WorldWideScience

Sample records for improved cftr delivery

  1. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium.

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-12-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.

  2. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease. PMID:19603002

  3. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    OpenAIRE

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J.; Samulski, R. Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an...

  4. CFTR pharmacology.

    Science.gov (United States)

    Zegarra-Moran, Olga; Galietta, Luis J V

    2017-01-01

    CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.

  5. Partial Restoration of CFTR Function in cftr-Null Mice following Targeted Cell Replacement Therapy.

    Science.gov (United States)

    Duchesneau, Pascal; Besla, Rickvinder; Derouet, Mathieu F; Guo, Li; Karoubi, Golnaz; Silberberg, Amanda; Wong, Amy P; Waddell, Thomas K

    2017-03-01

    Cystic fibrosis (CF) is a fatal recessive genetic disorder caused by a mutation in the gene encoding CF transmembrane conductance regulator (CFTR) protein. Alteration in CFTR leads to thick airway mucus and bacterial infection. Cell therapy has been proposed for CFTR restoration, but efficacy has been limited by low engraftment levels. In our previous studies, we have shown that using a pre-conditioning regimen in combination with optimization of cell number and time of delivery, we could obtain greater bone marrow cell (BMC) retention in the lung. Here, we found that optimized delivery of wild-type (WT) BMC contributed to apical CFTR expression in airway epithelium and restoration of select ceramide species and fatty acids in CFTR(-/-) mice. Importantly, WT BMC delivery delayed Pseudomonas aeruginosa lung infection and increased survival of CFTR(-/-) recipients. Only WT BMCs had a beneficial effect beyond 6 months, suggesting a dual mechanism of BMC benefit: a non-specific effect early after cell delivery, possibly due to the recruitment of macrophages and neutrophils, and a late beneficial effect dependent on long-term CFTR expression. Taken together, our results suggest that BMC can improve overall lung function and may have potential therapeutic benefit for the treatment of CF.

  6. A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice.

    Science.gov (United States)

    Cormet-Boyaka, Estelle; Hong, Jeong S; Berdiev, Bakhram K; Fortenberry, James A; Rennolds, Jessica; Clancy, J P; Benos, Dale J; Boyaka, Prosper N; Sorscher, Eric J

    2009-11-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.

  7. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.

    Science.gov (United States)

    Arora, Kavisha; Naren, Anjaparavanda P

    2016-01-01

    In the late 1980s, a loss-of-function mutation in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was identified to be the primary cause of cystic fibrosis (CF); a fatal multiple-organ disorder that mostly affects Caucasians. To date, approximately 2000 genetic mutations have been identified in the CFTR gene (http://www.genet.sickkids.on.ca/cftr/app). The most common cause of morbidity and mortality in persons with CF is a progressive deterioration in lung function leading ultimately to respiratory collapse. The median life expectancy of CF patients currently is estimated to be 39 years in the US. The most prevalent CFTR mutation, F508del, accounts for 70% of CF cases and causes a processing defect in the protein leading to premature endoplasmic reticulum-associated degradation (ERAD) and reduced F508del-CFTR delivery to the cell surface. A CF corrector is defined as a chemical chaperone that increases cell-surface levels of F508del-CFTR. A series of CF correctors have been developed, and VX-809 (lumacaftor) has been cited as the most effective symptomatic CF corrector to date. VX-809 improves the function of the mutant protein by approximately 15% in in vitro culture systems. However, this effect did not completely translate clinically, with only a marginal improvement observed in lung function of the F508del-homozygous patients undergoing the therapy. New studies revealed that even after successful ER retrieval, rescued F508del-CFTR (rF508del-CFTR) once at the cell surface does not function properly, exhibiting poor stability and channel gating and structural abnormalities. This becomes further complicated by the existence of genes termed CFTR modifiers, which can alter CFTR function to be additionally defective and exacerbate the CF phenotype while also alternatively suggested be potentially targeted to improve F508del-CFTR functional outcome. It is necessary to understand the biology of F508del-CFTR post

  8. Whole-gene CFTR sequencing combined with digital RT-PCR improves genetic diagnosis of cystic fibrosis.

    Science.gov (United States)

    Straniero, Letizia; Soldà, Giulia; Costantino, Lucy; Seia, Manuela; Melotti, Paola; Colombo, Carla; Asselta, Rosanna; Duga, Stefano

    2016-12-01

    Despite extensive screening, 1-5% of cystic fibrosis (CF) patients lack a definite molecular diagnosis. Next-generation sequencing (NGS) is making affordable genetic testing based on the identification of variants in extended genomic regions. In this frame, we analyzed 23 CF patients and one carrier by whole-gene CFTR resequencing: 4 were previously characterized and served as controls; 17 were cases lacking a complete diagnosis after a full conventional CFTR screening; 3 were consecutive subjects referring to our centers, not previously submitted to any screening. We also included in the custom NGS design the coding portions of the SCNN1A, SCNN1B and SCNN1G genes, encoding the subunits of the sodium channel ENaC, which were found to be mutated in CF-like patients. Besides 2 novel SCNN1B missense mutations, we identified 22 previously-known CFTR mutations, including 2 large deletions (whose breakpoints were precisely mapped), and novel deep-intronic variants, whose role on splicing was excluded by ex-vivo analyses. Finally, for 2 patients, compound heterozygotes for a CFTR mutation and the intron-9c.1210-34TG[11-12]T5 allele-known to be associated with decreased CFTR mRNA levels-the molecular diagnosis was implemented by measuring the residual level of wild-type transcript by digital reverse transcription polymerase chain reaction performed on RNA extracted from nasal brushing.

  9. Detection of CFTR protein in human leukocytes by flow cytometry.

    Science.gov (United States)

    Johansson, Jan; Vezzalini, Marzia; Verzè, Genny; Caldrer, Sara; Bolognin, Silvia; Buffelli, Mario; Bellisola, Giuseppe; Tridello, Gloria; Assael, Baroukh Maurice; Melotti, Paola; Sorio, Claudio

    2014-07-01

    Leukocytes have previously been shown to express detectable levels of the protein cystic fibrosis transmembrane conductance regulator (CFTR). This study aims to evaluate the application of flow cytometric (FC) analysis to detect CFTR expression, and changes thereof, in these cells. Aliquots (200 μL) of peripheral whole blood from 12 healthy control volunteers (CTRLs), 12 carriers of a CFTR mutation (CFC), and 40 patients with cystic fibrosis (CF) carrying various combinations of CFTR mutations were incubated with specific fluorescent probes recognizing CFTR protein expressed on the plasma membrane of leukocytes. FC was applied to analyze CFTR expression in monocytes, lymphocytes, and polymorphonuclear (PMN) cells. CFTR protein was detected in monocytes and lymphocytes, whereas inconclusive results were obtained from the analysis of PMN cells. Mean fluorescence intensity (MFI) ratio value and %CFTR-positive cells above a selected threshold were the two parameters selected to quantify CFTR expression in cells. Lowest variability and the highest reproducibility were obtained when analyzing monocytes. ANOVA results indicated that both parameters were able to discriminate monocytes of healthy controls and CF individuals according to CFTR mutation classes with high accuracy. Significantly increased MFI ratio values were recorded in CFTR-defective cells that were also able to improve CFTR function after ex vivo treatment with PTC124 (Ataluren), an investigative drug designed to permit the ribosome to read through nonsense CFTR mutations. The method described is minimally invasive and may be used in the monitoring of responses to drugs whose efficacy can depend on increased CFTR protein expression levels. © 2014 International Society for Advancement of Cytometry.

  10. Sinupret activates CFTR and TMEM16A-dependent transepithelial chloride transport and improves indicators of mucociliary clearance.

    Directory of Open Access Journals (Sweden)

    Shaoyan Zhang

    Full Text Available INTRODUCTION: We have previously demonstrated that Sinupret, an established treatment prescribed widely in Europe for respiratory ailments including rhinosinusitis, promotes transepithelial chloride (Cl- secretion in vitro and in vivo. The present study was designed to evaluate other indicators of mucociliary clearance (MCC including ciliary beat frequency (CBF and airway surface liquid (ASL depth, but also investigate the mechanisms that underlie activity of this bioflavonoid. METHODS: Primary murine nasal septal epithelial (MNSE [wild type (WT and transgenic CFTR(-/-], human sinonasal epithelial (HSNE, WT CFTR-expressing CFBE and TMEM16A-expressing HEK cultures were utilized for the present experiments. CBF and ASL depth measurements were performed. Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers, Fura-2 intracellular calcium [Ca(2+]i imaging, cAMP signaling, regulatory domain (R-D phosphorylation of CFTR, and excised inside out and whole cell patch clamp analysis. RESULTS: Sinupret-mediated Cl- secretion [ΔISC(µA/cm(2] was pronounced in WT MNSE (20.7+/-0.9 vs. 5.6+/-0.9(control, p<0.05, CFTR(-/- MNSE (10.1+/-1.0 vs. 0.9+/-0.3(control, p<0.05 and HSNE (20.7+/-0.3 vs. 6.4+/-0.9(control, p<0.05. The formulation activated Ca(2+ signaling and TMEM16A channels, but also increased CFTR channel open probability (Po without stimulating PKA-dependent pathways responsible for phosphorylation of the CFTR R-domain and resultant Cl- secretion. Sinupret also enhanced CBF and ASL depth. CONCLUSION: Sinupret stimulates CBF, promotes transepithelial Cl- secretion, and increases ASL depth in a manner likely to enhance MCC. Our findings suggest that direct stimulation of CFTR, together with activation of Ca(2+-dependent TMEM16A secretion account for the majority of anion transport attributable to Sinupret. These studies provide further rationale for using robust Cl- secretagogue based

  11. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction.

