May 2004. Two radiologists analyzed the possible causes of the negative treatment effect following the first injection therapies by considering clinical aspects as well as reviewing radiological images. The most common condition was the presence of the change in the level of the second selective nerve root block (n=13). In seven cases, the methods for administering the injections were changed to facet block (n=2), midline epidural block (n=1), selective nerve root block (n=3) and caudal epidural block (n=1). In four cases, there were no changes in the methods for administering the injections nor were there any changes in the level of the selective nerve root block between first and second visit. In those cases, after reviewing spot radiographs performed during injection, we attributed the causes of failure of injection therapy to an inappropriate distribution of drugs. We can improve the effect of percutaneous spine injections for low back pain or radioculopathy by determining the exact level of perineural root block, trying alternative methods, and insuring a good distribution of the injected drugs

  18. Injection into the LNLS UVX electron storage ring

    Lin, Liu

    1991-01-01

    To inject the 1.15 GeV electron storage ring - UVX - a beam from a linear accelerator - MAIRA - is used. The electrons are injected and accumulated at low energy (100MeV) until the nominal current of 100 mA is reached and than are ramped to the nominal energy. A study on a conventional injection scheme has been carried out. Two injection modes are investigated: injection with the phase ellipse parameters matched and mismatched to the ring's acceptance. The mismatched mode is optimized to fit the maximum of the injected beam into the acceptance

  19. Energetic Electron Acceleration, Injection, and Transport in Mercury's Magnetosphere

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.

    2018-05-01

    Electrons are accelerated in Mercury’s magnetotail by dipolarization events, flux ropes, and magnetic reconnection directly. Following energization, these electrons are injected close to Mercury where they drift eastward in Shabansky-like orbits.

  20. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  1. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  2. Electroluminescence from porous silicon due to electron injection from solution

    Kooij, Ernst S.; Despo, R.W.; Kelly, J.J.

    1995-01-01

    We report on the electroluminescence from p‐type porous silicon due to minority carrier injection from an electrolyte solution. The MV+• radical cation formed in the reduction of divalent methylviologen is able to inject electrons into the conduction band of crystalline and porous silicon. The

  3. Electron self-injection in the donut bubble wakefield

    Firouzjaei, Ali Shekari; Shokri, Babak

    2018-05-01

    We investigate electron self-injection in a donut bubble wakefield driven by a Laguerre-Gauss laser pulse. The present work discusses the electron capture by modeling the analytical donut bubble field. We discuss the self-injection of the electrons from plasma for various initial conditions and then compare the results. We show that the donut bubble can trap plasma electrons forming a hollow beam. We present the phase spaces and longitudinal momentum evolution for the trapped electrons in the bubble and discuss their characteristic behaviors and stability. It will be shown that the electrons self-injected in the front are ideal for applications in which a good stability and low energy spread are essential.

  4. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current-voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer.

  5. Achieving improved ohmic confinement via impurity injection

    Bessenrodt-Weberpals, M.; Soeldner, F.X.

    1991-01-01

    Improved Ohmic Confinement (IOC) was obtained in ASDEX after a modification of the divertors that allowed a larger (deuterium and impurity) backflow from the divertor chamber. The quality of IOC depended crucially on the wall conditions, i.e. IOC was best for uncovered stainless steels walls and vanished with boronization. Furthermore, IOC was found only in deuterium discharges. These circumstances led to the idea that IOC correlates with the content of light impurities in the plasma. To substantiate this working hypothesis, we present observations in deuterium discharges with boronized wall conditions into which various impurities have been injected with the aim to induce IOC conditions. Firstly, the plasma behaviour in typical IOC discharges is characterized. Secondly, injection experiments with the low-Z impurities nitrogen and neon as well as with the high-Z impurities argon and krypton are discussed. Then, we concentrate on optimized neon puffing that yields the best confinement results which are similar to IOC conditions. Finally, these results are compared with eperiments in other tokamaks and some conclusions are drawn about the effects of the impurity puffing on both, the central and the edge plasma behaviour. (orig.)

  6. Pseudorandom binary injection of levitons for electron quantum optics

    Glattli, D. C.; Roulleau, P.

    2018-03-01

    The recent realization of single-electron sources lets us envision performing electron quantum optics experiments, where electrons can be viewed as flying qubits propagating in a ballistic conductor. To date, all electron sources operate in a periodic electron injection mode, leading to energy spectrum singularities in various physical observables which sometimes hide the bare nature of physical effects. To go beyond this, we propose a spread-spectrum approach where electron flying qubits are injected in a nonperiodic manner following a pseudorandom binary bit pattern. Extending the Floquet scattering theory approach from periodic to spread-spectrum drive, the shot noise of pseudorandom binary sequences of single-electron injection can be calculated for leviton and nonleviton sources. Our new approach allows us to disentangle the physics of the manipulated excitations from that of the injection protocol. In particular, the spread-spectrum approach is shown to provide better knowledge of electronic Hong-Ou-Mandel correlations and to clarify the nature of the pulse train coherence and the role of the dynamical orthogonality catastrophe for noninteger charge injection.

  7. Electron injection by evolution of self-modulated laser wakefields

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  8. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  9. Improved electron transport layer

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution......; a method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according...

  10. Nonadiabatic dynamics of electron injection into organic molecules

    Zhu Li-Ping; Qiu Yu; Tong Guo-Ping

    2012-01-01

    We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su—Schrieffer—Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  12. Electron injection dynamics in high-potential porphyrin photoanodes.

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  13. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  14. Rocket potential measurements during electron beam injection into the ionosphere

    Gringauz, K.I.; Shutte, N.M.

    1981-01-01

    Electron flux measurements were made during pulsed injection of electron beams at a current of about 0.5 A and energy of 15 or 27 keV, using a retarding potential analyzer which was mounted on the lateral surface of the Eridan rocket during the ARAKS experiment of January 26, 1975. The general character of the retardation curves was found to be the same regardless of the electron injection energy, and regardless of the fact whether the plasma generator, injecting quasineutral cesium plasma with an ion current of about 10 A, was switched on. A sharp current increase in the interval between 10 to the -7th and 10 to the -6th A was observed with a decrease of the retarding potential. The rocket potential did not exceed approximately 150 V at about 130 to 190 km, and decreased to 20 V near 100 km. This was explained by the formation of a highly conducting region near the rocket, which was formed via intense plasma waves generated by the beam. Measurements of electron fluxes with energies of 1 to 3 keV agree well with estimates based on the beam plasma discharge theory

  15. Injection, compression and confinement of electrons in a magnetic mirror

    Fisher, A.

    1975-01-01

    A Helmholtz coil configuration has been constructed where the magnetic field can be increased to about 10 kGauss in 20 μsec. Electrons are injected from a hot tantalum filament between two plates across which a potential of about 5 keV is applied. The electric field E is perpendicular to the magnetic field B so that the direction of the E x B drift is radial--into the magnetic mirror. About 10 14 electrons were injected and about 10 13 electrons were trapped. The initial electron energy was about 5 keV and after compression 500 keV x-rays were observed. The confinement time is very sensitive to vacuum. Confinement times of milliseconds and good compression were observed at vacuum of 5.10 -5 torr or less. Above 5.10 -5 torr there was no trapping or compression. After a compressed ring of electrons was formed, it was released by a pulse applied to one of the Helmholtz coils that reduced the field. Ejection of the electron ring was observed by x-ray measurements

  16. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Campbell, I.H.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current{endash}voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer. {copyright} {ital 1997 American Institute of Physics.}

  17. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  18. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  19. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  20. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  1. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-01-01

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded

  2. Injection control development of the JT-60U electron cyclotron heating system

    Hiranai, Shinichi; Shinozaki, Shin-ichi; Yokokura, Kenji; Moriyama, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Suzuki, Yasuo [Atomic Energy General Service Co., Ltd., Tokai, Ibaraki (Japan); Ikeda, Yoshitaka [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan)

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) System injects a millimeteric wave at 110 GHz into the JT-60 Plasma, and heats the plasma or drives a current locally to enhance the confinement performance of the JT-60 plasma. The system consists of four sets of high power gyrotrons, high voltage power supplies and transmission lines, and two antennas that launch electron cyclotron (EC) beams toward the plasma. The key features of the injection control system are streering of the direction of the EC beam by driving the movable mirror in the antenna, and capability to set any combination of polarization angle and ellipticity by rotating the two grooved mirrors in the polarizers. This report represents the design, fabrication and improvements of the injection control system. (author)

  3. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  4. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  5. Control of runaway electron energy using externally injected whistler waves

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  6. Runaway electron generation during plasma shutdown by killer pellet injection

    Gal, K; Feher, T; Smith, H; Fueloep, T; Helander, P

    2008-01-01

    Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents

  7. Injection of a relativistic electron beam into neutral hydrogen gas

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  8. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  9. Flow improvers for water injection based on surfactants

    Oskarsson, H.; Uneback, I.; Hellsten, M.

    2006-03-15

    In many cases it is desirable to increase the flow of injection water when an oil well deteriorates. It is very costly in offshore operation to lay down an additional water pipe to the injection site. Flow improvers for the injection water will thus be the most cost-effective way to increase the flow rate. During the last years water-soluble polymers have also been applied for this purpose. These drag-reducing polymers are however only slowly biodegraded which has been an incentive for the development of readily biodegradable surfactants as flow improvers for injection water. A combination of a zwitterionic and an anionic surfactant has been tested in a 5.5 inch, 700 m long flow loop containing sulphate brine with salinity similar to sea water. A drag reduction between 75 and 80% was achieved with 119 ppm in solution of the surfactant blend at an average velocity of 1.9 m/s and between 50 and 55% at 2.9 m/s. The surfactants in this formulation were also found to be readily biodegradable in sea water and low bio accumulating which means they have an improved environmental profile compared to the polymers used today. Due to the self-healing properties of the drag-reducing structures formed by surfactants, these may be added before the pump section - contrary to polymers which are permanently destroyed by high shear forces. (Author)

  10. Direct injection of gaseous LPG in a two-stroke SI engine for improved performance

    Pradeep, V.; Bakshi, Shamit; Ramesh, A.

    2015-01-01

    Improvements in a two-stroke, spark-ignition (2S–SI) engine can be realized by curtailing short-circuiting losses effectively through direct injection of the fuel. Liquefied petroleum gas (LPG) is an alternative transportation fuel that is used in several countries. However, limited information is available on LPG fuelled direct injected engines. Hence, there is a need to study these systems as applied to 2S–SI engines in order to bring out their potential benefits. A manifold injected 2S–SI engine is modified for direct injection of LPG, in gaseous form, from the cylinder head. This engine is evaluated for performance, emission and combustion. Evaluation at various throttle positions and constant speed showed that this system can significantly improve the thermal efficiency and lower the hydrocarbon (HC) emissions. Up to 93% reduction in HC emissions and improved combustion rates are observed compared to the conventional manifold injection system with LPG. CO emissions are higher and peak NO emissions are lower with this system due to the presence of richer in–cylinder trapped mixtures and charge stratification. This system can operate with similar injection timings at different throttle positions which make electronic control simpler. It can work with low injection pressures in the range of 4–5 bars. All these advantages are attractive for commercial viability of this engine. - Highlights: • Energy saving, low pressure, direct gaseous LPG injection in engine. • Significant reduction in HC emissions at all operating conditions. • No significant changes in injection timings for different throttle positions.

  11. Calculation of the mobility of electrons injected in liquid argon

    Ascarelli, G.

    1986-01-01

    A model calculation is carried out in which we evaluate the mobility of electrons injected in liquid argon. Scattering by both phonons and static density fluctuations is taken into account. The calculation for the mobility limited by phonon scattering differs from the usual calculation in crystals by considering both the local changes in the deformation potential and the changes of the amplitude of the phonons that are caused by the existence of density fluctuations. The calculation of the mobility limited by scattering from density fluctuations is carried out with the assumption that they give rise to a square-well (or barrier) potential that will scatter the electrons. The above perturbation ΔV 0 is related to a density fluctuation Δn by ΔV 0 = V 0 (n-bar+Δn)-V 0 (n-bar). The scattering volumes Ω, where the density fluctuation Δn is located, are weighted by exp(-r/xi) where xi is the correlation length and r is the radius of Ω. The magnitude of the different density fluctuations is weighted by exp[-(Δn) 2 Ω/2nS(0)], where S(0) = nk/sub B/TK/sub T/, K/sub T/ is the isothermal compressibility. The calculation of the mean free path is carried out using partial waves. Both scattering mechanisms, scattering by phonons and static density fluctuations, give comparable contributions to the mobility

  12. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  13. Buildup of electrons with hot electron beam injection into a homogeneous magnetic field

    Bashko, V.A.; Krivoruchko, A.M.; Tarasov, I.K.

    1989-01-01

    The injection of the monoenergetic beam of electrons into the vacuum drift channel under the conditions when the beam current exceeds a certain threshold value involves a virtual cathode creation. The process of virtual cathode creation leads to an exchange of one-fluid movement of beam particles to three-fluid one corresponding to incident, reflected and passed through anticathode beam particles. For the monoenergetic beam case when the velocity spread Δv dr (v dr is the beam drift velocity), the beam instability was predicted in theory and was observed in experiment. Meanwhile, the injection in the drift space of the 'hot' beam having finite spread in velocities may be accompanied not only by the reflection of particles if their velocity v 1/2 (where φ is the electrostatic potential dip value, e and m are the electron charge and mass, respectively), but also the mutual Coulomb scattering of incident and reflected electrons. The scattering process leads in its turn to appearance of viscosity forces and to trapping of a part of beam electrons into the effective potential well formed by electrostatic potential dip and the viscous force potential. The interaction of travelling and trapped particles may occur even at the stage preceding the virtual electrode formation and it may influence the process of its appearance and also the current flow through the drift space. In this report there are described the experimental results on accumulation of electrons when electron beam propagates in vacuum and has a large spread in particle velocities Δv dr in the homogeneous longitudinal magnetic field when ω pe He where ω pe is the electron Langmuir frequency of beam electrons, ω He is the electron cyclotron frequency. (author) 6 refs., 2 figs

  14. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  15. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  16. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  17. The DFT investigations of the electron injection in hydrazone-based sensitizers

    Al-Sehemi, Abdullah G.; Irfan, Ahmad; Asiri, Abdullah M.

    2012-01-01

    solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling

  18. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  19. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  20. Spin injection into a two-dimensional electron gas using inter-digital-ferromagnetic contacts

    Hu, C.M.; Nitta, J.; Jensen, Ane

    2002-01-01

    We present a model that describes the spin injection across a single interface with two electrodes. The spin-injection rate across a typical hybrid junction made of ferromagnet (FM) and a two-dimensional electron gas (2DEG) is found at the percentage level. We perforin spin-injection-detection ex......-injection-detection experiment on devices with two ferromagnetic contacts on a 2DEG confined in an InAs quantum well. A spin-injection rate of 4.5% is estimated from the measured magnetoresistance....

  1. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  2. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    Zou Ye; Deng Zhenbo; Xu Denghui; Lü Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng

    2012-01-01

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq 3 )/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq 3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  3. Fast electron beam charge injection and switching in dielectrics

    Fitting, Hans-Joachim; Schreiber, Erik [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Touzin, Matthieu [Laboratoire de Structure et Proprietes de l' Etat Solide, UMR CNRS 8008, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2011-04-15

    Basic investigations of secondary electrons (SE) relaxation and attenuation are made by means of Monte Carlo simulations using ballistic electron scattering and interactions with optical and acoustic phonons as well as impact ionization of valence band electrons. Then the electron beam induced selfconsistent charge transport and secondary electron emission in insulators are described by means of an electron-hole flight-drift model (FDM). Ballistic secondary electrons and holes, their attenuation and drift, as well as their recombination, trapping, and field- and temperature-dependent Poole-Frenkel detrapping are included. Whereas the initial switching-on of the secondary electron emission proceeds over milli-seconds due to long-lasting selfconsistent charging, the switching-off process occurs much faster, even over femto-seconds. Thus a rapid electron beam switching becomes possible with formation of ultra-short electron beam pulses offering an application in stroboscopic electron microscopy and spectroscopy. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Manipulating the electron distribution through a combination of electron injection and MacKenzie’s Maxwell Demon

    Yip, Chi-Shung; Hershkowitz, Noah

    2015-01-01

    Experiments on electron heating are performed in a biased hot filament-produced argon plasma. Electrons are confined by multi-dipole magnetic fields on the radial wall of the cylindrical chamber but not the planar end walls. Electron heating is provided by a combination of cold electron injection (Hershowitz N and Leung K N 1975 Appl. Phys. Lett. 26 607) and a MacKenzie Maxwell Demon (Mackenzie K R et al 1971 Appl. Phys. Lett. 18 529). This approach allows the manipulation of the electrons by introducing a depleted tail into the electron energy distribution function or by removing a depleted tail. It is found that the injected electrons mimic and thermalize with the electron species with the closest average energy or temperature. The effect of the injected electrons is optimal when they mimic the secondary electrons emitted from the wall instead of the degraded primary electrons. Both approaches combine to achieve increases in electron temperature T e from 0.67 to 2.8 eV, which was not significantly higher than using each approach alone. (paper)

  5. First observations of acceleration of injected electrons in a laser plasma beatwave experiment

    Ebrahim, N.A.; Martin, F.; Bordeur, P.; Heighway, E.A.; Matte, J.P.; Pepin, H.; Lavigne, P.

    1986-01-01

    The first experimental observations of acceleration of injected electrons in a laser driven plasma beatwave are presented. The plasma waves were excited in an ionized gas jet, using a short pulse high intensity CO 2 laser with two collinearly propagating beams (at λ = 9.6 μm and 10.6 μm) to excite a fast wave (v/sub p/ = c). The source of electrons was a laser plasma produced on an aluminum slab target by a third, synchronized CO 2 laser beam. A double-focusing dipole magnet was used to energy select and inject electrons into the beatwave, and a second magnetic spectrograph was used to analyze the accelerated electrons. Electron acceleration was only observed when the appropriate resonant plasma density was produced (∼ 10 17 cm -3 ), the two laser lines were incident on the plasma, and electrons were injected into this plasma from an external source

  6. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  7. Electron injection mechanisms of green organic light-emitting devices fabricated utilizing a double electron injection layer consisting of cesium carbonate and fullerene

    Yang, J.S.; Choo, D.C.; Kim, T.W.; Jin, Y.Y.; Seo, J.H.; Kim, Y.K.

    2010-01-01

    Electron injection mechanisms of the luminance efficiency of green organic light-emitting devices (OLEDs) fabricated utilizing a cesium carbonate (Cs 2 CO 3 )/fullerene (C 60 ) heterostructure acting as an electron injection layer (EIL) were investigated. Current density-voltage and luminance-voltage measurements showed that the current densities and the luminances of the OLEDs with a Cs 2 CO 3 or Cs 2 CO 3 /C 60 EIL were higher than that of the OLEDs with a Liq EIL. The luminance efficiency of the OLEDs with a Cs 2 CO 3 EIL was almost three times higher than that of the OLEDs with a Liq EIL. Because the electron injection efficiency of the Cs 2 CO 3 layer in OLEDs was different from that of the C 60 layer, the luminance efficiency of the OLEDs with a double EIL consisting of a Cs 2 CO 3 layer and a C 60 layer was smaller than that of the OLEDs with a Cs 2 CO 3 EIL. The electron injection mechanisms of OLEDs with a Cs 2 CO 3 and C 60 double EIL are described on the basis of the experimental results.

  8. Injection-limited electron current in a methanofullerene

    Duren, J.K.J. van; Mihailetchi, V.D.; Blom, P.W.M.; Woudenbergh, T. van; Hummelen, J.C.; Rispens, M.T.; Janssen, R.A.J.; Wienk, M.M.

    2003-01-01

    The dark current of bulk-heterojunction photodiodes consisting of a blend of a methanofullerene (PCBM) as n-type electron acceptor and a dialkoxy-(p-phenylene vinylene) (OC1C10-PPV) as a p-type electron donor sandwiched between electrodes with different work functions has been investigated. With

  9. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  10. Improvement of electrical resistivity tomography for leachate injection monitoring

    Clement, R.; Descloitres, M.; Guenther, T.; Oxarango, L.; Morra, C.; Laurent, J.-P.; Gourc, J.-P.

    2010-01-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.

  11. Improvement of electrical resistivity tomography for leachate injection monitoring.

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights

  12. Injection of an electron beam into a plasma and spacecraft charging

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  13. Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes

    Earmme, Taeshik; Jenekhe, Samson A.

    2013-06-01

    Sodium bicarbonate (baking soda, NaHCO3) is found to be an efficient low-cost, air-stable, and environmentally friendly n-dopant for electron-transport layer (ETL) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). A 2.0-fold enhancement in power efficiency of blue PhOLEDs is observed by use of NaHCO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) ETL. The bulk conductivity of NaHCO3-doped BPhen film is increased by 5 orders of magnitude. Enhanced performance of PhOLEDs is similarly observed by use of NaHCO3-doped 1,3,5-tris(m-pyrid-3-yl-phenyl)benzene ETL. These results demonstrate that sodium bicarbonate is an effective n-dopant in organic electronics.

  14. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser

  15. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  16. Improvement Of Search Process In Electronic Catalogues

    Titas Savickas

    2014-05-01

    Full Text Available The paper presents investigation on search in electronic catalogues. The chosen problem domain is the search system in the electronic catalogue of Lithuanian Academic Libraries. The catalogue uses ALEPH system with MARC21 bibliographic format. The article presents analysis of problems pertaining to the current search engine and user expectations related to the search system of the electronic catalogue of academic libraries. Subsequent to analysis, the research paper presents the architecture for a semantic search system in the electronic catalogue that uses search process designed to improve search results for users.

  17. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  18. Impact of the Anchoring Ligand on Electron Injection and Recombination Dynamics at the Interface of Novel Asymmetric Push-Pull Zinc Phthalocyanines and TiO2

    Sharma, Divya; Steen, Gerrit Willem; Korterik, Jeroen P.; Garcia-Iglesias, M.; Vazquez, P; Torres, T.; Herek, Jennifer Lynn; Huijser, Jannetje Maria

    2013-01-01

    Phthalocyanines are promising photosensitizers for dye-sensitized solar cells (DSSCs). A parameter that has been problematic for a long time involves electron injection (EI) into the TiO2. The development of push-pull phthalocyanines shows great potential to improve the ratio of EI to back electron

  19. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  20. Characteristics of post-disruption runaway electrons with impurity pellet injection

    Kawano, Yasunori; Nakano, Tomohide; Isayama, Akihiko; Asakura, Nobuyuki; Tamai, Hiroshi; Kubo, Hirotaka; Takenaga, Hidenobu; Bakhtiari, Mohammad; Ide, Shunsuke; Kondoh, Takashi; Hatae, Takaki

    2005-01-01

    Characteristics of post-disruption runaway electrons with impurity pellet injection were investigated for the first time using the JT-60U tokamak device. A clear deposition of impurity neon ice pellets was observed in a post-disruption runaway plasma. The pellet ablation was attributed to the energy deposition of relativistic runaway electrons in the pellet. A high normalized electron density was stably obtained with n e bar /n GW ∼2.2. Effects of prompt exhaust of runaway electrons and reduction of runaway plasma current without large amplitude MHD activities were found. One possible explanation for the basic behavior of runaway plasma current is that it follows the balance of avalanche generation of runaway electrons and slowing down predicted by the Andersson-Helander model, including the combined effect of collisional pitch angle scattering and synchrotron radiation. Our results suggested that the impurity pellet injection reduced the energy of runaway electrons in a stepwise manner. (author)

  1. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208 (United States)

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electron–injection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10 μm injector diameter and 30 μm trapping/absorbing layer diameter show an optical gain of ∼2000 at bias voltage of −3 V with a cutoff wavelength of 1700 nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  2. The enhanced electron injection by fluorinated tris-(8-hydroxy-quinolinato) aluminum derivatives in high efficient Si-anode OLEDs

    Liu, N. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shi, M.M., E-mail: minminshi@zju.edu.c [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Y.Z. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Shi, Y.W. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ran, G.Z.; Qin, G.G. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Wang, M.; Chen, H.Z. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Fabrication of organic light-emitting diodes (OLEDs) and lasers on silicon substrates is a feasible route to integrate microelectronic chips with optical devices for telecommunications. However, the efficiency of Si-anode based OLEDs is restricted by the imbalance of hole-electron injection because a p-type Si anode owns better hole injection ability than ITO. We have used fluorinated tris-(8-hydroxy-quinolinato) aluminum (FAlq{sub 3}) derivatives to prepare Si-anode based OLEDs. We observed that, when tris-(5-fuloro-8-hydroxyquinolinato) aluminum (5FAlq{sub 3}) is used as the electron-transporting material instead of Alq{sub 3}, the cathode electron injection is enhanced due to its lower lowest unoccupied molecular orbital (LUMO) compared to the Alq{sub 3}. The device can keep the relative carrier balance even when a Si anode capable of stronger hole injection was used. Further optimization of the device structure by introducing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a hole blocking layer showed significant increase in the device power efficiency from 0.029 to 0.462 lm/W. This indicates that use of fluorinated Alq{sub 3} derivatives is an effective way to improve the performance of Si-anode based OLEDs.

  3. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  4. Efficient scattering of electrons below few keV by Time Domain Structures around injection fronts

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.

    2016-12-01

    Van Allen Probes observations show an abundance of non-linear large-amplitude electrostatic spikes around injection fronts in the outer radiation belt. These spikes referred to as Time Domain Structures (TDS) include electron holes, double layers and more complicated solitary waves. The electron scattering driven by TDS may not be evaluated via the standard quasi-linear theory, since TDS are in principle non-linear plasma modes. In this paper we analyze the scattering of electrons by three-dimensional TDS (with non-negligible perpendicular electric field) around injection fronts. We derive the analytical formulas describing the local scattering by single TDS and show that the most efficiently scattered electrons are those in the first cyclotron resonance (electrons crossing TDS on a time scale comparable with their gyroperiod). The analytical formulas are verified via the test-particle simulation. We compute the bounce-averaged diffusion coefficients and demonstrate their dependence on the TDS spatial distribution, individual TDS parameters and L shell. We show that TDS are able to provide the pitch-angle scattering of <5 keV electrons at rate 10-2-10-4 s-1 and, thus, can be responsible for driving loss of electrons out of injections fronts on a time scale from few minutes to few hours. TDS can be, thus, responsible for driving diffuse aurora precipitations conjugated to injection fronts. We show that the pitch-angle scattering rates driven by TDS are comparable with those due to chorus waves and exceed those due to electron cyclotron harmonics. For injections fronts with no significant wave activity in the frequency range corresponding to chorus waves, TDS can be even dominant mechanism for losses of below few keV electrons.

  5. Designing a Prototype LPG Injection Electronic Control Unit for a Carburetted Gasoline Engine

    Barış ERKUŞ

    2015-07-01

    Full Text Available In this study, the originally carburetted gasoline engine was converted to gas-phase liquefied petroleum gas (LPG injection engine by using an after market LPG conversion kit's components except the electronic control unit (ECU. Instead of after market LPG injection ECU, the ECU which was designed considering the effects of  electromagnetic interference (EMI, was used for controlling injection. The designed ECU was tested in terms of EMI while the engine was being run and it was detected that the EMI noises could be suppressed as possible by taken measures. Designed ECU was used in performance tests at different engine conditions and the results obtained with LPG injection were compared with the results obtained with LPG carburetion. According to the performance test results, LPG injection ECU designed in this study could help to achieve low exhaust emissions and high engine performance.  

  6. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  7. Novel multi-chromophor light absorber concepts for DSSCs for efficient electron injection

    Schuetz, Robert; Strothkaemper, Christian; Bartelt, Andreas; Hannappel, Thomas; Eichberger, Rainer [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fasting, Carlo [Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany); Thomas, Inara [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2011-07-01

    Dye sensitized solar cells (DSSCs) operate by injecting electrons from the excited state of a light-harvesting dye into the continuum of conduction band states of a wide bandgap semiconductor. The light harvesting efficiency of pure organic dyes is limited by a narrow spectral electronic transition. A beneficial broad ground state absorption in the VIS region can be achieved by applying a single molecular dye system with multiple chromophors involving a Foerster resonance energy transfer (FRET) mechanism for an efficient electron injection. A model donor acceptor dye system capable for FRET chemically linked to colloidal TiO{sub 2} and ZnO nanorod surfaces was investigated in UHV environment. We used VIS/NIR femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy to study the charge injection dynamics of the antenna system. Different chromophors attached to a novel scaffold/anchor system connecting the organic absorber unit to the metal oxide semiconductor were probed.

  8. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.; Shu, G. W.; Yuan, C. T.; Shen, J. L., E-mail: jlshen@cycu.edu.tw [Department of Physics, Center for Nanotechnology, and Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Kao, C. W. [Master Program in Nanotechnology at CYCU, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yeh, J. M.; Chen-Yang, Y. W. [Department of Chemistry, Center for Nanotechnology, and Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  9. Parameter Dependence of Inward Diffusion on Injected Electrons in Helical Non-Neutral Plasmas

    Wakabayashi, H.; Himura, H.; Fukao, M.; Yoshida, Z.

    2003-01-01

    Experimental studies on an electron injection into a helical magnetic field and characteristics of non-neutral plasmas have been performed. It is found that the space potential φs has a weak dependence on the injection angle except for a narrow 'window' region in which φs significantly drops. A calculation shows that because of the electric field Eg of the electron gun (e-gun), the emitted electrons are launched quasi-parallel to the helical magnetic field B, regardless of α. This seems to agree with the observation. The 'window' seen in the data may be attributed to an current-driven instability which might result in the insufficient electron penetration or the degradation of electron confinement in the magnetic surface

  10. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  11. Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak

    Gomez, C.C.

    1986-05-01

    A study of the electron temperature evolution has been performed using thermal electron cyclotron emission. A six channel far infrared polychromator was used to monitor the radiation eminating from six radial locations. The time resolution was <3 μs. Three events were studied, the sawtooth disruption, propagation of the sawtooth generated heatpulse and the electron temperature response to pellet injection. The sawtooth disruption in Alcator takes place in 20 to 50 μs, the energy mixing radius is approx. 8 cm or a/2. It is shown that this is inconsistent with single resonant surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period and amplitude were compared. The electron heatpulse propagation has been used to estimate chi e(the electron thermal diffusivity). The fast temperature relaxation observed during pellet injection has also been studied. Electron temperature profile reconstructions have shown that the profile shape can recover to its pre-injection form in a time scale of 200 μs to 3 ms depending on pellet size

  12. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.

    Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2017-09-13

    Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.

  13. Control of electron injection and acceleration in laser-wakefield accelerators

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  14. Improving the accuracy of micro injection moulding process simulations

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    and are therefore limited in the capability of modelling the polymer flow in micro cavities. Hence, new strategies for comprehensive simulation models which provide more precise results open up new opportunities and will be discussed. Modelling and meshing recommendations are presented, leading to a multi......Process simulations in micro injection moulding aim at the optimization and support of the design of the mould, mould inserts, the plastic product, and the process. Nevertheless, dedicated software packages for micro injection moulding are not available. They are developed for macro plastic parts...

  15. Improvement of fuel injection system of locomotive diesel engine.

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  16. Evaluation of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy.

    Ari, Seyhmus; Nergiz, Yusuf; Aksit, Ihsan; Sahin, Alparslan; Cingu, Kursat; Caca, Ihsan

    2015-03-01

    To evaluate the effects of intracameral injection of ranibizumab and bevacizumab on the corneal endothelium by scanning electron microscopy (SEM). Twenty-eight female rabbits were randomly divided into four equal groups. Rabbits in groups 1 and 2 underwent intracameral injection of 1 mg/0.1 mL and 0.5 mg/0.05 mL ranibizumab, respectively; group 3 was injected with 1.25 mg/0.05 mL bevacizumab. All three groups were injected with a balanced salt solution (BSS) into the anterior chamber of the left (fellow) eye. None of the rabbits in group 4 underwent an injection. Corneal thickness and intraocular pressure were measured before the injections, on the first day, and in the first month after injection. The rabbits were sacrificed and corneal tissues were excised in the first month after injection. Specular microscopy was used for the corneal endothelial cell count. Endothelial cell density was assessed and comparisons drawn between the groups and the control. Micrographs were recorded for SEM examination. The structure of the corneal endothelial cells, the junctional area of the cell membrane, the distribution of microvillus, and the cell morphology of the eyes that underwent intracameral injection of vascular endothelial growth factor (VEGF), BSS, and the control group were compared. Corneal thickness and intraocular pressure were not significantly different between the groups that underwent anti-VEGF or BSS injection and the control group on the first day and in the first month of injection. The corneal endothelial cell count was significantly diminished in all three groups; predominantly in group 1 and 2 (P<0.05). The SEM examination revealed normal corneal endothelial histology in group 3 and the control group. Eyes in group 1 exhibited indistinctness of corneal endothelial cell borders, microvillus loss in the luminal surface, excessive blebbing, and disintegration of intercellular junctions. In group 2, the cell structure of the corneal endothelium

  17. Electron self-injection and trapping into an evolving plasma bubble.

    Kalmykov, S; Yi, S A; Khudik, V; Shvets, G

    2009-09-25

    The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams.

  18. An improved apparatus for pressure-injecting fluid into trees

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  19. Sub-Tenon's lidocaine injection improves emergence agitation after ...

    Objective: This study aimed to evaluate the effect of a sub-Tenon's lidocaine injection on emergence agitation in children receiving sevoflurane or halothane anaesthesia for strabismus surgery. Design: A prospective, randomised study. Setting: The study setting included a hospital where a surgical team performed ...

  20. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Liu, Xi [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lian, Xiaojie [College of Mechanics, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Zhongwu [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Jiang, Hong-Jiang [Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology, Shandong 264400 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-04-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration.

  1. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Lian, Xiaojie; Guo, Zhongwu; Jiang, Hong-Jiang; Cui, Fu-Zhai

    2013-01-01

    Calcium sulfate hemihydrate (CSH) powder as an injectable bone cement was prepared by hydrothermal synthesis of calcium sulfate dihydrate (CSD). The prepared materials showed X-ray diffraction peaks corresponding to the CSH structure without any secondary phases, implying complete conversion from CSD phase to CSH phase. Thermogravimetric (TG) analyses showed the crystal water content of CSH was about 6.0% (wt.), which is near to the theoretic crystal water value of CSH. From scanning electron microscopy (SEM) micrographs, sheet crystal structure of CSD was observed to transform into rod-like crystal structure of CSH. Most interesting and important of all, CSD as setting accelerator was also introduced into CSH powder to regulate self-setting properties of injectable CSH paste, and thus the self-setting time of CSH paste can be regulated from near 30 min to less than 5 min by adding various amounts of setting accelerator. Because CSD is not only the reactant of preparing CSH but also the final solidified product of CSH, the setting accelerator has no significant effect on the other properties of materials, such as mechanical properties. In vitro biocompatibility and in vivo histology studies have demonstrated that the materials have good biocompatibility and good efficacy in bone regeneration. All these will further improve the workability of CSH in clinic applications. Highlights: ► Calcium sulfate hemihydrate (CSH) can be an injectable bone cement. ► CSH was produced by hydrothermal synthesis of calcium sulfate dihydrate (CSD). ► CSD was introduced into CSH powder to regulate self-setting properties of CSH. ► Setting accelerator has no significant effect on the other properties of materials. ► Injectable CSH has good biocompatibility and good efficacy in bone regeneration

  2. Results and analysis of the TMX electron-beam injection experiments

    Poulsen, P.; Grubb, D.P.