    Science.gov (United States)

    Brewington, John J; McPhail, Gary L; Clancy, John P

    2016-01-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), leading to significant morbidity and mortality. CFTR is a chloride and bicarbonate channel at the epithelial cell membrane. The most common CFTR mutation is F508del, resulting in minimal CFTR at the plasma membrane. Current disease management is supportive, whereas an ultimate goal is to develop therapies to restore CFTR activity. We summarize experience with lumacaftor, a small molecule that increases F508del-CFTR levels at the plasma membrane. Lumacaftor in combination with ivacaftor, a modulator of CFTR gating defects, improves clinical outcome measures in patients homozygous for the F508del mutation. Lumacaftor represents a significant advancement in the treatment of biochemical abnormalities in CF. Further development of CFTR modulators will improve upon current therapies, although it remains unclear whether this approach will provide therapies for all CFTR mutations.

  12. Using a registry to improve immunization delivery.

    Science.gov (United States)

    Kairys, Steven W; Gubernick, Ruth S; Millican, Adrienne; Adams, William G

    2006-07-01

    The NJIPSP was successful in encouraging a group of small urban practices to adopt the use of immunization registry and to transform immunization delivery from a mechanistic well-child service to a visible, monitored process of care. The project represents a unique combination of technology, public-private collaboration, and well-established quality improvement techniques. The change process involved the whole office as a team in adopting new immunization delivery roles and services. The greatest barrier to acceptance of the registry was (and continues to be) the need for manual data entry as the primary source of data collection, rather than electronic data transfer from other systems. The manual entry of data was labor intensive for participating practices and affected data measurement. Despite this barrier, however, the majority of practices substantially improved the quality of their immunization delivery practices in multiple areas. The rapid movement of primary care practices toward some form of electronic record may reduce this barrier and increase the percentage of practices willing to use a community registry. Practices that engaged collectively in the change process gained momentum from the group effort. Equally important was the public health partnership that helped identify and reduce improvement obstacles. Sustainability of practice-based immunization changes will rely, in part, on the registry's ease of use and the continued visibility of public health at the practice level. Active practice level collaboration by public health adds great value to change efforts. We believe that the best possible immunization delivery relies on both technology (registries and the EMR) and effective office systems. Projects like the NJIPSP are models for systems that integrate technology, practice change, and quality improvement, and their success has the potential to foster the spread of this approach to other primary care practices (especially in New Jersey). The

  13. [New therapies for cystic fibrosis targeting the CFTR gene or the CFTR protein].

    Science.gov (United States)

    Hubert, D; Bui, S; Marguet, C; Colomb-Jung, V; Murris-Espin, M; Corvol, H; Munck, A

    2016-10-01

    The treatment of cystic fibrosis has been symptom-based for a number of years. New therapies that aim to improve CFTR protein function are now emerging. The results of gene therapy has been modest but a recent clinical trial shows a positive effect on FEV1. Recent research has focused primarily on CFTR protein function. Significant respiratory improvement (an average 10% FEV1 increase and a decrease in the frequency of exacerbations) has been achieved with ivacaftor, a CFTR potentiator, in patients with gating mutations, resulting in its marketing authorization (in 2012 for the G551D mutation and in 2015 for rarer mutations). In phe508del homozygous patients, the combination of ivacaftor with a CFTR corrector (lumacaftor) has also led to respiratory improvement, albeit less impressive. The effectiveness of ataluren in patients with nonsense mutations is being evaluated. New CFTR correctors and potentiators are being developed. CFTR protein therapy could change the course of the disease but cost/effectiveness issues should not be overlooked. Ivacaftor can be prescribed in CF patients with a class 3 mutation from the age of 6 years. The Orkambi(®) will soon be available for homozygous phe508del patients from the age of 12 years. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Murine and human CFTR exhibit different sensitivities to CFTR potentiators.

    Science.gov (United States)

    Cui, Guiying; McCarty, Nael A

    2015-10-01

    Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as "Kalydeco." Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators.

  15. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  16. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs.

    Science.gov (United States)

    Stoltz, David A; Rokhlina, Tatiana; Ernst, Sarah E; Pezzulo, Alejandro A; Ostedgaard, Lynda S; Karp, Philip H; Samuel, Melissa S; Reznikov, Leah R; Rector, Michael V; Gansemer, Nicholas D; Bouzek, Drake C; Abou Alaiwa, Mahmoud H; Hoegger, Mark J; Ludwig, Paula S; Taft, Peter J; Wallen, Tanner J; Wohlford-Lenane, Christine; McMenimen, James D; Chen, Jeng-Haur; Bogan, Katrina L; Adam, Ryan J; Hornick, Emma E; Nelson, George A; Hoffman, Eric A; Chang, Eugene H; Zabner, Joseph; McCray, Paul B; Prather, Randall S; Meyerholz, David K; Welsh, Michael J

    2013-06-01

    Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

  17. An image analysis method to quantify CFTR subcellular localization.

    Science.gov (United States)

    Pizzo, Lucilla; Fariello, María Inés; Lepanto, Paola; Aguilar, Pablo S; Kierbel, Arlinet

    2014-08-01

    Aberrant protein subcellular localization caused by mutation is a prominent feature of many human diseases. In Cystic Fibrosis (CF), a recessive lethal disorder that results from dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the most common mutation is a deletion of phenylalanine-508 (pF508del). Such mutation produces a misfolded protein that fails to reach the cell surface. To date, over 1900 mutations have been identified in CFTR gene, but only a minority has been analyzed at the protein level. To establish if a particular CFTR variant alters its subcellular distribution, it is necessary to quantitatively determine protein localization in the appropriate cellular context. To date, most quantitative studies on CFTR localization have been based on immunoprecipitation and western blot. In this work, we developed and validated a confocal microscopy-image analysis method to quantitatively examine CFTR at the apical membrane of epithelial cells. Polarized MDCK cells transiently transfected with EGFP-CFTR constructs and stained for an apical marker were used. EGFP-CFTR fluorescence intensity in a region defined by the apical marker was normalized to EGFP-CFTR whole cell fluorescence intensity, rendering "apical CFTR ratio". We obtained an apical CFTR ratio of 0.67 ± 0.05 for wtCFTR and 0.11 ± 0.02 for pF508del. In addition, this image analysis method was able to discriminate intermediate phenotypes: partial rescue of the pF508del by incubation at 27 °C rendered an apical CFTR ratio value of 0.23 ± 0.01. We concluded the method has a good sensitivity and accurately detects milder phenotypes. Improving axial resolution through deconvolution further increased the sensitivity of the system as rendered an apical CFTR ratio of 0.76 ± 0.03 for wild type and 0.05 ± 0.02 for pF508del. The presented procedure is faster and simpler when compared with other available methods and it is therefore suitable as a screening method to identify

  18. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  19. Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation.

    Science.gov (United States)

    Mutyam, Venkateshwar; Libby, Emily Falk; Peng, Ning; Hadjiliadis, Denis; Bonk, Michael; Solomon, George M; Rowe, Steven M

    2017-01-01

    Premature termination codons (PTCs) in cystic fibrosis transmembrane conductance regulator (CFTR) gene result in nonfunctional CFTR protein and are the proximate cause of ~11% of CF causing alleles. Aminoglycosides and other novel agents are known to induce translational readthrough of PTCs, a potential therapeutic approach. Among PTCs, W1282X CFTR is unique, as it is a C-terminal CFTR mutation that can exhibit partial activity, even in the truncated state. The potentiator ivacaftor (VX-770) is approved for treating CF patients with G551D and other gating mutations. Based on previous studies demonstrating the beneficial effect of ivacaftor for PTC mutations following readthrough in vitro, we hypothesized that ivacaftor may enhance CFTR activity in CF patients expressing W1282X CFTR, and could be further enhanced by readthrough. Ivacaftor significantly increased CFTR activity in W1282X-expressing cells compared to R1162X CFTR cells, and was further enhanced by readthrough with the aminoglycoside G418. Primary nasal epithelial cells from a W1282X homozygous patient showed improved CFTR function in the presence of ivacaftor. Upon ivacaftor administration to the same patient, there was significant improvement in pulmonary exacerbation frequency, BMI, and insulin requirement, whereas FEV1 remained stable over 3years. These studies suggest that ivacaftor may have moderate clinical benefit in patients with preserved expression of the W1282X CFTR mutation by stimulating residual activity of the truncated protein, suggesting the need for further studies including the addition of efficacious readthrough agents.

  20. IMPROVEMENTS IN THE QUALITY OF COURIER DELIVERY

    Directory of Open Access Journals (Sweden)

    Jacek Karcz

    2016-06-01

    Full Text Available The functioning of courier companies is a vital component of modern trade. E-commerce services are changing the way of shopping. Along with them, also courier services change and become more advance. Customers of courier companies become more aware of quality, which they should expect from supplier of these services. The article presents the result of the research of the effectiveness and the timelines of deliveries realized by one of the terminals of a leading courier operator in Poland. The survey involved 55 courier routes over the course of 10 business days. The author analyses weak points of the supply chain and presents two solutions, which may improve quality of delivery processes.

  1. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    Science.gov (United States)

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.

  2. Evaluation of CFTR gene mutations in Adana

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available ABSTRACT Objective: Cystic fibrosis is the most common autosomal recessive inherited disorder seen in the white populations. It develops in result of mutations of cystic fibrosis transmembrane regulator (CFTR gene. Rate of these mutations vary in different geographical regions. In this study, we aimed to determine the frequency of CFTR gene mutations in Adana. Methods: DNA samples of 63 subjects (21 women, 42 men who were diagnosed as cystic fibrosis at Balcali Hospital of Cukurova University, were studied for 19 different CFTR mutations by the strip assay method which is based on reverse hybridization. Results: In cystic fibrosis diagnosed patients, 19 mutations were observed of which 9 were homozygous and 10 were heterozygous. ∆F508 frequency was found as 11.9%, and rate of homozygous was found as 66.7%. Mutation frequencies of W1282X and N1303K were found as 2.40% and 4.80% respectively and rate of homozygous mutations were 50% for both. I148T mutation frequency was found as 3.20% and all were heterozygous. For the whole 19 mutations, frequency of mutation in 63 subjects was 22.3%. Conclusion: Detection of CFTR gene mutations by the strip assay method by reverse hybridization is an easy, fast and informative method. However, due to improvability of the common mutations in probable cystic fibrosis patients because of heterogenity in this region, it is still a major problem and does not exclude cystic fibrosis diagnosis. But this problematic issue can be overcome by evaluating the whole exons of CFTR mutations by advanced molecular tecniques. Key words: CFTR, cystic fibrosis, molecular diagnosis, reverse hibridisation [Cukurova Med J 2013; 38(2.000: 202-208

  3. [Cystic fibrosis: new treatments targeting the CFTR protein].

    Science.gov (United States)

    Fajac, I; Sermet-Gaudelus, I

    2013-04-01

    Cystic fibrosis is an autosomal recessive genetic disease due to mutations in the (cystic fibrosis transmembrane conductance regulator) CFTR gene. The CFTR protein is a chloride channel expressed at the surface of several epithelial cells. Defective function of the CFTR protein leads to a severe disease in which lung disease is the leading cause of death. Current treatments are symptomatic. Nevertheless, with specialist and holistic care in dedicated cystic fibrosis centres, the median survival has improved. But the average age of death remains 29 years. Innovative molecules aiming to correct the CFTR protein itself are under development. These will be personalised treatments depending on the genotype or the type of CFTR dysfunction. The first molecule, ivacaftor, has just been approved in Europe and the USA. Adults and children treated with ivacaftor in clinical trials had a 10% improvement in FEV1 that was maintained for more than a year. Although at present ivacaftor is approved for only a small percentage of patients, the therapeutic strategy of correcting CFTR protein has been proved a valid approach. Other molecules targeting other defects in the CFTR protein are under evaluation.

  4. Murine and human CFTR exhibit different sensitivities to CFTR potentiators

    OpenAIRE

    Cui, Guiying; McCarty, Nael A.

    2015-01-01

    Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as “Kalydeco.” Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are ...

  5. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

    Science.gov (United States)

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander

    2013-10-01

    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.

  6. Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei CAI; Jia LIU; Hong-yu LI; David N SHEPPARD

    2011-01-01

    The mutation F508del is the commonest cause of the genetic disease cystic fibrosis (CF). CF disrupts the function of many organs in the body, most notably the lungs, by perturbing salt and water transport across epithelial surfaces. F508del causes harm in two principal ways. First,the mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to its correct cellular location,the apical(lumen-facing) membrane of epithelial cells. Second, F508del perturbs the Cl- channel function of CFTR by disrupting channel gating. Here, we discuss the development of rational new therapies for CF that target F508del-CFTR.We highlight how structural studies provide new insight into the role of F508 in the regulation of channel gating by cycles of ATP binding and hydrolysis. We emphasize the use of high-throughput screening to identify lead compounds for therapy development.These compounds include CFTR correctors that restore the expression of F508del-CFTR at the apical membrane of epithelial cells and CFTR potentiators that rescue the F508del-CFTR gating defect. Initial results from clinical trials of CFTR correctors and potentiators augur well for the development of small molecule therapies that target the root cause of CF: mutations in CFTR.

  7. Conformationally rigid histone deacetylase inhibitors correct DF508-CFTR protein function

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Hutt, Darren M.

    2011-01-01

    Histone deacetylase (HDAC) inhibitors have shown partial efficacy toward correcting cystic fibrosis transmembrane conductance regulator (CFTR) protein function in ΔF508- CFTR models. While current treatment options for CF generally concentrate on disease symptoms such as management of inflammation...... to formulate a pharmacophore model to describe and enhance the bioactivity of these molecules. Through this study we have developed HDAC inhibitors which improve CFTR trafficking from the endoplasmic reticulum (ER) while ultimately increasing ion conductance across the plasma membrane of a lung epithelial cell...... line expressing ΔF508-CFTR....

  8. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.

    Science.gov (United States)

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2013-09-01

    Processing mutations that inhibit folding and trafficking of CFTR are the main cause of cystic fibrosis (CF). A potential CF therapy would be to repair CFTR processing mutants. It has been demonstrated that processing mutants of P-glycoprotein (P-gp), CFTR's sister protein, can be efficiently repaired by a drug-rescue mechanism. Many arginine suppressors that mimic drug-rescue have been identified in the P-gp transmembrane (TM) domains (TMDs) that rescue by forming hydrogen bonds with residues in adjacent helices to promote packing of the TM segments. To test if CFTR mutants could be repaired by a drug-rescue mechanism, we used truncation mutants to test if corrector VX-809 interacted with the TMDs. VX-809 was selected for study because it is specific for CFTR, it is the most effective corrector identified to date, but it has limited clinical benefit. Identification of the VX-809 target domain will help to develop correctors with improved clinical benefits. It was found that VX-809 rescued truncation mutants lacking the NBD2 and R domains. When the remaining domains (TMD1, NBD1, TMD2) were expressed as separate polypeptides, VX-809 only increased the stability of TMD1. We then performed arginine mutagenesis on TM6 in TMD1. Although the results showed that TM6 had distinct lipid and aqueous faces, CFTR was different from P-gp as no arginine promoted maturation of CFTR processing mutants. The results suggest that TMD1 contains a VX-809 binding site, but its mechanism differed from P-gp drug-rescue. We also report that V510D acts as a universal suppressor to rescue CFTR processing mutants.

  9. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    Science.gov (United States)

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  10. Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect

    Directory of Open Access Journals (Sweden)

    Valeria Rachela Villella

    2013-01-01

    Full Text Available Cystic fibrosis (CF patients harboring the most common deletion mutation of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the plasma membrane even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1, a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the plasma membrane. We focus on the relationship between the improvement of peripheral proteostasis and CFTR plasma membrane stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent preclinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.

  11. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    Science.gov (United States)

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, pCFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.

  12. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.

    Science.gov (United States)

    De Stefano, Daniela; Villella, Valeria R; Esposito, Speranza; Tosco, Antonella; Sepe, Angela; De Gregorio, Fabiola; Salvadori, Laura; Grassia, Rosa; Leone, Carlo A; De Rosa, Giuseppe; Maiuri, Maria C; Pettoello-Mantovani, Massimo; Guido, Stefano; Bossi, Anna; Zolin, Anna; Venerando, Andrea; Pinna, Lorenzo A; Mehta, Anil; Bona, Gianni; Kroemer, Guido; Maiuri, Luigi; Raia, Valeria

    2014-01-01

    Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in Cftr(F508del) homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.

  13. The gating of the CFTR channel.

    Science.gov (United States)

    Moran, Oscar

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.

  14. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.

    Science.gov (United States)

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-03-12

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.

  15. Improving effective surgical delivery in humanitarian disasters: lessons from Haiti.

    Directory of Open Access Journals (Sweden)

    Kathryn Chu

    2011-04-01

    Full Text Available Kathryn Chu and colleagues describe the experiences of Médecins sans Frontières after the 2010 Haiti earthquake, and discuss how to improve delivery of surgery in humanitarian disasters.

  16. Improving Financial Service Delivery to Communities through Micro ...

    African Journals Online (AJOL)

    Improving Financial Service Delivery to Communities through Micro-finance ... This study examined the design of a target Enterprise Architecture (EA) that can ... business processes, information/data, applications, actors, and technological ...

  17. Localizing a gate in CFTR

    OpenAIRE

    Gao, Xiaolong; Hwang, Tzyh-Chang

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), albeit a bona fide member of the ATP-binding cassette (ABC) transporter superfamily, is an ATP-gated chloride channel. However, phylogenetic analysis has led to a popular conjecture that CFTR evolves from a primordial ABC exporter by simply degenerating the cytoplasmic gate. This degraded transporter hypothesis predicts that CFTR’s gate is located at the external end of the substrate translocation pathway as the one documented in the...