    1980-01-01

    Electron beams (e-beams) were injected into the Tandem Mirror Experiment (TMX) plasma in order to investigate the effect on the ion cyclotron fluctuations of the plasma. The power level of the e-beams was comparable to that of the injected neutral beams. It was found that injection of the e-beams produced no significant effect on the ion cyclotron fluctuations, the measured plasma parameters, or the particle and power flow of the plasma. The increase in bulk electron temperature and the production of mirror-confined electrons found in previous experiments in which e-beams were injected into a mirror-confined plasma were not observed in this experiment. Analysis of the regions and frequencies of wave creation and absorption within the plasma shows that the plasma density and magnetic field profiles through the plasma strongly affect the resonances encountered by the waves. The steep axial density profiles produced by neutral-beam injection in the TMX experiment are not conducive to efficient coupling of the e-beam energy to the plasma

  3. Electron self-injection and acceleration in the bubble regime of laser-plasma interaction

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters

  4. Ultrafast Phase Transition in Vanadium Dioxide Driven by Hot-Electron Injection

    Prasankumar R. P.

    2013-03-01

    Full Text Available We present a novel all-optical method of triggering the phase transition in vanadium dioxide by means of ballistic electrons injected across the interface between a mesh of Au nanoparticles coveringd VO2 nanoislands. By performing non-degenerate pump-probe transmission spectroscopy on this hybrid plasmonic/phase-changing nanostructure, structural and electronic dynamics can be retrieved and compared.

  5. The effect of external electron injection and the environment composition on development of atmospheric discharge investigation

    Bogachenkov, V.A.; Oginov, A.V.; Chajkovskij, S.A.; Shpakov, K.V.

    2012-01-01

    The effect of external electron injection (with energy about 150 keV) on initial phase development of the high-voltage (1.0-1.2 MV) long (500-700 mm) gas discharge is investigated. The experiments were conducted in atmospheric pressure air and in a mixture of air and water droplet phase [ru

  6. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  7. Computations on injection into organics - or how to let electrons shine

    Uijttewaal, M.A.

    2007-01-01

    This thesis studies various aspects of electron injection into organic light-emitting diodes (OLEDs) using density functional theory and the master equation approach (only the last chapter). The first part of the thesis studies the relation between the work function and the surface stability of a

  8. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed

  9. Improving measurement of injection drug risk behavior using item response theory.

    Janulis, Patrick

    2014-03-01

    Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.

  10. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  11. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  12. The DFT investigations of the electron injection in hydrazone-based sensitizers

    Al-Sehemi, Abdullah G.

    2012-03-01

    Quantum chemical calculations were carried out by using density functional theory and time-dependant density functional theory at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) level of theories. The absorption spectra have been computed with and without solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling constant, we have shed light on the nature of different sensitizers. The coplanarity between the benzene near anchoring group having LUMO and the bridge (N-N) is broken in System6 and System7 that would hamper the recombination process. The electron injection of System2-System10 is superior to System1. The highest electronic coupling constant has been observed for System6 that followed the System7 and System8. The light-harvesting efficiency of all the sensitizers enlarged in acetonitrile and ethanol. The long-range-corrected functional (LC-BLYP), Coulomb-attenuating method (CAM-B3LYP), and BH and HLYP functional underestimate the excitation energies while B3LYP is good to reproduce the experimental data. Moreover, we have investigated the effect of cyanoacetic acid as anchoring group on the electron injection. © 2012 Springer-Verlag.

  13. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  14. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  15. Injection of a single electron from static to moving quantum dots.

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  16. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  17. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  18. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  19. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  20. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  1. Ion and electron injection in ionosphere and magnetosphere. Application to the parallel electric field measurement in auroral zones

    Pirre, M.

    1982-11-01

    New methods of measuring parallel electric field in auroral zones are investigated in this thesis. In the studied methods, artificial injection of ions Li + and electrons from a spacecraf is used. Measurements obtained during the ARAKS experiment are also presented. The behaviour of the ionospheric plasma located few hundred meters from a 0,5A electron beam injected in ionosphere from a rocket is studied, together with the behaviour of a Cs plasma artificially injected from the same spacecraft [fr

  2. Improved Processing of Titanium Alloys by Metal Injection Moulding

    Sidambe, A T; Figueroa, I A; Todd, I; Hamilton, H

    2011-01-01

    The commercially pure (CP-Ti) and Ti6Al4V (Ti-64) powders with powder size of sub 45-micron were mixed with a water soluble binder consisting of a major fraction of Polyethylene Glycol (PEG), a minor fraction of Polymethylmethacrylate (PMMA) and some stearic acid as surfactant. The pelletised mix was injection-moulded into standard tensile bar specimens and then subjected solvent debinding by water leaching and thermal debinding in an argon atmosphere. The titanium compacts were then subjected to sintering studies using the Taguchi method. The results of the oxygen impurity levels of the sintered parts are presented in this paper. Titanium parts conforming to Grade 2 requirements were achieved for CP-Ti whilst those conforming to Grade 5 were achieved for Ti-64.

  3. Improving Powder Injection Molding: an Opportunity for the Aerospace Industry

    I. Emri

    2014-01-01

    Full Text Available This work deals with powder injection molding (PIM technology of metal and ceramis powders using polyoximethylene (POM binder. In this study, two ways to decrease the viscosity of PIM feedstock materials with polyoxymethylene were investigated. The first way was to reduce the average molecular weight (AMV of the binder and the second one to select a polydisperse particle size distribution with high maximum packing fraction. It was shown that binder with AMW equal to 24410 g/mol gives required level of viscosity around 10 Pa/s. It was shown that using the low disperse powder with wide size distribution can lead to volumetric loading of approximately 83 %. Moreover, using such a feedstock has viscosity lower than required by PIM technology 1000 Pa/s.

  4. Generation of microwaves by a slow wave electron cyclotron maser with axial injection

    Michie, R.B.; Vomvoridis, J.

    1984-01-01

    Experimental measurements of microwave generation by a new electron beam wave interaction is presented. This slow wave electron cyclotron maser (ECM) has a continuous electron beam injected axially into a slow wave structure containing a circularly polarized HE, hybrid electric (HE) mode. A longitudinal magnetic field produces microwaves by maser action. The slow wave structure allows energy to be coupled out of an electron beam with no initial transverse momentum. This is similar to klystrons, traveling wave tubes, and Cherenkov masers, but there is no axial beam bunching. Therefore, ECM designs using relativistic electron beams are allowed. This ECM is similar to a gyrotron in that the electrons are coupled through their cyclotron motion to the wave, but there is no need for initial electron velocity perpendicular to the background magnetic field. Therefore, a narrower spread of electron beam energy about the ECM resonance is possible which gives higher theoretical efficiency. A nonlinear analysis of energy coupling of electrons to the slow wave in the ECM and the design of the slow wave ECM microwave amplifier at 10 GHz using a 200 KeV axial electron beam in 3 KG magnetic field is included

  5. Observations of fast magnetospheric echoes of artificially injected electrons above an auroral arc

    Wilhelm, K.; Becker, C.; Schmidt, R.

    1984-04-01

    Electron beam experiments using rocket-borne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. These experiments were jointly carried out by the University of Minnesota, the National Research Council of Canada and the Max-Planck-Institut fuer Aeronomie. A total of 234 echoes have been observed in a pitch angle range from 0 0 to 110 0 at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by approximately 50 ms. No echoes have been found in the 7.9 keV-detector channels. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is briefly discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection. Two consequences of this interaction, namely, strong energy and pitch angle diffusion and electron acceleration are illustrated with several examples. (orig.) [de

  6. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  7. An Improved Beam Screen for the LHC Injection Kickers

    Barnes, M J; Ducimetière, L; Garrel, N; Kroyer, T

    2007-01-01

    The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies (RCPSs) and four 5 WW transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFNs). A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requireme...

  8. Electronic health records improve clinical note quality.

    Burke, Harry B; Sessums, Laura L; Hoang, Albert; Becher, Dorothy A; Fontelo, Paul; Liu, Fang; Stephens, Mark; Pangaro, Louis N; O'Malley, Patrick G; Baxi, Nancy S; Bunt, Christopher W; Capaldi, Vincent F; Chen, Julie M; Cooper, Barbara A; Djuric, David A; Hodge, Joshua A; Kane, Shawn; Magee, Charles; Makary, Zizette R; Mallory, Renee M; Miller, Thomas; Saperstein, Adam; Servey, Jessica; Gimbel, Ronald W

    2015-01-01

    The clinical note documents the clinician's information collection, problem assessment, clinical management, and its used for administrative purposes. Electronic health records (EHRs) are being implemented in clinical practices throughout the USA yet it is not known whether they improve the quality of clinical notes. The goal in this study was to determine if EHRs improve the quality of outpatient clinical notes. A five and a half year longitudinal retrospective multicenter quantitative study comparing the quality of handwritten and electronic outpatient clinical visit notes for 100 patients with type 2 diabetes at three time points: 6 months prior to the introduction of the EHR (before-EHR), 6 months after the introduction of the EHR (after-EHR), and 5 years after the introduction of the EHR (5-year-EHR). QNOTE, a validated quantitative instrument, was used to assess the quality of outpatient clinical notes. Its scores can range from a low of 0 to a high of 100. Sixteen primary care physicians with active practices used QNOTE to determine the quality of the 300 patient notes. The before-EHR, after-EHR, and 5-year-EHR grand mean scores (SD) were 52.0 (18.4), 61.2 (16.3), and 80.4 (8.9), respectively, and the change in scores for before-EHR to after-EHR and before-EHR to 5-year-EHR were 18% (pquality scores significantly improved over the 5-year time interval. The EHR significantly improved the overall quality of the outpatient clinical note and the quality of all its elements, including the core and non-core elements. To our knowledge, this is the first study to demonstrate that the EHR significantly improves the quality of clinical notes. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  9. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  10. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    Smolyar, V.A.; Eremin, A.V.; Eremin, V.V.

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well [ru

  11. Fluorescence spectral shift of QD films with electron injection: Dependence on counterion proximity

    Lu, Meilin; Li, Bo; Zhang, Yaxin; Liu, Weilong; Yang, Yanqiang; Wang, Yuxiao; Yang, Qingxin

    2017-05-01

    Due to the promising application of quantum dot (QD) films in solar cells, LEDs and environmental detectors, the fluorescence of charged QD films has achieved much attention during recent years. In this work, we observe the spectral shift of photoluminescence (PL) in charged CdSe/ZnS QD films controlled by electrochemical potential. The spectral center under negative bias changes from red-shift to blue-shift while introducing smaller inorganic counterions (potassium ions) into the electrolyte. This repeatable effect is attributed to the enhanced electron injection with smaller cations and the electronic perturbations of QD luminescence by these excess charges.

  12. Electron current generated in a toroidal plasma on injection of high-energy neutrals

    Kolesnichenko, Ya.I.; Reznik, S.N.

    1981-01-01

    Problem of generation of electron current in toroidal plasma with a high-energy ion beam produced during neutral injection has been considered. The analysis was performed on the assumption that plasma is in the regime of rare collisions (banana regime) and ion beam velocity is considerably lower than thermal velocity of plasma ions. Formulae establishing the relation between beam current and electron current have been derived. It follows from them that toroidal affect considerably plasma current generated with the beam and under certain conditions result in changing this current direction in an area remoted from magne-- tic axis [ru

  13. Improved methods for high resolution electron microscopy

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  14. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia.

    Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M

    2014-01-01

    Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.

  15. Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method

    Lei Wang

    2014-01-01

    Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.

  16. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  17. plasma modes behaviors and electron injection influence in an audio-ultrasonic air gas discharge

    Ragheb, M.S.; Haleem, N.A.

    2010-01-01

    the main purpose of this study is to investigate the favorable conditions for the production of plasma particle acceleration in an audio-ultrasonic air gas discharge of 20 cm long and 34 mm diameter.it is found that according to the applied conditions the formed plasma changes its behavior and overtakes diverse modes of different characteristics. the pressure, the voltage, and the frequency applied to the plasma determine its proper state. both experimental data collection and optical observations are introduced to clarify and to put in evidence the present plasma facts. the distribution of the electrons density along the plasma tube draws in average the electric field distribution of the ionization waves. in addition, the plasma is studied with and without electrons injection in order to investigate its influence . it is found that the electron injection decreases the plasma intensity and the plasma temperature, while it increases the discharge current. in turn, the decrease of the plasma temperature decreases the plasma oscillations and enhances the plasma instability. on the other hand,the enhancement of the plasma instability performs good conditions for electron acceleration. as a result, the qualified mode for particles acceleration is attained and its conditions are retrieved and defined for that purpose.

  18. Numerical simulation of neutral injection in a hot-electron mirror target plasma

    Werkoff, F.; Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Grenoble, 38

    1976-01-01

    In the case of neutral injection into a hot-electron target plasma, the use of the existing Fokker-Planck codes is greatly complicated by the fact that the scale of the energies and times of the confined ions and electrons is very large. To avoid this difficulty, a simplified multi-species model is set up, in which each species is described by time-dependent density and energy equations with analytical approximations for the interactions between the species. During the neutral injection, instantaneous high values of the ambipolar potential (higher than the half value of hot-ion energy) may appear, but do not prevent hot-ion density build-up. However, the hot-electron target plasma must not be maintained for a too long time. Numerical runs are performed with typical target parameters: density 2x10 13 cm -3 , electron energy 30 keV, ion energy 400 eV, time duration during which the target density is maintained 1 ms. Hot-ion density, a few 10 14 cm -3 , can be achieved with a neutral beam of 100 A, 20 keV. (author)

  19. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  20. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  1. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  2. An electronic dashboard to improve nursing care.

    Tan, Yung-Ming; Hii, Joshua; Chan, Katherine; Sardual, Robert; Mah, Benjamin

    2013-01-01

    With the introduction of CPOE systems, nurses in a Singapore hospital were facing difficulties monitoring key patient information such as critical tasks and alerts. Issues include unfriendly user interfaces of clinical systems, information overload, and the loss of visual cues for action due to paperless workflows. The hospital decided to implement an interactive electronic dashboard on top of their CPOE system to improve visibility of vital patient data. A post-implementation survey was performed to gather end-user feedback and evaluate factors that influence user satisfaction of the dashboard. Questionnaires were sent to all nurses of five pilot wards. 106 valid responses were received. User adoption was good with 86% of nurses using the dashboard every shift. Mean satisfaction score was 3.6 out of 5. User satisfaction was strongly and positively correlated to the system's perceived impact on work efficiency and care quality. From qualitative feedback, nurses generally agreed that the dashboard had improved their awareness of critical patient issues without the hassle of navigating a CPOE system. This study shows that an interactive clinical dashboard when properly integrated with a CPOE system could be a useful tool to improve daily patient care.

  3. Electron Injection from Copper Diimine Sensitizers into TiO2

    Mara, Michael W.; Bowman, David N.; Buyukcakir, Onur

    2015-01-01

    (I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)]+ and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)]+ (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT...... spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (systems does not have significant effect...... on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices....

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. Improved estimation of receptor density and binding rate constants using a single tracer injection and displacement

    Syrota, A.; Delforge, J.; Mazoyer, B.M.

    1988-01-01

    The possibility of improving receptor model parameter estimation using a displacement experiment in which an excess of an unlabeled ligand (J) is injected after a delay (t D ) following injection of trace amounts of the β + - labeled ligand (J*) is investigated. The effects of varying t D and J/J* on parameter uncertainties are studied in the case of 11 C-MQNB binding to myocardial acetycholine receptor using parameters identified in a dog experiment

  6. Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma

    Singh, Nagendra; Hwang, K.S.

    1988-01-01

    The propagation of electron beams injected from a spacecraft into an ambient plasma and the associated potential structures are investigated by one-dimensional Vlasov simulations. For moderate beams, for which the time average spacecraft potential (Φ sa ) lies in the range T e much-lt eΦ sa approx-lt W B , where T e is the electron temperature in energy units and W B is the average beam energy, a double layer forms near the beam head which propagates into the ambient plasma much more slowly than the initial beam velocity. The double layer formation is being reported for the first time. For weak beams, for which |eΦ sa | approx-lt T e , the beam propagates with the initial beam velocity, and no double layer formation occurs. On the other hand, for strong beams for which eΦ sa > W B , the bulk of the beam is returned to the spacecraft, and the main feature of the potential structure is a sheath formation with an intense electric field limited to distances d near the spacecraft surface. These features of the potential structures are compared with those seen in laboratory and space experiments on electron beam injections

  7. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  8. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  9. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  10. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  11. A linear current injection generator for the generation of electrons in a nuclear reactor

    Kar, Moutushi; Thakur, Satish Kumar; Agiwal, Mamta; Sholapurwala, Zarir H.

    2011-01-01

    While, operating a nuclear reactor it is absolutely necessary for generating a chain reaction or fission. A chain reaction can be initiated by bombardment of a heavy nucleus with fast moving particles. One of the common methods used for generating a fast moving particle is injecting a very high voltage into a particle accelerator and accelerating high energy particle beams using machine like cyclotron, synchrotron, linear accelerators i.e. linac and similar equipment. These equipment generated and run by several high voltage applications like simple high voltage DC systems and supplies or pulsed electron systems. (author)

  12. Annular-cathode electron gun for in-line injection in a racetrack microtron

    Manca, J.J.; Edmonds, D.S. Jr.; Froelich, H.R.

    1976-01-01

    A compact annular-cathode electron gun which allows direct, efficient injection into the accelerating structure of a racetrack microtron was designed, built, and tested. The gun operates under pulsed conditions with applied high voltages of 40 kV or more and delivers an output current in excess of 1 A. Design and construction details are presented for both a basic gun and a gun with built-in output current monitor. Gun performance in a test chamber and in the multicavity racetrack microtron at the University of Western Ontario is described

  13. Theoretical Study of Ultrafast Electron Injection into a Dye/TiO2 System in Dye-Sensitized Solar Cells

    Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing

    2018-06-01

    The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.

  14. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  15. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  16. Improvements in numerical modelling of highly injected crystalline silicon solar cells

    Altermatt, P.P. [University of New South Wales, Centre for Photovoltaic Engineering, 2052 Sydney (Australia); Sinton, R.A. [Sinton Consulting, 1132 Green Circle, 80303 Boulder, CO (United States); Heiser, G. [University of NSW, School of Computer Science and Engineering, 2052 Sydney (Australia)

    2001-01-01

    We numerically model crystalline silicon concentrator cells with the inclusion of band gap narrowing (BGN) caused by injected free carriers. In previous studies, the revised room-temperature value of the intrinsic carrier density, n{sub i}=1.00x10{sup 10}cm{sup -3}, was inconsistent with the other material parameters of highly injected silicon. In this paper, we show that high-injection experiments can be described consistently with the revised value of n{sub i} if free-carrier induced BGN is included, and that such BGN is an important effect in silicon concentrator cells. The new model presented here significantly improves the ability to model highly injected silicon cells with a high level of precision.

  17. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  18. Recent results on the beat wave acceleration of externally injected electrons on a plasma

    Clayton, C.E.; Marsh, K.; Dyson, A.; Everett, M.; Lal, A.; Josh, C.; Williams, R.; Katsouleas, T.

    1992-01-01

    In the Plasma Beat Wave Accelerator (PBWA) two laser beams of slightly different frequencies resonantly beat in a plasma in such a way that their frequency and wavenumber differences correspond to the plasma wave frequency and wavenumber. The amplitude-modulated electromagnetic wave envelope of the laser pulse exerts a periodic nonlinear force on the plasma electrons, causing them to bunch. The resulting space-charge wave can have a phase velocity nearly equal to the speed of light. If an electron bunch is injected with a velocity close to this it can be trapped and accelerated. The UCLA program investigating PBWA has found that tunnel or multi-photon ionized plasmas a re homogeneous enough for coherent macroscopic acceleration. The laser pulse should be short, and the peak laser intensity should be such that Iλ 2 ∼ 2 x 10 16 W/cm 2 μm 2 in order to get substantial beat wave amplitudes. tab., 3 refs

  19. Transformational change: nurses substituting for ophthalmologists for intravitreal injections – a quality-improvement report

    Michelotti MM

    2014-04-01

    Full Text Available Monica M Michelotti,1 Salwa Abugreen,2 Simon P Kelly,1 Jiten Morarji,1 Debra Myerscough,2 Tina Boddie,2 Ann Haughton,1 Natalie Nixon,2 Brenda Mason,1 Evangelos Sioras11Ophthalmology Department, Royal Bolton Hospital NHS Foundation Trust, Bolton, UK; 2Ophthalmology Department, East Lancashire NHS Trust, Blackburn, UKBackground: The dramatic increase in need for anti-vascular endothelial growth factor (anti-VEGF intravitreal therapy in the treatment of retinal disease and the absence of an equivalent increase in ophthalmologists to undertake such intravitreal injections created a patient-safety risk. Timing of intravitreal therapy (IVT is critical to prevent vision loss and local clinics lacked capacity to treat patients appropriately. We aimed to improve capacity for IVT by nurse injections.Materials and methods: A multidisciplinary prospective service-improvement process was undertaken at two adjacent general hospitals in the northwest of England. IVT injections by nurses were a principal component of solution development. After we had obtained appropriate institutional approval, experienced ophthalmic nurses were trained, supervised, and assessed to undertake IVT. Ophthalmologists directly supervised the first 200 injections, and a retina specialist was always on site.Results: Nurses undertook 3,355 intravitreal injections between June 2012 and November 2013, with minor adverse events (0.3% subconjunctival hemorrhage and corneal abrasion. There were no patient complaints at either hospital.Conclusion: Experienced ophthalmic nurses quickly learned how to perform such injections safely. IVT by nurses was well accepted by patients and staff. Hospital A trained three nurses sequentially for improved flexibility in scheduling. Novel use of appropriately trained nonmedical staff can improve efficiency and access in an overburdened service with time-sensitive disease. Retinal assessment was undertaken by ophthalmologists only. Improved access to IVT

  20. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  1. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    Janjua, Bilal

    2014-12-01

    We have studied enhanced carrier injection by having an electron blocking layer (EBL) based on a graded superlattice (SL) design. Here, we examine, using a selfconsistent 6 × 6 k.p method, the energy band alignment diagrams under equilibrium and forward bias conditions while also considering carrier distribution and recombination rates (Shockley-Read-Hall, Auger, and radiative recombination rates). The graded SL is based on AlxGa1-xN (larger bandgap) Al0:5Ga0:5N (smaller bandgap) SL, where x is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed in the direct recombination rate, as compared with the conventional bulk EBL consisting of Al0:8Ga0:2N. An increase in the spatial overlap of carrier wavefunction was obtained due to polarization-induced band bending in the active region. An efficient single quantum-well ultraviolet-B light-emitting diode was designed, which emits at 280 nm. This is the effective wavelength for water disinfection application, among others.

  2. An analysis of the SCEX 3 ionospheric electron beam injection experiment

    Goerke, R.T.

    1992-01-01

    The SCEX 3 experiment (Several Compatible EXperiments using a rocket-borne accelerator) was carried to ionospheric altitudes (375 km) by a Black Brant 11 rocket on February 1, 1990. The experiment was launched from Poker Flat Research Range (65.1 degree N, 147.5 degree W) at 1207 UT. The payload split into two parts (hereafter forward and aft payloads) 116 seconds after launch. The aft payload carried two electron accelerators as well as several diagnostic instruments. The forward payload was ejected at an angle of 6 degree with the magnetic field in a northwesterly direction. This payload carried a multiband plasma wave receiver and various particle detectors to make in situ measurements of the Beam Plasma Interaction (BPI) region. Two Throw Away Detectors (TAD's 1 and 2) were also ejected from the aft payload in the east and west directions respectively. TAD 1 also carried a multiband plasma wave receiver. Preceding the launch an auroral arch along the southern boundary of a diffuse auroral patch suddenly brightened, split into two separate arcs and moved to a position north of the rocket's trajectory. SCEX 3 was launched into an active breakup aurora consisting of tall rays and diffuse patches. The purpose of this experiment were (1) to observe injected electrons reflected from the naturally occurring parallel electric field structures which are thought to accelerate the auroral electron, (2) to observe a variety of plasma effects caused by the artificial electron beam and the associated spacecraft charging, and (3) study the natural phenomena associated with auroral activity. This work is a summary of the interesting observations made by the SCEX 3 experiment. These observations include VHF emissions produced by the electron beam via the Beam Plasma Discharge (BPD), Diffuse resonance emissions by the hot plasma region surrounding the electron beam and auroral Z-mode emissions

  3. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  4. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  5. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  6. Muscle injections with lidocaine improve resting fatigue and pain in patients with chronic fatigue syndrome

    Staud R

    2017-06-01

    Full Text Available Roland Staud,1 Taylor Kizer,1 Michael E Robinson2 1Department of Medicine, College of Medicine, 2Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA Objective: Patients with chronic fatigue syndrome (CFS complain of long-lasting fatigue and pain which are not relieved by rest and worsened by physical exertion. Previous research has implicated metaboreceptors of muscles to play an important role for chronic fatigue and pain. Therefore, we hypothesized that blocking impulse input from deep tissues with intramuscular lidocaine injections would improve not only the pain but also fatigue of CFS patients. Methods: In a double-blind, placebo-controlled study, 58 CFS patients received 20 mL of 1% lidocaine (200 mg or normal saline once into both trapezius and gluteal muscles. Study outcomes included clinical fatigue and pain, depression, and anxiety. In addition, mechanical and heat hyperalgesia were assessed and serum levels of lidocaine were obtained after the injections. Results: Fatigue ratings of CFS patients decreased significantly more after lidocaine compared to saline injections (p = 0.03. In contrast, muscle injections reduced pain, depression, and anxiety (p < 0.001, but these changes were not statistically different between lidocaine and saline (p > 0.05. Lidocaine injections increased mechanical pain thresholds of CFS patients (p = 0.04 but did not affect their heat hyperalgesia. Importantly, mood changes or lidocaine serum levels did not significantly predict fatigue reductions. Conclusion: These results demonstrate that lidocaine injections reduce clinical fatigue of CFS patients significantly more than placebo, suggesting an important role of peripheral tissues for chronic fatigue. Future investigations will be necessary to evaluate the clinical benefits of such interventions. Keywords: muscle injections, lidocaine, metaboreceptor, chronic fatigue 

  7. Modeling and Experiments on Injection into University of Maryland Electron Ring

    Bai, G.; Kishek, R. A.; Beaudoin, B.; Bernal, S.; Feldman, D.; Godlove, T.; Haber, I.; Quinn, B.; Reiser, M.; Sutter, D.; Walter, M.; O'Shea, P. G.

    2006-01-01

    The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has been closed and multi-turn commissioning has begun. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection/recirculation section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. Also, the Earth's magnetic field and the image charge effects have to be investigated because they are strong enough to impact the beam centroid motion. This paper presents both simulation and experimental study of the beam centroid motion in the injection region to address above issues

  8. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  9. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  10. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  11. Electron density profile determination by means of laser blow-off injected neutral beam

    Kocsis, G.; Bakos, J.S.; Ignacz, P.N.; Kardon, B.; Koltai, L.; Veres, G.

    1992-01-01

    This paper is devoted to the experimental and theoretical studies of the determination of the electron density profiles by means of laser blow-off neutrals. For the determination of the density profile the time and spatial distributions of the spectral line radiation intensity of the injected neutrals are used. The method is compared to other previously proposed methods and the advantages and disadvantages of the different methods are discussed. The result of the comparison is that our method gives the most reliable result with the highest temporal resolution for the density profile of the edge plasma. The only disadvantage is the need of careful calibration of the sensitivity of the spatial channels. The advantage is the ability of the method as a standard diagnostic. (orig.)

  12. Lessons learned from a community based intervention to improve injection safety in Pakistan.

    Altaf, Arshad; Shah, Sharaf Ali; Shaikh, Kulsoom; Constable, Fiona M; Khamassi, Selma

    2013-04-22

    A national study in 2007 revealed that in Pakistan the prevalence of hepatitis B is 2.5% and for hepatitis C it is 5%. Unsafe injections have been identified as one of the reasons for the spread of these infections. Trained and untrained providers routinely perform unsafe practices primarily for economic reasons i.e. they reuse injection equipment on several patients. The patients, do not question the provider about the need for an injection because of social barriers or whether the syringe is coming from a new sterile packet due to lack of knowledge. The present paper represents an intervention that was developed to empower the community to improve unsafe injection practices in rural Pakistan. In a rural district of Pakistan (Tando Allahyar, Sindh) with a population of approximately 630,000 a multipronged approach was used in 2010 (June to December) to improve injection safety. The focus of the intervention was the community, however providers were not precluded. The organization of interventions was also carefully planned. A baseline assessment (n=300) was conducted prior to the intervention. The interventions comprised large scale gatherings of the community (males and females) across the district. Smaller gatherings included teachers, imams of mosques and the training of trained and untrained healthcare providers. The Pakistan Television Network was used to broadcast messages recorded by prominent figures in the local language. The local FM channel and Sunday newspaper were also used to disseminate messages on injection safety. An end of project assessment was carried out in January 2012. The study was ethically reviewed and approved. The interventions resulted in improving misconceptions about transmission of hepatitis B and C. In the baseline assessment (only 9%) of the respondents associated hepatitis B and C with unsafe injections which increased to 78% at the end of project study. In the baseline study 15% of the study participants reported that a new

  13. Electron energy distribution function in the divertor region of the COMPASS tokamak during neutral beam injection heating

    Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team

    2018-02-01

    This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.

  14. Improved core electron confinement on JET

    Litaudon, X.; Baranov, Y.; Voitsekhovitch, I.

    1999-01-01

    Formation of core regions with reduced electron transport is reported in regimes with current profile shaping at JET. The electron heat diffusivity (Χ c ) is reduced down to 0.5 m 2 /s in the region of low magnetic shear with an ICRH power of 1 MW with no indication of a threshold. In the high performance optimised shear regime, obtained in scenarios dominated by ion heating, internal transport barriers on the ion temperature profiles are simultaneously accompanied by a significant reduction of the electron heat diffusivity at two-third of the plasma radius. In this regime, recent results and measurements obtained with the new gas-box divertor configuration are reported together with their transport analyses. The results indicate that Χ c is reduced by one order of magnitude in a spatially localised region. (authors)

  15. Long-lasting injection of solar energetic electrons into the heliosphere

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  16. Improved voluntary cough immediately following office-based vocal fold medialization injections.

    Ruddy, Bari H; Pitts, Teresa E; Lehman, Jeff; Spector, Brian; Lewis, Vicki; Sapienza, Christine M

    2014-07-01

    This study examined changes in voluntary cough airflow measures immediately following in-office injection of Radiesse in patients diagnosed with glottic insufficiency. Due to significant comorbidities, these patients were poor candidates for medialization under general anesthesia. Each patient presented with dysphonia and dysphagia and ineffective voluntary cough, resulting in a poor clearing of secretions and a presence of ingested fluids on examination. Prospective cohort and case series study. Three patients with a diagnosis of glottic insufficiency were included for study based on flexible endoscopy and laryngostroboscopic examination. Voluntary cough airflow measures were obtained approximately 30 minutes before and after the Radiesse injections. The airflow measures were: compression phase duration (CPD), expiratory rise time (EPRT), expiratory phase peak airflow (EPPF), and cough volume acceleration (CVA). Injection of Radiesse was found to improve voluntary cough airflow measures. The immediate increase in the objective airflow measures obtained from voluntary cough production after Radiesse injections can be used to document airway protection improvements. Cough airflow is a straightforward measure to obtain and is considered an objective measure of cough function. 4. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Long-lasting solar energetic electron injection during the 26 Dec 2013 widespread SEP event

    Dresing, N.; Klassen, A.; Temmer, M.; Gomez-Herrero, R.; Heber, B.; Veronig, A.

    2017-12-01

    The solar energetic particle (SEP) event on 26 Dec 2013 was detected all around the Sun by the two STEREO spacecraft and close-to-Earth observers. While the two STEREOs were separated by 59 degrees and situated at the front side of the associated large coronal event, it was a backside-event for Earth. Nevertheless, significant and long-lasting solar energetic electron anisotropies together with long rise times were observed at all three viewpoints, pointing to an extended electron injection. Although the CME-driven shock appears to account for the SEP event at a first glance a more detailed view reveals a more complex scenario: A CME-CME interaction takes place during the very early phase of the SEP event. Furthermore, four hours after the onset of the event, a second component is measured at all three viewpoints on top of the first SEP increase, mainly consisting of high energy particles. We find that the CME-driven shock alone can hardly account for the observed SEP event in total but a trapping scenario together with ongoing particle acceleration is more likely.

  18. Electron beam injection and associated phenomena as observed in a large space simulation chamber

    Beghin, C.; Arnal, Y.; Delahaye, J.Y.

    1982-01-01

    This chapter describes an experiment whose main purpose was to perform a simulation under conditions where the ambient neutral and ionized gas, magnetic field strength and lay-out of the different packages were as close as possible to those anticipated for the First Spacelab Flight (FSLP) mission. Phenomena Induced by Charged Particle Beams (PICPAB) are planned to be investigated during the FSLP using a Euopean payload. The PICPAB experiment consists of two accelerators of electron and ion beams and associated diagnostic instruments including wave receivers, thermal plasma probes and return current particle energy-analyzers. The main results of the test with the electron beam are reported. Topics considered include the experimental configuration; a transverse dc electric field in the absence of background plasma; a transverse dc electric field in the background plasma; ambient plasma response; a high-frequency electric field; return current characteristics; and collector vs. plasma behavior. The complexity of the beam-plasma-collector-gun system is shown where nonlinear processes are generated in several consecutive steps. It is concluded that under the peculiar conditions described (with the beam propagation distance shorter than the first node focalization length and nearly zero pitch-angle injection, neutral gas pressure ranging from less to 10 -6 up to 10 -4 torr), the beam plasma discharge was never triggered

  19. Magnetically insulated transmission line used for relativistic electron beam injection into SPAC-VI

    Tsuzuki, Tetsuya; Narihara, Kazumichi; Tomita, Yukihiro; Mohri, Akihiro.

    1980-10-01

    For the purpose to inject the electron beam with energy of about 1.5 MeV and current of about 100 kA into the SPAC-6 (torus device), a magnetically insulated transmission line was designed and constructed. The motion of electrons in the line was theoretically analyzed. The requirements for the design of the transmission line were as follows-: (a) condition of magnetic insulation, (b) suppression against reverse gas flow from the beam source to the torus, (c) care to minimize the influence of strong torus magnetic field, (d) reduction of inductance and (e) safety engineering measures, e.g., separation valve in the MITL between the beam source and the SPAC-6. The transmission line of 2.4 m long was designed and constructed. The wave forms of electric potential and current were measured. The transmission efficiency of current along the axis and the efficiency as a function of current at the end of the line were also measured. The reason of the loss of current is discussed. (J.P.N.)

  20. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    Kai Braun

    2015-05-01

    Full Text Available Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode into the highest occupied orbital of the closest substrate-bound molecule (lower level and radiative recombination with an electron from above the Fermi level (upper level, hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode.

  1. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary

  2. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  3. Electron transport and improved confinement on Tore Supra

    Hoang, G.T.; Bourdelle, C.; Garbet, X.; Aniel, T.; Giruzzi, G.; Ottaviani, M.; Horton, W.; Zhu, P.; Budny, R.V.

    2001-01-01

    Magnetic shear is found to play an important role for triggering various improved confinement regimes through the electron channel. A wide database of hot electron plasmas (T e >2T i ) heated by fast wave electron heating (FWEH) is analyzed for electron thermal transport. A critical gradient is clearly observed. It is found that the critical gradient linearly increases with the ratio between local magnetic shear (s) and safety factor (q). The Horton model, based on the electromagnetic turbulence driven by the electron temperature gradient (ETG) mode, is found to be a good candidate for electron transport modeling. (author)

  4. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency

    Kim, T. S.; Jeong, S. H.; Chang, D. H.; In, S. R.; Park, M.; Jung, B. K.; Lee, K. W.; Wang, S. J.; Bae, Y. S.; Park, H. T.; Kim, J. S.; Cho, W.; Choi, D. J.