  18. Characterization of primary rat nasal epithelial cultures in CFTR knockout rats as a model for CF sinus disease.

    Science.gov (United States)

    Tipirneni, Kiranya E; Cho, Do-Yeon; Skinner, Daniel F; Zhang, Shaoyan; Mackey, Calvin; Lim, Dong-Jin; Woodworth, Bradford A

    2017-08-03

    The objectives of the current experiments were to develop and characterize primary rat nasal epithelial cultures and evaluate their usefulness as a model of cystic fibrosis (CF) sinonasal transepithelial transport and CF transmembrane conductance regulator (CFTR) function. Laboratory in vitro and animal studies. CFTR(+/+) and CFTR(-/-) rat nasal septal epithelia (RNSE) were cultured on semipermeable supports at an air-liquid interface to confluence and full differentiation. Monolayers were mounted in Ussing chambers for pharmacologic manipulation of ion transport and compared to similar filters containing murine (MNSE) and human (HSNE) epithelia. Histology and scanning electron microscopy (SEM) were completed. Real-time polymerase chain reaction of CFTR(+/+) RNSE, MNSE, and HSNE was performed to evaluate relative CFTR gene expression. Forskolin-stimulated anion transport (ΔIsc in μA/cm(2) ) was significantly greater in epithelia derived from CFTR(+/+) when compared to CFTR(-/-) animals (100.9 ± 3.7 vs. 10.5 ± 0.9; P < 0.0001). Amiloride-sensitive ISC was equivalent (-42.3 ± 2.8 vs. -46.1 ± 2.3; P = 0.524). No inhibition of CFTR-mediated chloride (Cl(-) ) secretion was exhibited in CFTR(-/-) epithelia with the addition of the specific CFTR inhibitor, CFTRInh -172. However, calcium-activated Cl(-) secretion (UTP) was significantly increased in CFTR(-/-) RNSE (CFTR(-/-) -106.8 ± 1.6 vs. CFTR(+/+) -32.2 ± 3.1; P < 0.0001). All responses were larger in RNSE when compared to CFTR(+/+) and CFTR(-/-) (or F508del/F508del) murine and human cells (P < 0.0001). Scanning electron microscopy demonstrated 80% to 90% ciliation in all RNSE cultures. There was no evidence of infection in CFTR(-/-) rats at 4 months. CFTR expression was similar among species. The successful development of the CFTR(-/-) rat enables improved evaluation of CF sinus disease based on characteristic abnormalities of ion transport. NA. Laryngoscope, 2017. © 2017 The American Laryngological

  19. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    Science.gov (United States)

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-08-29

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector.In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  20. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis

    Science.gov (United States)

    Lopes-Pacheco, Miquéias

    2016-01-01

    Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients’ debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients. PMID:27656143

  1. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  2. Microencapsulation for the improved delivery of bioactive compounds into foods.

    Science.gov (United States)

    Champagne, Claude P; Fustier, Patrick

    2007-04-01

    The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

  3. Nanomedicine to improve drug delivery outcomes [Retracted

    Directory of Open Access Journals (Sweden)

    Meenakshi Joshi

    2012-01-01

    Full Text Available The early genesis of the concept of nanomedicine sprang from the visionary idea that tiny nanorobots and related machines could be designed, manufactured, and introduced into the human body to perform cellular repairs at the molecular level. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine. The integration of nanotechnology with biology and medicine has given birth to a new field of science called "Nanomedicine". Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells as well as tumor neovasculature are key targets. The ultimate goal of nanomedicine is to develop well-engineered nanotools for the prevention, diagnosis, and treatment of many diseases. Nanomedicine today has branched out in hundreds of different directions, each of them embodying the key insight that the ability to structure materials and devices at the molecular scale can bring enormous immediate benefits in the research and practice of medicine.

  4. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.

    Science.gov (United States)

    Esposito, Speranza; Tosco, Antonella; Villella, Valeria R; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2016-12-01

    Cystic fibrosis (CF) is a lethal monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that entails the (diagnostic) increase in sweat electrolyte concentrations, progressive lung disease with chronic inflammation and recurrent bacterial infections, pancreatic insufficiency, and male infertility. Therapies aimed at restoring the CFTR defect have emerged. Thus, a small molecule which facilitates chloride channel opening, the potentiator Ivacaftor, has been approved for the treatment of CF patients bearing a particular class of rare CFTR mutations. However, small molecules that directly target the most common misfolded CFTR mutant, F508del, and improve its intracellular trafficking in vitro, have been less effective than expected when tested in CF patients, even in combination with Ivacaftor. Thus, new strategies are required to circumvent the F508del-CFTR defect. Airway and intestinal epithelial cells from CF patients bearing the F508del-CFTR mutation exhibit an impressive derangement of cellular proteostasis, with oxidative stress, overactivation of the tissue transglutaminase (TG2), and disabled autophagy. Proteostasis regulators such as cysteamine can rescue and stabilize a functional F508del-CFTR protein through suppressing TG2 activation and restoring autophagy in vivo in F508del-CFTR homozygous mice, in vitro in CF patient-derived cell lines, ex vivo in freshly collected primary patient's nasal cells, as well as in a pilot clinical trial involving homozygous F508del-CFTR patients. Here, we discuss how the therapeutic normalization of defective proteostasis can be harnessed for the treatment of CF patients with the F508del-CFTR mutation.

  5. The K+ channel opener 1-EBIO potentiates residual function of mutant CFTR in rectal biopsies from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Eva K Roth

    Full Text Available BACKGROUND: The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF. Previous studies demonstrated that the K⁺ channel opener 1-ethyl-2-benzimidazolone (1-EBIO potentiates CFTR-mediated Cl⁻ secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown. METHODS: We studied the effects of 1-EBIO on CFTR-mediated Cl⁻ secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl⁻ secretion. RESULTS: Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl⁻ secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl⁻ secretion by 39.2±6.7% (P<0.001 via activation of basolateral Ca²⁺-activated and clotrimazole-sensitive KCNN4 K⁺ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl⁻ secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001, but had no effect on tissues lacking CFTR-mediated Cl⁻ conductance. CONCLUSIONS: We conclude that 1-EBIO potentiates Cl⁻secretion in native CF tissues expressing CFTR mutants with residual Cl⁻ channel function by activation of basolateral KCNN4 K⁺ channels that increase the driving force for luminal Cl⁻ exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.

  6. CFTR targeting during activation of human neutrophils.

    Science.gov (United States)

    Ng, Hang Pong; Valentine, Vincent G; Wang, Guoshun

    2016-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.

  7. Regulation of Plasma Membrane Recycling by CFTR

    Science.gov (United States)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  8. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    Science.gov (United States)

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

  9. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  10. Huddles and Debriefings: Improving Communication on Labor and Delivery.

    Science.gov (United States)

    McQuaid-Hanson, Emily; Pian-Smith, May C M

    2017-03-01

    Interprofessional teams work together on the labor and delivery unit, where clinical care is often unscheduled, rapidly evolving, and fast paced. Effective communication is key for coordinated delivery of optimal care and for fostering a culture of community and safety in the workplace. The preoperative huddle allows for information sharing, cross-checking, and preparation before the start of surgery. Postoperative debriefings allow the operative team to engage in ongoing process improvement. Debriefings after adverse events allow for shared understanding, mutual healing, and help mitigating the harm to potential "second victims." Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Localizing a gate in CFTR.

    Science.gov (United States)

    Gao, Xiaolong; Hwang, Tzyh-Chang

    2015-02-24

    Experimental and computational studies have painted a picture of the chloride permeation pathway in cystic fibrosis transmembrane conductance regulator (CFTR) as a short narrow tunnel flanked by wider inner and outer vestibules. Although these studies also identified a number of transmembrane segments (TMs) as pore-lining, the exact location of CFTR's gate(s) remains unknown. Here, using a channel-permeant probe, [Au(CN)2](-), we provide evidence that CFTR bears a gate that coincides with the predicted narrow section of the pore defined as residues 338-341 in TM6. Specifically, cysteines introduced cytoplasmic to the narrow region (i.e., positions 344 in TM6 and 1148 in TM12) can be modified by intracellular [Au(CN)2](-) in both open and closed states, corroborating the conclusion that the internal vestibule does not harbor a gate. However, cysteines engineered to positions external to the presumed narrow region (e.g., 334, 335, and 337 in TM6) are all nonreactive toward cytoplasmic [Au(CN)2](-) in the absence of ATP, whereas they can be better accessed by extracellular [Au(CN)2](-) when the open probability is markedly reduced by introducing a second mutation, G1349D. As [Au(CN)2](-) and chloride ions share the same permeation pathway, these results imply a gate is situated between amino acid residues 337 and 344 along TM6, encompassing the very segment that may also serve as the selectivity filter for CFTR. The unique position of a gate in the middle of the ion translocation pathway diverges from those seen in ATP-binding cassette (ABC) transporters and thus distinguishes CFTR from other members of the ABC transporter family.

  12. Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Directory of Open Access Journals (Sweden)

    Baozhen Yao

    2014-02-01

    Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

  13. Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates

    OpenAIRE

    Himmel, Bettina; Nagel, Georg

    2003-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP2) activates human CFTR, resulting in ATP responsiveness of PIP2-treated CFTR. ...