    2016-01-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP

  5. Increasing Laser Stability with Improved Electronic Instruments

    Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.

    2010-03-01

    We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.

  6. Epidemic surveillance using an electronic medical record: an empiric approach to performance improvement.

    Hongzhang Zheng

    Full Text Available Electronic medical records (EMR form a rich repository of information that could benefit public health. We asked how structured and free-text narrative EMR data should be combined to improve epidemic surveillance for acute respiratory infections (ARI.Eight previously characterized ARI case detection algorithms (CDA were applied to historical EMR entries to create authentic time series of daily ARI case counts (background. An epidemic model simulated influenza cases (injection. From the time of the injection, cluster-detection statistics were applied daily on paired background+injection (combined and background-only time series. This cycle was then repeated with the injection shifted to each week of the evaluation year. We computed: a the time from injection to the first statistical alarm uniquely found in the combined dataset (Detection Delay; b how often alarms originated in the background-only dataset (false-alarm rate, or FAR; and c the number of cases found within these false alarms (Caseload. For each CDA, we plotted the Detection Delay as a function of FAR or Caseload, over a broad range of alarm thresholds.CDAs that combined text analyses seeking ARI symptoms in clinical notes with provider-assigned diagnostic codes in order to maximize the precision rather than the sensitivity of case-detection lowered Detection Delay at any given FAR or Caseload.An empiric approach can guide the integration of EMR data into case-detection methods that improve both the timeliness and efficiency of epidemic detection.

  7. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  8. Improving Injectable Medicines Prescription in Outpatient Services: A Path Towards Rational Use of Medicines in Iran

    Bairami, Firoozeh; Soleymani, Fatemeh; Rashidian, Arash

    2016-01-01

    Injection is one of the most common medical procedures in the health sector. Annually up to 16 billion injections are prescribed in low- and middle-income countries (LMICs), many of them are not necessary for the patients, increase the healthcare costs and may result in side effects. Currently over 40% of outpatient prescriptions in Iran contain at least one injectable medicine. To address the issue, a working group was established (August 2014 to April 2015) to provide a comprehensive policy brief to be used by national decision-makers. This report is the extract of methods that were followed and the main policy options for improving injectable medicines prescribing in outpatient services. Thirty-three potential policy options were developed focusing on different stakeholders. The panel reached consensus on seven policy options, noting effectiveness, cost, durability, and feasibility of each policy. The recommended policy options are targeted at patients and public (2 policies), insurers (2), physicians (1), pharmacies (1), and the Ministry of Health and Medical Education (MoHME) (1). PMID:27239881

  9. Improving Injectable Medicines Prescription in Outpatient Services: A Path Towards Rational Use of Medicines in Iran

    Firoozeh Bairami

    2016-05-01

    Full Text Available Injection is one of the most common medical procedures in the health sector. Annually up to 16 billion injections are prescribed in low- and middle-income countries (LMICs, many of them are not necessary for the patients, increase the healthcare costs and may result in side effects. Currently over 40% of outpatient prescriptions in Iran contain at least one injectable medicine. To address the issue, a working group was established (August 2014 to April 2015 to provide a comprehensive policy brief to be used by national decision-makers. This report is the extract of methods that were followed and the main policy options for improving injectable medicines prescribing in outpatient services. Thirty-three potential policy options were developed focusing on different stakeholders. The panel reached consensus on seven policy options, noting effectiveness, cost, durability, and feasibility of each policy. The recommended policy options are targeted at patients and public (2 policies, insurers (2, physicians (1, pharmacies (1, and the Ministry of Health and Medical Education (MoHME (1.

  10. Recent electronic improvements to the Oak Ridge 25URC accelerator

    Ziegler, N.F.; Schulze, G.K.; Rochelle, J.W.; Milner, W.T.; Meigs, M.J.; McPherson, R.L.; Juras, R.C.

    1987-01-01

    A new chopper-buncher system has been installed in the 25URC accelerator injection line. The buncher is similar to the one used previously, but incorporates several significant improvements. The chopper is a new device to provide beam pulses for time-of-flight experiments. The accelerator charging system has been modified to increase reliability and improve chain monitoring. A display unit for beam profile monitors (BPM) is being developed. The display will allow the operator to observe four BPM traces simultaneously

  11. Improved energy confinement with neon injection in the DIII-D tokamak

    Staebler, G.M.; Jackson, G.L.; West, W.P. Groebner, R.J.; Schaffer, M.J.; Allen, S.L.; Whyte, D.G.

    1997-06-01

    In this paper the authors will report the first direct measurements of the fully stripped neon 10 + density profile in a plasma with enhanced energy confinement due to neon injection. This is made with a calibrated charge exchange recombination (CER) system. It is found that the neon 10 + density is peaked like the electron density with a slightly higher concentration towards the edge. The good news is that the neon 10 + fraction is less than 1% (normalized to the electron density). The radial electric field can also be computed from the CER measurements on DIII-D. The shear in the E x B velocity is found to exceed the maximum growth rate of the ion temperature gradient (ITG) mode over part of the profile, a condition for the suppression of turbulent transport. This agrees with the reduced power balance thermal diffusivities near the magnetic axis

  12. Plasma dynamics near an earth satellite and neutralization of its electric charge during electron beam injection into the ionosphere

    Fedorov, V.A.

    2000-01-01

    A study is made of the dynamics of the ionospheric plasma in the vicinity of an earth satellite injecting an electron beam. The time evolution of the electric charge of the satellite is determined. The electric potential of the satellite is found to be well below the beam-cutoff potential. It is shown that, under conditions typical of active experiments in space, the plasma electrons are capable of neutralizing the satellite's charge

  13. Continuous Improvement and its Barriers in Electrical and Electronic Industry

    Ahmad Md Fauzi

    2017-01-01

    Full Text Available Continuous improvement is one of the core strategies for manufacturing excellent and it is considered vital in today’s business environment. Continuous improvement is an important factor in TQM implementation. However, manufacturers in Electrical and Electronic Industry is facing variety of challenges such as, time constraint, quality issue, headcount issue, human issue and competition in domestic as well as the global market. This paper presents total quality management practices in Electrical and Electronic (EE Industry. These manufacturers have to keep improving in key activities and processes to cope the challenges. Therefore, EE industry realize the importance of continuous improvement in helping the industries by setting clear goals and priorities for the area of improvement. The aims of this study are to determine the main factor in implementing continuous improvement practices, identify tools of continuous improvement that have been used and their obstacle in implementing continuous improvement practices. 200 questionnaires had been distributed to the employees in Electrical and Electronic Industry located at Bayan Lepas, Penang, Malaysia. A total of 41 questionnaires were answered which represented about 20.5% response rates. Survey result shows that teamwork and training and learning are respectively the importance factor and the most practices factor in Electrical and Electronic Industry. Most of the Electrical and Electronic Industry emphasis is on using Lean Manufacturing as the tool of continuous improvement practices. Besides that, Electrical and Electronic Industry faced the problems of lack of budget and lack of worker commitment.

  14. Investigation of organic light-emitting diodes with novel organic electron injection layers

    Lee, Sunae; Sethuraman, Kunjithapatham; An, Jongdeok; Im, Chan [Konkuk University, Seoul (Korea, Republic of); Hwang, Boseon [Jinwoong Industrial Co. Ltd., Seoul (Korea, Republic of)

    2012-03-15

    1-(diphenyl-phosphinoyl)-4-(2,2-diphenyl-vinyl)-benzene (DpDvB) and 4-(diphenyl-phosphinoyl)-4'-(2,2-diphenyl-vinyl)-biphenyl (DpDvBp) have been prepared and used as efficient electron injection layers (EILs) between aluminum cathode and tris (8-hydroxyquinoline) aluminum organic light emitting diodes (OLED). The performances of devices with different thicknesses of DpDvB and DpDvBp were investigated. Experimental results show that the turn-on voltage of the devices was decreased and the luminance of the devices was enhanced with increasing thickness of the EILs. Power efficiencies of 1.07 lm/W and 0.97 lm/W were obtained by inserting a 3-nm-thick EIL of DpDvB and a 5 nm thick EIL of DpDvBp, respectively. These efficiencies are comparable to that of the device using LiF as an EIL. The results prove that DpDvB and DpDvBp layers are also suitable for efficient EILs in OLEDs.

  15. MTBE and priority contaminant treatment with high energy electron beam injection

    Cooper, William J; Nickelsen, Michael G; Mezyk, Stephen P; Leslie, Greg; Tornatore, Paul M; Hardison, Wayne; Hajali, Paris A

    2002-11-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.

  16. MTBE and priority contaminant treatment with high energy electron beam injection

    Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.

    2002-01-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters

  17. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  18. Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection

    S. Banerjee

    2013-03-01

    Full Text Available Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low-energy spread, ∼10  pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear focus of the laser pulse within the plasma suppresses continuous injection, thus reducing the low-energy tail of the electron beam.

  19. Improvements in or relating to electron beam focussing

    Ely, R.V.

    1981-01-01

    An improved electron beam focussing system for use in x-ray microscopes is described. In this design the focussing assembly is completely separated mechanically from the rest of the electron gun thus avoiding insulation problems which are normally encountered in this type of equipment. (U.K.)

  20. An improved electron impact ion source power supply

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  1. Lessons From Managerial Theories for Improving Virtualness in Electronic Business

    Wassenaar, Arjen; Govindaraju, Rajesri; Govindaraju, R.; Moreno Bragado, Elisa; Moreno Bragado, Elisa; von Raesfeld Meijer, Ariane M.; Ribbers, Pieter; Swagerman, D.M.; Sieber, Pascal; Griese, Joachim

    1998-01-01

    Electronic business and virtual organisations are important research topics in the IS research community today. At the same time these research topics are very appropriate for interdisciplinary research. The panel aims: - presentation of lessons from managerial theories for improving organisational

  2. Idiopathic Supraglottic Stenosis Refractory to Multiple Interventions Improved With Serial Office-based Steroid Injections.

    Hoffman, Matthew R; Mai, Johnny P; Dailey, Seth H

    2017-10-30

    The objective of this study was to describe a patient with idiopathic supraglottic stenosis who experienced persistent disease despite multiple office-based and operative interventions, whose disease is now better controlled with scheduled serial office-based steroid injections. This is a case report and literature review. A 42-year-old female was referred for worsening supraglottic stenosis despite systemic steroids. She underwent awake tracheotomy. A thorough historical, histologic, and laboratory workup did not reveal an etiology to her stenosis. She later underwent endoscopic partial laryngectomy and was able to be decannulated. She underwent a second endoscopic partial laryngectomy two years later for worsening disease and then was managed over the next seven years with intermittent systemic steroids. Over the last year, she has undergone eight office-based steroid injections with improvement in her degree of stenosis and symptom burden. There are only four prior reported cases of idiopathic supraglottic stenosis, none of which has been managed with serial office-based steroid injections. This case report adds to the small body of literature on the management of this rare disease and proposes a new office-based treatment pathway that may help induce regression of stenosis. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Modified methylene blue injection improves lymph node harvest in rectal cancer.

    Liu, Jianpei; Huang, Pinjie; Zheng, Zongheng; Chen, Tufeng; Wei, Hongbo

    2017-04-01

    The presence of nodal metastases in rectal cancer plays an important role in accurate staging and prognosis, which depends on adequate lymph node harvest. The aim of this prospective study is to investigate the feasibility and survival benefit of improving lymph node harvest by a modified method with methylene blue injection in rectal cancer specimens. One hundred and thirty-one patients with rectal cancer were randomly assigned to the control group in which lymph nodes were harvested by palpation and sight, or to the methylene blue group using a modified method of injection into the superior rectal artery with methylene blue. Analysis of clinicopathologic records, including a long-term follow-up, was performed. In the methylene blue group, 678 lymph nodes were harvested by simple palpation and sight. Methylene blue injection added 853 lymph nodes to the total harvest as well as 32 additional metastatic lymph nodes, causing a shift to node-positive stage in four patients. The average number of lymph nodes harvested was 11.7 ± 3.4 in the control group and 23.2 ± 4.7 in the methylene blue group, respectively. The harvest of small lymph nodes (rectal cancer, especially small node and metastatic node retrieval, which provided more accurate staging. However, it was not associated with overall survival. © 2014 Royal Australasian College of Surgeons.

  4. Particle Dispersibility Improvement of Polyester Fibers with a New Line Injection

    Park, Seong Yoon; Kim, Hak Yong [Chonbuk National University, Jeonju (Korea, Republic of); Jin, Fan Long [Jilin Institute of Chemical Technology, Jilin (China); Park, Soo Jin [Inha University, Incheon (Korea, Republic of)

    2010-09-15

    In order to develop a new line injection system for spin draw yarn (FD SDY) fibers, the effect of various parameters in extrusion and melt line conditions on the dispersion and distribution of TiO{sub 2} particles within FD PET fibers was investigated. As a result, the dispersibility of TiO{sub 2} particles in a PET matrix is found to depend on the particle size and its surface characteristics. Surface modification of TiO{sub 2} by dimethyl polysiloxane resulted in the improved dispersibility and affinity of TiO{sub 2} particles in the PET matrix. Especially, residence time, mixing temperature, and mixing shear rate in the new line injection system under the SDY spinning process were very important parameters to minimize the agglomeration of TiO{sub 2} particles. The FD SDY prepared by the new line injection system was superior to those using the polymerization process and the conventional masterbatch chip dosing process in the color-L and color-b values of the fibers.

  5. Particle Dispersibility Improvement of Polyester Fibers with a New Line Injection

    Park, Seong Yoon; Kim, Hak Yong; Jin, Fan Long; Park, Soo Jin

    2010-01-01

    In order to develop a new line injection system for spin draw yarn (FD SDY) fibers, the effect of various parameters in extrusion and melt line conditions on the dispersion and distribution of TiO 2 particles within FD PET fibers was investigated. As a result, the dispersibility of TiO 2 particles in a PET matrix is found to depend on the particle size and its surface characteristics. Surface modification of TiO 2 by dimethyl polysiloxane resulted in the improved dispersibility and affinity of TiO 2 particles in the PET matrix. Especially, residence time, mixing temperature, and mixing shear rate in the new line injection system under the SDY spinning process were very important parameters to minimize the agglomeration of TiO 2 particles. The FD SDY prepared by the new line injection system was superior to those using the polymerization process and the conventional masterbatch chip dosing process in the color-L and color-b values of the fibers

  6. Improvement Performance of the Filling Step in Injection Mold through Vibration

    Trejo-Hernández M.

    2012-10-01

    Full Text Available This paper shows the flow improvement in the filling step of the polymer injection process due to the polymer excitation though vibration. This process can be split up into three main steps: filling, pocking and cooling. Several mechanical and aesthetic properties of the finished product can be changed in the filling step. The objective of this investigation is to demonstrate the improvement in the filling mold under vibration without adding chemical products. To reach this result, an experimental mold was designed and manufactured in which a vibration device was coupled; it was possible to demonstrate the vibration advantage through this process. Moreover, a heuristic methodology was proposed for the experiment which shows an improvement in the filling process with frequencies close to 3 Hz.

  7. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  8. Optical detection of ballistic electrons injected by a scanning-tunneling microscope

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Wolter, J.H.

    2001-01-01

    We demonstrate a spectroscopic technique which is based on ballistic injection of minority carriers from the tip of a scanning-tunneling microscope into a semiconductor heterostructure. By analyzing the resulting electroluminescence spectrum as a function of tip-sample bias, both the injection

  9. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  10. Pain Elimination during Injection with Newer Electronic Devices: A Comparative Evaluation in Children.

    Bansal, Neha; Saha, Sonali; Jaiswal, Jn; Samadi, Firoza

    2014-05-01

    The present study was taken up to clinically evaluate and compare effectiveness of transcutaneous electrical nerve stimulator (TENS) and comfort control syringe (CCS) in various pediatric dental procedures as an alternative to the conventional method of local anesthesia (LA) administration. Ninety healthy children having at least one deciduous molar tooth indicated for extraction in either maxillary right or left quadrant in age group of 6 to 10 years were randomly divided into three equal groups having 30 subjects each. Group I: LA administration using conventional syringe, group II: LA administration using TENS along with the conventional syringe, group III: LA administration using CCS. After LA by the three techniques, pain, anxiety and heart rate were measured. The observations, thus, obtained were subjected to statistical analysis using analysis of variance (ANOVA), student t-test and paired t-test. The mean pain score was maximum in group I followed by group II, while group III revealed the minimum pain, where LA was administered using CCS. Mean anxiety score was maximum in group I followed by group II, while group III revealed the minimum score. Mean heart rate was maximum in group I followed in descending order by groups II and III. The study supports the belief that CCS could be a viable alternative in comparison to the other two methods of LA delivery in children. How to cite this article: Bansal N, Saha S, Jaiswal JN, Samadi F. Pain Elimination during Injection with Newer Electronic Devices: A Comparative Evaluation in Children. Int J Clin Pediatr Dent 2014;7(2):71-76.

  11. Fiber-Based, Injection-Molded Optofluidic Systems: Improvements in Assembly and Applications

    Marco Matteucci

    2015-12-01

    Full Text Available We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow precise optical alignment and improve delivery of optical power. Using a multi-level chip fabrication process, complex channel designs with extremely vertical sidewalls, and dimensions that range from few tens of nanometers to hundreds of microns can be obtained. The technology has been used to align optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC applications. We demonstrate the versatility of this technology by carrying out two types of experiments that benefit from the improved optical system: optical stretching of red blood cells (RBCs and Raman spectroscopy of a solution loaded into a hollow core fiber. The advantages offered by the presented technology are intended to encourage the use of LoC technology for commercialization and educational purposes.

  12. Breviscapine Injection Improves the Therapeutic Effect of Western Medicine on Angina Pectoris Patients.

    Wang, Chuan; Li, Yafeng; Gao, Shoucui; Cheng, Daxin; Zhao, Sihai; Liu, Enqi

    2015-01-01

    To evaluate the beneficial and adverse effects of breviscapine injection in combination with Western medicine on the treatment of patients with angina pectoris. The Cochrane Central Register of Controlled Trials, Medline, Science Citation Index, EMBASE, the China National Knowledge Infrastructure, the Wanfang Database, the Chongqing VIP Information Database and the China Biomedical Database were searched to identify randomized clinical trials (RCTs) that evaluated the effects of Western medicine compared to breviscapine injection plus Western medicine on angina pectoris patients. The included studies were analyzed using RevMan 5.1.0 software. The literature search yielded 460 studies, wherein 16 studies matched the selection criteria. The results showed that combined therapy using Breviscapine plus Western medicine was superior to Western medicine alone for improving angina pectoris symptoms (OR=3.77, 95% Cl: 2.76~5.15) and also resulted in increased electrocardiogram (ECG) improvement (OR=2.77, 95% Cl: 2.16~3.53). The current evidence suggests that Breviscapine plus Western medicine achieved a superior therapeutic effect compared to Western medicine alone.

  13. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  14. Contralateral botulinum toxin injection to improve facial asymmetry after acute facial paralysis.

    Kim, Jin

    2013-02-01

    The application of botulinum toxin to the healthy side of the face in patients with long-standing facial paralysis has been shown to be a minimally invasive technique that improves facial symmetry at rest and during facial motion, but our experience using botulinum toxin therapy for facial sequelae prompted the idea that botulinum toxin might be useful in acute cases of facial paralysis, leading to improve facial asymmetry. In cases in which medical or surgical treatment options are limited because of existing medical problems or advanced age, most patients with acute facial palsy are advised to await spontaneous recovery or are informed that no effective intervention exists. The purpose of this study was to evaluate the effect of botulinum toxin treatment for facial asymmetry in 18 patients after acute facial palsy who could not be optimally treated by medical or surgical management because of severe medical or other problems. From 2009 to 2011, nine patients with Bell's palsy, 5 with herpes zoster oticus and 4 with traumatic facial palsy (10 men and 8 women; age range, 22-82 yr; mean, 50.8 yr) participated in this study. Botulinum toxin A (Botox; Allergan Incorporated, Irvine, CA, USA) was injected using a tuberculin syringe with a 27-gauge needle. The amount injected per site varied from 2.5 to 3 U, and the total dose used per patient was 32 to 68 U (mean, 47.5 +/- 8.4 U). After administration of a single dose of botulinum toxin A on the nonparalyzed side of 18 patients with acute facial paralysis, marked relief of facial asymmetry was observed in 8 patients within 1 month of injection. Decreased facial asymmetry and strengthened facial function on the paralyzed side led to an increased HB and SB grade within 6 months after injection. Use of botulinum toxin after acute facial palsy cases is of great value. Such therapy decreases the relative hyperkinesis contralateral to the paralysis, leading to greater symmetric function. Especially in patients with medical

  15. Studies of improved electron confinement in low density L-mode National Spherical Torus Experiment discharges

    Stutman, D.; Finkenthal, M.; Tritz, K.; Redi, M. H.; Kaye, S. M.; Bell, M. G.; Bell, R. E.; LeBlanc, B. P.; Hill, K. W.; Medley, S. S.; Menard, J. E.; Rewoldt, G.; Wang, W. X.; Synakowski, E. J.; Levinton, F.; Kubota, S.; Bourdelle, C.; Dorland, W.; The NSTX Team

    2006-01-01

    Electron transport is rapid in most National Spherical Torus Experiment, M. Ono et al., Nucl. Fusion 40, 557 (2000) beam heated plasmas. A regime of improved electron confinement is nevertheless observed in low density L-mode (''low-confinement'') discharges heated by early beam injection. Experiments were performed in this regime to study the role of the current profile on thermal transport. Variations in the magnetic shear profile were produced by changing the current ramp rate and onset of neutral beam heating. An increased electron temperature gradient and local minimum in the electron thermal diffusivity were observed at early times in plasmas with the fastest current ramp and earliest beam injection. In addition, an increased ion temperature gradient associated with a region of reduced ion transport is observed at slightly larger radii. Ultrasoft x-ray measurements of double-tearing magnetohydrodynamic activity, together with current diffusion calculations, point to the existence of negative magnetic shear in the core of these plasmas. Discharges with slower current ramp and delayed beam onset, which are estimated to have more monotonic q-profiles, do not exhibit regions of reduced transport. The results are discussed in the light of the initial linear microstability assessment of these plasmas, which suggests that the growth rate of all instabilities, including microtearing modes, can be reduced by negative or low magnetic shear in the temperature gradient region. Several puzzles arising from the present experiments are also highlighted

  16. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  17. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.

    2014-01-01

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory

  18. Implementing electronic handover: interventions to improve efficiency, safety and sustainability.

    Alhamid, Sharifah Munirah; Lee, Desmond Xue-Yuan; Wong, Hei Man; Chuah, Matthew Bingfeng; Wong, Yu Jun; Narasimhalu, Kaavya; Tan, Thuan Tong; Low, Su Ying

    2016-10-01

    Effective handovers are critical for patient care and safety. Electronic handover tools are increasingly used today to provide an effective and standardized platform for information exchange. The implementation of an electronic handover system in tertiary hospitals can be a major challenge. Previous efforts in implementing an electronic handover tool failed due to poor compliance and buy-in from end-users. A new electronic handover tool was developed and incorporated into the existing electronic medical records (EMRs) for medical patients in Singapore General Hospital (SGH). There was poor compliance by on-call doctors in acknowledging electronic handovers, and lack of adherence to safety rules, raising concerns about the safety and efficiency of the electronic handover tool. Urgent measures were needed to ensure its safe and sustained use. A quality improvement group comprising stakeholders, including end-users, developed multi-faceted interventions using rapid PDSA (P-Plan, D-Do, S-Study, A-Act ) cycles to address these issues. Innovative solutions using media and online software provided cost-efficient measures to improve compliance. The percentage of unacknowledged handovers per day was used as the main outcome measure throughout all PDSA cycles. Doctors were also assessed for improvement in their knowledge of safety rules and their perception of the electronic handover tool. An electronic handover tool complementing daily clinical practice can be successfully implemented using solutions devised through close collaboration with end-users supported by the senior leadership. A combined 'bottom-up' and 'top-down' approach with regular process evaluations is crucial for its long-term sustainability. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  20. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  1. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  2. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  3. The effects of photovoltaic electricity injection into microgrids: Combination of Geographical Information Systems, multicriteria decision methods and electronic control modeling

    Roa-Escalante, Gino de Jesús; Sánchez-Lozano, Juan Miguel; Faxas, Juan-Gabriel; García-Cascales, M. Socorro; Urbina, Antonio

    2015-01-01

    Highlights: • Geographical Information Systems can be used as a support to classify the viable locations for photovoltaic facilities. • Multicriteria decision methods are useful tools to choose the optimal locations for photovoltaic systems. • Variations of photovoltaic power injected into the grid have been calculated for the optimum locations. • Grid stabilization can be achieved within 500 ms with electronic control strategies. - Abstract: This article presents a model to calculate the impact on the grid of the injection of electricity generated from photovoltaic systems. The methodology combines the use of Geographical Information System tools to classify the optimal locations for the installation of photovoltaic systems with the calculation of the impact into microgrids of the electricity generated in such locations. The case study is focused on Murcia region, in South-east Spain, and on medium size photovoltaic systems. The locations have been selected from a Geographical Information System database including several parameters, and evaluated and classified using a fuzzy version of the multicriteria decision method called Technique for Order Preference by Similarity to Ideal Solution. In order to obtain the weights for the criteria used in the evaluation, the Analytic Hierarchy Process has been used. Finally, using meteorological data from a small set of possible locations, the impact on the grid arising from the injection of power generated from photovoltaic systems that are connected to the grid via a module implementing different control electronic strategies has been calculated. Different electronic control strategies have been modeled to demonstrate that stabilization of the electrical parameters of a microgrid can be obtained within 500 ms in all cases, even when a relatively large power surge, or slower variations, are injected into the grid from the medium size photovoltaic systems

  4. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  5. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    of the temperature dependence of the oil recovery indicated that the interaction of the ions contained in brine with the rock cannot be the only determining mechanism of enhanced recovery. We observed no substitution of Ca2+ ions with Mg2+ ions at high temperatures for both rocks. Not only the injection brine......In recent years, many core displacement experiments of oil by seawater performed on chalk rock samples have reported SO42–, Ca2+, and Mg2+ as potential determining ions for improving oil recovery. Most of these studies were carried out with outcrop chalk core plugs. The objective of this study...... is to investigate the potential of the advanced waterflooding process by carrying out experiments with reservoir chalk samples. The study results in a better understanding of the mechanisms involved in increasing the oil recovery with potential determining ions. We carried out waterflooding instead of spontaneous...

  6. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  7. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime.

    Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron

    2018-04-24

    Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.

  8. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  9. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  10. Continuous Improvement and its Barriers in Electrical and Electronic Industry

    Ahmad Md Fauzi; Yan Toh Li; Wei Chan Shiau; Aizat Ahmad Ahmad Nur; Raja Mohd Rasi Raja Zuraidah; Abdul Rahman Nor Aida; Muhd Nor Nik Hisyamudin; Hassan Mohd Fahrul; Hashim Fatan Adibah

    2017-01-01

    Continuous improvement is one of the core strategies for manufacturing excellent and it is considered vital in today’s business environment. Continuous improvement is an important factor in TQM implementation. However, manufacturers in Electrical and Electronic Industry is facing variety of challenges such as, time constraint, quality issue, headcount issue, human issue and competition in domestic as well as the global market. This paper presents total quality management practices in Electric...

  11. Beam-plasma interaction in case of injection of the electron beam to the symmetrically open plasma system

    Opanasenko, A.V.; Romanyuk, L.I.

    1992-01-01

    A beam-plasma interaction at the entrance of the symmetrically open plasma system with an electron beam injected through it is investigated. An ignition of the plasma-beam discharge on waves of upper hybrid dispersion branch of a magnetoactive plasma is found in the plasma penetrating into the vacuum contrary to the beam. It is shown that the beam-plasma discharge is localized in the inhomogeneous penetrating plasma in the zone where only these waves exist. Regularities of the beam-plasma discharge ignition and manifestation are described. It is determined that the electron beam crossing the discharge zone leads to the strong energy relaxation of the beam. It is shown possible to control the beam-plasma discharge ignition by changing the potential of the electron beam collector. (author)

  12. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    Hollmann, E. M. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Parks, P. B. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Eidietis, N. W. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Moyer, R. A. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Shiraki, D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Austin, M. E. [Institute for Fusion Studies, University of Texas—Austin, 2100 San Jacinto Blvd, Austin, Texas 78712, USA; Lasnier, C. J. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA; Paz-Soldan, C. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Rudakov, D. L. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ~0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  13. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-01-01

    The evolution of the runaway electron (RE) energy distribution function f ε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy

  14. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  15. Hazelnut and neuroprotection: Improved memory and hindered anxiety in response to intra-hippocampal Aβ injection.

    Bahaeddin, Zahra; Yans, Asal; Khodagholi, Fariba; Hajimehdipoor, Homa; Sahranavard, Shamim

    2017-07-01

    Corylus avellana L. (hazelnut) is known to be a delicious and nutritious food. This study was carried out to evaluate the use of hazelnut as a therapy for memory impairment because in Iranian traditional medicine, it is recommended for those suffering from a particular type of dementia, with symptoms of Alzheimer's disease. In this study, rats were fed with hazelnut kernel [(without skin) 800 mg/kg/day] during 1 week before stereotaxic surgery to 24 hours before behavioral testing (in general, for 16 consecutive days) and the effect of hazelnut eating on memory, anxiety, neuroinflammation and apoptosis was assessed in the amyloid beta-injected rat. The results of this study showed that feeding with hazelnut improved memory, (which was examined by using Y-maze test and shuttle box apparatus), and reduced anxiety-related behavior, that was evaluated using elevated plus maze. Also, western blotting analysis of cyclooxygenase-2, interleukin-1β, tumor necrosis factor-α, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and caspase-3 showed that hazelnut has an ameliorating effect on the neuroinflammation and apoptosis caused by Aβ. These findings suggest that hazelnut, as a dietary supplement, improves healthy aging and could be a beneficial diet for the treatment of AD.

  16. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces

    Aly, Shawkat Mohammede

    2015-03-05

    Charge transfer (CT) at donor (D)/acceptor (A) interfaces is central to the functioning of photovoltaic and light-emitting devices. Understanding and controlling this process on the molecular level has been proven to be crucial for optimizing the performance of many energy-challenge relevant devices. Here, we report the experimental observations of controlled on/off ultrafast electron transfer (ET) at cationic porphyrin-CdTe quantum dot (QD) interfaces using femto- and nanosecond broad-band transient absorption (TA) spectroscopy. The time-resolved data demonstrate how one can turn on/off the electron injection from porphyrin to the CdTe QDs. With careful control of the molecular structure, we are able to tune the electron injection at the porphyrin-CdTe QD interface from zero to very efficient and ultrafast. In addition, our data demonstrate that the ET process occurs within our temporal resolution of 120 fs, which is one of the fastest times recorded for organic photovoltaics. © 2015 American Chemical Society.

  17. Improved fueling and transport barrier formation with pellet injection from different locations on DIII-D

    Baylor, L.R.; Jernigan, T.C.; Gohil, P.

    2001-01-01

    Pellet injection has been employed on DIII-D from different injection locations to optimize the mass deposition for density profile control and internal transport barrier formation. Transport barriers have been formed deep in the plasma core with central mass deposition from high field side (HFS) injected pellets and in the edge with pellets that trigger L-mode to H-mode transitions. Pellets injected from all locations can trigger the H-mode transition, which depends on the edge density gradient created and not on the radial extent of the pellet deposition. Pellets injected from inside the magnetic axis from the inner wall or vertical port lead to stronger central mass deposition than pellets injected from the low field side (LFS) and thus yield deeper more efficient fueling. (author)

  18. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  19. Improvement of Modeling Scheme of the Safety Injection Tank with Fluidic Device for Realistic LBLOCA Calculation

    Bang, Young Seok; Cheong, Aeju; Woo, Sweng Woong

    2014-01-01

    Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling

  20. Evaluation of patients’ experiences at different stages of the intravitreal injection procedure – what can be improved?

    Tailor R

    2011-10-01

    Full Text Available Rajen Tailor, Rebecca Beasley, Yit Yang, Niro NarendranWolverhampton and Midland Counties Eye Infirmary, New Cross Hospital, Wolverhampton, UKIntroduction: Intravitreal injection of ranibizumab has become one of the most commonly performed ophthalmic procedures. It is timely to conduct an evaluation of the injection procedure from the patient’s perspective so as to determine ways to improve patient experience. The purpose of this study was to quantitatively describe patients’ experiences of the different stages of the intravitreal injection procedure and provide suggestions for improvement.Method: Following intravitreal injection, patients were administered a questionnaire to score the distress felt for each of ten parts of the whole injection process from the initial waiting to the final instillation of topical antibiotic at the end. A score of higher than 4 was regarded as significantly unpleasant. The proportion of scores above 4 for each step was used to evaluate the relative distress experienced by patients for the different parts of the procedure.Results: A total of 42 patients were surveyed. The step with the highest percentage of patients scoring more than 4 was the injection step (19%. However, cumulatively, the steps relating to the application of the drape, the speculum, and the removal of drape accounted for 53% of scores greater than 4.Conclusion: There is considerable variation in how patients tolerate different stages of the injection procedure. The needle entry was the most unpleasant step followed by the draping steps cumulatively. Use of subconjunctival anesthesia, a perforated drape, and alternative lid exclusion devices may help to improve the patient’s tolerability of the procedure and experience.Keywords: ranibizumab, patient experience, age-related macular degeneration

  1. Optimization of Large Volume Injection for Improved Detection of Polycyclic Aromatic Hydrocarbons (PAH) in Mussels

    Duedahl-Olesen, Lene; Ghorbani, Faranak

    2008-01-01

    Detection of PAH of six benzene rings is somewhat troublesome and lowering the limits of detection (LODs) for these compounds in food is necessary. For this purpose, we optimized a Programmable-Temperature-Vaporisation (PTV) injection with Large Volume Injection (LVI) with regard to the GC-MS det...

  2. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  3. In search of an improved injection technique for the clinical application of spermatogonial stem cell transplantation.

    Faes, Katrien; Lahoutte, Tony; Hoorens, Anne; Tournaye, Herman; Goossens, Ellen

    2017-03-01

    When fertility is impaired by anticancer treatment, spermatogonial stem cell transplantation (SSCT) could be used as a fertility restoration technique later on in life. Previously, we have demonstrated that a testicular cell suspension could be injected into a human cadaver testis, however, leakage to the interstitium was observed. In this study, injection of mouse testicular cells at an injection height of 50 cm (hydrostatic pressure) or via an automated injection pump (1400 µl, 2600 µl and 3000 µl) was evaluated. Significant difference in the filled radioactive volume was reached between the group in which 1400 µl was injected with an infusion pump and the groups in which 2600 µl (P = 0.019) or 3000 µl (P = 0.010) was injected. In all experimental groups green fluorescent protein positive (GFP + ) cells were observed in the seminiferous tubules. In conclusion, a lower injection height did not resolve the leakage of the injected cells to the interstitium. Using the infusion pump resulted in more efficient filling of the seminiferous tubules with lower interexperimental variability. Although leakage to the interstitium was still observed, with further optimisation, the use of an infusion pump for clinical application is advantageous. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler, D.; Cary, J.R.

    2007-01-01

    An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a 0 = 2.6 and colliding beam of a 1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ∼ 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV

  5. A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells

    Kipp, Dylan; Ganesan, Venkat

    2013-06-01

    We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.

  6. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2006-01-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At onset and termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of T e /T i profiles accessible with 0.3 e /T i ) axis e /T i ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in T e /T i

  7. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  8. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures

    Fink, D.; Petrov, A.V.; Hoppe, K.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.S.; Chandra, A.; Chemseddine, A.; Zrineh, A.; Biswas, A.; Faupel, F.; Chadderton, L.T.

    2004-01-01

    The impact of swift heavy ions onto silicon oxide and silicon oxynitride on silicon creates etchable tracks in these insulators. After their etching and filling-up with highly resistive matter, these nanometric pores can be used as charge extraction or injection paths towards the conducting channel in the underlying silicon. In this way, a novel family of electronic structures has been realized. The basic characteristics of these 'TEMPOS' (=tunable electronic material with pores in oxide on silicon) structures are summarized. Their functionality is determined by the type of insulator, the etch track diameters and lengths, their areal densities, the type of conducting matter embedded therein, and of course by the underlying semiconductor and the contact geometry. Depending on the TEMPOS preparation recipe and working point, the structures may resemble gatable resistors, condensors, diodes, transistors, photocells, or sensors, and they are therefore rather universally applicable in electronics. TEMPOS structures are often sensitive to temperature, light, humidity and organic gases. Also light-emitting TEMPOS structures have been produced. About 37 TEMPOS-based circuits such as thermosensors, photosensors, humidity and alcohol sensors, amplifiers, frequency multipliers, amplitude modulators, oscillators, flip-flops and many others have already been designed and successfully tested. Sometimes TEMPOS-based circuits are more compact than conventional electronics

  9. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  10. Reduction of electron density in a plasma by injection of liquids

    Sodha, M. S.; Evans, J. S.

    1974-01-01

    In this paper, the authors have investigated the physics of various processes relevant to the reduction of electron density in a plasma by addition of water droplets; two processes have in particular been analyzed in some detail, viz, the electron attachment to charged dielectric droplets and the emission of negative ions by vaporization from these droplets. The results of these analyses have been applied to a study of the kinetics of reduction of electron density and charging of droplets in an initially overionized plasma, after addition of water droplets. A number of simplifying assumptions including uniform size and charge on droplets and negligible change in the radius of the droplet due to evaporation have been made.

  11. Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene

    Han, Wei; Wang, W. H.; Pi, K.; McCreary, K. M.; Bao, W.; Li, Yan; Miao, F.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by non-local spin valve measurements at room temperature. Gate voltage dependence shows that the non-local magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic/nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the non-local MR reveal an electron-hole asymmetry in which the non-...

  12. Improvement of the 400 kV linac electron source of AmPS

    Kroes, F.B.; Beuzekom, M.G. van; Dobbe, N.J.; Es, J.T. van; Jansweijer, P.P.M.; Kruijer, A.H.; Luigjes, G.; Sluijk, T.G.B.

    1992-01-01

    An existing linac (MEA) injects electrons into the Amsterdam Pulse Stretcher (AmPS) ring. The linac's peak current increases from 20 to 80 mA. This requires the modification of the 400 kV low emittance gun. The fourfold increase of the peak current is obtained by doubling both the gun perveance (new gun part) and the pulsed extractor voltage. To obtain optimum beam quality over this increased current range, the hot deck electronics has been exchanged by a fast high voltage FET switching supply. A built-in microprocessor, coupled to the local computer by optical fibers, is used to monitor and control the gun parameters. The 5 kV gun extractor voltage pulse shape can be monitored by means of an analog fibre transducer with build in calibration. Finally, in order to improve the energy stability of the accelerated electrons, a serial electron-tube stabilizer was added to the 400 kV DC power supply. (K.A.) 4 refs.; 6 figs

  13. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Rizzoli, R. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); CNR–Istituto per la Microelettronica ed i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L. [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy)

    2016-02-15

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  14. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  15. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  16. The injected-charse contrast mechanism in scanned imaging of doped semiconductors by very slow electrons

    Frank, Luděk; Müllerová, Ilona

    2005-01-01

    Roč. 106, č. 1 (2005), s. 28-36 ISSN 0304-3991 R&D Projects: GA ČR(CZ) GA202/04/0281 Keywords : Low-energy electrons * SEM * Dopant contrast Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.490, year: 2005

  17. Simulations and experiments on external electron injection for laser wakefield acceleration

    Dijk, van W.

    2010-01-01

    Laser wake field acceleration is a technique that can be used to accelerate electrons using electric fields that are several orders of magnitude higher than those available in conventional accelerators. With these higher fields, it is possible to drastically reduce the length of accelerator needed

  18. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    Aly, Shawkat Mohammede; Parida, Manas R.; Alarousu, Erkki; Mohammed, Omar F.

    2014-01-01

    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  19. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  20. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  1. Accuracy of intermediate dose of furosemide injection to improve multidetector row CT urography

    Roy, Catherine; Jeantroux, Jeremy; Irani, Farah G.; Sauer, Benoit; Lang, Herve; Saussine, Christian

    2008-01-01

    Objective: Evaluate the usefulness of intermediate dose furosemide to improve visualization of the intrarenal collecting system and ureter using MDCTU. Materials and methods: Two groups of 100 patients without urinary tract disease or major abdominal pathology underwent MDCTU. Group I (various abdominal indications) was performed without any additional preparation and Group II (suspicion of urinary tract disease) 10 min after injection of furosemide (20 mg). MIP images of the excretory phase were post-processed. Maximal short-axis diameter of the pelvis and ureter were measured on axial images for all phases. Visualization of the collecting system wall and the identification of the whole ureter were assessed. Results: Mean pelvic diameter before contrast was (7.4 mm, S.D. ± 2.7; 13.4 mm, S.D. ± 4.1), on cortico-medullary phase (8.4 mm, S.D. ± 4.2; 14.3 mm, S.D. ± 4), on nephrographic phase (8.1 mm, S.D. ± 2.5; 14.8 mm, S.D. ± 4) and on excretory phase (9.7 mm, S.D. ± 3.4; 14.9 mm, S.D. ± 4.5), respectively, for Groups I and II. Intrarenal collecting system wall was clearly identified on both corticomedullary and nephrographic phases in 91% of Group II against 20% of Group I. Opacification of the entire ureter was excellent on excretory phase in 96% of Group II against 13% of Group I. The difference between the mean values for the two groups was statistically significant for all phases (p -9 ). Conclusion: Intermediate-dose furosemide (20 mg) before MDCTU is a very simple add-on for accurate depiction of pelvicalyceal details and collecting system wall without artefacts. The procedure is associated with a constant and complete visualisation of the entire urete

  2. Accuracy of intermediate dose of furosemide injection to improve multidetector row CT urography

    Roy, Catherine [Department of Radiology B, Universitary Hospital of Strasbourg-Civil Hospital, 1, Place de l' hopital BP 426, 67091 Strasbourg Cedex (France)], E-mail: catherine.roy@chru-strasbourg.fr; Jeantroux, Jeremy; Irani, Farah G.; Sauer, Benoit [Department of Radiology B, Universitary Hospital of Strasbourg-Civil Hospital, 1, Place de l' hopital BP 426, 67091 Strasbourg Cedex (France); Lang, Herve; Saussine, Christian [Department of Urology, Universitary Hospital of Strasbourg-Civil Hospital, 1, Place de l' hopital BP 426, 67091 Strasbourg Cedex (France)

    2008-05-15

    Objective: Evaluate the usefulness of intermediate dose furosemide to improve visualization of the intrarenal collecting system and ureter using MDCTU. Materials and methods: Two groups of 100 patients without urinary tract disease or major abdominal pathology underwent MDCTU. Group I (various abdominal indications) was performed without any additional preparation and Group II (suspicion of urinary tract disease) 10 min after injection of furosemide (20 mg). MIP images of the excretory phase were post-processed. Maximal short-axis diameter of the pelvis and ureter were measured on axial images for all phases. Visualization of the collecting system wall and the identification of the whole ureter were assessed. Results: Mean pelvic diameter before contrast was (7.4 mm, S.D. {+-} 2.7; 13.4 mm, S.D. {+-} 4.1), on cortico-medullary phase (8.4 mm, S.D. {+-} 4.2; 14.3 mm, S.D. {+-} 4), on nephrographic phase (8.1 mm, S.D. {+-} 2.5; 14.8 mm, S.D. {+-} 4) and on excretory phase (9.7 mm, S.D. {+-} 3.4; 14.9 mm, S.D. {+-} 4.5), respectively, for Groups I and II. Intrarenal collecting system wall was clearly identified on both corticomedullary and nephrographic phases in 91% of Group II against 20% of Group I. Opacification of the entire ureter was excellent on excretory phase in 96% of Group II against 13% of Group I. The difference between the mean values for the two groups was statistically significant for all phases (p < 10{sup -9}). Conclusion: Intermediate-dose furosemide (20 mg) before MDCTU is a very simple add-on for accurate depiction of pelvicalyceal details and collecting system wall without artefacts. The procedure is associated with a constant and complete visualisation of the entire urete.

  3. Compounding rifampin suspensions with improved injectability for nasogastric enteral feeding tube administration.

    de Villiers, Melgardt M; Vogel, Laura; Bogenschutz, Monica C; Fingerhut, Bonnie J; D'Silva, Joseph B; Moore, Anne

    2010-01-01

    Often medications that have to be administered to patients via a nasogastric enteral feeding tubes are only available as tablets and capsules with no suitable commercial liquid alternatives. In such situations, pharmacists and nurses have to compound the tablets and capsule contents into liquid suspension formulations for dosing. The risk of occlusion of the enteral tubes during administration is reduced by employing liquid suspensions that are composed of small and uniform particles, not subject to rapid rates of settling, resistant to caking, and easily and uniformly re-suspended upon agitation. Present techniques often employ a manual process, such as a mortar and pestle, to accomplish the particle size reduction and subsequent incorporation into a suitable liquid diluent. A new compounding device has been invented that employs an automated wet-milling process in a single-use disposable plastic container to compound the suspensions. The two processes were compared using Rifampin capsules and various liquid diluents. A prototype version of the new device was employed in the experiments. The physical characteristics of the compounded suspensions were evaluated by determining sedimentation rate, sedimentation volume, and particle size and shape using laser light scattering, optical microscopy, and scanning electron microscopy techniques. The use characteristic of the compounded suspensions was evaluated using a nasogastric tube inject ability test. The results indicated that suspensions prepared using the new device were more resistant to sedimentation and caking and were easier to re-disperse into a uniform mixture by gentle shaking. The results were a consequence of the particles generated by the new device which were found to be smaller and more uniform in shape and size. The suspensions prepared using the new device did not cause blockage of the enteral feeding tubes in comparison to those prepared using a mortar and pastle. In conclusion, the results indicate

  4. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  5. Electronics/avionics integrity - Definition, measurement and improvement

    Kolarik, W.; Rasty, J.; Chen, M.; Kim, Y.

    The authors report on the results obtained from an extensive, three-fold research project: (1) to search the open quality and reliability literature for documented information relative to electronics/avionics integrity; (2) to interpret and evaluate the literature as to significant concepts, strategies, and tools appropriate for use in electronics/avionics product and process integrity efforts; and (3) to develop a list of critical findings and recommendations that will lead to significant progress in product integrity definition, measurement, modeling, and improvements. The research consisted of examining a broad range of trade journals, scientific journals, and technical reports, as well as face-to-face discussions with reliability professionals. Ten significant recommendations have been supported by the research work.

  6. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  7. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  8. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  9. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  10. Switching to multiple daily injection therapy with glulisine improves glycaemic control, vascular damage and treatment satisfaction in basal insulin glargine-injected diabetic patients.

    Yanagisawa, Katsuyuki; Ashihara, Junya; Obara, Shinji; Wada, Norio; Takeuchi, Masayoshi; Nishino, Yuri; Maeda, Sayaka; Ishibashi, Yuji; Yamagishi, Sho-ichi

    2014-11-01

    Basal and bolus insulin therapy is required for strict blood control in diabetic patients, which could lead to prevention of vascular complications in diabetes. However, the optimal combination regimen is not well established. Fifty-nine diabetic patients (49 type 1 and 10 type 2; 52.9 ± 13.3 years old) whose blood glucose levels were uncontrolled (HbA1c  > 6.2%) by combination treatment of basal insulin glargine with multiple daily pre-meal injections of bolus short-acting insulin [aspart (n = 19), lispro (n = 37) and regular human insulin (n = 3)] for at least 8 weeks were enrolled in this study. We examined whether glycaemic control and vascular injury were improved by replacement of short-acting insulin with glulisine. Patient satisfaction was assessed with Diabetes Treatment Satisfaction Questionnaire. Although bolus and basal insulin doses were almost unchanged before and after replacement therapy, switching to glulisine insulin for 24 weeks significantly decreased level of HbA1c , advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), monocyte chemoattractant protein-1 (MCP-1) and urinary albumin excretion. In multiple stepwise regression analysis, change in MCP-1 values from baseline (ΔMCP-1) was a sole determinant of log urinary albumin excretion. ΔAGEs and ΔsRAGE were independently correlated with each other. The relationship between ΔMCP-1 and ΔsRAGE was marginally significant (p = 0.05). Replacement of short-acting insulin by glulisine significantly increased Diabetes Treatment Satisfaction Questionnaire scores. Our present study suggests that combination therapy of glargine with multiple daily pre-meal injections of glulisine might show superior efficacy in controlling blood glucose, preventing vascular damage and improving treatment satisfaction in diabetic patients. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  12. Improvement of carbon fiber surface properties using electron beam irradiation

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  13. Electronic structure properties of the In(Ga)As/GaAs quantum dot–quantum well tunnel-injection system

    Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim

    2009-01-01

    We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data

  14. DNA in glasses at 77 K: high energy ionizing radiation versus UV electron injection

    Malone, M.E.; Parker, A.W.

    1994-01-01

    Most in the field of ionizing radiation damage to DNA in frozen aqueous solutions agree that two major types of radical ions are formed, i.e. . G + / . A + and . T - / . C - . The main evidence stems from EPR and strand break studies. Fluid solutions exposed to laser light are known to give G .+ and e solv - with low yields of single strand breaks. We have explored this contrast by photoionizing DNA solutions at 77 K, in the expectation that this would prevent the formation of e solv - and hence that the results might be similar to those for high energy radiation. They are not: the results show only the formation of G .+ (or) A .+ , the fate of the ejected electrons is unclear except for sodium perchlorate glasses when they react to give O .- . (Author)

  15. Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces

    Masih, Dilshad

    2015-02-25

    We report on the ultrafast interfacial electron transfer ( ET) between zinc( II) porphyrin ( ZnTMPyP) and negatively charged graphene carboxylate ( GC) using state- of- the- art femtosecond laser spectroscopy with broadband capabilities. The steady- state interaction between GC and ZnTMPyP results in a red- shifted absorption spectrum, providing a clear indication for the binding affinity between ZnTMPyP and GC via electrostatic and p- p stacking interactions. Ultrafast transient absorption ( TA) spectra in the absence and presence of three different GC concentrations reveal ( i) the ultrafast formation of singlet excited ZnTMPyP*, which partially relaxes into a long- lived triplet state, and ( ii) ET from the singlet excited ZnTMPyP* to GC, forming ZnTMPyP + and GC , as indicated by a spectral feature at 650- 750 nm, which is attributed to a ZnTMPyP radical cation resulting from the ET process.

  16. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  17. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  18. Enhanced performance of inverted organic photovoltaic cells using CNTs-TiO(X) nanocomposites as electron injection layer.

    Zhang, Hong; Xu, Meifeng; Cui, Rongli; Guo, Xihong; Yang, Shangyuan; Liao, Liangsheng; Jia, Quanjie; Chen, Yu; Dong, Jinquan; Sun, Baoyun

    2013-09-06

    In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO₃/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.

  19. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  20. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  1. Patient assessment of an electronic device for subcutaneous self-injection of interferon ß-1a for multiple sclerosis: an observational study in the UK and Ireland

    D'Arcy C

    2012-01-01

    Full Text Available Caroline D’Arcy1, Del Thomas2, Dee Stoneman3, Laura Parkes31West London Neuroscience Centre, Charing Cross Hospital, London, UK; 2Wye Valley NHS Trust, Hereford, UK; 3Merck Serono Ltd, Feltham, Middlesex, UKBackground: Injectable disease-modifying drugs (DMDs reduce the number of relapses and delay disability progression in patients with relapsing–remitting multiple sclerosis (RRMS. Regular self-injection can be stressful and impeded by MS symptoms. Auto-injection devices can simplify self-injection, overcome injection-related issues, and increase treatment satisfaction. This study investigated patient responses to an electronic auto-injection device.Methods: Patients with RRMS (n = 63, aged 18–65 years, naïve to subcutaneous (sc interferon (IFN ß-1a therapy, were recruited to a Phase IV, observational, open-label, multicenter study (NCT01195870. Patients self-injected sc IFN ß-1a using the RebiSmart™ (Merck Serono S.A. – Geneva, Switzerland electronic auto-injector for 12 weeks, including an initial titration period if recommended by the prescribing physician. In week 12, patients completed a questionnaire comprising of a visual analog scale (VAS to rate how much they liked using the device, a four-point response question on ease of use (‘very difficult’, ‘difficult’, ‘easy’, or ‘very easy’, and a list of ten device functions to rank, based upon their experiences.Results: Six patients (9.5% discontinued the study: one switched to manual injection; two discontinued all treatment; three changed therapy. In total, 59 out of 63 patients (93.7% completed the VAS; 54 out of 59 (91.5%; 95% confidence interval: 81.3%–97.2% ‘liked’ using the electronic auto-injector (score ≥6, whereas 57 out of 59 (96.6% rated the device overall as ‘easy’ or ‘very easy’ to use. Device features rated as most useful were the hidden needle (mean [standard deviation] score: 3.3 [3.01]; n = 56, confirmation sound (3.9 [2.45], and

  2. Efficient and color-saturated inverted bottom-emitting organic light-emitting devices with a semi-transparent metal-assisted electron injection layer

    Ho, Meng-Huan, E-mail: kinneas.ac94g@nctu.edu.t [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Wu, Chang-Yen [Department of Photonics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chen, Teng-Ming [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-01-15

    We report the development of highly efficient and color-saturated green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l]pyrano-[6,7,8-ij]quinolizin-11-one dye-doped inverted bottom-emitting organic light-emitting diode (IBOLED). This was enabled by the insertion of a silver (Ag) based semi-transparent metal-assisted electron injection layer between the ITO cathode and n-doped electron transporting layer. This IBOLED with ITO/Ag bilayer cathode with its synergistic microcavity effect achieved luminous efficiencies of 20.7 cd/A and 12.4 lm/W and a saturated CIE{sub x,y} of (0.22, 0.72) at 20 mA/cm{sup 2}, which are twice better than those of the conventional OLED and have over 60% improvement on IBOLED without ITO/Ag bilayer cathode.

  3. Improved measurement of electron antineutrino disappearance at Daya Bay

    An Fengpeng; Bai Jingzhi; An Qi

    2013-01-01

    We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin 2 2θ 13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW th were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944±0.007(stat.)±0.003(syst.). An analysis of the relative rates in six detectors finds sin 2 2θ 13 =0.089±0.010(stat.)±0.005(syst.) in a three-neutrino framework. (authors)

  4. Improving Electronic Sensor Reliability by Robust Outlier Screening

    Federico Cuesta

    2013-10-01

    Full Text Available Electronic sensors are widely used in different application areas, and in some of them, such as automotive or medical equipment, they must perform with an extremely low defect rate. Increasing reliability is paramount. Outlier detection algorithms are a key component in screening latent defects and decreasing the number of customer quality incidents (CQIs. This paper focuses on new spatial algorithms (Good Die in a Bad Cluster with Statistical Bins (GDBC SB and Bad Bin in a Bad Cluster (BBBC and an advanced outlier screening method, called Robust Dynamic Part Averaging Testing (RDPAT, as well as two practical improvements, which significantly enhance existing algorithms. Those methods have been used in production in Freescale® Semiconductor probe factories around the world for several years. Moreover, a study was conducted with production data of 289,080 dice with 26 CQIs to determine and compare the efficiency and effectiveness of all these algorithms in identifying CQIs.

  5. Exploring improvements to the LHCb ELOG electronic logbook

    Leung, Philip; CERN. Geneva. PH Department

    2015-01-01

    ELOG, the electronic logbook used by LHCb, has been suffering from poor accessibility and slow performance. Investigating revealed that a combination of inefficient searches, caused mainly by frequent reads of files stored in NFS, and an inability for the server to handle concurrent operations were rendering the service unusable for up to a minute when users performed search or sort operations. By adding a minor patch to the ELOG source code, moving data to local storage and optimizing server configuration the project was able to reduce search-times for the largest of the logbooks being used at LHCb to 30\\% while also improving possibilities for future growth by allowing for concurrent use and accelerating the most common search-operations in a way which should stay consistent over extended time-periods.

  6. Exploring improvements to the LHCb ELOG electronic logbook

    Leung, Philip

    2015-01-01

    ELOG, the electronic logbook used by LHCb, has been suffering from poor accessibility and slow performance. Investigating revealed that a combination of inefficient searches, caused mainly by frequent reads of files stored in NFS, and an inability for the server to handle concurrent operations were rendering the service unusable for up to a minute when users performed search or sort operations. By adding a minor patch to the ELOG source code, moving data to local storage and optimizing server configuration the project was able to reduce search-times for the largest of the logbooks being used at LHCb to 30% while also improving possibilities for future growth by allowing for concurrent use and accelerating the most common search-operations in a way which should stay consistent over extended time-periods.

  7. Improved process for the injection of water for secondary recovery of petroleum

    1967-07-24

    In this process for the secondary recovery of petroleum from the formation, an aqueous displacing medium is injected through an injection well in communication with the formation. In this aqueous medium, a polymer is dissolved and the petroleum is thus displaced toward a producing well also in communication with the formation. The polymer is a liquid organic polymer, substantially linear, water-soluble, and having a resistance characteristic of at least 1.5. The polymer is dissolved in water in sufficient quantity such that the viscosity of the displacing medium is 0.5-15% of the viscosity of the crude oil to be displaced. The displacing medium is substantially free of molecular oxygen.

  8. An Improved Steam Injection Model with the Consideration of Steam Override

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  9. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  10. Improving Interprofessional Consistency in Electronic Fetal Heart Rate Interpretation.

    Govindappagari, Shravya; Zaghi, Sahar; Zannat, Ferdous; Reimers, Laura; Goffman, Dena; Kassel, Irene; Bernstein, Peter S

    2016-07-01

    Objective To determine if mandatory online training in electronic fetal monitoring (EFM) improved agreement in documentation between obstetric care providers and nurses on labor and delivery. Methods Health care professionals working in obstetrics at our institution were required to complete a course on EFM interpretation. We performed a retrospective chart review of 701 charts including patients delivered before and after the introduction of the course to evaluate agreement among providers in their documentation of their interpretations of the EFM tracings. Results Agreement between provider and nurse documentation at the time of admission improved for variability and accelerations (variability: 91.1 vs. 98.3%, p < 0.001; and accelerations: 75.2 vs. 87.7%, p < 0.001). Similarly, agreement improved at the time of the last note prior to delivery for documentation of variability and accelerations (variability: 82.1 vs. 90.6%, p = 0.001; and accelerations: 56.7 vs. 68.6%, p = 0.0012). Agreement in interpretation of decelerations both at the time of admission and at the time of delivery increased (86.3 vs. 90.6%, p = 0.0787, and 56.7 vs. 61.1%, p = 0.2314, respectively) but was not significant. Conclusion An online EFM course can significantly improve consistency in multidisciplinary documentation of fetal heart rate tracing interpretation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-02-02

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures

    Candan Feyyaz

    2017-01-01

    Full Text Available In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.

  13. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-04-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.

  14. Improvement in properties of plastic teeth by electron beam irradiation

    Sano, Yuko; Ishikawa, Shun-ichi; Seguchi, Tadao

    2011-01-01

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 o C in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: → Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 o C in inert gas. → Water and glucose absorption and maltose adhesion on PC teeth were much reduced. → Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  15. Usability inspection to improve an electronic provincial medication repository.

    Kitson, Nicole A; Price, Morgan; Bowen, Michael; Lau, Francis

    2013-01-01

    Medication errors are a significant source of actual and potential harm for patients. Community medication records have the potential to reduce medication errors, but they can also introduce unintended consequences when there is low fit to task (low cognitive fit). PharmaNet is a provincially managed electronic repository that contains the records for community-based pharmacy-dispensed medications in British Columbia. This research explores the usability of PharmaNet, as a representative community-based medication repository. We completed usability inspections of PharmaNet through vendor applications. Vendor participants were asked to complete activity-driven scenarios, which highlighted aspects of medication management workflow. Screen recording was later reviewed. Heuristics were applied to explore usability issues and improvement opportunities. Usability inspection was conducted with four PharmaNet applications. Ninety-six usability issues were identified; half of these had potential implications for patient safety. These were primarily related to login and logout procedures; display of patient name; display of medications; update and display of alert information; and the changing or discontinuation of medications. PharmaNet was designed primarily to support medication dispensing and billing activities by community pharmacies, but is also used to support care providers with monitoring and prescribing activities. As such, some of the features do not have a strong fit for other clinical activities. To improve fit, we recommend: having a Current Medications List and Displaying Medication Utilization Charts.

  16. Improvement of carbon fibre surface properties using electron beam irradiation

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly due to their mechanical properties, and additional features such as high strength-to-weight ratio, stiffness-to-weight ratio, corrosion resistance and wear properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between the components that are fiber and polymeric matrix. The greatest challenge is to improve adhesion between components having elasticity modulus which differ by orders of magnitude and furthermore they are immiscible in each other. Another important factor is the sizing material on the carbon fiber, which protects the carbon fiber filaments and must be compatible with the matrix material in order to improve the adhesion process. The interaction of ionizing radiation from electron beam can induce in the irradiated material the formation of very active centers and free radicals. Further evolution of these active species can significantly modify structure and properties not only in the irradiated polymeric matrix but also on the fiber surface. So that, fiber and matrix play an important role in the production of chemical bonds, which promote better adhesion between both materials improving the composite mechanical performance. The aim of this work was to improve the surface properties of the carbon fiber surface using ionizing radiation from an electron beam in order to obtain improvement of the adhesion properties in the resulted composite. Commercial carbon fiber roving of high tensile strength with 12 000 filaments named 12 k, and sizing material of epoxy resin modified by ester groups was studied. EB irradiation has been carried out at the Institute for Nuclear and Energy Research (IPEN) facilities using a 1.5 MeV 37.5 kW Dynamitron electron accelerator model JOB-188. Rovings of carbon fibers with 1.78 g cm -3 density and 0.13 mm thickness were irradiated with 0.555 MeV, 6.43 mA and

  17. Improvement of the 400 kV linac electron source of AmPS

    Kroes, F.B.; Beuzekom, M.G. van; Dobbe, N.J.; Es, J.T. van; Jansweijer, P.P.M.; Kruijer, A.H.; Luigjes, G.; Sluijk, T.G.B.

    1992-01-01

    The installation of the 900 MeV Amsterdam Pulse Stretcher is nearly completed and its commissioning will start Spring 1992. The existing linac MEA will inject electrons in the AmPS ring. The linacs peak current will be increased from 20 to 80 mA. This requires modification of the 400 kV low emittance gun which now will deliver a peak current of maximum 400 mA instead of 100 mA at a pulse width of 2.1 μsec. The fourfold increase of the peakcurrent is obtained by doubling both the gun perveance (new gun part) and the pulsed extractor voltage. After chopping and pre-bunching more than 80 mA will be available for acceleration in MEA. To obtain optimum beam quality over this increased current range the hot deck electronics, operating at -400 kV, has been exchanged by a state of the art fast high voltage FET switching supply. The increased space charge forces in the beam require stronger electro-static focusing in the first electrostatic gap to define the beam diameter at the gun exit. This is accomplished with a 25 kV controlled power supply. A build in microprocessor, coupled to the local computer by optical fibers, is used to monitor and control the gun parameters. The 5kV gun extractor voltage pulse shape can be monitored by means of an analog fibre transducer with build in calibration. Finally, in order to improve the energy stability of the accelerated electrons a serial electron-tube stabilizer was added to the 400 kV DC power supply. A supply stability of 2. 10 -5 has been achieved. (author). 4 refs.; 6 figs

  18. Predicting Improvement in Writer's Cramp Symptoms following Botulinum Neurotoxin Injection Therapy

    Mallory Jackman

    2016-09-01

    Full Text Available Introduction: Writer's cramp is a specific focal hand dystonia causing abnormal posturing and tremor in the upper limb. The most popular medical intervention, botulinum neurotoxin type A (BoNT-A therapy, is variably effective for 50–70% of patients. BoNT-A non-responders undergo ineffective treatment and may experience significant side effects. Various assessments have been used to determine response prediction to BoNT-A, but not in the same population of patients. Methods: A comprehensive assessment was employed to measure various symptom aspects. Clinical scales, full upper-limb kinematic measures, self-report, and task performance measures were assessed for nine writer's cramp patients at baseline. Patients received two BoNT-A injections then were classified as responders or non-responders based on a quantified self-report measure. Baseline scores were compared between groups, across all measures, to determine which scores predicted a positive BoNT-A response. Results: Five of nine patients were responders. No kinematic measures were predictably different between groups. Analyses revealed three features that predicted a favorable response and separated the two groups: higher than average cramp severity and cramp frequency, and below average cramp latency. Discussion: Non-kinematic measures appear to be superior in making such predictions. Specifically, measures of cramp severity, frequency, and latency during performance of a specific set of writing and drawing tasks were predictive factors. Since kinematic was not used to determine the injection pattern and the injections were visually guided, it may still be possible to use individual patient kinematics for better outcomes. 

  19. An Improved Steam Injection Model with the Consideration of Steam Override

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  20. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  1. Triphasic contrast injection improves evaluation of dual energy lung perfusion in pulmonary CT angiography

    Kerl, J. Matthias; Bauer, Ralf W.; Renker, Matthias; Weber, Eva; Weisser, Philipp; Korkusuz, Huedayi; Schell, Boris; Larson, Maya Christina; Kromen, Wolfgang; Jacobi, Volkmar

    2011-01-01

    Purpose: Lung perfusion analysis at dual energy CT (DECT) is sensitive to beam hardening artifacts from dense contrast material (CM). We compared two scan and four CM injection protocols in terms of severity of artifacts and attenuation levels in the thoracic vessels. Methods and materials: Data of 120 patients who had undergone dual source dual energy CT pulmonary angiography for suspected acute pulmonary embolism were evaluated. Group 1 (n = 30) was scanned in craniocaudal direction using 64 × 0.6 mm collimation; groups 2–4 (n = 30 each) were scanned in caudocranial direction using 14 × 1.2 mm collimation. In groups 1–3 biphasic injection protocols with different amounts of CM and NaCl were investigated. In group 4 a split-bolus protocol with an initial CM bolus of 50 ml followed by 30 ml of a 70%:30% NaCl/CM mixture and a 50 ml NaCl chaser bolus was used. CT density values in the subclavian vein (SV), superior vena cava (SVC), pulmonary artery tree (PA), and the descending aorta (DA) were measured. Artifacts arising from the SV and SVC on DE pulmonary iodine distribution map were rated on a scale from 1 to 5 (1 = fully diagnostic; 5 = non-diagnostic) by two blinded readers. Results: In protocol 4 mean attenuation in the SV (645 ± 158 HU) and SVC (389 ± 114 HU) were significantly lower compared to groups 1–3 (p < 0.002). Artifacts in group 4 (1.1 ± 0.4 and 1.5 ± 0.7 for the SV and SVC, respectively) were rated significantly less severe compared to group 1 (3.2 ± 1.0 and 3.0 ± 1.1), 2 (2.6 ± 1.1 and 2.3 ± 1.0) and 3 (1.9 ± 0.9 and 1.9 ± 0.7) (p < 0.01 for all), whereas no significant difference was found between groups 1 and 2 for the subclavian vein (p = 0.07). Attenuation in the PA was also significantly lower in group 4 (282 ± 116 HU) compared to group 1 (397 ± 137 HU), group 2 (376 ± 115 HU) and group 3 (311 ± 104 HU), but still on a diagnostic level. Conclusion: Split-bolus injection provides sufficient attenuation for pulmonary DECT

  2. Improvements in the injection system of the Canadian Penning trap mass spectrometer

    Clark, J; Boudreau, C; Buchinger, F; Crawford, J E; Gulick, S; Hardy, J C; Heinz, A; Lee, J K P; Moore, R B; Savard, G; Seweryniak, D; Sharma, K S; Sprouse, G; Vaz, J; Wang, J C; Zhou, Z

    2003-01-01

    The Canadian Penning Trap (CPT) mass spectrometer is designed to make precise mass measurements on a variety of stable and short-lived isotopes. Modifications to the injection system of the CPT have been implemented in recent months, the purpose being to more efficiently collect and transfer weakly-produced reaction products from the target to the Penning trap. These include a magnetic triplet situated after the target chamber to increase the acceptance of the Enge spectrograph, a velocity filter to more effectively separate the beam from the reaction products and the replacement of the Paul trap with a linear trap resulting in more efficient capture and accumulation of ions from the ion cooler. This paper will discuss these recent modifications and how they have increased our ability in making mass measurements on isotopes of low abundance, including those from a sup 2 sup 5 sup 2 Cf fission source.

  3. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection

    Eita, Mohamed Samir

    2014-08-28

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Injection Tests

    Kain, V

    2009-01-01

    The success of the start-up of the LHC on 10th of September was in part due to the preparation without beam and injection tests in 2008. The injection tests allowed debugging and improvement in appropriate portions to allow safe, efficient and state-of-the-art commissioning later on. The usefulness of such an approach for a successful start-up becomes obvious when looking at the problems we encountered before and during the injection tests and could solve during this period. The outline of the preparation and highlights of the different injection tests will be presented and the excellent performance of many tools discussed. A list of shortcomings will follow, leading to some planning for the preparation of the run in 2009.

  5. Improvements of diesel combustion with pilot and main injections at different piston positions; Piston iso wo koryoshita pilot funsha ni yoru diesel nenshono kaizen

    Li, C.; Ogawa, H.; Miyamoto, N. [Hokkaido University, Sapporo (Japan); Sakai, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    2000-06-25

    The fuel spray distribution in a DI diesel engine with a pilot injection was actively controlled by pilot and main fuel injections at different piston positions to avoid the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separated the cores of the pilot and main fuel sprays. The experiments showed that more smoke was emitted with pilot injection in an ordinary cavity without the central lip while smokeless and low NO{sub x} operation was realized with pilot injection in a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emitted smoke so much. The indicated specific energy consumption ISEC was a little bit higher with the pilot injection, mainly because of the reduction in the degree of constant volume combustion. With the advanced pilot injection, ISEC was improved more than that with the retarded pilot injection while the NO{sub x} is a little higher than the retarded pilot injection maintaining still much lower than in ordinary operation. (author)

  6. Beam-plasma interaction with an electron beam injecting into a symmetrically open plasma system; Electron beam relaxation. Puchkovo-plazmennoe vzaimodejstvie pri inzhektsii ehlektronnogo puchka v simmetrichno otkrytuyu plazmennuyu sistemu; Relaksatsiya ehlektronnogo puchka

    Opanasenko, A V; Romanyuk, L I [AN Ukrainskoj SSR, Kiev (Ukrainian SSR). Inst. Yadernykh Issledovanij

    1989-10-01

    The relaxation of the electron beam with the electron density of 1-2 keV injected through the symmetrically open plasma system with the independent hot cathode Penning discharge is experimentally investigated. It is shown that the velocity distribution function of the electron beam changes after passing each wave generation zone induced by the beam. The contribution of different wave zones to the beam relaxation depends on the prehistory of the beam-plasma interaction and may be regulated by the selection of the plasma system parameters. By this way the complete relaxation of the electron beam can be achieved after the beam crossing the whole system.