  14. Improving drug delivery to solid tumors: priming the tumor microenvironment.

    Science.gov (United States)

    Khawar, Iftikhar Ali; Kim, Jung Ho; Kuh, Hyo-Jeong

    2015-03-10

    Malignant transformation and growth of the tumor mass tend to induce changes in the surrounding microenvironment. Abnormality of the tumor microenvironment provides a driving force leading not only to tumor progression, including invasion and metastasis, but also to acquisition of drug resistance, including pharmacokinetic (drug delivery-related) and pharmacodynamic (sensitivity-related) resistance. Drug delivery systems exploiting the enhanced permeability and retention (EPR) effect and active targeting moieties were expected to be able to cope with delivery-related drug resistance. However, recent evidence supports a considerable barrier role of tumors via various mechanisms, which results in imperfect or inefficient EPR and/or targeting effect. The components of the tumor microenvironment such as abnormal tumor vascular system, deregulated composition of the extracellular matrix, and interstitial hypertension (elevated interstitial fluid pressure) collectively or cooperatively hinder the drug distribution, which is prerequisite to the efficacy of nanoparticles and small-molecule drugs used in cancer medicine. Hence, the abnormal tumor microenvironment has recently been suggested to be a promising target for the improvement of drug delivery to improve therapeutic efficacy. Strategies to modulate the abnormal tumor microenvironment, referred to here as "solid tumor priming" (vascular normalization and/or solid stress alleviation leading to improvement in blood perfusion and convective molecular movement), have shown promising results in the enhancement of drug delivery and anticancer efficacy. These strategies may provide a novel avenue for the development of new chemotherapeutics and combination chemotherapeutic regimens as well as reassessment of previously ineffective agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. MAST205 competes with cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand for binding to CFTR to regulate CFTR-mediated fluid transport.

    Science.gov (United States)

    Ren, Aixia; Zhang, Weiqiang; Yarlagadda, Sunitha; Sinha, Chandrima; Arora, Kavisha; Moon, Chang-Suk; Naren, Anjaparavanda P

    2013-04-26

    The PDZ (postsynaptic density-95/discs large/zona occludens-1) domain-based interactions play important roles in regulating the expression and function of the cystic fibrosis transmembrane conductance regulator (CFTR). Several PDZ domain-containing proteins (PDZ proteins for short) have been identified as directly or indirectly interacting with the C terminus of CFTR. To better understand the regulation of CFTR processing, we conducted a genetic screen and identified MAST205 (a microtubule-associated serine/threonine kinase with a molecular mass of 205 kDa) as a new CFTR regulator. We found that overexpression of MAST205 increased the expression of CFTR and augmented CFTR-mediated fluid transport in a dose-dependent manner. Conversely, knockdown of MAST205 inhibited CFTR function. The PDZ motif of CFTR is required for the regulatory role of MAST205 in CFTR expression and function. We further demonstrated that MAST205 and the CFTR-associated ligand competed for binding to CFTR, which facilitated the processing of CFTR and consequently up-regulated the expression and function of CFTR at the plasma membrane. More importantly, we found that MAST205 could facilitate the processing of F508del-CFTR mutant and augment its quantity and channel function at the plasma membrane. Taken together, our data suggest that MAST205 plays an important role in regulating CFTR expression and function. Our findings have important clinical implications for treating CFTR-associated diseases such as cystic fibrosis and secretory diarrheas.

  16. Nanosuspension improves tretinoin photostability and delivery to the skin.

    Science.gov (United States)

    Lai, Francesco; Pireddu, Rosa; Corrias, Francesco; Fadda, Anna Maria; Valenti, Donatella; Pini, Elena; Sinico, Chiara

    2013-12-15

    The aims of this work were to improve cutaneous targeting and photostability of tretinoin by using nanosuspension formulation. Tretinoin is a drug widely used in the topical treatment of various dermatological diseases. The tretinoin nanosuspension was prepared by precipitation method and then characterized by photo correlation spectroscopy for mean size and size distribution, and by transmission electron microscopy for morphological studies. An oil in water tretinoin nanoemulsion was also prepared and used as a control. Dermal and transdermal delivery of both tretinoin nanosuspension and nanoemulsion were tested in vitro by using Franz diffusion cells and newborn pig skin. Photodegradation studies were carried out by UV irradiation (1h, λ=366 nm) of the tretinoin nanosuspension in comparison with the nanoemulsion and a methanolic solution of the drug. During 8h percutaneous experiments, the nanosuspesion was able to localize the drug into the pig skin with a very low transdermal drug delivery, whereas the nanoemulsion greatly improved drug permeation. UV irradiation of the nanosuspension showed a great improvement of tretinoin stability in comparison with both controls. Overall results show that nanosuspension might be a useful formulation for improving tretinoin dermal delivery and stability.

  17. Look Through Patients' Eyes to Improve the Delivery of Care.

    Science.gov (United States)

    2016-07-01

    By developing and implementing a method for seeing the healthcare experience from the standpoint of patients and family members, the University of Pittsburgh Medical Center has improved care delivery, lowered costs, and improved patient satisfaction. Cross-functional, multidisciplinary teams use a six-step patient and family-centered care methodology to identify gaps and develop changes that will improve the patient experience and clinical outcomes. Committee members shadow patients and family members to get firsthand knowledge about what they are going through and what goes wrong and what goes right. The teams proposed minor and major changes, but none involve adding more staff and few involve more expenditures.

  18. COMMD1-mediated ubiquitination regulates CFTR trafficking.

    Directory of Open Access Journals (Sweden)

    Loïc Drévillon

    Full Text Available The CFTR (cystic fibrosis transmembrane conductance regulator protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.

  19. Regulated trafficking of the CFTR chloride channel.

    Science.gov (United States)

    Kleizen, B; Braakman, I; de Jonge, H R

    2000-08-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.

  20. Specific stabilization of CFTR by phosphatidylserine.

    Science.gov (United States)

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.

  1. CFTR protein expression in human primary cells

    NARCIS (Netherlands)

    van Meegen, M.A.

    2016-01-01

    Subjects with cystic fibrosis (CF) display a great variability in clinical manifestations, even when they share the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. CFTR genotyping has enabled the stratification of subjects associated with mild or severe CF disease. However,

  2. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Science.gov (United States)

    Rowe, Steven M; Liu, Bo; Hill, Aubrey; Hathorne, Heather; Cohen, Morty; Beamer, John R; Accurso, Frank J; Dong, Qunming; Ordoñez, Claudia L; Stone, Anne J; Olson, Eric R; Clancy, John P

    2013-01-01

    Nasal potential difference (NPD) is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770) in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1) the average of both nostrils; (2) the most-polarized nostril at each visit; and (3) the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity), the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity), and the delta NPD (measuring CFTR and ENaC activity). The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV). Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  3. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Directory of Open Access Journals (Sweden)

    Steven M Rowe

    Full Text Available Nasal potential difference (NPD is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR and epithelial sodium channel (ENaC activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770 in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1 the average of both nostrils; (2 the most-polarized nostril at each visit; and (3 the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity, the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity, and the delta NPD (measuring CFTR and ENaC activity. The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV. Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  4. Molecular Structure of the Human CFTR Ion Channel.

    Science.gov (United States)

    Liu, Fangyu; Zhang, Zhe; Csanády, László; Gadsby, David C; Chen, Jue

    2017-03-23

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.

  5. Managerial process improvement: a lean approach to eliminating medication delivery.

    Science.gov (United States)

    Hussain, Aftab; Stewart, LaShonda M; Rivers, Patrick A; Munchus, George

    2015-01-01

    Statistical evidence shows that medication errors are a major cause of injuries that concerns all health care oganizations. Despite all the efforts to improve the quality of care, the lack of understanding and inability of management to design a robust system that will strategically target those factors is a major cause of distress. The paper aims to discuss these issues. Achieving optimum organizational performance requires two key variables; work process factors and human performance factors. The approach is that healthcare administrators must take in account both variables in designing a strategy to reduce medication errors. However, strategies that will combat such phenomena require that managers and administrators understand the key factors that are causing medication delivery errors. The authors recommend that healthcare organizations implement the Toyota Production System (TPS) combined with human performance improvement (HPI) methodologies to eliminate medication delivery errors in hospitals. Despite all the efforts to improve the quality of care, there continues to be a lack of understanding and the ability of management to design a robust system that will strategically target those factors associated with medication errors. This paper proposes a solution to an ambiguous workflow process using the TPS combined with the HPI system.

  6. Epigenetic regulation of CFTR in salivary gland.

    Science.gov (United States)

    Shin, Yong-Hwan; Lee, Sang-Woo; Kim, Minkyoung; Choi, Se-Young; Cong, Xin; Yu, Guang-Yan; Park, Kyungpyo

    2016-12-02

    Cystic fibrosis transmembrane conductance regulator (CFTR) plays a key role in exocrine secretion, including salivary glands. However, its functional expression in salivary glands has not been rigorously studied. In this study, we investigated the expression pattern and regulatory mechanism of CFTR in salivary glands using immunohistochemistry, western blot analysis, Ussing chamber study, methylation-specific PCR, and bisulfite sequencing. Using an organ culture technique, we found that CFTR expression was first detected on the 15th day at the embryonic stage (E15) and was observed in ducts but not in acini. CFTR expression was confirmed in HSG and SIMS cell lines, which both originated from ducts, but not in the SMG C-6 cell line, which originated from acinar cells. Treatment of SMG C-6 cells with 5-aza-2'-deoxycytidine (5-Aza-CdR) restored the expression level of CFTR mRNA in a time-dependent manner. Restoration of CFTR was further confirmed by a functional study. In the Ussing chamber study, 10 μM Cact-A1, a CFTR activator, did not evoke any currents in SMG C-6 cells. In contrast, in SMG C-6 cells pretreated with 5-Aza-CdR, Cact-A1 evoked a robust increase of currents, which were inhibited by the CFTR inhibitor CFTRinh-172. Furthermore, forskolin mimicked the currents activated by Cact-A1. In our epigenetic study, SMG C-6 cells showed highly methylated CG pairs in the CFTR CpG island and most of the methylated CG pairs were demethylated by 5-Aza-CdR. Our results suggest that epigenetic regulation is involved in the development of salivary glands by silencing the CFTR gene in a tissue-specific manner.