  7. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  8. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light

    Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)

    2008-07-01

    Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)

  9. Improving efficiency and reducing administrative burden through electronic communication.

    Cook, Katlyn E; Ludens, Gail M; Ghosh, Amit K; Mundell, William C; Fleming, Kevin C; Majka, Andrew J

    2013-01-01

    The InBox messaging system is an internal, electronic program used at Mayo Clinic, Rochester, MN, to facilitate the sending, receiving, and answering of patient-specific messages and alerts. A standardized InBox was implemented in the Division of General Internal Medicine to decrease the time physicians, physician assistants, and nurse practitioners (clinicians) spend on administrative tasks and to increase efficiency. Clinicians completed surveys and a preintervention InBox pilot test to determine inefficiencies related to administrative burdens and defects (message entry errors). Results were analyzed using Pareto diagrams, value stream mapping, and root cause analysis to prioritize administrative-burden inefficiencies to develop a new, standardized InBox. Clinicians and allied health staff were the target of this intervention and received standardized InBox training followed by a postintervention pilot test for clinicians. Sixteen of 28 individuals (57%) completed the preintervention survey. Twenty-eight clinicians participated in 2 separate 8-day pilot tests (before and after intervention) for the standardized InBox. The number of InBox defects was substantially reduced from 37 (Pilot 1) to 7 (Pilot 2). Frequent InBox defects decreased from 25% to 10%. More than half of clinicians believed the standardized InBox positively affected their work, and 100% of clinicians reported no negative affect on their work. This project demonstrated the successful implementation of the standardized InBox messaging system. Initial assessments show substantial reduction of InBox entry defects and administrative tasks completed by clinicians. The findings of this project suggest increased clinician and allied health staff efficiency, satisfaction, improved clinician work-life balance, and decreased clinician burden caused by administrative tasks.

  10. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  11. Improving total knee arthroplasty perioperative pain management using a periarticular injection with bupivacaine liposomal suspension

    Mark A. Snyder, MD

    2016-03-01

    Full Text Available Patients undergoing total knee arthroplasty (TKA report low satisfaction with postoperative pain control. The purpose of this study is to examine if there is a difference in post-operative pain for TKA patients without femoral nerve block receiving an intra-operative pericapsular injection of bupivacaine liposome suspension (EXPAREL; Pacira Pharmaceuticals, Inc., San Diego, California versus a concentrated multi drug cocktail. Seventy TKA patients were randomly assigned to either the bupivacaine liposome or the multi-drug cocktail. Post-operative pain scores, morphine sulfate equivalence consumption values, adverse events, and overall pain control satisfaction scores were collected. Patients reported significantly higher pain level for the cocktail group on post-op day 1 (p < .05 and post-op day 2 (p < .01 versus the bupivacaine liposome group. This same trend was found for morphine sulfate equivalence consumption in the PACU (p < .01 and post-op day 2 (p < .01. Higher satisfaction in pain control (p < .001 and overall experience (p < .01 was also found in the bupivacaine liposome group. Finally, significantly more adverse events were found in the multi-drug group versus the bupivacaine liposome group (p < .05. The study findings demonstrated a non-inferior difference, albeit not a clinically significant difference, in patient-perceived pain scores, morphine sulfate equivalence consumption, adverse events, and overall satisfaction.

  12. Laboratory handling of epididymal and testicular spermatozoa: What can be done to improve sperm injections outcome.

    Esteves, Sandro C; Varghese, Alex C

    2012-09-01

    Spermatozoa from azoospermic males can be retrieved from either the epididymis or the testis, depending on the type of azoospermia, using different surgical methods such as percutaneous epididymal sperm aspiration (PESA), testicular sperm aspiration (TESA), testicular sperm extraction (TESE), and microsurgical testicular sperm extraction (micro- TESE). After collecting the epididymal fluid or testicular tissue, laboratory techniques are used to remove contaminants, cellular debris, noxious microorganisms, and red blood cells. Processed spermatozoa may be used for intracytoplasmic sperm injection or eventually be cryopreserved. However, spermatozoa collected from either the epididymis or the testis are often compromised and more fragile than ejaculated ones. Therefore, sperm processing techniques should be used with great caution to avoid jeopardizing the sperm fertilizing potential in treatment cycles. In this review, we describe the current methods for processing surgically-retrieved specimens, either fresh or frozen- thawed, and provide the tips and pitfalls for facilitating the handling of such specimens. In addition, we present the available laboratory tools to aid in the identification of viable immotile spermatozoa to be used in conjunction with assisted reproductive techniques. Review of the literature was carried out using PubMed and Science Direct search engines.

  13. Laboratory handling of epididymal and testicular spermatozoa: What can be done to improve sperm injections outcome

    Sandro C Esteves

    2012-01-01

    Full Text Available Spermatozoa from azoospermic males can be retrieved from either the epididymis or the testis, depending on the type of azoospermia, using different surgical methods such as percutaneous epididymal sperm aspiration (PESA, testicular sperm aspiration (TESA, testicular sperm extraction (TESE, and microsurgical testicular sperm extraction (micro- TESE. After collecting the epididymal fluid or testicular tissue, laboratory techniques are used to remove contaminants, cellular debris, noxious microorganisms, and red blood cells. Processed spermatozoa may be used for intracytoplasmic sperm injection or eventually be cryopreserved. However, spermatozoa collected from either the epididymis or the testis are often compromised and more fragile than ejaculated ones. Therefore, sperm processing techniques should be used with great caution to avoid jeopardizing the sperm fertilizing potential in treatment cycles. In this review, we describe the current methods for processing surgically-retrieved specimens, either fresh or frozen- thawed, and provide the tips and pitfalls for facilitating the handling of such specimens. In addition, we present the available laboratory tools to aid in the identification of viable immotile spermatozoa to be used in conjunction with assisted reproductive techniques. Review of the literature was carried out using PubMed and Science Direct search engines.

  14. Surface characterisation and functionalisation of indium tin oxide anodes for improvement of charge injection in organic light emitting diodes

    Davenas, J.; Besbes, S.; Abderrahmen, A.; Jaffrezic, N.; Ben Ouada, H.

    2008-01-01

    Wettability studies have been performed to probe the surface properties of ITO substrates, aimed to be used as hole injecting electrode in OLEDs. The elimination of organic contaminants upon the cleaning treatment (ultrasonic bath in organic solvents) leads to an increase of the free energy of the ITO surface becoming hydrophilic. The surface energy components calculated from the Van Oss model show the appearance of a basic component upon the cleaning treatment. A thermal treatment at 100 deg. C for 3 h leads to a decrease of the surface free energy due to surface dehydration. These properties are attributed to the hydroxides formed at the ITO surface inducing improved adhesion at the ITO/polymer interface. The ITO surfaces have been functionalised with a chloroethylphosphonic acid mono-layer to increase their stability. The appearance of an acid-base component leads to a dipolar character of the ITO surface. The formation of a compact layer of a spin coated poly(phenylenevinylene) derivative induces the shielding of the ITO basic character. The weakening of the near infrared absorption associated to ITO free carriers confirms the formation of a dipole layer at the interface with the molecular layer in contact with ITO. Improved injection properties, shown by the current/voltage characteristics, result from the interface modifications

  15. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  16. Electroluminescence analysis of injection-enhanced annealing of electron irradiation-induced defects in GaInP top cells for triple-junction solar cells

    Yi, Tiancheng; Lu, Ming; Yang, Kui; Xiao, Pengfei; Wang, Rong, E-mail: wangr@bnu.edu.cn

    2014-09-15

    Direct injection-enhanced annealing of defects in a GaInP top cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.8 MeV electrons with a fluence of 1 × 10{sup 15} cm{sup −2} has been observed and analyzed using electroluminescence (EL) spectra. Minority-carrier injection under forward bias conditions is observed to enhance defect annealing in the GaInP top cell, and recovery of the EL intensity of the GaInP top cell was observed even at room temperature. Moreover, the injection-enhanced defect annealing rates obey a simple Arrhenius law; therefore, the annealing activation energy was determined and is equal to 0.51 eV. Lastly, the H2 defect has been identified as the primary non-radiative recombination center based on a comparison of the annealing activation energies.

  17. Does ultrasound-guided lidocaine injection improve local anaesthesia before femoral artery catheterization?

    Spiliopoulos, S.; Katsanos, K.; Diamantopoulos, A.; Karnabatidis, D.; Siablis, D.

    2011-01-01

    Aim: To present the results of a prospective, randomized, single-centre study investigating local anaesthesia before percutaneous common femoral artery (CFA) puncture and catheterization with the use of ultrasound-guided injection of lidocaine versus standard infiltration by manual palpation. Materials and methods: Patients scheduled to undergo diagnostic or therapeutic transfemoral catheter-based procedures gave informed consent and were randomized in two groups. In the first arm local anaesthesia with lidocaine hydrochloride 1% was performed under ultrasound guidance (group U/S), while in the second arm the standard method of manual artery palpation was applied (group M). In both groups, subsequent CFA catheterization was achieved under ultrasound guidance. The primary study endpoint was peri-procedural pain level evaluated with a visual-analogue scale (VAS score 0-10). Results: Between January 2009 and 2010, 200 patients (161 men, mean age 63 ± 12 years) were equally assigned to each group without any significant differences in baseline demographics. Patients in group U/S experienced significantly less pain during CFA catheterization in comparison with group M with a difference of three points in mean VAS score reported (1.6 ± 1.6 versus 4.6 ± 1.9, p < 0.0001). In addition, significantly less volume of lidocaine was used in group U/S compared to group M (16 ± 2.7 versus 19 ± 0.8 ml, p < 0.001).Total vascular access time was similar in both groups (4.4 ± 1.3 versus 4.5 ± 1.3 min). Overall complications included two small groin haematomas in each group. Conclusion: Ultrasound-guided local anaesthesia of the CFA prior to percutaneous transcatheter procedures is safe and achieves superior levels of analgesia with minimal patient pain and discomfort compared to the standard method of manual palpation.

  18. Does ultrasound-guided lidocaine injection improve local anaesthesia before femoral artery catheterization?

    Spiliopoulos, S., E-mail: stavspiliop@upatras.g [Department of Diagnostic and Interventional Radiology, Patras University Hospital, School of Medicine, Patras (Greece); Katsanos, K.; Diamantopoulos, A.; Karnabatidis, D.; Siablis, D. [Department of Diagnostic and Interventional Radiology, Patras University Hospital, School of Medicine, Patras (Greece)

    2011-05-15

    Aim: To present the results of a prospective, randomized, single-centre study investigating local anaesthesia before percutaneous common femoral artery (CFA) puncture and catheterization with the use of ultrasound-guided injection of lidocaine versus standard infiltration by manual palpation. Materials and methods: Patients scheduled to undergo diagnostic or therapeutic transfemoral catheter-based procedures gave informed consent and were randomized in two groups. In the first arm local anaesthesia with lidocaine hydrochloride 1% was performed under ultrasound guidance (group U/S), while in the second arm the standard method of manual artery palpation was applied (group M). In both groups, subsequent CFA catheterization was achieved under ultrasound guidance. The primary study endpoint was peri-procedural pain level evaluated with a visual-analogue scale (VAS score 0-10). Results: Between January 2009 and 2010, 200 patients (161 men, mean age 63 {+-} 12 years) were equally assigned to each group without any significant differences in baseline demographics. Patients in group U/S experienced significantly less pain during CFA catheterization in comparison with group M with a difference of three points in mean VAS score reported (1.6 {+-} 1.6 versus 4.6 {+-} 1.9, p < 0.0001). In addition, significantly less volume of lidocaine was used in group U/S compared to group M (16 {+-} 2.7 versus 19 {+-} 0.8 ml, p < 0.001).Total vascular access time was similar in both groups (4.4 {+-} 1.3 versus 4.5 {+-} 1.3 min). Overall complications included two small groin haematomas in each group. Conclusion: Ultrasound-guided local anaesthesia of the CFA prior to percutaneous transcatheter procedures is safe and achieves superior levels of analgesia with minimal patient pain and discomfort compared to the standard method of manual palpation.

  19. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  20. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines

    Bozza, Fabio; De Bellis, Vincenzo; Teodosio, Luigi

    2016-01-01

    Highlights: • 1D simulation of a turbocharged VVA engine under knock limited operation. • Description of turbulence, combustion and knock by phenomenological models. • Comparison of EGR and ported water injection at high load for knock mitigation and fuel economy. • Virtual calibration of engine control parameters by a 1D model. - Abstract: It is well known that the downsizing philosophy allows the improvement of the brake specific fuel consumption (BSFC) at part load operation for spark ignition (SI) engines. On the other hand, the BSFC is penalized at high load because of the knock occurrence and of further limitations on the turbine inlet temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while the TIT control requires the enrichment of the air-to-fuel ratio (A/F), with additional BSFC drawbacks. In this work, two promising techniques are investigated by a 1D approach with the aim of improving the fuel economy of a turbocharged SI engine at full load knock-limited operation. The first technique is the recirculation of low-pressure cooled exhaust gas (EGR), while the second is the injection of liquid water at the intake ports. Proper “in-house developed” sub-models are used to describe the turbulence, combustion and knock phenomena. The effects of the above techniques are studied in six operating points at full load and different speeds for various A/F levels and inert content, by varying the EGR rate and water-to-fuel ratio. The presented results highlight that both the solutions involve significant BSFC improvements, especially in the operating conditions at medium engine speeds. In fact, the introduction of inert gas in the cylinder contributes to reduce the knock tendency, resulting in the possibility to advance the combustion phasing and reduce, or even avoid, the mixture over-fuelling. The heat subtracted by the water evaporation enhances the above effects

  1. Report on best practice for improved μ-IM injection moulding simulation

    Tosello, Guido; Costa, Franco; Hansen, Hans Nørgaard

    2010-01-01

    Data analysis and simulations on micro-moulding experiments have been conducted. Micro moulding simulations have been executed taking into account actual processing conditions implementation in the software. Numerous aspects of the simulation set-up have been considered in order to improve the si...

  2. Using Electronic Messaging to Improve the Quality of Instruction.

    Zack, Michael H.

    1995-01-01

    Qualitative and quantitative data from business students using electronic mail and computer conferencing showed these methods enabled the instructor to be more accessible and responsive; greater class cohesion developed, and perceived quality of the course and instructor effectiveness increased. (SK)

  3. Improving Patient Safety With the Military Electronic Health Record

    2005-01-01

    Consolidated Health Informatics (CHI) project, one of the 24 electronic government ( eGov ) Internet- based technology initiatives supporting the president’s...United States Department of Defense (DoD) has transformed health care delivery in its use of information technology to automate patient data...use throughout the Federal Government . The importance of standards in EHR systems was further recognized in an IOM report, which stated, “Electronic

  4. Transverse acceptance calculation for continuous ion beam injection into the electron beam ion trap charge breeder of the ReA post-accelerator

    Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-11-11

    The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.

  5. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    Lyneis, C., E-mail: CMLyneis@lbl.gov; Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Plaum, B. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Stuttgart (Germany); Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des martyrs 38026 Grenoble cedex (France)

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  6. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection.

    Sharma, Neha; Sharma, Sheetal; Nehru, Bimla

    2017-06-01

    Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD. Altered microglial functions and increased inflammatory profile of the CNS have severe behavioral consequences. In the current investigation, a single injection of LPS (5 ug/5 µl PBS) was injected into the substantia nigra (SN) of rats, and curcumin [40 mg/kg b.wt (i.p.)] was administered daily for a period of 21 days. LPS triggered an inflammatory response characterized by glial activation [Iba-1 and glial fibrillary acidic protein (GFAP)] and pro-inflammatory cytokine production (TNF-α and IL-1β) leading to extensive dopaminergic loss and behavioral abnormality in rats. The behavioral observations, biochemical markers, quantification of dopamine and its metabolites (DOPAC and HVA) using HPLC followed by IHC of tyrosine hydroxylase (TH) were evaluated after 21 days of LPS injection. Curcumin supplementation prevented dopaminergic degeneration in LPS-treated animals by normalizing the altered levels of biomarkers. Also, a significant improvement in TH levels as well as behavioral parameters (actophotometer, rotarod, beam walking and grid walking tests) were seen in LPS injected rats. Curcumin shielded the dopaminergic neurons against LPS-induced inflammatory response, which was associated with suppression of glial activation (microglia and astrocytes) and transcription factor NF-κB as depicted from RT-PCR and EMSA assay. Curcumin also suppressed microglial NADPH oxidase activation as observed from NADPH oxidase activity. The results suggested that one of the important mechanisms by which curcumin mediates its protective effects in the LPS-induced PD

  7. Effects of the capping ligands, linkers and oxide surface on the electron injection mechanism of copper sulfide quantum dot-sensitized solar cells.

    Suárez, Javier Amaya; Plata, Jose J; Márquez, Antonio M; Sanz, Javier Fdez

    2017-06-07

    Quantum dot-sensitized solar cells, QDSCs, are a clean and effective alternative to fossil fuels to reduce CO 2 emissions. However, the different components that constitute the QDSCs and the difficulty of isolating experimentally their effects on the performance of the whole system slow down the development of more efficient devices. In this work, DFT calculations are combined with a bottom-up approach to differentiate the effect of each component on the electronic structure and absorption spectra. First, Cu 2 S QDs were built including a U parameter to effectively describe the localization of electrons. The effect of capping agents is addressed using ligands with different electron-donating/withdrawing groups. The role of linkers and their adsorption on the oxide surface are also examined. Finally, we propose a main indirect electron injection mechanism based on the position of the peaks of the spectra.

  8. Improving CASINO performance for models with large number of electrons

    Anton, L.; Alfe, D.; Hood, R.Q.; Tanqueray, D.

    2009-01-01

    Quantum Monte Carlo calculations have at their core algorithms based on statistical ensembles of multidimensional random walkers which are straightforward to use on parallel computers. Nevertheless some computations have reached the limit of the memory resources for models with more than 1000 electrons because of the need to store a large amount of electronic orbitals related data. Besides that, for systems with large number of electrons, it is interesting to study if the evolution of one configuration of random walkers can be done faster in parallel. We present a comparative study of two ways to solve these problems: (1) distributed orbital data done with MPI or Unix inter-process communication tools, (2) second level parallelism for configuration computation

  9. Developing electron beam bunching technology for improving light sources

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source

  10. Functional Ability Improved in Essential Tremor by IncobotulinumtoxinA Injections Using Kinematically Determined Biomechanical Patterns - A New Future.

    Olivia Samotus

    Full Text Available Effective treatment for functional disability caused by essential tremor is a significant unmet need faced by many clinicians today. Current literature regarding focal therapy by botulinum toxin type A (BoNT-A injections uses fixed dosing regimens, which cannot be individualized, provides only limited functional benefit and unacceptable muscle weakness commonly occurs. This 38-week open label study, the longest to-date, demonstrates how kinematic technology addressed all these issues by guiding muscle selection.Participants (n = 24 were assessed at weeks 0, 6, 16, 22, 32, and 38 and injected with incobotulinumtoxinA at weeks 0, 16, and 32. Clinical assessments including UPDRS tremor items, Fahn-Tolosa-Marin (FTM tremor rating scale assessing tremor severity, writing and functional ability, quality of life questionnaire (QUEST and objective kinematic assessments were completed at every visit. Participants performed two postural and two weight-bearing scripted tasks with motion sensors placed over the wrist, elbow and shoulder joints. These sensors captured angular tremor amplitude (RMS units and acceleration joint motion that was segmented into directional components: flexion-extension (F/E, pronation-supination and radial-ulnar at the wrist, F/E at the elbow, and F/E and adduction-abduction at the shoulder. Injection parameters were determined using kinematics, followed by the clinician's determination of which muscles would contribute to the specific upper limb tremor biomechanics and dosing per participant.Multi-joint biomechanical recordings allowed individualized muscle selection and showed significant improvement in whole-arm function, FTM parts A-C scores, at week 6 which continued throughout the study. By week 38, the total FTM score statistically significantly reduced from 16.2±4.6 at week 0 to 9.5±6.3 (p<0.0005. UPDRS item 21 score rating action tremor was significantly reduced from 2.6±0.5 at week 0 to 1.6±1.1 (p = 0.01 at week 32

  11. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  12. Deoxycholic Acid Injection

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  13. Improving Grade One Students' Reading Motivation with Online Electronic Storybooks

    Ciampa, Katia

    2012-01-01

    This qualitative study stemmed from a concern of the perceived decline in students' reading motivation after the early years of schooling. The current research explored eight grade 1 students' experiences with online electronic storybooks (eBooks). Eight students were given ten 25-minute sessions with the software programs over 15 weeks.…

  14. Improvements in or relating to electron beam deflection arrangements

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  15. Improved coating and fixation methods for scanning electron microscope autoradiography

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  16. Risperidone long-acting injection in the treatment of schizophrenia: 24-month results from the electronic Schizophrenia Treatment Adherence Registry in Canada

    Williams R

    2014-02-01

    Full Text Available Richard Williams,1 Ranjith Chandrasena,2 Linda Beauclair,3 Doanh Luong,4 Annette Lam4 On behalf of the e-STAR study group 1Vancouver Island Health Authority, Victoria, BC, Canada; 2Chatham-Kent Health Alliance, Chatham, ON, Canada; 3Allan Memorial Institute, Montreal, QC, Canada; 4Janssen Inc., Toronto, ON, Canada Objective: To assess outcomes over 24 months in Canadian patients with schizophrenia initiated on risperidone long-acting injection (RLAI and participating in the electronic Schizophrenia Treatment Adherence Registry (e-STAR. Materials and methods: Patients with schizophrenia or schizoaffective disorder were enrolled from 24 sites after an independent decision to initiate RLAI. Subsequent patient management was based on usual clinical practice at each site and was not protocol-driven. Relevant data were collected retrospectively by chart review for 12 months prior to RLAI and prospectively for 24 months following RLAI initiation. Results: Patients (n=188 had a mean age of 39.2 years, were 66.3% male, and 27.7% were inpatients at baseline. Twenty-four months after initiating therapy (initial dose =28.7 mg, 34.1% (95% confidence interval 27.2%–42.2% of patients had discontinued RLAI with a mean time to discontinuation of 273.4±196 days. Over the treatment period, there were significant (P<0.001 changes from baseline in Clinical Global Impression-Severity (CGI-S; 3.48 versus [vs] 4.31 at baseline, Global Assessment of Functioning (GAF; 56.1 vs 48.1, and Personal and Social Performance (PSP; 59.1 vs 46.9 scale scores. In addition, after 12 months, there were significant (P<0.001 decreases in the percentage of patients hospitalized (23.9% vs 58.5% pre-RLAI, mean length of stay (11.4 vs 30.4 days, and number of hospitalizations (0.32 vs 0.87 compared to the 12-month pre-RLAI period. Reductions in hospitalization continued into the second 12 months of therapy, when only 9% of patients were hospitalized and mean length of stay was 2.0 days

  17. Does injection of metanephric mesenchymal cells improve renal function in rats?

    Yu-qing Jiao

    2011-01-01

    Full Text Available Chronic kidney disease (CKD is a massive global health-care problem. Cell therapy offers a potential treatment for CKD. The aim of this study was to investigate whether the administration of a population of stem cells could be used to treat adriamycin (ADR-induced glomerulopathy in rats, a form of CKD. We intravenously transplanted metanephric mesenchymal cells (MMCs into rats treated with ADR. We also induced MMC differentiation in vitro using a medium derived from serum and homogenates of ADR-induced glomerulopathy rats. We detected the induction of an early epithelial phenotype (cytokeratin-18 expression and a proximal tubule phenotype (vitamin D receptor expression in vitro, and MMC-derived epithelial cells corresponding to the proximal tubule and glomeruli in vivo. Transplantation of MMCs after induction of glomerulopathy significantly increased the creatinine clearance rate (Ccr, a marker for glomerular filtration rate, but had no significant effect on other parameters (24-hour urinary protein excretion, serum albumin, total cholesterol. In addition, there was no significant difference in blood urea nitrogen or serum creatinine levels in rats with and without ADR administration. Our results indicate that MMCs might survive, engraft and differentiate into renal epithelia in vivo when transplanted into ADR-treated rats. However, further studies are needed to determine whether MMC transplantation improves renal function and causes renal repair in this model.

  18. Minimizing pain during childhood vaccination injections: improving adherence to vaccination schedules

    Eden LM

    2014-09-01

    Full Text Available Lacey M Eden, Janelle LB Macintosh, Karlen E Luthy, Renea L Beckstrand College of Nursing, Brigham Young University, Provo, UT, USA Abstract: Pain experienced in childhood can lead to long-term and psychologically detrimental effects. Unfortunately, the most common pain experienced in childhood is caused by vaccinations and may lead to non-adherence to the recommended vaccination schedule. As a result, it is the health care provider's responsibility to take measures to reduce vaccination pain; however, there are a plethora of pain relieving interventions during immunizations and it is unclear which interventions are most cost efficient, timely, and effective. Studies have been conducted to investigate the efficacy of different pain management interventions during vaccinations. This review evaluates various pain relieving interventions and provide health care providers age appropriate guidance on pain relieving interventions during vaccinations. Employment of these strategies may successfully reduce vaccination-associated pain in infants, children, and adolescents, and may improve compliance with the vaccination schedule. Keywords: immunization, intervention, effective, compliance

  19. Asynchronous Advanced Encryption Standard Hardware with Random Noise Injection for Improved Side-Channel Attack Resistance

    Siva Kotipalli

    2014-01-01

    (SCA resistance. These designs are based on a delay-insensitive (DI logic paradigm known as null convention logic (NCL, which supports useful properties for resisting SCAs including dual-rail encoding, clock-free operation, and monotonic transitions. Potential benefits include reduced and more uniform switching activities and reduced signal-to-noise (SNR ratio. A novel method to further augment NCL AES hardware with random voltage scaling technique is also presented for additional security. Thereby, the proposed components leak significantly less side-channel information than conventional clocked approaches. To quantitatively verify such improvements, functional verification and WASSO (weighted average simultaneous switching output analysis have been carried out on both conventional synchronous approach and the proposed NCL based approach using Mentor Graphics ModelSim and Xilinx simulation tools. Hardware implementation has been carried out on both designs exploiting a specified side-channel attack standard evaluation FPGA board, called SASEBO-GII, and the corresponding power waveforms for both designs have been collected. Along with the results of software simulations, we have analyzed the collected waveforms to validate the claims related to benefits of the proposed cryptohardware design approach.

  20. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Improved organic light-emitting device with tris-(8-hydroxyquinoline) aluminium inserted between hole-injection layer and hole-transporting layer

    Divayana, Y [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Sun, X W [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Chen, B J [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Sarma, K R [Aerospace Electronic Systems, Honeywell, 21111 N 19th Avenue, Phoenix, AZ 85027 (United States)

    2007-01-07

    A layer of tris-(8-hydroxyquinoline) aluminium (Alq{sub 3}), which is normally used as an electron-transporting and emissive layer, was incorporated between the hole-transporting layer and the hole-injection layer to balance the electron-hole injection. The Alq{sub 3} layer performed to block the hole current which is a majority carrier in a typical organic light-emitting device. An increase in current efficiency by almost 30%, from 3.1 to 4.0 cd A{sup -1}, with a minimum voltage shift was achieved with a 2 nm Alq{sub 3} layer as a hole-blocking layer. A reduction in HTL thickness was observed to reduce the efficiency due to electron leakage to the HIL, whereby an inefficient exciplex emission was observed.

  2. Experiments on Li pellet injection into Heliotron E

    Sergeev, V.Yu.; Khlopenkov, K.V.; Kuteev, B.V.; Sudo, S.; Kondo, K.; Zushi, H.; Besshou, S.; Sano, F.; Okada, H.; Mizuuchi, T.; Nagasaki, K.; Obiki, T.; Kurimoto, Y.

    1998-01-01

    Li pellets of large size were injected into electron cyclotron resonance (ECR) heated plasmas and neutral beam injection (NBI) heated plasmas of Heliotron E. The discharge behaviour, pellet ablation and wall conditioning were studied. The electron pressure is doubled after injection into the NBI plasma and remains unchanged in the case of ECR heating. This may be due to the energy exchange between the electrons and thermal ions with the fast ions from the neutral beam. The observed discrepancy between the experimental and modelled ablation rates may be caused by both the plasma cooling due to pellet ablatant and the ablation stimulated by the fast ions in the NBI-heated regime and by the fast electrons in the ECR-heated regime. In preliminary experiments on wall conditioning by Li pellet injection, no improvement of plasma performance after Li pellet injection was observed in the divertor or limiter configuration, with the limiter radii r L =24-25cm. (author)

  3. Improving Patient Safety With the Military Electronic Health Record

    Charles, Marie-Jocelyne; Harmon, Bart J; Jordan, Pamela S

    2005-01-01

    The United States Department of Defense (DoD) has transformed health care delivery in its use of information technology to automate patient data documentation, leading to improvements in patient safety...

  4. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of 3H-galactose

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.; Cardell, R.R. Jr.

    1984-01-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting 3 H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions

  5. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  6. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  7. Stall margin improvement of an axial flow fan with end wall injection and suction; Hekimen fukidashi suidashi ni yoru han'yo jikuryu sofuki no shissoku kaizen

    Nishioka, K.; Kuroda, H.; Obata, S.; Chimura, O. [National Defense Academy, Kanagawa (Japan)

    1999-06-25

    The experimental studies are conducted to reveal the mechanism of stall margin improvement of an axial flow fan by injection or suction from the end wall. In case of injection, the largest improvement is obtained by the injection at about 0. 14 {approx} 0 .21 times axial chord length downstream from leading edge. The reason for large improvement is that stall vortex, shed intermittent separation vortex and tip leakage vortex are dissipated by this injection, and also that this blowing suppresses the separation of boundary layer. In case of suction, the largest improvement is found for the suction from the end wall near leading edge. The amplitude of periodic static pressure after stall inception becomes smaller in comparison with injection cases. These effects are increased with the increase of suction flow rate, because the discharge of the vortex occurs more easily. On the other hand, the suction from the upstream of leading edge reduces the axial velocity near rotor tip, and then it induces stall. Also we tried to visualize the tip region flow, The suppression mechanism is discussed based on the visualization. The suppression of stall is successfully photographed. (author)

  8. Test Particle Simulations of Electron Injection by the Bursty Bulk Flows (BBFs) using High Resolution Lyon-Feddor-Mobarry (LFM) Code

    Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.

    2017-12-01

    Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.

  9. Improved support films for electron microscopy of beam sensitive specimens

    Taylor, J.R.; Glaeser, R.M.

    1987-01-01

    Preliminary results indicate that technical innovations can address the problem of beam-induced movement and provide improved prospects for high resolution imaging of beam-sensitive specimens. Second-generation experiments with microgrid supports are in progress with efforts focusing on the objectives of maximizing the contact between the carbon film and its microgrid support and on improving the flatness of microgrids. When more robust support films are available they will be used in conjunction with small spot illumination. 4 refs., 2 figs

  10. Microchannel electron multiplier: improvement in gain performances and detection dynamics

    Audier, M.; Delmotte, J.C.; Boutot, J.P.

    1978-01-01

    The performances of an MCP are a function of its geometrical characteristics (diameter d and ratio 1/d of a channel, useful area) and of the applied voltage. Gain and mean output current are limited by saturation phenomena. By using a particular cascaded MCP's configuration, it is possible to simultaneously improve the gain, its associated fluctuations and the detection dynamics (detected level, counting rate). For gains 10 6 7 , the fluctuations, can be kept as low as 20% and an improvement by a factor > 10 can be obtained on the detection dynamics [fr

  11. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  12. Improved electron collimation system design for Elekta linear accelerators.

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2017-09-01

    Prototype 10 × 10 and 20 × 20-cm 2 electron collimators were designed for the Elekta Infinity accelerator (MLCi2 treatment head), with the goal of reducing the trimmer weight of excessively heavy current applicators while maintaining acceptable beam flatness (±3% major axes, ±4% diagonals) and IEC leakage dose. Prototype applicators were designed initially using tungsten trimmers of constant thickness (1% electron transmission) and cross-sections with inner and outer edges positioned at 95% and 2% off-axis ratios (OARs), respectively, cast by the upstream collimating component. Despite redefining applicator size at isocenter (not 5 cm upstream) and reducing the energy range from 4-22 to 6-20 MeV, the designed 10 × 10 and 20 × 20-cm 2 applicator trimmers weighed 6.87 and 10.49 kg, respectively, exceeding that of the current applicators (5.52 and 8.36 kg, respectively). Subsequently, five design modifications using analytical and/or Monte Carlo (MC) calculations were applied, reducing trimmer weight while maintaining acceptable in-field flatness and mean leakage dose. Design Modification 1 beveled the outer trimmer edges, taking advantage of only low-energy beams scattering primary electrons sufficiently to reach the outer trimmer edge. Design Modification 2 optimized the upper and middle trimmer distances from isocenter for minimal trimmer weights. Design Modification 3 moved inner trimmer edges inward, reducing trimmer weight. Design Modification 4 determined optimal X-ray jaw positions for each energy. Design Modification 5 adjusted middle and lower trimmer shapes and reduced upper trimmer thickness by 50%. Design Modifications 1→5 reduced trimmer weights from 6.87→5.86→5.52→5.87→5.43→3.73 kg for the 10 × 10-cm 2 applicator and 10.49→9.04→8.62→7.73→7.35→5.09 kg for the 20 × 20-cm 2 applicator. MC simulations confirmed these final designs produced acceptable in-field flatness and met IEC-specified leakage dose at 7, 13, and 20 Me

  13. Electronic Timekeeping: North Dakota State University Improves Payroll Processing.

    Vetter, Ronald J.; And Others

    1993-01-01

    North Dakota State University has adopted automated timekeeping to improve the efficiency and effectiveness of payroll processing. The microcomputer-based system accurately records and computes employee time, tracks labor distribution, accommodates complex labor policies and company pay practices, provides automatic data processing and reporting,…

  14. Driving reaction times in patients with foot and ankle pathology before and after image-guided injection: pain relief without improved function.

    Talusan, Paul G; Miller, Christopher P; Save, Ameya V; Reach, John S

    2015-04-01

    Foot and ankle pathology is common in the driving population. Local anesthetic steroid injections are frequent ambulatory treatments. Brake reaction time (BRT) has validated importance in motor vehicle safety. There are no prior studies examining the effect of foot and ankle pathology and injection treatment on the safe operation of motor vehicles. We studied BRT in patients with foot and ankle musculoskeletal disease before and after image-guided injection treatment. A total of 37 participants were enrolled. Image-guided injections of local anesthetic and steroid were placed into the pathological anatomical location of the right or left foot and ankles. A driving reaction timer was used to measure BRTs before and after injection. Patients suffering right "driving" and left "nondriving" pathology as well as a healthy control group were studied. All patients reported >90% pain relief postinjection. All injections were confirmed to be accurate by imaging. Post hoc Bonferonni analysis demonstrated significant difference between the healthy group and the right-sided injection group (P = .008). Mean BRT for healthy controls was 0.57 ± 0.11 s. Patients suffering right foot and ankle disease displayed surprisingly high BRTs (0.80 ± 0.23 s preinjection and 0.78 ± 0.16 s postinjection, P > .99). Left nondriving foot and ankle pathology presented a driving hazard as well (BRT of 0.75 ± 0.12 s preinjection and 0.77 ± 0.12 s postinjection, P > .99). Injections relieved pain but did not significantly alter BRT (P > .99 for all). Patients suffering chronic foot and ankle pathology involving either the driving or nondriving side have impaired BRTs. This preexisting driving impairment has not previously been reported and exceeds recommended cutoff safety values in the United States. Despite symptom improvement, there was no statistically significant change in BRT following image-guided injection in either foot and ankle. Therapeutic, Level II: Prospective Comparative Study.