  7. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.

    Science.gov (United States)

    Ramachandran, Shyam; Osterhaus, Samantha R; Parekh, Kalpaj R; Jacobi, Ashley M; Behlke, Mark A; McCray, Paul B

    2016-12-02

    We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl(-) conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl(-) transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl(-) conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.

  8. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.

    Science.gov (United States)

    Lassance-Soares, Roberta M; Cheng, Jie; Krasnov, Kristina; Cebotaru, Liudmila; Cutting, Garry R; Souza-Menezes, Jackson; Morales, Marcelo M; Guggino, William B

    2010-01-01

    This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla.

  9. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    Science.gov (United States)

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  10. A truncated CFTR protein rescues endogenous ΔF508-CFTR and corrects chloride transport in mice

    OpenAIRE

    Cormet-Boyaka, Estelle; Hong, Jeong S.; Berdiev, Bakhram K.; Fortenberry, James A.; Rennolds, Jessica; Clancy, J. P.; Benos, Dale J.; Boyaka, Prosper N.; Eric J Sorscher

    2009-01-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (ΔF508) in the CF transmembrane conductance regulator (CFTR) protein. The ΔF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of end...

  11. [Treatment of Cystic Fibrosis with CFTR Modulators].

    Science.gov (United States)

    Tümmler, B

    2016-05-01

    Personalized medicine promises that medical decisions, practices and products are tailored to the individual patient. Cystic fibrosis, an inherited disorder of chloride and bicarbonate transport in exocrine glands, is the first successful example of customized drug development for mutation-specific therapy. There are two classes of CFTR modulators: potentiators that increase the activity of CFTR at the cell surface, and correctors that either promote the read-through of nonsense mutations or facilitate the translation, folding, maturation and trafficking of mutant CFTR to the cell surface. The potentiator ivacaftor and the corrector lumacaftor are approved in Germany for the treatment of people with cystic fibrosis who carry a gating mutation such as p.Gly551Asp or who are homozygous for the most common mutation p.Phe508del, respectively. This report provides an overview of the basic defect in cystic fibrosis, the population genetics of CFTR mutations in Germany and the bioassays to assess CFTR function in humans together with the major achievements of preclinical research and clinical trials to bring CFTR modulators to the clinic. Some practical information on the use of ivacaftor and lumacaftor in daily practice and an update on pitfalls, challenges and novel strategies of bench-to-bedside development of CFTR modulators are also provided.

  12. Pharmacological correctors of mutant CFTR mistrafficking

    Directory of Open Access Journals (Sweden)

    Nicoletta ePedemonte

    2012-10-01

    Full Text Available The lack of phenylalanine 508 (∆F508 mutation in the CFTR Cl- channel represents the most frequent cause of cystic fibrosis (CF, a genetic disease affecting multiple organs such lung, pancreas, and liver. ∆F508 causes instability and misfolding of CFTR protein leading to early degradation in the endoplasmic reticulum and accelerated removal from the plasma membrane. Pharmacological correctors of mutant CFTR protein have been identified by high-throughput screening of large chemical libraries, by in silico docking of virtual compounds on CFTR structure models, or by using compounds that affect the whole proteome (e.g. histone deacetylase inhibitors or a single CFTR-interacting protein. The presence of multiple defects caused at the CFTR protein level by ∆F508 mutation and the redundancy of quality control mechanisms detecting ∆F508-CFTR as a defective protein impose a ceiling to the maximal effect that a single compound (corrector may obtain. Therefore, treatment of patients with the most frequent CF mutation may require the optimized combination of two drugs having additive or synergic effects.

  13. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.

    Science.gov (United States)

    Loureiro, Cláudia A; Matos, Ana Margarida; Dias-Alves, Ângela; Pereira, Joana F; Uliyakina, Inna; Barros, Patrícia; Amaral, Margarida D; Matos, Paulo

    2015-05-19

    The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.

  14. Improved nanoparticles preparation and drug release for liver targeted delivery

    Directory of Open Access Journals (Sweden)

    Qiao Weili

    2009-05-01

    Full Text Available "nTargeted delivery of drugs and proteins to liver can be achieved via asialoglycoprotein receptor, which can recognize and combine the galactose- and N-acetygalatosamine-terminated glycoproteins. Glycosyl is usually conjugated with drugs directly to fabricate prodrugs or with nanoparticles encapsulated drugs via forming covalent bonds, while the covalent bonds may lead to some shortages for drug release. Therefore, we have a hypothesis that we can prepare nanoparticles for efficient targeting by glycosylation using galactosylated poly (L-glutamic acid (Gal-PLGA as a carrier to entrap the model drugs in nanoparticles core physically rather than forming covalent drug conjugation. The means of incorporation of drug in nanoparticles may improve drug release to maintain its activity, raise its therapeutic index and diminish the adverse effect. Based on previous researches, it is achievable to obtain nanoparticles that we hypothesize to prepare. Due to their nanometer-size and galactosyl, the nanoparticles may be a potential delivery system for passive and active targeting to liver parenchymal cells for therapy of hepatitis and liver cancer.

  15. Activation of CFTR-mediated Cl- Transport by Magnolin

    Institute of Scientific and Technical Information of China (English)

    JIN Ling-ling; LIU Xin; SUN Yan; LIN Sen; ZHOU Na; XU Li-na; YU BO; HOU Shu-guang; YANG Hong

    2008-01-01

    Magnolin is a herbal compound from Magnolia biondii Pamp.It possesses numerous biological activities.Cystic fibrosis transmembrane conductance regulator(CFTR)is all epithelial chloride channel that plays a key role in the fluid secretion of various exocrine organs.In the present study,the activation of CFTR-mediated chloride transport by magnolin is indentified and characterized.In CFTR stably trailsfected FRT cells.magnolin increases CFTR Cl- currents in a concentration-dependent manner.The activation of magnolin on CFTR is rapid,reversible,and cAMP-dependent.Magnolin does not elevate cellular cAMP level.indicating that it activates CFTR by direct binding and interaction with CFTR protein.Magnolin selectively activates wildtype CFTR rather than mutant CFTIL Magnolin may present a novel class of therapeutic lead compound for the treatment of diseases associated with reduced CFTR function such as keratoconjunctivitis sicca,idiopathic chronic pancreatiti,and chromc constipation.

  16. Strategies to improve intracellular drug delivery by targeted liposomes

    NARCIS (Netherlands)

    Fretz, M.M.

    2007-01-01

    Biotechnological advances increased the number of novel macromolecular drugs and new drug targets. The latter are mostly found intracellular. Unfortunately, most of the new macromolecular drugs rely on drug delivery tools for their intracellular delivery because their unfavourable physicochemical pr

  17. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    Science.gov (United States)

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.

  18. Molecular modelling and molecular dynamics of CFTR.

    Science.gov (United States)

    Callebaut, Isabelle; Hoffmann, Brice; Lehn, Pierre; Mornon, Jean-Paul

    2017-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.

  19. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Science.gov (United States)

    He, Lihua; Kota, Pradeep; Aleksandrov, Andrei A; Cui, Liying; Jensen, Tim; Dokholyan, Nikolay V; Riordan, John R

    2013-02-01

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

  20. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    OpenAIRE

    Rosenberg, Mark F.; O'Ryan, Liam P.; Hughes, Guy; Zhao, Zhefeng; Aleksandrov, Luba A.; Riordan, John R.; Ford, Robert C.

    2011-01-01

    Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified ...

  1. From Data to Improved Decisions: Operations Research in Healthcare Delivery.

    Science.gov (United States)

    Capan, Muge; Khojandi, Anahita; Denton, Brian T; Williams, Kimberly D; Ayer, Turgay; Chhatwal, Jagpreet; Kurt, Murat; Lobo, Jennifer Mason; Roberts, Mark S; Zaric, Greg; Zhang, Shengfan; Schwartz, J Sanford

    2017-11-01

    The Operations Research Interest Group (ORIG) within the Society of Medical Decision Making (SMDM) is a multidisciplinary interest group of professionals that specializes in taking an analytical approach to medical decision making and healthcare delivery. ORIG is interested in leveraging mathematical methods associated with the field of Operations Research (OR) to obtain data-driven solutions to complex healthcare problems and encourage collaborations across disciplines. This paper introduces OR for the non-expert and draws attention to opportunities where OR can be utilized to facilitate solutions to healthcare problems. Decision making is the process of choosing between possible solutions to a problem with respect to certain metrics. OR concepts can help systematically improve decision making through efficient modeling techniques while accounting for relevant constraints. Depending on the problem, methods that are part of OR (e.g., linear programming, Markov Decision Processes) or methods that are derived from related fields (e.g., regression from statistics) can be incorporated into the solution approach. This paper highlights the characteristics of different OR methods that have been applied to healthcare decision making and provides examples of emerging research opportunities. We illustrate OR applications in healthcare using previous studies, including diagnosis and treatment of diseases, organ transplants, and patient flow decisions. Further, we provide a selection of emerging areas for utilizing OR. There is a timely need to inform practitioners and policy makers of the benefits of using OR techniques in solving healthcare problems. OR methods can support the development of sustainable long-term solutions across disease management, service delivery, and health policies by optimizing the performance of system elements and analyzing their interaction while considering relevant constraints.