  15. Long-term functional improvements in the 2-year treatment of schizophrenia outpatients with olanzapine long-acting injection

    Ascher-Svanum H

    2014-06-01

    Full Text Available Haya Ascher-Svanum,1 Diego Novick,2,3 Josep Maria Haro,4 Jordan Bertsch,4 David McDonnell,1 Holland Detke11Eli Lilly and Company, Indianapolis, IN, USA; 2Eli Lilly and Company, Windlesham, Surrey, UK; 3Departament de Psiquiatria, Universitat Autonoma de Barcelona, Spain; 4Parc Sanitari Sant Joan de Déu, Centro de Investigación Biomédica en Red en el Área de Salud Mental, Universitat de Barcelona, Barcelona, SpainBackground: Little is known about the long-term changes in the functioning of schizophrenia patients receiving maintenance therapy with olanzapine long-acting injection (LAI, and whether observed changes differ from those seen with oral olanzapine.Methods: This study describes changes in the levels of functioning among outpatients with schizophrenia treated with olanzapine-LAI compared with oral olanzapine over 2 years. This was a secondary analysis of data from a multicenter, randomized, open-label, 2-year study comparing the long-term treatment effectiveness of monthly olanzapine-LAI (405 mg/4 weeks; n=264 with daily oral olanzapine (10 mg/day; n=260. Levels of functioning were assessed with the Heinrichs–Carpenter Quality of Life Scale. Functional status was also classified as “good”, “moderate”, or “poor”, using a previous data-driven approach. Changes in functional levels were assessed with McNemar’s test and comparisons between olanzapine-LAI and oral olanzapine employed the Student’s t-test. Results: Over the 2-year study, the patients treated with olanzapine-LAI improved their level of functioning (per Quality of Life total score from 64.0–70.8 (P<0.001. Patients on oral ­olanzapine also increased their level of functioning from 62.1–70.1 (P<0.001. At baseline, 19.2% of the olanzapine-LAI-treated patients had a “good” level of functioning, which increased to 27.5% (P<0.05. The figures for oral olanzapine were 14.2% and 24.5%, respectively (P<0.001. Results did not significantly differ between

  16. Botulinum toxin A injection for chronic anal fissures and anal sphincter spasm improves quality of life in recessive dystrophic epidermolysis bullosa

    Cassandra Chaptini, MBBS

    2015-12-01

    Full Text Available We report a 20-year-old female with generalized, severe, recessive dystrophic epidermolysis bullosa who developed secondary chronic anal fissures. This resulted in anal sphincter spasm and severe, disabling pain. She was treated with five botulinum toxin A injections into the internal anal sphincter over a period of 2 years and gained marked improvement in her symptoms. This case demonstrates the successful use of botulinum toxin A injections to relieve anal sphincter spasm and fissuring, with long-term improvement.

  17. Combination technique for improving natural convection cooling in electronics

    Florio, L.A.; Harnoy, A. [Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2007-01-15

    The combination of an appropriately placed cross-flow opening and a strategically positioned transversely vibrating plate is proposed as a means of augmenting pure natural convection in a vertical channel. This method is intended to provide a more efficient, reliable, and consumer conscious alternative to conventional techniques for lower power dissipating devices where standard natural convection cooling proves insufficient. Two-dimensional numerical simulations are employed to investigate this combination method using models consisting of a vertical channel containing two rectangular heat sources which are attached to a vertical mounting board, as well as a transversely oscillating plate and a cross-flow opening in the mounting board area between the two heat sources. Varied parameters and geometric configurations are studied. The results indicate the combined effects of the vibrating plate and the opening flow have the potential to cause significant improvement in the thermal conditions over pure natural convection. As much as a 70% improvement in the local heat transfer coefficient from that for a system with a board opening but without a vibrating plate was attained. (author)

  18. Improved Measurement of Electron-antineutrino Disappearance at Daya Bay

    Dwyer, D.A.

    2013-01-01

    With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin 2 2θ 13 =0.089±0.010(stat)±0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW th commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944±0.007(stat)±0.003(syst) was measured by three detectors at a flux-weighted average distance of1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5±0.3% (far detectors) and 2±0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ 13

  19. Improved Measurement of Electron-antineutrino Disappearance at Daya Bay

    Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-02-15

    With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin{sup 2}2θ{sub 13}=0.089±0.010(stat)±0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW{sub th} commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944±0.007(stat)±0.003(syst) was measured by three detectors at a flux-weighted average distance of1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5±0.3% (far detectors) and 2±0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ{sub 13}.

  20. USG-guided injection of corticosteroid for lateral epicondylitis does not improve clinical outcomes: a prospective randomised study.

    Gulabi, Deniz; Uysal, Mehmet Ali; Akça, Ahmet; Colak, Ilker; Çeçen, Gultekin Sıtkı; Gumustas, Seyitali

    2017-05-01

    Corticosteroid injection used to be the treatment of choice for lateral epicondylitis. Most injections are performed blindly. In the blinded technique, it could be difficult to determine the exact pathological localisation. The purpose of this single-blinded, randomised controlled clinical study was to compare the clinical therapeutic effects of blinded and USG-guided corticosteroid injection therapy in lateral epicondylitis. Forty patients with chronic lateral epicondylitis were included in this clinical trial. The patients were randomly allocated to blinded group or USG-guided injection group according to a computer-generated randomisation list. All blinded injections were administered by an orthopaedic surgeon and all ultrasound-guided injections were made by a radiologist experienced in this technique. All patients were injected under aseptic conditions using 40 mg/2 mL methylprednisolone acetate. The outcomes of both treatments were assessed by an independent assessor at pre-injection, then at 6-week and 3- and 6-month follow-up assessments. The assessor evaluated the q-DASH, VAS, and grip strength scores. No statistically significant difference was determined between the groups in respect of the Q-DASH and grip strength scores preoperatively and at 6 weeks and 3 and 6 months post-injection. No statistically significant difference was determined between the groups in respect of the VAS scores preoperatively and at 6 weeks and 6 months. No systemic or local complications were reported during the treatment. There was no statistically significant difference compared to the blinded injection technique, and the mean score differences between the groups are of no clinical relevance.

  1. Integrated methodology for production related risk management of vehicle electronics (IMPROVE)

    Geis, Stefan Rafael

    2006-01-01

    This scientific work is designated to provide an innovative and integrated conceptional approach to improve the assembly quality of automotive electronics. This is achieved by the reduction and elimination of production related risks of automotive electronics and the implementation of a sustainable solution process. The focus is the development and implementation of an integrated technical risk management approach for automotive electronics throughout the vehicle life cycle and the vehicle pr...

  2. ELECTRONIC TEXTBOOK AS AN EFFECTIVE TOOL FOR IMPROVING THE QUALITY OF EDUCATION

    Yuliia M. Shepetko

    2011-01-01

    The urgency of the material stated in article, is caused by requirements for use of information and communication technologies for educational process, in particular the electronic textbook which can facilitate perception of the information, diversify work forms, interest by technical possibilities. The article aims to proof the necessity of  electronic textbooks use as effective tool for improving the quality of education. Use of the electronic textbook at training will effectively and posit...

  3. Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation

    Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.

    1997-01-01

    A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injections (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation. (Author)

  4. The influence of gate length on the electron injection of velocity in an AlGaN/AlN/GaN HEMT channel

    Mikhailovich, S. V.; Galiev, R. R.; Zuev, A. V.; Pavlov, A. Yu.; Ponomarev, D. S.; Khabibullin, R. A.

    2017-08-01

    Field-effect high-electron-mobility transistors (HEMTs) based on AlGaN/AlN/GaN heterostructures with various gate lengths L g have been studied. The maximum values of current and power gaincutoff frequencies ( f T and f max, respectively) amounted to 88 and 155 GHz for HEMTs with L g = 125 nm, while those for the transistors with L g = 360 nm were 26 and 82 GHz, respectively. Based on the measured S-parameters, the values of elements in small-signal equivalent schemes of AlGaN/AlN/GaN HEMTs were extracted and the dependence of electron-injection velocity vinj on the gate-drain voltage was determined. The influence of L g and the drain-source voltage on vinj has been studied.

  5. Fast batch injection analysis of H{sub 2}O{sub 2} using an array of Pt-modified gold microelectrodes obtained from split electronic chips

    Pacheco, Bruno D.; Valerio, Jaqueline [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil); Angnes, Lucio [Departamento de Quimica Fundamental, Instituto de Quimica da USP, Av. Prof. Lineu Prestes, 748, 05508-000 Cidade Universitaria, Sao Paulo, SP (Brazil); Pedrotti, Jairo J., E-mail: jpedrotti@mackenzie.br [Centro de Ciencias e Humanidades - Universidade Presbiteriana Mackenzie, Rua da Consolacao, 896, 01302-907 Sao Paulo, SP (Brazil)

    2011-06-24

    Graphical abstract: Highlights: > An array of gold microelectrodes modified with Pt was used for batch injection analysis of H{sub 2}O{sub 2} in rainwater. > The microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology. > The analytical frequency of the method can attain 300 determinations per hour. > The volume-weighted mean concentration of H{sub 2}O{sub 2} in rainwater investigated (n = 25) was 14.2 {mu}mol L{sup -1}. - Abstract: A fast and robust analytical method for amperometric determination of hydrogen peroxide (H{sub 2}O{sub 2}) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H{sub 2}O{sub 2} amperometric determination in the concentration range from 0.8 {mu}mol L{sup -1} to 100 {mu}mol L{sup -1}. The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 {mu}mol L{sup -1} (3{sigma}). The anodic current peaks obtained after a series of 23 successive injections of 50 {mu}L of 25 {mu}mol L{sup -1} H{sub 2}O{sub 2} showed an RSD < 0.9%. To ensure the good selectivity to detect H{sub 2}O{sub 2}, its determination was performed in a differential mode, with selective destruction of the H{sub 2}O{sub 2} with catalase in 10 mmol L{sup -1} phosphate buffer solution. Practical application of the analytical procedure involved H{sub 2}O{sub 2} determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which

  6. Electron transport measurements in methane using an improved pulsed Townsend technique

    Hunter, S.R.; Carter, J.G.; Christophorou, L.G.

    1986-01-01

    An improved pulsed Townsend technique for the measurement of electron transport parameters in gases is described. The accuracy and sensitivity of the technique have been investigated by performing, respectively, electron attachment coefficient measurements in pure O 2 over a wide range of E/N at selected O 2 pressures and by determining the electron attachment and ionization coefficients and electron drift velocity in CH 4 over a wide E/N range. Good agreement has been obtained between the present and the previously published electron attachment coefficients in O 2 and for the drift velocity measurements in CH 4 . The data on the electron attachment coefficient in CH 4 (measured for the first time) showed that with the present improved pulsed Townsend method, electron attachment coefficients up to 10 times smaller than the ionization coefficients at a given E/N value can be accurately measured. Our measurements of the electron attachment and ionization coefficients in CH 4 are in good agreement with a Boltzmann equation analysis of the electron gain and loss processes in CH 4 using published electron scattering cross sections for this molecule

  7. Repeated injections of piracetam improve spatial learning and increase the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in aged rats

    Canonico, P. L.; Aronica, E.; Aleppo, G.; Casabona, G.; Copani, A.; Favit, A.; Nicoletti, F.; Scapagnini, U.

    1991-01-01

    Repeated injections of piracetam (400 mg/kg, i.p. once a day for 15 days) to 16-month old rats led to an improved performance on an 8-arm radial maze, used as a test for spatial learning. This effect was accompanied by a greater ability of excitatory amino acids (ibotenate and glutamate) to

  8. Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states.

    Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten

    2017-11-01

    Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Improving access to urologists through an electronic consultation service

    Witherspoon, Luke; Liddy, Clare; Afkham, Amir; Keely, Erin; Mahoney, John

    2017-01-01

    Introduction Access to specialist services is limited by wait times and geographic availability. Champlain Building Access to Specialist Advice (BASE) has been implemented in our service region to facilitate access to specialists by primary care providers (PCPs). Through a secure web-based system, PCPs are able to send eConsults instead of requesting a formal in-office consultation. Methods Urology eConsults completed through the Champlain BASE service from March 2013 to January 2015 were analyzed. Each consult was characterized in regard to the type of question asked by the referring physician and the clinical content of the referral. Using the mandatory close-out surveys, we analyzed rates of referral avoidance, physician satisfaction, and overall impact on patient care. Results Of 190 eConsultations, 70% were completed in less than 10 minutes. The most common clinical questions related to the interpretation of imaging reports (16%) and tests to choose for investigating a condition (15%). The most common diagnoses were hematuria (13%) and renal mass (8%). In 35% of cases, referral to a urologist had originally been contemplated and was avoided. In 8% of cases, a PCP did not believe a consultation was initially needed, but a referral was ultimately initiated after the eConsultation. Conclusions Our study shows that although certain clinical presentations still require a formal in-person urological consultation, eConsultations can potentially reduce unnecessary clinic visits while identifying patients who may benefit from early urological consultation. Through both these mechanisms, we may improve timely access to urologists. PMID:28798830

  10. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  11. Testosterone Injection

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  12. Sub-Picosecond Injection of Electrons from Excited {Ru (2,2'-bipy-4,4'-dicarboxy)2(SCN)2} into TiO2 Using Transient Mid-Infrared Spectroscopy

    Nozik, A.J.; Ghosh, H.N.; Asbury, J.B.; Sprague, J.R.; Ellingson, R.J.; Ferrere, S.; Lian, T.

    1999-01-01

    We have used femtosecond pump-probe spectroscopy to time resolve the injection of electrons into nanocrystalline TiO2 film electrodes under ambient conditions following photoexcitation of the adsorbed dye, [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] (N3). Pumping at one of the metal-to-ligand charge transfer adsorption peaks and probing the absorption of electrons injected into the TiO2 conduction band at 1.52 m and in the range of 4.1 to 7.0 m, we have directly observed the arrival of the injected electrons. Our measurements indicate an instrument-limited 50-fs upper limit on the electron injection time under ambient conditions in air. We have compared the infrared transient absorption for non-injecting (blank) systems consisting of N3 in ethanol and N3 adsorbed to films of nanocrystalline Al2O3 and ZrO2, and found no indication of electron injection at probe wavelengths in the mid-IR (4.1 to 7.0 m). At 1.52 m interferences exist in the observed transient adsorption signal for the blanks

  13. ELECTRONIC TEXTBOOK AS AN EFFECTIVE TOOL FOR IMPROVING THE QUALITY OF EDUCATION

    Yuliia M. Shepetko

    2011-02-01

    Full Text Available The urgency of the material stated in article, is caused by requirements for use of information and communication technologies for educational process, in particular the electronic textbook which can facilitate perception of the information, diversify work forms, interest by technical possibilities. The article aims to proof the necessity of  electronic textbooks use as effective tool for improving the quality of education. Use of the electronic textbook at training will effectively and positively affect process of preparation of students taking into account the means of organization of educational process, structure, methodological requirements. Application of the electronic textbook at training will promote the further development of informative motivation of students.

  14. Improved calculation of displacements per atom cross section in solids by gamma and electron irradiation

    Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Leyva, Antonio; Abreu, Yamiel; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Espen, Piet Van; Remortel, Nick Van [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-11-15

    Highlights: • We present a calculation procedure for dpa cross section in solids under irradiation. • Improvement about 10–90% for the gamma irradiation induced dpa cross section. • Improvement about 5–50% for the electron irradiation induced dpa cross section. • More precise results (20–70%) for thin samples irradiated with electrons. - Abstract: Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10–90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5–50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20–70%) with respect to the previous studies.

  15. Designed Surface Residue Substitutions in [NiFe] Hydrogenase that Improve Electron Transfer Characteristics

    Isaac T. Yonemoto

    2015-01-01

    Full Text Available Photobiological hydrogen production is an attractive, carbon-neutral means to convert solar energy to hydrogen. We build on previous research improving the Alteromonas macleodii “Deep Ecotype” [NiFe] hydrogenase, and report progress towards creating an artificial electron transfer pathway to supply the hydrogenase with electrons necessary for hydrogen production. Ferredoxin is the first soluble electron transfer mediator to receive high-energy electrons from photosystem I, and bears an electron with sufficient potential to efficiently reduce protons. Thus, we engineered a hydrogenase-ferredoxin fusion that also contained several other modifications. In addition to the C-terminal ferredoxin fusion, we truncated the C-terminus of the hydrogenase small subunit, identified as the available terminus closer to the electron transfer region. We also neutralized an anionic patch surrounding the interface Fe-S cluster to improve transfer kinetics with the negatively charged ferredoxin. Initial screening showed the enzyme tolerated both truncation and charge neutralization on the small subunit ferredoxin-binding face. While the enzyme activity was relatively unchanged using the substrate methyl viologen, we observed a marked improvement from both the ferredoxin fusion and surface modification using only dithionite as an electron donor. Combining ferredoxin fusion and surface charge modification showed progressively improved activity in an in vitro assay with purified enzyme.

  16. Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.

    Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang

    2017-11-01

    Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study on ion radial acceleration in the region of virtual cathode formation on injection of relativistic electron beam into neutral gas

    Bystritskij, V.M.; Podkatov, V.I.; Chistyakov, S.A.; Yalovets, A.P.

    1982-01-01

    Results of numerical calculations and experimental investigations into different parameters of radial fluxes of deuterium ions and electrons performed in the region of virtual cathode formation when injecting a relativistic electron beam in low-pressure deuterium (10-100 μm Hg) are given. The calculations were carried out by the Monte-Carlo method within the framework of three models: Rostocker (Vsub(w) approximately equal to epsilonsub(e)/e), Olson (Vsub(w) approximately equal to (2-3)epsilonsub(e)/e) and Byistritcky (Vsub(w) approximately equal to 1.5 epsilonsub(e)/e) (where Vsub(w) - depth of a forming potential well, epsilonsub(e) - energy of beam electrons, e - electron charge). It is concluded on the basis of the comparative analysis of numerical and experimental results that there is no a deep stationary well with Vsub(w) approximately equal to (2-3)epsilonsub(e)/e, how this is postulated in the Olson model [ru

  18. The improved DGR analytical model of electron density height profile and total electron content in the ionosphere

    Radicella, S. M.; Zhang, M. L.

    1995-01-01

    Tests of the analytical model of the electron density profile originally proposed by G, Di Giovanni and S.M. Radicella (DGR model) have shown the need to introduce improvements in order to obtain a model able to reproduce the ionosphere in a larger spectrum of geophysical and time conditions. The present paper reviews the steps toward such progress and presents the final formulation of the model. It gives also a brief re- view of tests of the improved model done by different authors.

  19. Recruitment of Intracavernously Injected Adipose-Derived Stem Cells to the Major Pelvic Ganglion Improves Erectile Function in a Rat Model of Cavernous Nerve Injury

    Fandel, Thomas M.; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F.; Lin, Ching-Shwun

    2011-01-01

    Background Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. Objectives To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Design, setting, and participants Sprague-Dawley rats (n = 110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n = 25) or vehicle (n = 10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n = 5), and 28 d (n = 10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. Measurements IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. Results and limitations IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. Conclusions CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves

  20. Integration of Health Services Improves Multiple Healthcare Outcomes Among HIV-infected People Who Inject Drugs in Ukraine

    Bachireddy, Chethan; Soule, Michael C.; Izenberg, Jacob M.; Dvoryak, Sergey; Dumchev, Konstantin; Altice, Frederick L.

    2013-01-01

    Background People who inject drugs (PWID) experience poor outcomes and fuel HIV epidemics in middle-income countries in Eastern Europe and Central Asia. We assess integrated/co-located (ICL) healthcare for HIV-infected PWID, which despite international recommendations, is neither widely available nor empirically examined. Methods A 2010 cross-sectional study randomly sampled 296 HIV-infected opioid-dependent PWID from two representative HIV-endemic regions in Ukraine where ICL, non-co-located (NCL) and harm reduction/outreach (HRO) settings are available. ICL settings provide onsite HIV, addiction, and tuberculosis services, NCLs only treat addiction, and HROs provide counseling, needles/syringes, and referrals, but no opioid substitution therapy (OST). The primary outcome was receipt of quality healthcare, measured using a quality healthcare indicator (QHI) composite score representing percentage of eight guidelines-based recommended indicators met for HIV, addiction and tuberculosis treatment. The secondary outcomes were individual QHIs and health-related quality-of-life (HRQoL). Results On average, ICL-participants had significantly higher QHI composite scores compared to NCL- and HRO-participants (71.9% versus 54.8% versus 37.0%, p<0.001) even after controlling for potential confounders. Compared to NCL-participants, ICL-participants were significantly more likely to receive antiretroviral therapy (49.5% versus 19.2%, p<0.001), especially if CD4≤200 (93.8% versus 62.5% p<0.05); guideline-recommended OST dosage (57.3% versus 41.4%, p<0.05); and isoniazid preventive therapy (42.3% versus 11.2%, p<0.001). Subjects receiving OST had significantly higher HRQoL than those not receiving it (p<0.001); however, HRQoL did not differ significantly between ICL- and NCL-participants. Conclusions These findings suggest that OST alone improves quality-of-life, while receiving care in integrated settings collectively and individually improves healthcare quality for PWID

  1. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-01-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target

  2. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  3. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers.

    Genther, O N; Hansen, S L

    2014-02-01

    Trace minerals (TM) are vital to health and growth of livestock, but low dietary concentrations and dietary antagonists may reduce mineral status and feeder cattle TM status is usually unknown at arrival. The objective of this study was to examine the effect of TM status on response to mineral injection in beef cattle. Forty steers were equally assigned to diets for an 84-d depletion period: control (CON; supplemental Cu, Mn, Se, and Zn) or deficient (DEF; no supplemental Cu, Mn, Se, or Zn plus Fe and Mo as TM antagonists). Lesser liver Cu and Se concentrations (79.0 ± 11.60 and 1.66 ± 0.080 mg/kg DM, respectively) in DEF steers compared with CON steers (228.8 ± 11.60 and 2.41 ± 0.080 mg/kg DM, respectively) on d 71 of depletion indicated mild deficiencies of these TM (P CON vs. DEF (P = 0.02), suggesting TM from injection were used rather than stored in DEF steers. Liver Se and Cu (P CON animals, total MPO was greater in animals that received TM injection, but injection did not affect MPO within DEF steers (P = 0.007). Overall, TM from an injectable mineral were used differently between TM adequate and mildly deficient steers.

  4. Theoretical Studies of Electron Injection and E-Layer Build-Up in Astron; Etudes Theoriques sur l'Injection d'Electrons et la Formation de la Couche E dans l'Astron; Teoreticheskie izucheniya ehlektronnoj inzhektsii i narashchivaniya sloya-E v ustanovke ''Astron''; Estudios Teoricos de Electrones y Formacion de la Capa E en la Instalacion Astron

    Killeen, J.; Neil, V. K.; Heckrotte, W. [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1966-04-15

    High intensity beams of relativistic electrons injected into the Astron device can be trapped in part by the action of coherent electromagnetic self-forces. Through the appropriate design of external passive circuitry, axial electrostatic blow-up of the azimuthally injected beam can be prevented or inhibited. The self-forces result in a spread of particles in z-P{sub z} phase space, and part of the beam is trapped at the expense of the loss of the rest. In addition to this effect, for sufficiently high beam currents, the coupling of the relativistic beam to the passive circuitry can lead to significant loss of axial momentum through energy dissipation. A one-dimensional model of the actual Astron geometry has been investigated theoretically. Green's functions for the self-electric and self-magnetic fields have been calculated analytically and incorporated into the Vlasov equation governing the axial motion of the electrons. Results of the calculation allow some qualitative comparison with experimental results from the Astron experiment. As envisioned, the trapped electrons will form a cylindrical layer of sufficient intensity so that the self-magnetic field is comparable to the applied field. The mathematical model for the build-up of the electron layer and the self-field is the time-dependent Vlasov equation coupled with Maxwell's equations. The system is axially symmetric and complete neutralization is assumed. The field components Br and B{sub z} can be derived from a stream function {psi}( r, z, t). The canonical angular momentum is a constant of the motion, hence we can consider an electron distribution function f{sub e}( r, z, P{sub r}, P{sub z}). The partial differential equations for f{sub e} and {psi} are solved numerically by using finite difference methods. The phase space consists of over 160 000 points, that is 81 in z, 12 in r, 19 in P{sub z} and 9 in P{sub r}. At each step an integration of f{sub e} over momentum space yields the current density j

  5. Improved Resident Adherence to AAA Screening Guidelines via an Electronic Reminder.

    Sypert, David; Van Dyke, Kenneth; Dhillon, Namrata; Elliott, John O; Jordan, Kim

    The 2014 United States Preventive Services Task Force systematic review found abdominal aortic aneurysm (AAA) screening decreased related mortality by close to half. Despite the simplicity of screening, research suggests poor adherence to the recommended AAA screening guidelines. Using the quality improvement plan-study-do-act cycle, we retrospectively established poor adherence to AAA screening and poor documentation of smoking history in our resident clinic. An electronic reminder was prospectively implemented into our electronic medical record (EMR) with the goal of improving screening rates. After 1 year, a retrospective chart review was conducted. Comparisons of the pre- and post-electronic reminder intervention data were made using chi-square tests and odds ratios (OR). The purposeful AAA screening rate improved 27.8% during the intervention, 40.3% (95% confidence interval [CI]: 28.6-52.0%) versus 12.5% (95% CI: 3.1-21.9%), p = .002, suggesting patients were more likely to be screened as a result of the electronic reminder, OR = 4.73 (95% CI: 1.77-12.65). This improvement translates to a large effect size, Cohen's d = 0.86 (95% CI: 0.31-1.40). Electronic reminders are a simple EMR addition that can provide evidence-based education while improving adherence rates with preventive health screening measures.

  6. Electron Injection from Copper Diimine Sensitizers into TiO 2 : Structural Effects and Their Implications for Solar Energy Conversion Devices

    Mara, Michael W. [Department; Bowman, David N. [Department; Buyukcakir, Onur [Graduate; Shelby, Megan L. [Department; Haldrup, Kristoffer [Centre; Huang, Jier; Harpham, Michael R.; Stickrath, Andrew B.; Zhang, Xiaoyi; Stoddart, J. Fraser [Department; Coskun, Ali [Graduate; Jakubikova, Elena [Department; Chen, Lin X. [Department

    2015-07-21

    Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)(5))(dpp-(COOH)(2))](+) and [Cu(I)(dpp-O(CH2CH2O)(5))(dpp-(F-COOH)(2))](+) (F = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the 1MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.

  7. Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

    Eriksson, Robert

    2014-01-01

    The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...

  8. Echo III: The study of electric and magnetic fields with conjugate echoes from artificial electron beams injected into the auroral zone ionosphere

    Hendrickson, R.A.; Winckler, J.R.; Arnoldy, R.L.

    1976-01-01

    The third in a series of rocket flights carrying large electron guns for electron beam-plasma analysis and magnetosphere probing has been carried out from the Poker Flat rocket range near Fairbanks, Alaska at L=6. Echoes from the injected electrons mirroring at the southern hemisphere conjugate point were observed on the rocket by particle detectors and in the nearby ionosphere by photometers on board the rocket. The bounce time and drift velocities of the echoes were measured using the known trajectory and aspect of the rocket. Ionospheric electric fields near the rocket were inferred from drift motion of the ambient ion population measured by two techniques, electrostatic analyzers on board the rocket and incoherent backscatter radar from the ground. Using model magnetic fields, gradient and curvature drift and bound times have been computed under the conditions appropriate for this experiment. Assuming that field lines are equipotentials, the addition of the observed ionospheric electric field drift to the model-independent gradient and curvature drifts predicts a net echo drift velocity that is in agreement with the observations, provided the Mead-Fairfield 1972--73 model is used. The observed bounce time constitutes an independent model check and is in better agreement with the Olson-Pfitzer model. Echo spatial and temporal fluctuations reflected the turbulence associated with the diffuse aurora into which the rocket was launched

  9. Saturation mechanism and improvement of conversion efficiency of free electron laser

    Taguchi, T.; Mima, K.; Mochizuki, T.

    1980-01-01

    Saturation mechanisms of free electron laser are investigated in the Compton regime. It is found that the saturation occurs due to quasi-linear energy spreading of electron beam in the case of many mode excitation. The energy conversion efficiency remains low even if many modes are taken into account. For improvement of the conversion efficiency, effects of reacceleration by a traveling wave are investigated and turn out to increase the efficiency up to more than 50%. (author)

  10. Transitions to improved core electron heat confinement in JT-II plasmas

    Estrada, T.; Medina, F.; Ascasibar, E.; Balbin, R.; Castejon, F.; Hidalgo, C.; Lopez-Bruna, D.; Petrov, S.

    2008-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II ECH plasmas. Transitions triggered by the rational surface n=4/m=2 show an increase in the ion temperature synchronized with the increase in the electron temperature. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition. (author)

  11. Improvement in Dissolution of Cotton Pulp with Ionic liquid by the Electron Beam Treatment

    Lee, Won Sil; Jung, Wong Gi; Sung, Yong Joo

    2013-01-01

    Electron beam treatment was applied for improving dissolution of cotton pulp with ionic liquids. Two ionic liquids, 1-allyl-3-methylimidazolium chloride ([Amim]Cl]: AC) and 1,3-dimethylimidzolium methlphosphite ([Dmim][(MeO)(H)PO2]: Me) were used for this experiment. Treatment with electron beams up to dose of 400 kGy resulted in the increase of hot water extract and alkali extract of cotton pulp and the great reduction in the molecular weight of cellulose. For the dissolution of cotton pulp with two ionic liquids, the electron beam treated samples showed faster dissolution. The dissolved cellulose with Me ionic liquid were regenerated with Acetonitrile and the structure of regenerated cellulose showed distinct difference depending on the electron beam treatment. Those results provide the electron beam pre-treatment could be applied as an energy efficient and environmentally benign method to increase the dissolution of cotton pulp with ionic liquids

  12. Electronic communication improves access, but barriers to its widespread adoption remain.

    Bishop, Tara F; Press, Matthew J; Mendelsohn, Jayme L; Casalino, Lawrence P

    2013-08-01

    Because electronic communication is quick, convenient, and inexpensive for most patients, care that is truly patient centered should promote the use of such communication between patients and providers, even using it as a substitute for office visits when clinically appropriate. Despite the potential benefits of electronic communication, fewer than 7 percent of providers used it in 2008. To learn from the experiences of providers that have widely incorporated electronic communication into patient care, we interviewed leaders of twenty-one medical groups that use it extensively with patients. We also interviewed staff in six of those groups. Electronic communication was widely perceived to be a safe, effective, and efficient means of communication that improves patient satisfaction and saves patients time but that increases the volume of physician work unless office visits are reduced. Practice redesign and new payment methods are likely necessary for electronic communication to be more widely used in patient care.

  13. Using mobile phone text messages to improve insulin injection technique and glycaemic control in patients with diabetes mellitus: a multi-centre study in Turkey.

    Celik, Selda; Cosansu, Gulhan; Erdogan, Semra; Kahraman, Alev; Isik, Sengul; Bayrak, Gulay; Bektas, Belgin; Olgun, Nermin

    2015-06-01

    To improve the knowledge and skills of diabetic patients on insulin injections using mobile phone short message services and to evaluate the association of this intervention with metabolic outcomes. Mobile communication technologies are widely used in Turkey, which maintains a diabetic population of more than 6·5 million. However, there are a limited number of studies using mobile technologies in the challenging and complicated management of diabetes. A one group pretest-posttest design was used in this study. The study sample consisted of 221 people with type 1 and type 2 Diabetes Mellitus from eight outpatient clinics in six cities in Turkey. The 'Demographic and diabetes-related information Form' and 'Insulin Injection Technique and Knowledge Form' were used in the initial interview. Subsequently, 12 short messages related to insulin administration were sent to patients twice a week for six months. Each patient's level of knowledge and skills regarding both the insulin injection technique and glycaemic control (glycated haemoglobin A1c) levels were measured at three months and six months during the text messaging period and six months later (12 months total) when text messaging was stopped. The mean age of the patients with diabetes was 39·8 ± 16·2 years (min: 18; max: 75). More than half of the patients were females with a mean duration of diabetes of 11·01 ± 7·22 years (min 1; max: 32). Following the text message reminders, the patients' level of knowledge and skills regarding the insulin injection technique improved at month 3 and 6 (p 12 compared to the baseline values (p insulin injection sites and the frequency of rotation of skin sites for insulin injections also increased. This study demonstrated that a short message services-based information and reminder system on insulin injection administration provided to insulin-dependent patients with diabetes by nurses resulted in improved self-administration of insulin and metabolic control

  14. Bad news about an old poison. A case of nicotine poisoning due to both ingestion and injection of the content of an electronic cigarette refill

    Gianfranco Cervellin

    2013-10-01

    Full Text Available There are increasing concerns about the escalating use of electronic cigarettes (e-cigarettes. In particular, smokers have been advised by important agencies such as the US Food and Drug Administration about the potential harm to the health of these products, being now considered as drug delivery devices. The leading issues supporting this statement include the repeated inhalation of propylene glycol that is used as a diluent in refills, accidental poisoning, as well as evidence that ecigarettes may promote continued smoking since their use may compromise quitting motivations. Some authors have minimized these risks, considering the potential advantages of these devices for public health. Here we describe the first case of nicotine poisoning due to both ingestion and intravenous injection of the content of an e-cigarette refill, incorrectly mixed with methadone, bottled in a generic vial.

  15. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  16. Needle-free jet injection of rapid-acting insulin improves early postprandial glucose control in patients with diabetes

    Engwerda, E.E.; Tack, C.J.J.; Galan, B.E. de

    2013-01-01

    OBJECTIVE: Clamp studies have shown that the absorption and action of rapid-acting insulin are faster with injection by a jet injector than with administration by conventional pen. To determine whether these pharmacokinetic changes also exist in patients with diabetes and benefit postprandial

  17. Community Impact of Pharmacy-Randomized Intervention to Improve Access to Syringes and Services for Injection Drug Users

    Crawford, Natalie D.; Amesty, Silvia; Rivera, Alexis V.; Harripersaud, Katherine; Turner, Alezandria; Fuller, Crystal M.

    2014-01-01

    Objectives: In an effort to reduce HIV transmission among injection drug users (IDUs), New York State deregulated pharmacy syringe sales in 2001 through the Expanded Syringe Access Program by removing the requirement of a prescription. With evidence suggesting pharmacists' ability to expand their public health role, a structural, pharmacy-based…

  18. On grid-connected power electronic systems: power quality improvement application

    Etxeberria-Otadui, I.

    2003-09-01

    The present PhD thesis deals with distribution grid-connected power electronic devices. The main focus has been power quality improvement with power electronic devices. The theoretical aspects and the power quality improvement techniques are presented and discussed. Power electronic devices are then presented, modelled and controlled. Original disturbance identification, power management and current/voltage control methods have been proposed, tested and analysed. A flexible test-bench, composed of a series and a shunt compensator, has been designed and built in order to test the studied control algorithms. These tests have permitted to experimentally evaluate and validate the proposed control algorithms and to make evident several problems that are not always visible on the theory. The conclusions outline the main short and mid term objectives and challenges in the field of power quality improvement devices. (author)

  19. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-01-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 − ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 − injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. - Highlights: • Sequential addition of acetate and NO 3 − removed PAHs and mitigated sediment odor. • Acetate is a suitable co-substrate used for PAHs degradation in river sediment. • NO 3 − Injection was effective for sediment odor and blackish appearance mitigation. • Integrated method is suggested in complicated real case with multi-remedial target. - Sequential addition of co-substrate and electron acceptor was capable of effectively removing PAHs and addressing sediment odorous problem and blackish appearance.

  20. Effect of different photoanode nanostructures on the initial charge separation and electron injection process in dye sensitized solar cells: A photophysical study with indoline dyes

    Idígoras, Jesús [Nanostructured Solar Cells Group, Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera, km 1, ES-41013 Seville (Spain); Sobuś, Jan [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań (Poland); Jancelewicz, Mariusz [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Azaceta, Eneko; Tena-Zaera, Ramon [Materials Division, IK4-CIDETEC, Parque Tecnológico de San Sebastián, Paseo Miramón 196, Donostia-San Sebastián, 20009 (Spain); Anta, Juan A. [Nanostructured Solar Cells Group, Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera, km 1, ES-41013 Seville (Spain); Ziółek, Marcin, E-mail: marziol@amu.edu.pl [Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań (Poland)

    2016-02-15

    Ultrafast and fast charge separation processes were investigated for complete cells based on several ZnO-based photoanode nanostructures and standard TiO{sub 2} nanoparticle layers sensitized with the indoline dye coded D358. Different ZnO morphologies (nanoparticles, nanowires, mesoporous), synthesis methods (hydrothermal, gas-phase, electrodeposition in aqueous media and ionic liquid media) and coatings (ZnO–ZnO core–shell, ZnO–TiO{sub 2} core–shell) were measured by transient absorption techniques in the time scale from 100 fs to 100 μs and in the visible and near-infrared spectral range. All of ZnO cells show worse electron injection yields with respect to those with standard TiO{sub 2} material. Lower refractive index of ZnO than that of TiO{sub 2} is suggested to be an additional factor, not considered so far, that can decrease the performance of ZnO-based solar cells. Evidence of the participation of the excited charge transfer state of the dye in the charge separation process is provided here. The lifetime of this state in fully working devices extends from several ps to several tens of ps, which is much longer than the typically postulated electron injection times in all-organic dye-sensitized solar cells. The results here provided, comprising a wide variety of morphologies and preparation methods, point to the universality of the poor performance of ZnO as photoanode material with respect to standard TiO{sub 2}. - Highlights: • Wide variety of morphologies and preparation methods has been checked for ZnO cells. • All ZnO cells work worse than TiO{sub 2} ones. • Effective refractive index might be an additional factor in solar cell performance. • Excited charge transfer state of indoline dyes participates in the charge separation.

  1. Electron-cyclotron maser utilizing free-electron two-quantum magnetic-wiggler radiation, and explanation of effective laser injection in an electron cyclotron maser as lift-up of saturated power level arisen from uncertainty in electron energy due to electron's transverse wiggling

    Kim, S. H.

    2017-12-01

    We reason that in the free-electron radiation if the transition rate τ is less than the radiation frequency ν, the radiation is of broad-band spectrum whereas if τ ≫ ν, the radiation is of monochromatic. We find that when a weaker magnetic wiggler (MW) is superpositioned on a predominantly strong uniform magnetic field, free-electron two-quantum magnetic-wiggler (FETQMW) radiation takes place. In FETQMW radiation, the MW and the electron's intrinsic motivity to change its internal configuration through radiation play as two first-order perturbers while the uniform magnetic field acts as the sole zeroth-order perturber. When Δ E≪ hν, where Δ E is the uncertainty in the electron energy produced by transverse wiggling due to the MW in conjuction with a Heisenberg's uncertainty principle Δ EΔ x h and E = ( m 2 c 4 + c 2 p 2)1/2, the power of FETQMW radiation cannot exceed hν 2. However, we find that this power cap is lifted by the amount of νΔ E when Δ E ≫ hν holds [1,2]. This lift-up of the saturated radiation power is the responsible mechanism for the effective external injection of a 20 kW maser in an electron-cyclotron maser (ECM). We find that an MW-added ECM with radius 5 cm and length 1 m and operating parameters of the present beam technology can yield laser power of 50 MW at the radiation wavelength of 0.001 cm.

  2. Improving the Weizsäcker-Williams approximation in electron-proton collisions

    Frixione, Stefano; Nason, P; Ridolfi, G

    1993-01-01

    We critically examine the validity of the Weizs\\"acker-Williams approximation in electron-hadron collisions. We show that in its commonly used form it can lead to large errors, and we show how to improve it in order to get accurate results. In particular, we present an improved form that is valid beyond the leading logarithmic approximation in the case when a small-angle cut is applied to the scattered electron. Furthermore we include comparisons of the approximate expressions with the exact electroproduction calculation in the case of heavy-quark production.

  3. Improvement of dose distributions in abutment regions of intensity modulated radiation therapy and electron fields

    Dogan, Nesrin; Leybovich, Leonid B.; Sethi, Anil; Emami, Bahman

    2002-01-01

    In recent years, intensity modulated radiation therapy (IMRT) is used to radiate tumors that are in close proximity to vital organs. Targets consisting of a deep-seated region followed by a superficial one may be treated with abutting photon and electron fields. However, no systematic study regarding matching of IMRT and electron beams was reported. In this work, a study of dose distributions in the abutment region between tomographic and step-and-shoot IMRT and electron fields was carried out. A method that significantly improves dose homogeneity between abutting tomographic IMRT and electron fields was developed and tested. In this method, a target region that is covered by IMRT was extended into the superficial target area by ∼2.0 cm. The length and shape of IMRT target extension was chosen such that high isodose lines bent away from the region treated by the electrons. This reduced the magnitude of hot spots caused by the 'bulging effect' of electron field penumbra. To account for the uncertainties in positioning of the IMRT and electron fields, electron field penumbra was modified using conventional (photon) multileaf collimator (MLC). The electron beam was delivered in two steps: half of the dose delivered with MLCs in retracted position and another half with MLCs extended to the edge of electron field that abuts tomographic IMRT field. The experimental testing of this method using film dosimetry has demonstrated that the magnitude of the hot spots was reduced from ∼45% to ∼5% of the prescription dose. When an error of ±1.5 mm in field positioning was introduced, the dose inhomogeneity in the abutment region did not exceed ±15% of the prescription dose. With step-and-shoot IMRT, the most homogeneous dose distribution was achieved when there was a 3 mm gap between the IMRT and electron fields

  4. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    Li, He; Wenjiang, Wang, E-mail: wwj@mail.xjtu.edu.cn; Xiaoning, Zhang

    2017-03-31

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm{sup 2} and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H{sup +} but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  5. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    Li, He; Wenjiang, Wang; Xiaoning, Zhang

    2017-01-01

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm"2 and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H"+ but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  6. Improved atomic data for electron-transport predictions by the codes TIGER and TIGERP: II. Electron stopping and range data

    Peek, J.M.; Halbleib, J.A.

    1983-04-01

    The electron stopping and range data now used in the TIGER and TIGERP electron-transport codes are extracted and compared with other data for these processes. At the smallest collision energies treated by these codes, E approx. 1 keV, the stopping-power is estimated to be accurate for small-Z targets, to be about 25 percent too small for Z near 36 and to be a factor of three too small for Z > 79. These errors decrease with increasing E and the largest error for any target is roughly 20 percent for E = 10 keV. The closely related continuous-slowing-down range is estimated, at 1 keV, to be about 25 percent too small for small-Z targets and a factor of 2 too large for large-Z targets. The electron-transport problem of reflection from planer surfaces is re-investigated with improved stopping-power data. The effects of this change for the examples considered were about the size of the statistical uncertainties in the calculation, 1 to 2 percent

  7. Long-term outcomes in patients with schizophrenia treated with risperidone long-acting injection or oral antipsychotics in Spain: results from the electronic Schizophrenia Treatment Adherence Registry (e-STAR).

    Olivares, J M; Rodriguez-Morales, A; Diels, J; Povey, M; Jacobs, A; Zhao, Z; Lam, A; Villalobos Vega, J C; Cuéllar, J Alonso; de Castro, F J Alberca; Quintero, C Morillo-Velarde; Martíin, J F Román; Domínguez, P Tabares; Ojeda, J L Prados; Cortés, S Sanz; Cala, F I Mata; Marín, C Gutiérrez; Castro, L Moyano; Duaso, M A Haza; Albarracín, J Requena; Vergara, G Narbona; Benítez, A Fernández; Cleries, F Mayoral; Pérez-Brian, J M García-Herrera; Aragón, A Bordallo; Navarro, J C Rodríguez; Biedma, J A Algarra; de Pedro, R Bravo; González, J F Delgado; López, M E Jaén; Moreno, H Díaz; López, J A Soto; Rodríguez, E Ojeda; de Hoyos, C Martínez; Sacristán, M Pardilla; Martín, M D Molina; Ballesteros, E Martín; Rodríguez, P A Sopelana; Menéndez, L Fernández; Rivas, R Santos; del Pino Cuadrado, P; Lauffer, J Correas; Solano, J J Rodríguez; Martínez, J M Fernández; Solano, F García; Rodríguez, P García-Lamberde; Rodríguez, J A Romero; Cano, T Rodríguez; Fortacin, M Ducaju; Lobeiras, J M Blanco; Sampedro, J M Piñeiro; Bravo, A Pérez; Pellicer, A Fernández; López, M D Alonso; Liste, J Fraga; Fernández, M Riobo; Losada, A Casas; Mendez, R Vazquez-Noguerol; Romero, S Agra; Blanco, J J Blanco; Bonaselt, I Tortajada; Mahia, M C García; del Valle, E Ferrer Gómez; Yañez, P Quiroga; Camarasa, M Gelabert; Alonso, J A Barbado; Mendez, G Florez; Feliz, F Doce; Lamela, M A López; Piñero, M Vega; Alvarado, P Fuentes; Gómez, I López; Martín, P Fadon; Gómez, J L Santos; López, A García; Jiménez, A Rodríguez; Nafs, A Escudero; Barquero, N Casas; Ortiz, R Fernández-Villamor; Noguera, J L Velez; Carrasco, P Ruiz; Muñoz, J Martín; Palma, M Masegoza; Hortelano, C Marín; Bonome, L Sánchez; Sevilla, J Sánchez; Juan, J M Mongil San; Ramos, J M García; Muñoz, J L Vallejo; Guisasola, J Elorza; Vazquez, L Santamaria; Guerras, F Campo; Nebot, F J Arrufat; Fernández, F J Baron; Nicolau, A L Palomo; Subirats, R Catala; Kidias, M Messays; Navarro, V Fabregat; García, B Frades; del Rosal, F Mejias; de Vicente Muñoz, T; Ballester, J Año; Lieb, P Malabia; Martel, A Delgado; Bea, E Roca; Joaquim, I Grau; Enjuanes, F Boatas; Piñol, M Bañuelos; Carbonell, E Fontova I; Muñoz, R Martín; Giribets, C Argila; Sans, L Albages; Blanco, A Serrano; Felipe, M Arcega; Muñoz, P González; Villanueva, A Pons; Arroyo, M Bernardo; Borri, R Coronas; Fallada, S Miret; Merola, M Celma; Rodon, E Parellada; Palmes, J R Pigem; Martínez, E Pérez; Catala, J Matarredona; Coca, A Sandoval; Ferrandiz, F Pascual; Paya, E Ferrandiz; Caballero, G Iturri; Bonet, A Franco; Figueras, J Fluvia; Pagador, P Moreno; Garibo, M Medina; Camo, V Pérez; Carrillo, C Sanz; Valero, C Pelegrin; Rebollo, F J Caro; García Campayo, J; Sala Ayma, J M Sala; Roig, M Martínez; de Uña Mateos, M A; Bertolin, R García; García, A Martín; Mazo, F Jiménez; Velasco, J L Galvez; Pérez, L Santa Maria; Casado, C Jiménez; Barba, J J Mancheño; Diaz, M Conde; Rubio, J P Alcon; Mandoli, A Soler; Herrero, A Uson; Martínez, A Rodríguez; Serrano, P Salgado; Rodríguez, E Nieto; Montesinos, J Segui; Macia, J Ferragud; Mateos Marcos, A Mateos; Soto, J V Pérez-Fuster; Dumont, M Verdaguer; Pagan, J Parra; Martínez, V Balanza; Santiuste de Pablos, M; Delgado, C Espinosa; Quiles, M D Martínez; López, F J Manzanera; Navarro, P Pozo; Torres, A Micol; Ingles, F J Martínez; Arias-Camison, J M Salmeron; Manzano, J C López; Peña, R Villanueva; Guitarte, G Petersen; Fontecilla, H Blasco; Romero, J Barjau; Gil, R Sanz; Lozano, J Marín; Adanez, L Donaire; Zarranz Herrera-Oria, I; Jiménez, J Pérez; Vaz, F Carrato; García, O Sanz; Anton, C Contreras; Casula, R Reixach; Hernandez, M C Natividad; Escabias, F Teba; Torresano, J Rodríguez; Pérez-Villamil, A Huidobro; Estevez, L; Figuero, M Aragües; Muñoz de Morales, A; Calvin, J L Rodríguez; Criado, M Delgado; Rodríguez, V Molina; Ambrosolio, E Balbo; Madera, P M Holgado; Alfaro, G Ponce; Vidal, M M Rojas; Valtuille, A García; Ruiz, O; Cabornero, G Lucas; Echevarria Martínez de Bujo, M; Mallen, M J Maicas; Puigros, J Santandreu; Martorell, A Liñana; Forteza, A Clar; Arrebola, E Rodríguez; Rodríguez de la Torre, M; Saiz, C G Anton; Bardolet I Casas, C; Linde, E Rodríguez; De Arce Cordon, R; Molina, E M Padial; Carazo, F J Ruiz; Romero, J J Muro; Cano, D Vico; Dorado, M Soria; Velazquez, S Campos; Sánchez, A J Rodríguez; Leon, S Ocio; Sánchez, K Pachas; Benitez, M Henry; Zugarramurai, A Intxausti; Contreras, M A; De la Varga González, M; Marín, P Barreiro; Robina, F Gómez; García, M Sánchez; Pérez, F J Otero; Bros, P Cubero; Gómez, A Carrillo; de Dios Molina Martín, J; Perera, J L Carrasco; Averbach, M C; Perera, J L Carrasco; Palancares, E Goenaga; Gallego de Dios, M T; Rojo, C Fernández; Iglesias, S Sánchez; Merino, M I Rubio; Mestre, N Prieto; Urdaniz, A Pérez; Sánchez, J M Martínez; Seco, R Gordo; Muñoz, J Franco; Agut, M Mateos; Lozano, M L Blanco; Herguedas, F Martín; Pena, A Torcal; García, J Vicente; Martínez, A Varona; Sanz Granado, O Sanz; Fernández, M A Medina; Canseco, J M Moran; López, P A Megia; Martín, M A Franco; Barrio, J A Espina; Ubago, J Giner; Bennassar, M Roca; Díez, J M Olivares; Fleta, J L Hernandez; Fortes, F Porras; López, C Arango; Medina, O; Alvarez, D Figuera; Roca, J M Peña; Valladolid, G Rubio; Tavera, J A Furquet; García-Castrillon Sales, J A; Llordes, I Batalla; Melgarejo, C Anchuistegui; Cañas de la Paz, F; Callol, V Vallés; García, M Bousoño; García, J Bobes; Leal, F J Vaz; Corrales, E Cáceres; Iglesias, E Sánchez; Gómez, M A Carreiras; Serrano, G García; Chillarón, E G Román; Aguado, F J Samino; Castillo, J J Molina; González, A González; Vázquez, J Gallardo; Peralvarez, M Bolivar; Diaz, M Rios; Mesa, M Ybarzabal; Artiles, F J Acosta; Chao, M Ajoy; Mesa, M Ybarzabal; del Rosario Santana, P; Escudero, M A García; Berenguer, M Molla; Llacer, J M Bonete; Berna, J A Juan; Ortiz, J Barragán; Pardell, L Tost; Hernández-Alvarez de Sotomayor, C; Méndez, M R Cejas; Garate, R Cabrera; Múgica, B Díaz; González, M Caballero; Domingo, J Pujol; Navarro, C Sáez; Vera, G Selva; Cuquerella, M A; Monzo, J Lonjedo; Boada, P Cervera; Pérez, M F Martín; Parrado, E Carrasco; Sánchez, J J Yañez; Fernández, J Calvo

    2009-06-01

    The electronic Schizophrenia Treatment Adherence Registry (e-STAR) is a prospective, observational study of patients with schizophrenia designed to evaluate long-term treatment outcomes in routine clinical practice. Parameters were assessed at baseline and at 3 month intervals for 2 years in patients initiated on risperidone long-acting injection (RLAI) (n=1345) or a new oral antipsychotic (AP) (n=277; 35.7% and 36.5% on risperidone and olanzapine, respectively) in Spain. Hospitalization prior to therapy was assessed by a retrospective chart review. At 24 months, treatment retention (81.8% for RLAI versus 63.4% for oral APs, p<0.0001) and reduction in Clinical Global Impression Severity scores (-1.14 for RLAI versus -0.94 for APs, p=0.0165) were significantly higher with RLAI. Compared to the pre-switch period, RLAI patients had greater reductions in the number (reduction of 0.37 stays per patient versus 0.2, p<0.05) and days (18.74 versus 13.02, p<0.01) of hospitalizations at 24 months than oral AP patients. This 2 year, prospective, observational study showed that, compared to oral antipsychotics, RLAI was associated with better treatment retention, greater improvement in clinical symptoms and functioning, and greater reduction in hospital stays and days in hospital in patients with schizophrenia. Improved treatment adherence, increased efficacy and reduced hospitalization with RLAI offer the opportunity of substantial therapeutic improvement in schizophrenia.

  8. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  9. Granisetron Injection

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  10. Edaravone Injection

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  11. Meropenem Injection

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  12. Chloramphenicol Injection

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  13. Colistimethate Injection

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  14. Defibrotide Injection

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  15. Nalbuphine Injection

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  16. Improved age-diffusion model for low-energy electron transport in solids. I. Theory

    Devooght, J.; Dubus, A.; Dehaes, J.C.

    1987-01-01

    We have developed in this paper a semianalytical electron transport model designed for parametric studies of secondary-electron emission induced by low-energy electrons (keV range) and by fast light ions (100 keV range). The primary-particle transport is assumed to be known and to give rise to an internal electron source. The importance of the nearly isotropic elastic scattering in the secondary-electron energy range (50 eV) and the slowing-down process strongly reduce the influence of the anisotropy of the internal electron source, and the internal electron flux is nearly isotropic as is evidenced by the experimental results. The differential energy behavior of the inelastic scattering kernel is very complicated and the real kernel is replaced by a synthetic scattering kernel of which parameters are obtained by energy and angle moments conservation. Through a P 1 approximation and the use of the synthetic scattering kernel, the Boltzmann equation is approximated by a diffusion--slowing-down equation for the isotropic part of the internal electron flux. The energy-dependent partial reflection boundary condition reduces to a Neumann-Dirichlet boundary condition. An analytical expression for the Green's function of the diffusion--slowing-down equation with the surface boundary condition is obtained by means of approximations close to the age-diffusion theory and the model allows for transient conditions. Independently from the ''improved age-diffusion'' model, a correction formula is developed in order to take into account the backscattering of primary electrons for an incident-electron problem

  17. A robust yellow-emitting metallophosphor with electron-injection/-transporting traits for highly efficient white organic light-emitting diodes.

    Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang

    2011-10-24

    With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  19. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  20. Evaluation of Performance and Opportunities for Improvements in Automotive Power Electronics Systems: Preprint

    Moreno, Gilberto; Bennion, Kevin; King, Charles; Narumanchi, Sreekant

    2016-06-14

    Thermal management strategies for automotive power electronic systems have evolved over time to reduce system cost and to improve reliability and thermal performance. In this study, we characterized the power electronic thermal management systems of two electric-drive vehicles--the 2012 Nissan LEAF and 2014 Honda Accord Hybrid. Tests were conducted to measure the insulated-gate bipolar transistor-to-coolant thermal resistances for both steady-state and transient conditions at various coolant flow rates. Water-ethylene glycol at a temperature of 65 degrees C was used as the coolant for these experiments. Computational fluid dynamics and finite element analysis models of the vehicle's power electronics thermal management system were then created and validated using experimentally obtained results. Results indicate that the Accord module provides lower steady-state thermal resistance as compared with the LEAF module. However, the LEAF design may provide improved performance in transient conditions and may have cost benefits.

  1. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  2. Electronic mode of control to obtain increased torque and improved power factor from an asynchronous machine

    Wyk, van J.D.

    1970-01-01

    It is indicated that, by changing the electronic switching mode of the rotor current of an induction machine, it is possible to operate the machine at improved (capacitive) power factors and increased torque, or conversely at lower effective current and capacitive power factors at rated torque.

  3. An improved value for the electron affinity of the negative hydrogen ion

    Scherk, L.R.

    1979-01-01

    An expression is derived for the lifetime of a negative ion in a weak and static electric field. Using this expression, existing experimental data are analyzed to improve the empirical value of the electron affinity of the negative hydrogen ion by an order of magnitude. (author)

  4. Improvement of combustion in a direct injection diesel engine by the use of a combustion-hole injection nozzle; Kumiawase funko nozzle ni yoru chokusetsu funshashiki diesel engine no nensho kaizen

    Shoji, T. [Mitsubishi Motors Corp., Tokyo (Japan); Kamimoto, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-04-25

    Suppression of pre-mixed combustion and activation of diffusion combustion in DI diesel engines are known to be effective in reducing both NOx and fuel consumption. To achieve this concept, the authors have proposed a new type of fuel injection nozzle named combination-hole nozzle. This nozzle has very small holes with a diameter of 0.13 mm below (sub holes) for reducing ignition delay and normal holes (main holes) for keeping reasonable injection duration. The experiments conducted with a single cylinder research engine revealed that the combination-hole nozzle reduced the ignition delay and the peak value of the rate of heat release during the premixed combustion by 10% and 40% respectively compared with the experimental results of conventional nozzles and that the trade-off curve between NOx and fuel consumption sifted to the low level corner at half and full load conditions at a low engine speed. The reason for this improvement was investigated by the measurement of flame temperature distribution in the combustion chamber by means of the two colors method. The result revealed that the flame temperature in regions between sub and main hole`s flames of the nozzle was lower than that of the flames of a conventional nozzle at a full load and a low speed condition. 13 refs., 10 figs., 3 tabs.

  5. Actions improving the image of a nurse in electronic media. Opinion of students at medical courses

    Jakubowska Klaudia

    2017-09-01

    Full Text Available Aim. The aim of study was to define actions improving the image of nurses in electronic media. Material and method. 219 women and 44 men took part in a survey. They were the students of the following courses: nursing, medical rescue, obstetrics, medicine, dentistry, pharmaceutics, physiotherapy, public health. The studies were undertaken with use of own questionnaire in 2015. Results. Majority of respondents 64,6% (n=169 stated that improvement of image of their own profession belongs to the nurses, and only 35,4% (n=93 respondents indicated that the professional organizations of nurses and midwives have their impact on it. According to the students, the most crucial action that should be undertaken by professional organizations in order to improve the image of profession in electronic media was the improvement of wages and working conditions (72,2%, n=189 and better promotion of the profession in electronic media (73,8%, n=193. The nurses can influence the improvement of their image in media by taking care of the good opinion about the profession by setting good example (32%, n=84, and also by creating blogs, social forum, online information services, etc. (26,2%, n=69. Conclusions. According to the respondents, the image of a nurse in electronic media is shaped by the television and radio. The mentioned media tend to present nursing environment in a negative light. The data analysis shows that according to the respondents, the professional organizations of nurses and midwives and nurses themselves should be responsible for improvement of the situation. In order to improve the image, the nurses should promote professional achievements, change the stereotype used in shows and movies, and familiarize the public with the profession. The following branches of mass media should be used: internet websites, television and radio.

  6. Predictive Factors of Patients' and Their Partners' Sexual Function Improvement After Collagenase Clostridium Histolyticum Injection for Peyronie's Disease: Results From a Multi-Center Single-Arm Study.

    Cocci, Andrea; Russo, Giorgio Ivan; Salonia, Andrea; Cito, Gianmartin; Regis, Federica; Polloni, Gaia; Giubilei, Gianluca; Cacciamani, Giovanni; Capece, Marco; Falcone, Marco; Greco, Isabella; Timpano, Massimiliano; Minervini, Andrea; Gacci, Mauro; Cai, Tommaso; Garaffa, Giulio; Giammusso, Bruno; Arcaniolo, Davide; Mirone, Vincenzo; Mondaini, Nicola

    2018-05-01

    Collagenase Clostridium histolyticum (CCH; Xiapex) injections represent the only licensed medical treatment for Peyronie's disease (PD). To evaluate the efficacy and safety of CCH injections in men with stable PD, using a modified treatment protocol and to assess partners' bother improvement in a large cohort of White-European sexually active heterosexual men treated in a single tertiary-referral center. All the 135 patients enrolled underwent a thorough assessment, which included history taking, physical examination, and pharmacologically induced artificial erection test (intra-cavernous injection) to assess the degree of penile curvature (PC) at baseline and after the completion of the treatment. Patients with calcified plaque and/or ventral curvature were excluded. All patients underwent a modified treatment protocol, which consisted of 3 intra-lesional injections of 0.9 mg of CCH performed at 4-week intervals at the point of maximum curvature. After each injection, patients were instructed to follow a strict routine involving daily penile stretching in the intervals between injections. International Index of Erectile Function (IIEF)-15, Global Assessment of PD, PD questionnaires (PDQ), and Female Sexual Function Index (FSFI) questionnaire were performed at baseline and at the end of treatment. Overall, 135 patients completed the study protocol. Before treatment, 18 (13.33%) partners showed a degree of sexual dysfunction. Baseline median IIEF-15, FSFI, and PDQ scores were, respectively, 59.0, 35.0, and 23.0. Overall, both IIEF-total and all domains significantly improved after treatment (all P < .01). A PC mean change of 19.07 (P = .00) was measured. At the univariate linear regression analysis, IIEF-15, IIEF-erectile function, IIEF-sexual desire, and IIEF-intercourse satisfaction were positively associated with FSFI (all P ≤ .03); conversely, PDQ-penile pain, PDQ-symptom bother, and post-treament penile curvature (P ≤ .04) were associated with a decreased

  7. Injection-controlled laser resonator

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    Huang, Yin; Min, Daomin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shengtao, E-mail: stli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Zhen; Xie, Dongri [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xuan [Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040 (China); Lin, Shengjun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Pinggao Group Company Ltd., State Grid High Voltage Switchgear Insulation Materials Laboratory, Pingdingshan 467001 (China)

    2017-06-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al{sub 2}O{sub 3} microcomposite was investigated. Epoxy resin/Al{sub 2}O{sub 3} microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  9. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, pcaffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  11. Test results for triple-modulation radar electronics with improved range disambiguation

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it; Neri, Carlo

    2015-10-15

    Highlights: • A new digital radar electronic system based on triple-modulation has been developed. • The triple-modulation system uses an improved algorithm for the range-disambiguation. • The new radar electronics has been applied in the IVVS optical radar prototype for ITER. • The performances obtained with IVVS double and triple-modulation were compared. - Abstract: The In Vessel Viewing System (IVVS) is an optical radar with sub milimetrical resolution that will be used for imaging and metrology pourposes in ITER. The electronics of the system is based on a Digital Radar Electronics developed in ENEA Frascati laboratories during the past years. Until the present study, the system was based on amplitude modulation technique having double-modulation frequency. The power of the laser is sinusoidally modulated and the distance of the points scanned by the laser beam is obtained measuring the phase difference between outgoing and echo signals. Recently a triple-modulation radar electronics version and an algorithm able to solve the range disambiguation were developed. The aim of the upgrade was the increase of the robustness in the range disambiguation. The paper briefly describes the updates carried out on the Digital Radar Electronics and extensively the test results obtained by comparing the performance of the triple modulation versus the double modulation techniques.

  12. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp; Aizawa, Shinji; Soon Park, Hyun [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Sato, Kuniaki; Akase, Zentaro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Murakami, Yasukazu; Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Kawase, Hiromitsu [Product Environment Technology Development Department, Environment and Energy Technology Development Center R and D Group, RICOH Co., Ltd., Shinei-cho, Tsuzuki-ku, Yokohama, Kanagawa 224-0035 (Japan)

    2014-03-31

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography.

  13. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    Tanigaki, Toshiaki; Aizawa, Shinji; Soon Park, Hyun; Sato, Kuniaki; Akase, Zentaro; Matsuda, Tsuyoshi; Murakami, Yasukazu; Shindo, Daisuke; Kawase, Hiromitsu

    2014-01-01

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography

  14. Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2.

    Forslund, Carina; Aspenberg, Per

    2003-01-01

    Achilles tendon ruptures in humans might be treated more efficiently with the help of a growth factor. Cartilage-derived morphogenetic protein-2 has been shown to induce formation of tendon-like tissue. Cartilage-derived morphogenetic protein-2 has a positive effect on mechanical parameters for tendon healing in a rabbit model with Achilles tendon transection. Controlled laboratory study. The right Achilles tendon of 40 rabbits was transected without tendon suture. Cartilage-derived morphogenetic protein-2 (10 micro g) or vehicle control (acetate buffer) was injected locally 2 hours postoperatively. All tendons were tested biomechanically at 8 and 14 days, and treated tendons were histologically and radiographically evaluated at 56 days. At 14 days, both failure load and stiffness of treated tendons were increased by 35%. The treated tendons had significantly larger callus size at 8 and 14 days. Histologic and radiographic examination showed no signs of ossification in the treated tendons after 56 days. A single injection of cartilage-derived morphogenetic protein-2 led to a stronger and stiffer tendon callus than that in the controls without inducing bone formation. Similar results from a larger animal model would suggest a possible future use of cartilage-derived morphogenetic protein-2 in the treatment of human Achilles tendon ruptures.

  15. Can granisetron injection used as primary prophylaxis improve the control of nausea and vomiting with low- emetogenic chemotherapy?

    Keat, Chan Huan; Phua, Gillian; Abdul Kassim, Mohd Shainol; Poh, Wong Kar; Sriraman, Malathi

    2013-01-01

    The purpose of this study is to examine the risk of uncontrolled chemotherapy-induced nausea and vomiting (CINV) among patients receiving low emetogenic chemotherapy (LEC) with and without granisetron injection as the primary prophylaxis in addition to dexamethasone and metochlopramide. This was a single-centre, prospective cohort study. A total of 96 patients receiving LEC (52 with and 42 without granisetron) were randomly selected from the full patient list generated using the e-Hospital Information System (e-His). The rates of complete control (no CINV from days 1 to 5) and complete response (no nausea or vomiting in both acute and delayed phases) were identified through patient diaries which were adapted from the MASCC Antiemesis Tool (MAT). Selected covariates including gender, age, active alcohol consumption, morning sickness and previous chemotherapy history were controlled using the multiple logistic regression analyses. Both groups showed significant difference with LEC regimens (pgranisetron group indicated a higher complete response rate in acute emesis (adjusted OR: 0.1; 95%CI 0.02-0.85; p=0.034) than did the non-granisetron group. Both groups showed similar complete control and complete response rates for acute nausea, delayed nausea and delayed emesis. Granisetron injection used as the primary prophylaxis in LEC demonstrated limited roles in CINV control. Optimization of the guideline-recommended antiemetic regimens may serve as a less costly alternative to protect patients from uncontrolled acute emesis.

  16. Efficient Spin Injection into Semiconductor

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  17. Surgical Process Improvement: Impact of a Standardized Care Model With Electronic Decision Support to Improve Compliance With SCIP Inf-9.

    Cook, David J; Thompson, Jeffrey E; Suri, Rakesh; Prinsen, Sharon K

    2014-01-01

    The absence of standardization in surgical care process, exemplified in a "solution shop" model, can lead to unwarranted variation, increased cost, and reduced quality. A comprehensive effort was undertaken to improve quality of care around indwelling bladder catheter use following surgery by creating a "focused factory" model within the cardiac surgical practice. Baseline compliance with Surgical Care Improvement Inf-9, removal of urinary catheter by the end of surgical postoperative day 2, was determined. Comparison of baseline data to postintervention results showed clinically important reductions in the duration of indwelling bladder catheters as well as marked reduction in practice variation. Following the intervention, Surgical Care Improvement Inf-9 guidelines were met in 97% of patients. Although clinical quality improvement was notable, the process to accomplish this-identification of patients suitable for standardized pathways, protocol application, and electronic systems to support the standardized practice model-has potentially greater relevance than the specific clinical results. © 2013 by the American College of Medical Quality.

  18. Fuelling effect of tangential compact toroid injection in STOR-M Tokamak

    Onchi, T.; Liu, Y., E-mail: tao668@mail.usask.ca [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Dreval, M. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); McColl, D. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Asai, T. [Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); Wolfe, S. [Nihon Univ., Dept. of Physics, Tokyo (Japan); Xiao, C.; Hirose, A. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2012-07-01

    Compact torus injection (CTI) is the only known candidate for directly fuelling the core of a tokamak fusion reactor. Compact torus (CT) injection into the STOR-M tokamak has induced improved confinement accompanied by an increase in the electron density, reduction in Hα emission, and suppression of the saw-tooth oscillations. The measured change in the toroidal flow velocity following tangential CTI has demonstrated momentum injection into the STOR-M plasma. (author)

  19. 'Smart' electronic operation notes in surgery: an innovative way to improve patient care.

    Ghani, Yaser; Thakrar, Raj; Kosuge, Dennis; Bates, Peter

    2014-01-01

    Operation notes are the only comprehensive account of what took place during surgery. Accurate and detailed documentation of surgical operation notes is crucial, both for post-operative management of patients and for medico-legal clarity. The aims of this study were to compare operation documentation against the Royal College of Surgeons of England guidelines and to compare the before-and-after effect of introducing an electronic operation note system. Fifty consecutive operation notes for inpatients that had undergone emergency orthopaedic trauma surgery were audited. An electronic operation note proforma was then introduced and a re-audit carried out after its implementation. The results after implementation of electronic operation notes, demonstrated a marked improvement. All notes contained an operation note (previously 5/6). Seventy five percent included time of surgery and age of patient (vs. 0% previously). A hundred percent included closure details and antibiotic selection at induction (vs. 60% and 69% respectively). Post-operative instructions improved to 100%. All were typed, making for 100% legibility as compared to only 66% of operation notes with legible hand writing in the initial audit. We used our pilot audit to target specific information that was commonly omitted and we 'enforced' these areas using drop-down selections in electronic operation note. This study has demonstrated that implementation of an electronic operation note system markedly improved the quality of documentation, both in terms of information detail and readability. We would recommend this template system as a standard for operation note documentation. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study.

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-11-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 - ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 - injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Methods for functionality improvement of digital electronics with low switching energy

    Wetzstein, Olaf

    2010-01-01

    This thesis is a contribution to automate electronic circuit design for technologies dealing with low switching energy.The intention is to increase the stability of Rapid Single Flux Quantum (RSFQ) circuits. In order to achieve this goal, new design tools are introduced and innovative circuit topologies are implemented.The concepts that have been elaborated are demonstrated using RSFQ circuits, but they are valid for any other digital electronics.Future developments with main focus on power efficiency will take advantage of these new concepts and design tools.The aim of this work is to analyze the influences of thermal noise on the reliability of sensitive electronics.By means of an analytic description, the influence of thermal noise is classified. Based on this estimation the stability of circuits is evaluated. This approach of correlating the topology of a circuit with its immunity to thermal noise is unique so far.The results of the analysis demonstrate that using a symmetric circuit topology significantly improves the circuit's robustness against both the influence of thermal noise and parameter spread caused by the fabrication process. In order to realize symmetric circuits, phase-shifting-elements such as pi-junctions become important.The technology that permits the fabrication of phase-shifting-elements has been developed during the recent years.The essential work flow which is necessary to implement these elements into RSFQ electronics is presented in detail in this work. The predicted improvements are experimentally proved.