  2. Functional architecture of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  3. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR.

    Science.gov (United States)

    Tosco, A; De Gregorio, F; Esposito, S; De Stefano, D; Sana, I; Ferrari, E; Sepe, A; Salvadori, L; Buonpensiero, P; Di Pasqua, A; Grassia, R; Leone, C A; Guido, S; De Rosa, G; Lusa, S; Bona, G; Stoll, G; Maiuri, M C; Mehta, A; Kroemer, G; Maiuri, L; Raia, V

    2016-08-01

    We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (PCftr (but not in Cftr-null mice), provided that such mice were autophagy-competent. Primary nasal cells from patients bearing different class II CFTR mutations, either in homozygous or compound heterozygous form, responded to the treatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts 'on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment.

  4. Ivacaftor treatment in patients with cystic fibrosis and the G551D-CFTR mutation

    Directory of Open Access Journals (Sweden)

    Isabelle Sermet-Gaudelus

    2013-03-01

    Full Text Available Cystic fibrosis (CF is an autosomal recessive lethal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene that encodes for CFTR, an epithelial cell-surface expressed protein responsible for the transport of chloride (Cl-. Gating mutations associated with defective conductance can be modulated by CFTR potentiators. Ivacaftor is a CFTR potentiator approved for the treatment of CF patients >6 yrs of age with at least one copy of the G551D-CFTR mutation. Herein, the clinical trial development programme for ivacaftor will be reviewed, including two pivotal studies in adolescents/adults and in children. These studies report sustained improvements in lung function and sweat chloride concentrations, and a reduction in pulmonary exacerbations over a 48-week treatment period. In the era of personalised medicine, ivacaftor offers an effective and well-tolerated treatment for the clinical management of CF patients with the G551D mutation. A long-term, open-label study will report the effects of ivacaftor over a further 48 weeks.

  5. Individualized medicine using intestinal responses to CFTR potentiators and correctors

    NARCIS (Netherlands)

    Beekman, Jeffrey M.

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) modulators that target the mutant CFTR protein are being introduced for treatment of cystic fibrosis. Stratification of subjects based on their CFTR genotype has been proven essential to demonstrate clinical efficacy of these novel treatment

  6. Short and long term improvements in quality of chronic care delivery predict program sustainability.

    Science.gov (United States)

    Cramm, Jane Murray; Nieboer, Anna Petra

    2014-01-01

    Empirical evidence on sustainability of programs that improve the quality of care delivery over time is lacking. Therefore, this study aims to identify the predictive role of short and long term improvements in quality of chronic care delivery on program sustainability. In this longitudinal study, professionals [2010 (T0): n=218, 55% response rate; 2011 (T1): n=300, 68% response rate; 2012 (T2): n=265, 63% response rate] from 22 Dutch disease-management programs completed surveys assessing quality of care and program sustainability. Our study findings indicated that quality of chronic care delivery improved significantly in the first 2 years after implementation of the disease-management programs. At T1, overall quality, self-management support, delivery system design, and integration of chronic care components, as well as health care delivery and clinical information systems and decision support, had improved. At T2, overall quality again improved significantly, as did community linkages, delivery system design, clinical information systems, decision support and integration of chronic care components, and self-management support. Multilevel regression analysis revealed that quality of chronic care delivery at T0 (pquality changes in the first (pmanagement programs based on the chronic care model improved the quality of chronic care delivery over time and that short and long term changes in the quality of chronic care delivery predicted the sustainability of the projects.

  7. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Methods: Transmucosal drug delivery systems of enalapril maleate were formulated as buccal films by solvent casting .... Table1: Composition of transmucosal buccal films of enalapril maleate ... was fixed to the central shaft using an adhesive.

  8. Short and long term improvements in quality of chronic care delivery predict program sustainability

    NARCIS (Netherlands)

    J.M. Cramm (Jane); A.P. Nieboer (Anna)

    2014-01-01

    markdownabstractEmpirical evidence on sustainability of programs that improve the quality of care delivery over time is lacking. Therefore, this study aims to identify the predictive role of short and long term improvements in quality of chronic care delivery on program sustainability. In this lon

  9. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients.

  10. CFTR2: How will it help care?

    Science.gov (United States)

    Castellani, Carlo

    2013-05-01

    The Clinical and Functional Translation of CFTR (CFTR2) project presents a novel approach to clinical and functional annotation of mutations identified in disease-causing genes. Phenotype and genotype information on approximately 40,000 cystic fibrosis (CF) patients were collected from registries and large clinics. The disease-liability of the 160 most frequently reported mutations was evaluated by means of a multistage process which involved clinical (sweat chloride average), functional (expression in cell-based systems) and epidemiological (mutation analysis in obligate heterozygotes) steps. The results of this analysis can be consulted in a dedicated website. Data originated by CFTR2 may be valuable in several facets of CF care, including diagnosis, newborn screening, carrier testing, genotype/phenotype correlation and mutation-specific therapeutics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.

    Science.gov (United States)

    Veit, Guido; Avramescu, Radu G; Perdomo, Doranda; Phuan, Puay-Wah; Bagdany, Miklos; Apaja, Pirjo M; Borot, Florence; Szollosi, Daniel; Wu, Yu-Sheng; Finkbeiner, Walter E; Hegedus, Tamas; Verkman, Alan S; Lukacs, Gergely L

    2014-07-23

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.

  12. Islet-intrinsic effects of CFTR mutation.

    Science.gov (United States)

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population.

  13. Improvement of buccal delivery of morphine using the prodrug approach

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Jørgensen, A.; Christensen, C.B.

    1997-01-01

    The feasibility of achieving buccal delivery of morphine using the prodrug approach was assessed by studies of bioactivation, in vitro permeation and in vivo absorption. The bioactivation of various morphine-3-esters was studied in human plasma and saliva. The in vitro permeation of morphine...... of 0.2. This discrepancy could however be explained by the enzymatic stability of the two esters in saliva, since it was found that morphine-3-propionate was more rapidly hydrolysed in saliva than was morphine-3-acetate. The study demonstrates that the buccal delivery of morphine can be markedly...

  14. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor.

    Directory of Open Access Journals (Sweden)

    Jessica E Char

    Full Text Available To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (- ivacaftor, 3 only (+ ivacaftor and 3 (+/- ivacaftor (1-5 tests per condition. The total number of gland measurements was 852 (- ivacaftor and 906 (+ ivacaftor. A healthy control was tested 4 times (51 glands. For each gland we measured both CFTR-independent (M-sweat and CFTR-dependent (C-sweat; C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects. By contrast, 6/6 subjects (113/342 glands produced C-sweat in the (+ ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+ ivacaftor  = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.

  15. Capturing the Direct Binding of CFTR Correctors to CFTR by Using Click Chemistry.

    Science.gov (United States)

    Sinha, Chandrima; Zhang, Weiqiang; Moon, Chang Suk; Actis, Marcelo; Yarlagadda, Sunitha; Arora, Kavisha; Woodroofe, Koryse; Clancy, John P; Lin, Songbai; Ziady, Assem G; Frizzell, Raymond; Fujii, Naoaki; Naren, Anjaparavanda P

    2015-09-21

    Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX-809 has been reported to facilitate the folding and trafficking of F508del-CFTR and augment its channel function. The mechanism of action of VX-809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX-809: does it bind CFTR directly in order to exert its action? We synthesized two VX-809 derivatives, ALK-809 and SUL-809, that possess an alkyne group and retain the rescue capacity of VX-809. By using Cu(I) -catalyzed click chemistry, we provide evidence that the VX-809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.

  16. Capturing the direct binding of CFTR correctors to CFTR using click chemistry

    Science.gov (United States)

    Sinha, Chandrima; Zhang, Weiqiang; Moon, Chang Suk; Actis, Marcelo; Yarlagadda, Sunitha; Arora, Kavisha; Woodroofe, Koryse; Clancy, John P.; Lin, Songbai; Ziady, Assem G.; Frizzell, Raymond; Fujii, Naoaki

    2015-01-01

    Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX-809 has been reported to facilitate the folding and trafficking of F508del-CFTR and augment its channel function. The mechanism of action of VX-809 previously has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX-809: Does it bind CFTR directly to exert its action? We synthesized two VX-809 derivatives, ALK-809 and SUL-809, which possess an alkyne group and retain the rescue capacity of VX-809. By using a Cu(I)-catalyzed click chemistry, we provide evidence that the VX-809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to elucidation of the mechanism of action of CFTR correctors and design of more potent therapeutics to combat CF. PMID:26227551

  17. Rescue of defective ATP8B1 trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis

    DEFF Research Database (Denmark)

    van der Woerd, Wendy L; Wichers, Catharina G K; Vestergaard, Anna L;

    2016-01-01

    in cystic fibrosis transmembrane conductance regulator (CFTR), associated with cystic fibrosis, impair protein folding and trafficking. The aim of this study was to investigate whether compounds that rescue CFTR F508del trafficking are capable of improving p.I661T-ATP8B1 plasma membrane expression. METHODS...... functionality. Combination therapy of SAHA and compound C4 resulted in an additional improvement of ATP8B1 cell surface abundance. CONCLUSIONS: This study shows that several CFTR correctors can improve trafficking of p.I661T-ATP8B1 to the plasma membrane in vitro. Hence, these compounds may be suitable...... in other protein folding diseases. Using these compounds, we could indeed show improved trafficking to the (apical) plasma membrane of a mutated ATP8B1 protein, carrying the p.I661T missense mutation. This is the most frequently identified mutation in this rare cholestatic disorder. Importantly, ATP8B1...