  2. Customization of electronic medical record templates to improve end-user satisfaction.

    Gardner, Carrie Lee; Pearce, Patricia F

    2013-03-01

    Since 2004, increasing importance has been placed on the adoption of electronic medical records by healthcare providers for documentation of patient care. Recent federal regulations have shifted the focus from adoption alone to meaningful use of an electronic medical record system. As proposed by the Technology Acceptance Model, the behavioral intention to use technology is determined by the person's attitude toward usage. The purpose of this quality improvement project was to devise and implement customized templates into an existent electronic medical record system in a single clinic and measure the satisfaction of the clinic providers with the system before and after implementation. Provider satisfaction with the electronic medical record system was evaluated prior to and following template implementation using the current version 7.0 of the Questionnaire for User Interaction Satisfaction tool. Provider comments and improvement in the Questionnaire for User Interaction Satisfaction levels of rankings following template implementation indicated a positive perspective by the providers in regard to the templates and customization of the system.

  3. Improving Rates of Post-Essure Hysterosalpingography in an Urban Population Using Electronic Tracking Reminders.

    Virginia Hu, Yu-Han; Arora, Kavita Shah

    2017-02-01

    To demonstrate the efficacy of electronic reminders for follow-up hysterosalpingography (HSG) after Essure hysteroscopic sterilization in an urban tertiary care hospital obstetrics and gynecology practice. Retrospective cohort study (Canadian Task Force classification II-3). Obstetrics and gynecology practice at a university-affiliated urban tertiary care teaching hospital. Two hundred and fifty patients who underwent Essure hysteroscopic sterilization between June 2011 and July 2014. Implementation of electronic reminders for the office staff. Two hundred and fifty of 259 patients (96.5%) underwent Essure hysteroscopic sterilization and successful placement of coils into bilateral Fallopian tubes. Among these 250 patients, 135 (54%) returned for HSG at 3 months post-Essure as advised at the time of procedure. The use of electronic reminders prompted another 45 patients (18%) to return for HSG, improving the total post-Essure follow-up rate to 72%. Electronic reminders for the office staff of an urban tertiary care hospital's obstetrics and gynecology practice is an effective method for improving the rate of post-Essure HSG. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  4. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-15

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.

  5. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki; Ota, Keishin; Matsuda, Tsuyoshi; Tonomura, Akira

    2012-01-01

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: ► A modified phase-shifting electron holography was proposed. ► The time variation of mean intensity and contrast of holograms were corrected. ► These corrections lead to a great improvement of the resultant phase accuracy. ► A phase accuracy of about 1/4000 rad was achieved from experimental results.

  6. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector

    McMullan, G.; Faruqi, A.R.; Henderson, R.; Guerrini, N.; Turchetta, R.; Jacobs, A.; Hoften, G. van

    2009-01-01

    The advantages of backthinning monolithic active pixel sensors (MAPS) based on complementary metal oxide semiconductor (CMOS) direct electron detectors for electron microscopy have been discussed previously; they include better spatial resolution (modulation transfer function or MTF) and efficiency at all spatial frequencies (detective quantum efficiency or DQE). It was suggested that a 'thin' CMOS detector would have the most outstanding properties because of a reduction in the proportion of backscattered electrons. In this paper we show, theoretically (using Monte Carlo simulations of electron trajectories) and experimentally that this is indeed the case. The modulation transfer functions of prototype backthinned CMOS direct electron detectors have been measured at 300 keV. At zero spatial frequency, in non-backthinned 700-μm-thick detectors, the backscattered component makes up over 40% of the total signal but, by backthinning to 100, 50 or 35 μm, this can be reduced to 25%, 15% and 10%, respectively. For the 35 μm backthinned detector, this reduction in backscatter increases the MTF by 40% for spatial frequencies between 0.1 and 1.0 Nyquist. As discussed in the main text, reducing backscattering in backthinned detectors should also improve DQE.

  7. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  8. Innovative, wearable snap connector technology for improved device networking in electronic garments

    Kostrzewski, Andrew A.; Lee, Kang S.; Gans, Eric; Winterhalter, Carole A.; Jannson, Tomasz P.

    2007-04-01

    This paper discusses Physical Optics Corporation's (POC) wearable snap connector technology that provides for the transfer of data and power throughout an electronic garment (e-garment). These connectors resemble a standard garment button and can be mated blindly with only one hand. Fully compatible with military clothing, their application allows for the networking of multiple electronic devices and an intuitive method for adding/removing existing components from the system. The attached flexible cabling also permits the rugged snap connectors to be fed throughout the standard webbing found in military garments permitting placement in any location within the uniform. Variations of the snap electronics/geometry allow for integration with USB 2.0 devices, RF antennas, and are capable of transferring high bandwidth data streams such as the 221 Mbps required for VGA video. With the trend towards providing military officers with numerous electronic devices (i.e., heads up displays (HMD), GPS receiver, PDA, etc), POC's snap connector technology will greatly improve cable management resulting in a less cumbersome uniform. In addition, with electronic garments gaining widespread adoption in the commercial marketplace, POC's technology is finding applications in such areas as sporting good manufacturers and video game technology.

  9. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  10. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-01-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations

  11. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon "halo" deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  12. Craniospinal axis irradiation: an improved electron technique for irradiation of the spinal axis

    Chun Li; Vijayakumar, S.; Myrianthopoulos, L.C.; Kuchnir, F.T.; Muller-Runkel, R.

    1994-01-01

    The authors review dosimetric features of craniospinal axis irradiation in the areas of matching cranial and spinal fields, with reference to normal structures within the spinal field. The implications of the use of photon or electron modalities for the spinal port were evaluated. A novel method of matching the cranial photon and the spinal electron fields involving a computer-aided junction design is presented, involving moving the photon beam in three steps to degrade its penumbra to match that of the electron field. Thermoluminescent dosimetry in a Rando phantom and computed tomography-based dose-volume histogram study for an illustrative paediatric case were used to compare dose to normal structures within the spinal field. Results show that the use of electrons for the spinal field leads to better sparing of deep seated normal structures. For bone marrow, the use of a customized bolus for the spinal field results in an improved dose distribution, making electrons potentially superior to photons for radiobiological reasons. (author)

  13. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  14. Improvement of the noise figure of the CEBAF switched electrode electronics BPM system

    Powers, T.

    1998-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity continuous wave electron accelerator for nuclear physics located at Thomas Jefferson National Accelerator Facility. A beam energy of 4 GeV is achieved by recirculating the electron beam five times through two anti-parallel 400 MeV linacs. In the linacs, where there is recirculated beam, the BPM specifications must be met for beam intensities between 1 and 100 μA. In the transport lines the BPM specifications must be met for beam intensities between 100 nA and 200 μA. To avoid a complete redesign of the existing electronics, we investigated ways to improve the noise figure of the linac BPM switched-electrode electronics (SEE) so that they could be used in the transport lines. We found that the out-of-band noise contributed significantly to the overall system noise figure. This paper will focus on the source of the excessive out-of-band noise and how it was reduced. The development, commissioning and operational results of this low noise variant of the linac style SEE BPMs as well as techniques for determining the noise figure of the rf chain will also be presented. copyright 1998 American Institute of Physics

  15. An Electronic Wellness Program to Improve Diet and Exercise in College Students: A Pilot Study

    Schweitzer, Amy L; Ross, Jamisha T; Klein, Catherine J; Lei, Kai Y; Mackey, Eleanor R

    2016-01-01

    Background In transitioning from adolescence to adulthood, college students are faced with significant challenges to their health habits. Independence, stress, and perceived lack of time by college students have been known to result in poor eating and exercise habits, which can lead to increased disease risk. Objective To assess the feasibility and to determine preliminary efficacy of an electronic wellness program in improving diet and physical activity in college students. Methods A 24-week...

  16. Improving the properties of stainless steel electron-beam welds by laser treatment

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  17. The Cost of Improved Overview: An analysis of the Use of Electronic Whiteboards in Emergency Departments

    Hertzum, Morten

    2017-01-01

    current. Performing these changes takes an estimated 6647 hours a year in each ED. While the whiteboard is well-like and has improved the clinicians’ overview, our cost-of-overview estimation shows that it consumes substantial staff resources. This reflects the value the clinicians assign to having......Forming and maintaining an overview of an information space is key to competent action in many situations and often supported by overview displays. We investigate the cost of the improved overview associated with the introduction of electronic whiteboards in four emergency departments (EDs...... an overview but also reveals the amount of resources removed from other activities to maintain this overview....

  18. Design of Electronic Medical Record User Interfaces: A Matrix-Based Method for Improving Usability

    Kushtrim Kuqi

    2013-01-01

    Full Text Available This study examines a new approach of using the Design Structure Matrix (DSM modeling technique to improve the design of Electronic Medical Record (EMR user interfaces. The usability of an EMR medication dosage calculator used for placing orders in an academic hospital setting was investigated. The proposed method captures and analyzes the interactions between user interface elements of the EMR system and groups elements based on information exchange, spatial adjacency, and similarity to improve screen density and time-on-task. Medication dose adjustment task time was recorded for the existing and new designs using a cognitive simulation model that predicts user performance. We estimate that the design improvement could reduce time-on-task by saving an average of 21 hours of hospital physicians’ time over the course of a month. The study suggests that the application of DSM can improve the usability of an EMR user interface.

  19. Improvement of medication event interventions through use of an electronic database.

    Merandi, Jenna; Morvay, Shelly; Lewe, Dorcas; Stewart, Barb; Catt, Char; Chanthasene, Phillip P; McClead, Richard; Kappeler, Karl; Mirtallo, Jay M

    2013-10-01

    Patient safety enhancements achieved through the use of an electronic Web-based system for responding to adverse drug events (ADEs) are described. A two-phase initiative was carried out at an academic pediatric hospital to improve processes related to "medication event huddles" (interdisciplinary meetings focused on ADE interventions). Phase 1 of the initiative entailed a review of huddles and interventions over a 16-month baseline period during which multiple databases were used to manage the huddle process and staff interventions were assigned via manually generated e-mail reminders. Phase 1 data collection included ADE details (e.g., medications and staff involved, location and date of event) and the types and frequencies of interventions. Based on the phase 1 analysis, an electronic database was created to eliminate the use of multiple systems for huddle scheduling and documentation and to automatically generate e-mail reminders on assigned interventions. In phase 2 of the initiative, the impact of the database during a 5-month period was evaluated; the primary outcome was the percentage of interventions documented as completed after database implementation. During the postimplementation period, 44.7% of assigned interventions were completed, compared with a completion rate of 21% during the preimplementation period, and interventions documented as incomplete decreased from 77% to 43.7% (p Process changes, education, and medication order improvements were the most frequently documented categories of interventions. Implementation of a user-friendly electronic database improved intervention completion and documentation after medication event huddles.

  20. Real-Time Electronic Dashboard Technology and Its Use to Improve Pediatric Radiology Workflow.

    Shailam, Randheer; Botwin, Ariel; Stout, Markus; Gee, Michael S

    The purpose of our study was to create a real-time electronic dashboard in the pediatric radiology reading room providing a visual display of updated information regarding scheduled and in-progress radiology examinations that could help radiologists to improve clinical workflow and efficiency. To accomplish this, a script was set up to automatically send real-time HL7 messages from the radiology information system (Epic Systems, Verona, WI) to an Iguana Interface engine, with relevant data regarding examinations stored in an SQL Server database for visual display on the dashboard. Implementation of an electronic dashboard in the reading room of a pediatric radiology academic practice has led to several improvements in clinical workflow, including decreasing the time interval for radiologist protocol entry for computed tomography or magnetic resonance imaging examinations as well as fewer telephone calls related to unprotocoled examinations. Other advantages include enhanced ability of radiologists to anticipate and attend to examinations requiring radiologist monitoring or scanning, as well as to work with technologists and operations managers to optimize scheduling in radiology resources. We foresee increased utilization of electronic dashboard technology in the future as a method to improve radiology workflow and quality of patient care. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Primary Care Practices’ Abilities And Challenges In Using Electronic Health Record Data For Quality Improvement

    Cohen, Deborah J.; Dorr, David A.; Knierim, Kyle; DuBard, C. Annette; Hemler, Jennifer R.; Hall, Jennifer D.; Marino, Miguel; Solberg, Leif I.; McConnell, K. John; Nichols, Len M.; Nease, Donald E.; Edwards, Samuel T.; Wu, Winfred Y.; Pham-Singer, Hang; Kho, Abel N.; Phillips, Robert L.; Rasmussen, Luke V.; Duffy, F. Daniel; Balasubramanian, Bijal A.

    2018-01-01

    Federal value-based payment programs require primary care practices to conduct quality improvement activities, informed by the electronic reports on clinical quality measures that their electronic health records (EHRs) generate. To determine whether EHRs produce reports adequate to the task, we examined survey responses from 1,492 practices across twelve states, supplemented with qualitative data. Meaningful-use participation, which requires the use of a federally certified EHR, was associated with the ability to generate reports—but the reports did not necessarily support quality improvement initiatives. Practices reported numerous challenges in generating adequate reports, such as difficulty manipulating and aligning measurement time frames with quality improvement needs, lack of functionality for generating reports on electronic clinical quality measures at different levels, discordance between clinical guidelines and measures available in reports, questionable data quality, and vendors that were unreceptive to changing EHR configuration beyond federal requirements. The current state of EHR measurement functionality may be insufficient to support federal initiatives that tie payment to clinical quality measures. PMID:29608365

  2. Primary Care Practices' Abilities And Challenges In Using Electronic Health Record Data For Quality Improvement.

    Cohen, Deborah J; Dorr, David A; Knierim, Kyle; DuBard, C Annette; Hemler, Jennifer R; Hall, Jennifer D; Marino, Miguel; Solberg, Leif I; McConnell, K John; Nichols, Len M; Nease, Donald E; Edwards, Samuel T; Wu, Winfred Y; Pham-Singer, Hang; Kho, Abel N; Phillips, Robert L; Rasmussen, Luke V; Duffy, F Daniel; Balasubramanian, Bijal A

    2018-04-01

    Federal value-based payment programs require primary care practices to conduct quality improvement activities, informed by the electronic reports on clinical quality measures that their electronic health records (EHRs) generate. To determine whether EHRs produce reports adequate to the task, we examined survey responses from 1,492 practices across twelve states, supplemented with qualitative data. Meaningful-use participation, which requires the use of a federally certified EHR, was associated with the ability to generate reports-but the reports did not necessarily support quality improvement initiatives. Practices reported numerous challenges in generating adequate reports, such as difficulty manipulating and aligning measurement time frames with quality improvement needs, lack of functionality for generating reports on electronic clinical quality measures at different levels, discordance between clinical guidelines and measures available in reports, questionable data quality, and vendors that were unreceptive to changing EHR configuration beyond federal requirements. The current state of EHR measurement functionality may be insufficient to support federal initiatives that tie payment to clinical quality measures.

  3. An enhanced electronic topology aimed at improving the phase sensitivity of GMI sensors

    Costa Silva, E; Gusmão, L A P; Hall Barbosa, C R; Costa Monteiro, E

    2014-01-01

    The giant magnetoimpedance effect (GMI) is used in the most recent technologies developed for the detection of magnetic fields, showing potential to be applied in the measurement of ultra-weak fields. GMI samples exhibit a huge dependency of their electrical impedance on the magnetic field, which makes them excellent magnetic sensors. In spite of GMI magnetometers being mostly based on magnitude impedance characteristics, it was previously verified that sensitivity could be significantly increased by reading the impedance phase. Pursuing this idea, a phase-based GMI magnetometer has been already developed as well as an electronic configuration capable of improving the phase sensitivity of GMI samples. However, when using this topology, it was noted that the sensitivity improvement comes at the cost of reduced voltage levels in the reading terminal, degrading the signal-to-noise ratio. Another drawback of the electronic configuration was that it was not capable of enforcing a linear behavior of the impedance phase in the function of the magnetic field in a given operation region. Aiming at overcoming those issues and then optimizing the behavior of the circuit developed to improve the phase sensitivity, this paper mathematically describes a completely new methodology, presents an enhanced newly developed electronic topology and exemplifies its application. (paper)

  4. Precise Intradermal Injection of Nanofat-Derived Stromal Cells Combined with Platelet-Rich Fibrin Improves the Efficacy of Facial Skin Rejuvenation

    Zhi-Jie Liang

    2018-05-01

    levels increased in a time-dependent manner. At the same time, PRF enhanced proliferation of NFSCs in vitro in a dose-dependent manner, and the growth curves under different concentrations of PRF all showed plateaus 6d after seeding. Facial skin texture was improved to a greater extent after combined injection of nanofat and PRF than after control injection of HA. The nanofat-PRF group had a higher satisfaction rate. Neither treatment caused any complications such as infection, anaphylaxis, or paresthesia during long-term follow-up. Conclusion: NFSCs demonstrate excellent multipotential differentiation and paracrine function, and PRF promotes proliferation of NFSCs during the early stage after seeding. Both nanofat-PRF and HA injection improve facial skin status without serious complications, but the former was associated with greater patient satisfaction, implying that nanofat-PRF injection is a safe, highly effective, and long-lasting method for skin rejuvenation.

  5. Improved age-diffusion model for low-energy electron transport in solids. II. Application to secondary emission from aluminum

    Dubus, A.; Devooght, J.; Dehaes, J.C.

    1987-01-01

    The ''improved age-diffusion'' model for secondary-electron transport is applied to aluminum. Electron cross sections for inelastic collisions with the free-electron gas using the Lindhard dielectric function and for elastic collisions with the randomly distributed ionic cores are used in the calculations. The most important characteristics of backward secondary-electron emission induced by low-energy electrons on polycrystalline Al targets are calculated and compared to experimental results and to Monte Carlo calculations. The model appears to predict the electronic yield, the energy spectra, and the spatial dependence of secondary emission with reasonable accuracy

  6. Subcutaneous Injections

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  7. Hydromorphone Injection

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  8. Ketorolac Injection

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  9. Paclitaxel Injection

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  10. Study on improvement of the lifetime of a field-reversed configuration by tangential neutron beam injection

    Takahashi, Toshiki; Kondoh, Yoshiomi; Hirano, Yoichi; Asai, Tomohiko; Takahashi, Tsutomu; Mizuguchi, Naoki; Tomita, Yukihiro

    2006-01-01

    The numerical analysis of neutron beam injection (NBI) is carried out to keep the stationary conditions of the field-reversed configuration (FRC) plasma. The ionization process of neutron beam was reproduced by the Monte Carlo method. A confinement of 15 keV beam ion was investigated using the sharp of stormer region obtained by the position and velocity at a moment of ionization. The relation between the external magnetic field B ex [T] and radius of machine r w [m] was shown by B ex = 0.1 r w -3/4 . The power imparted to plasma was estimated by beam ion orbital calculation. The confinement coefficient of beam ion was lost by re-charge-exchange reaction with deuterium; this fact was discovered at first. In order to keep the configuration of plasma under the conditions of 0.2 T of the external magnetic field, 0.4 m of radius, and 100 eV ion temperature, about 17 MW/m NBI power is needed. (S.Y.)

  11. Integration of health services improves multiple healthcare outcomes among HIV-infected people who inject drugs in Ukraine.

    Bachireddy, Chethan; Soule, Michael C; Izenberg, Jacob M; Dvoryak, Sergey; Dumchev, Konstantin; Altice, Frederick L

    2014-01-01

    People who inject drugs (PWID) experience poor outcomes and fuel HIV epidemics in middle-income countries in Eastern Europe and Central Asia. We assess integrated/co-located (ICL) healthcare for HIV-infected PWID, which despite international recommendations, is neither widely available nor empirically examined. A 2010 cross-sectional study randomly sampled 296 HIV-infected opioid-dependent PWID from two representative HIV-endemic regions in Ukraine where ICL, non-co-located (NCL) and harm reduction/outreach (HRO) settings are available. ICL settings provide onsite HIV, addiction, and tuberculosis services, NCLs only treat addiction, and HROs provide counseling, needles/syringes, and referrals, but no opioid substitution therapy (OST). The primary outcome was receipt of quality healthcare, measured using a quality healthcare indicator (QHI) composite score representing percentage of eight guidelines-based recommended indicators met for HIV, addiction and tuberculosis treatment. The secondary outcomes were individual QHIs and health-related quality-of-life (HRQoL). On average, ICL-participants had significantly higher QHI composite scores compared to NCL- and HRO-participants (71.9% versus 54.8% versus 37.0%, phealthcare quality indicators for PWID. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü., E-mail: uozgur@vcu.edu; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2015-05-04

    The effect of δ-doping of In{sub 0.06}Ga{sub 0.94}N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In{sub 0.15}Ga{sub 0.85}N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm{sup 2} in the reference LED to ∼120 A/cm{sup 2} in the LEDs with Mg δ-doped barriers.

  13. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-01-01

    The effect of δ-doping of In 0.06 Ga 0.94 N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In 0.15 Ga 0.85 N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm 2 in the reference LED to ∼120 A/cm 2 in the LEDs with Mg δ-doped barriers

  14. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  15. Injection molding simulation to improve the efficiency and quality of metal molding designs. Kanagata no sekkei koritsu ka to hinshitsu kojo wo hakaru shashutsu seikei simulation

    Ito, Y. (Sony Corp., Tokyo (Japan))

    1992-01-01

    In order to improve the efficiency and quality of metal molding designs, Sony Corp. has adopted an injection molding simulation system since the first half of 1980s. Since, however, molding materials are thermal fluids, which transit their phase from liquid into solid, and boundary conditions will be changed in the middle of their cycles, their analyzing works are very difficult. Therefore, softwares in this field are still on the way to be developed. Since this corporation has joined to the Cornell Injection Molding Program (CIMP) project in Cornell University, they have added improvements on their programs to be supplied, and have used them with their own programs developed additionally based on transformation processes. They have carried out minimizing of shape of boss root and examining holding pressure control by this simulation system. Since actually input works for CAD process have been carried out by hand now, it takes a time a little, though, they have also considered to make it easy by automating for applications of the full model. 4 refs., 7 figs.

  16. Improving admission medication reconciliation compliance using the electronic tool in admitted medical patients

    Taha, Haytham; abdulhay, dana; Luqman, Neama; Ellahham, Samer

    2016-01-01

    Sheikh Khalifa Medical City (SKMC) in Abu Dhabi is the main tertiary care referral hospital in the United Arab Emirates (UAE) with 560 bed capacity that is fully occupied most of the time. SKMC senior management has made a commitment to make quality and patient safety a top priority. Our governing body Abu Dhabi Health Services Company has identified medication reconciliation as a critical patient safety measure and key performance indicator (KPI). The medication reconciliation electronic form a computerized decision support tool was introduced to improve medication reconciliation compliance on transition of care at admission, transfer and discharge of patients both in the inpatient and outpatient settings. In order to improve medication reconciliation compliance a multidisciplinary task force team was formed and led this quality improvement project. The purpose of this publication is to indicate the quality improvement interventions implemented to enhance compliance with admission medication reconciliation and the outcomes of those interventions. We chose to conduct the pilot study in general medicine as it is the busiest department in the hospital, with an average of 390 patients admitted per month during the study period. The study period was from April 2014 till October 2015 and a total of 8576 patients were evaluated. The lessons learned were disseminated throughout the hospital. Our aim was to improve admission medication reconciliation compliance using the electronic form in order to ensure patient safety and reduce preventable harm in terms of medication errors. Admission medication reconciliation compliance improved in general medicine from 40% to above 85%, and this improvement was sustained for the last four months of the study period. PMID:27822371

  17. A Trial of electronic surveillance feedback for quality improvement at Nurses Improving Care for Healthsystem Elders (NICHE) hospitals.

    Wald, Heidi L; Bandle, Brian; Richard, Angela A; Min, Sung-Joon; Capezuti, Elizabeth

    2014-10-01

    Catheter-associated urinary tract infection (CAUTI) risk is directly related to duration of indwelling urinary catheters (IUCs), rising beyond 2 days of catheterization. We conducted a cluster randomized study in nonintensive care units of Nurses Improving Care for Healthsystem Elders (NICHE) hospitals. Electronic surveillance data were used in an audit and feedback intervention for frontline nurses to reduce IUC duration. Multivariable methods were used to identify the difference in average IUC duration and proportion of patients with IUC duration hospital characteristics. A total of 24 units at 19 NICHE hospitals reported 13,499 adult patients with IUCs over 18 months. Early and delayed intervention groups had important baseline differences in IUC utilization. Use of evidence-based CAUTI prevention measures increased during study participation. In multivariable analysis, the average IUC duration and proportion of patients with IUC duration Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  19. The PEP injection system

    Brown, K.L.; Avery, R.T.; Peterson, J.M.

    1988-01-01

    A system to transport 10-to-15-GeV electron and positron beams from the Stanford Linear Accelerator and to inject them into the PEP storage ring under a wide variety of lattice configurations has been designed. Optically, the transport line consists of three 360/degree/ phase-shift sections of FODO lattice, with bending magnets interspersed in such a way as to provide achromaticity, convenience in energy and emittance definition, and independent tuning of the various optical parameters for matching into the ring. The last 360/degree/ of phase shift has 88 milliradians of bend in a vertical plane and deposits the beam at the injection septum via a Lambertson magnet. Injection is accomplished by launching the beam with several centimeters of radial betatron amplitude in a fast bump provided by a triad of pulsed kicker magnets. Radiation damping reduces the collective amplitude quickly enough to allow injection at a high repetition rate

  20. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  1. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  2. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    Awad, Wael [Lund University, Box 124, 221 00 Lund (Sweden); Cairo University, Cairo (Egypt); Svensson Birkedal, Gabriel [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, Box 124, 221 00 Lund (Sweden); Lund University, Box 188, 221 00 Lund (Sweden); Mani, Katrin [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Logan, Derek T., E-mail: derek.logan@biochemistry.lu.se [Lund University, Box 124, 221 00 Lund (Sweden)

    2013-12-01

    The anisotropy of crystals of glypican-1 was significantly reduced by controlled dehydration using the HC1 device, allowing the building of previously disordered parts of the structure. The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T{sub inc}. Of these, the most important was shown to be T{sub inc}. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.

  3. Note: An improved calibration system with phase correction for electronic transformers with digital output.

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  4. Note: An improved calibration system with phase correction for electronic transformers with digital output

    Cheng, Han-miao, E-mail: chenghanmiao@hust.edu.cn; Li, Hong-bin, E-mail: lihongbin@hust.edu.cn [CEEE of Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074 (China)

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  5. Electronic monitoring in combination with direct observation as a means to significantly improve hand hygiene compliance.

    Boyce, John M

    2017-05-01

    Monitoring hand hygiene compliance among health care personnel (HCP) is an essential element of hand hygiene promotion programs. Observation by trained auditors is considered the gold standard method for establishing hand hygiene compliance rates. Advantages of observational surveys include the unique ability to establish compliance with all of the World Health Organization "My 5 Moments for Hand Hygiene" initiative Moments and to provide just-in-time coaching. Disadvantages include the resources required for observational surveys, insufficient sample sizes, and nonstandardized methods of conducting observations. Electronic and camera-based systems can monitor hand hygiene performance on all work shifts without a Hawthorne effect and provide significantly more data regarding hand hygiene performance. Disadvantages include the cost of installation, variable accuracy in estimating compliance rates, issues related to acceptance by HCP, insufficient data regarding their cost-effectiveness and influence on health care-related infection rates, and the ability of most systems to monitor only surrogates for Moments 1, 4, and 5. Increasing evidence suggests that monitoring only Moments 1, 4, and 5 provides reasonable estimates of compliance with all 5 Moments. With continued improvement of electronic monitoring systems, combining electronic monitoring with observational methods may provide the best information as part of a multimodal strategy to improve and sustain hand hygiene compliance rates among HCP. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC

    Li, Tie; Gao, Yi; Wang, Jiasheng; Chen, Ziqian

    2014-01-01

    Highlights: • At high load, LIVC is superior over EIVC in improving fuel economy. • The improvement with LIVC is due to advanced combustion phasing and increased pumping work. • At low load, EIVC is better than LIVC in improving fuel economy. • Pumping loss with EIVC is smaller than with LIVC at low load. • But heat release rate with EIVC is slower than with LIVC. - Abstract: A combination of downsizing, highly boosting and direct injection (DI) is an effective way to improve fuel economy of gasoline engines without the penalties of reduced torque or power output. At high loads, however, knock problem becomes severer when increasing the intake boosting. As a compromise, geometric compression ratio (CR) is usually reduced to mitigate knock, and the improvement of fuel economy is discounted. Application of Miller cycle, which can be realized by either early or late intake valve closing (EIVC or LIVC), has the potential to reduce the effective CR and suppress knock. In this paper, the effects of EIVC and LIVC on the fuel economy of a boosted DI gasoline production engine reformed with a geometric CR of 12.0 are experimentally compared at low and high loads. Compared to the original production engine with CR 9.3, at the high load operation, the brake specific fuel consumption (BSFC) is improved by 4.7% with CR12.0 and LIVC, while the effect of EIVC on improving BSFC is negligibly small. At the low load operation, combined with CR12.0, LIVC and EIVC improve the fuel economy by 6.8% and 7.4%, respectively, compared to the production engine. The mechanism behind the effects of LIVC and EIVC on improving the fuel economy is discussed. These results will be a valuable reference for engine designers and researchers

  7. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-01-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance. (paper)

  8. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-10-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance.

  9. Use of electron beam irradiation to improve the microbiological safety of Hippophae rhamnoides

    Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania); Nemtanu, M.R. [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Department, 409 Atomistilor St., Bucharest-Magurele 077125 (Romania)], E-mail: monica.nemtanu@inflpr.ro; Manea, S.; Mazilu, E. [S.C. Hofigal Export-Import S.A., 2A Intrarea Serelor St., 75669, Bucharest 4 (Romania)

    2007-09-21

    Sea buckthorn (Hippophae rhamnoides) is increasingly used in food supplements due to its dietary and medicinal compounds with a beneficial role in human diet and health. As many other medicinal plants, sea buckthorn can be contaminated with microorganisms which exerts an important impact on the overall quality of the products. Irradiation is an effective method for food preservation because it is able to destroy pathogenic microorganisms keeping the organoleptic and nutritional characteristics of the foods. The objective of the present study was to investigate the application of electron beam irradiation in order to improve the microbiological safety of sea buckthorn. The experimental results indicated that the electron beam treatment might be a good method to remove undesirable microorganisms from sea buckthorn without significant changes in its active principles.

  10. Experimental investigation of hydrogen energy share improvement in a compression ignition engine using water injection and compression ratio reduction

    Chintala, V.; Subramanian, K.A.

    2016-01-01

    Highlights: • Energy efficiency (EE) increased with increase in hydrogen (H_2) energy share. • H_2 energy share increased from 19% to 79% with combined CR reduction and water. • In-cylinder temperature decreased significantly with water addition and CR reduction. • HC, CO, smoke and NO_x emissions with water and CR are lower than base diesel. - Abstract: This study deals with the effect of water addition on enhancement of maximum hydrogen energy share in a compression ignition engine (7.4 kW rated power at 1500 rpm) under dual fuel mode. The specific water consumption (SWC) was varied from 130 to 480 g/kW h in step of 70 g/kW h using manifold and port injection methods. Subsequently, the combined effect of reduction of compression ratio (CR) of the engine (from 19.5:1 (base) to 16.5:1 and 15.4:1) along with water addition on further enhancement of hydrogen energy share is investigated. The hydrogen energy share was limited to 18.8% with conventional dual fuel mode due to knocking. However, the energy share increased to 66.5% with water addition (maximum SWC: 480 g/kW h), and 79% with combined control strategies (SWC of 340 g/kW h and CR reduction to 16.5:1). Thermal efficiency of the engine under water added dual fuel mode is higher than base diesel mode (single fuel mode), but it is lower than the conventional dual fuel mode without water. The efficiency of the engine with reduced CR and water addition is lower than the conventional dual fuel mode, however at the CR of 16.5:1 and SWC of 340 g/kW h, the efficiency is comparable with base diesel mode efficiency. Hydrocarbon, carbon monoxide, smoke, and oxides of nitrogen emissions of the engine with water addition (340 g/kW h) and CR reduction (to 16.5:1) decreased significantly as compared to base diesel mode, but slightly higher than conventional dual fuel mode.

  11. Injection and Dump Systems

    Bracco, C; Barnes, M J; Carlier, E; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Performance and failures of the LHC injection and ex- traction systems are presented. In particular, a comparison with the 2010 run, lessons learnt during operation with high intensity beams and foreseen upgrades are described. UFOs, vacuum and impedance problems related to the injection and extraction equipment are analysed together with possible improvements and solutions. New implemented features, diagnostics, critical issues of XPOC and IQC applications are addressed.

  12. Improving patient-centered communication while using an electronic health record: Report from a curriculum evaluation.

    Fogarty, Colleen T; Winters, Paul; Farah, Subrina

    2016-05-01

    Researchers and clinicians are concerned about the impact of electronic health record use and patient-centered communication. Training about patient-centered clinical communication skills with the electronic health record may help clinicians adapt and remain patient-centered. We developed an interactive workshop eliciting challenges and opportunities of working with the electronic health record in clinical practice, introduction of specific patient-centered behaviors and mindful practice techniques, and video demonstrating contrasts in common behavior and "better practices." One hundred thirty-nine resident physicians and faculty supervisors in five residency training programs at the University of Rochester Medical Center participated in the workshops. Participants were asked to complete an 11-item survey of behaviors related to their use of the electronic health record prior to training and after attending training. We used paired t-tests to assess changes in self-reported behavior from pre-intervention to post-intervention. We trained 139 clinicians in the workshops; 110 participants completed the baseline assessment and 39 completed both the baseline and post-intervention assessment. Data from post-curriculum respondents found a statistically significant increase in "I told the patient when turning my attention from the patient to the computer," from 60% of the time prior to the training to 70% of the time after. Data from our program evaluation demonstrated improvement in one communication behavior. Sample size limited the detection of other changes; further research should investigate effective training techniques for patient-centered communication while using the electronic health record. © The Author(s) 2016.

  13. PET/CT Biograph trademark Sensation 16. Performance improvement using faster electronics

    Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.; Bercier, Y.

    2006-01-01

    Aim: the new PET/CT biograph sensation 16 (BS16) tomographs have faster detector electronics which allow a reduced timing coincidence window and an increased lower energy threshold (from 350 to 400 keV). This paper evaluates the performance of the BS16 PET scanner before and after the Pico-3D electronics upgrade. Methods: four NEMA NU 2-2001 protocols, (i) spatial resolution, (ii) scatter fraction, count losses and random measurement, (iii) sensitivity, and (iv) image quality, have been performed. Results: a considerable change in both PET count-rate performance and image quality is observed after electronics upgrade. The new scatter fraction obtained using Pico-3D electronics showed a 14% decrease compared to that obtained with the previous electronics. At the typical patient background activity (5.3 kBq/ml), the new scatter fraction was approximately 0.42. The noise equivalent count-rate (R NEC ) performance was also improved. The value at which the R NEC curve peaked, increased from 3.7 . 10 4 s -1 at 14 kBq/ml to 6.4 . 10 4 s -1 at 21 kBq/ml (2R-NEC rate). Likewise, the peak true count-rate value increased from 1.9 . 10 5 s -1 at 22 kBq/ml to 3.4 . 10 5 s -1 at 33 kBq/ml. An average increase of 45% in contrast was observed for hot spheres when using AW-OSEM (4ix8s) as the reconstruction algorithm. For cold spheres, the average increase was 12%. Conclusion: the performance of the PET scanners in the BS16 tomographs is improved by the optimization of the signal processing. The narrower energy and timing coincidence windows lead to a considerable increase of signal-to-noise ratio. The existing combination of fast detectors and adapted electronics in the BS16 tomographs allow imaging protocols with reduced acquisition time, providing higher patient throughput. (orig.)

  14. Temozolomide Injection

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  15. Buprenorphine Injection

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  16. Risperidone Injection

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  17. Haloperidol Injection

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  18. Omalizumab Injection

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  19. Cefotaxime Injection

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work for colds, flu, or other viral infections. Using ...

  20. Cefuroxime Injection

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work for colds, flu, or other viral infections. Using ...