  18. CFTR protein repair therapy in cystic fibrosis.

    Science.gov (United States)

    Quintana-Gallego, Esther; Delgado-Pecellín, Isabel; Calero Acuña, Carmen

    2014-04-01

    Cystic fibrosis is a single gene, autosomal recessive disorder, in which more than 1,900 mutations grouped into 6 classes have been described. It is an example a disease that could be well placed to benefit from personalised medicine. There are currently 2 very different approaches that aim to correct the basic defect: gene therapy, aimed at correcting the genetic alteration, and therapy aimed at correcting the defect in the CFTR protein. The latter is beginning to show promising results, with several molecules under development. Ataluren (PTC124) is a molecule designed to make the ribosomes become less sensitive to the premature stop codons responsible for class i mutations. Lumacaftor (VX-809) is a CFTR corrector directed at class ii mutations, among which Phe508del is the most frequent, with encouraging results. Ivacaftor (VX-770) is a potentiator, the only one marketed to date, which has shown good efficacy for the class iii mutation Gly551Asp in children over the age of 6 and adults. These drugs, or a combination of them, are currently undergoing various clinical trials for other less common genetic mutations. In the last 5 years, CFTR has been designated as a therapeutic target. Ivacaftor is the first drug to treat the basic defect in cystic fibrosis, but only provides a response in a small number of patients. New drugs capable of restoring the CFTR protein damaged by the most common mutations are required.

  19. Regulated trafficking of the CFTR chloride channel

    NARCIS (Netherlands)

    Braakman, L.J.; Kleizen, B.; Jonge, H.R. de

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Wh

  20. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol( ®) was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  1. CFTR and Wnt/beta-catenin signaling in lung development

    Directory of Open Access Journals (Sweden)

    Love Damon

    2008-07-01

    Full Text Available Abstract Background Cystic fibrosis transmembrane conductance regulator (CFTR was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. The BAT-gal transgenic reporter mouse line, expressing β-galactosidase under a canonical Wnt/β-catenin-responsive promoter, was used to assess the relative roles of CFTR, Wnt, and parathyroid hormone-related peptide (PTHrP in lung organogenesis. Adenoviruses containing full-length CFTR, a short anti-sense CFTR gene fragment, or a reporter gene as control were used in an intra-amniotic gene therapy procedure to transiently modify CFTR expression in the fetal lung. Results A direct correlation between CFTR expression levels and PTHrP levels was found. An inverse correlation between CFTR and Wnt signaling activities was demonstrated. Conclusion These data are consistent with CFTR participating in the mechanicosensory process essential to regulate Wnt/β-Catenin signaling required for lung organogenesis.

  2. Individualized medicine using intestinal responses to CFTR potentiators and correctors.

    Science.gov (United States)

    Beekman, Jeffrey M

    2016-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) modulators that target the mutant CFTR protein are being introduced for treatment of cystic fibrosis. Stratification of subjects based on their CFTR genotype has been proven essential to demonstrate clinical efficacy of these novel treatments. Despite this stratification, considerable heterogeneity between subjects receiving CFTR modulators is still observed which remains largely uncharacterized. The CFTR genotype, and additional genetic and environmental factors that impact either tissue-specific CFTR protein characteristics or the pharmacokinetic properties of treatments will likely determine the individual response to therapy. The development of intestinal biomarkers for CFTR modulators may help to better quantitate individual responses to treatment, with potential to optimize treatments for subjects with limited responses, and the selection of responsive subjects that currently do not receive treatments. Here, recent advances concerning the use of intestinal biomarkers for CFTR modulator treatments are reviewed, with a focus on biomarkers of CFTR function in ex vivo rectal biopsies and in vitro cultured primary intestinal organoids. Their potential value is considered in the context of the current unmet needs for better treatments for the majority of subjects with CF, and individual biomarkers that enable the prediction of long term therapeutic responses to CFTR modulators. Pediatr Pulmonol. 2016;51:S23-S34. © 2016 Wiley Periodicals, Inc.

  3. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Directory of Open Access Journals (Sweden)

    Ali J Vetter

    Full Text Available The majority of cystic fibrosis (CF-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein.

  4. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Science.gov (United States)

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein.

  5. High-quality chronic care delivery improves experiences of chronically ill patients receiving care

    NARCIS (Netherlands)

    J.M. Cramm (Jane); A.P. Nieboer (Anna)

    2013-01-01

    markdownabstract__Abstract__ Objective. Investigate whether high-quality chronic care delivery improved the experiences of patients. Design. This study had a longitudinal design. Setting and Participants. We surveyed professionals and patients in 17 disease management programs targeting patients wi

  6. Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism.

    Science.gov (United States)

    Norez, C; Vandebrouck, C; Bertrand, J; Noel, S; Durieu, E; Oumata, N; Galons, H; Antigny, F; Chatelier, A; Bois, P; Meijer, L; Becq, F

    2014-11-01

    The most common mutation in cystic fibrosis (CF), F508del, causes defects in trafficking, channel gating and endocytosis of the CF transmembrane conductance regulator (CFTR) protein. Because CF is an orphan disease, therapeutic strategies aimed at improving mutant CFTR functions are needed to target the root cause of CF. Human CF airway epithelial cells were treated with roscovitine 100 μM for 2 h before CFTR maturation, expression and activity were examined. The mechanism of action of roscovitine was explored by recording the effect of depleting endoplasmic reticulum (ER) Ca(2+) on the F508del-CFTR/calnexin interaction and by measuring proteasome activity. Of the cyclin-dependent kinase (CDK) inhibitors investigated, roscovitine was found to restore the cell surface expression and defective channel function of F508del-CFTR in human CF airway epithelial cells. Neither olomoucine nor (S)-CR8, two very efficient CDK inhibitors, corrected F508del-CFTR trafficking demonstrating that the correcting effect of roscovitine was independent of CDK inhibition. Competition studies with inhibitors of the ER quality control (ERQC) indicated that roscovitine acts on the calnexin pathway and on the degradation machinery. Roscovitine was shown (i) to partially inhibit the interaction between F508del-CFTR and calnexin by depleting ER Ca(2+) and (ii) to directly inhibit the proteasome activity in a Ca(2+) -independent manner. Roscovitine is able to correct the defective function of F508del-CFTR by preventing the ability of the ERQC to interact with and degrade F508del-CFTR via two synergistic but CDK-independent mechanisms. Roscovitine has potential as a pharmacological therapy for CF. © 2014 The British Pharmacological Society.

  7. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants.

    Science.gov (United States)

    Claustres, Mireille; Thèze, Corinne; des Georges, Marie; Baux, David; Girodon, Emmanuelle; Bienvenu, Thierry; Audrezet, Marie-Pierre; Dugueperoux, Ingrid; Férec, Claude; Lalau, Guy; Pagin, Adrien; Kitzis, Alain; Thoreau, Vincent; Gaston, Véronique; Bieth, Eric; Malinge, Marie-Claire; Reboul, Marie-Pierre; Fergelot, Patricia; Lemonnier, Lydie; Mekki, Chadia; Fanen, Pascale; Bergougnoux, Anne; Sasorith, Souphatta; Raynal, Caroline; Bareil, Corinne

    2017-06-12

    Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles. © 2017 Wiley Periodicals, Inc.

  8. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  9. Biologics: the role of delivery systems in improved therapy

    Directory of Open Access Journals (Sweden)

    Škalko-Basnet N

    2014-03-01

    Full Text Available Nataša Škalko-Basnet Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, Tromsø, Norway Abstract: The beginning of the 21st century saw numerous protein and peptide therapeuticals both on the market and entering the final stages of clinical studies. They represent a new category of biologically originated drugs termed biologics or biologicals. Their main advantages over conventional drugs can be summarized by their high selectivity and potent therapeutic efficacy coupled with limited side effects. In addition, they exhibit more predictable behavior under in vivo conditions. However, up to now most of the formulations of biologics are designed and destined for the parenteral route of administration. As a consequence, many suffer from short plasma half-lives, resulting in their frequent administration and ultimately poor patient compliance. This review represents an attempt to address some of the challenges and promises in the product development of biologics both for parenteral and noninvasive administration. Some of the products currently in the pipeline of pharmaceutical development and corresponding perspectives are discussed in more detail. Keywords: biologics, drug delivery systems, medical devices

  10. Improving P2P live-content delivery using SVC

    Science.gov (United States)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  11. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    Science.gov (United States)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  12. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia.

    Science.gov (United States)

    Schiffhauer, Eric S; Vij, Neeraj; Kovbasnjuk, Olga; Kang, Po Wei; Walker, Doug; Lee, Seakwoo; Zeitlin, Pamela L

    2013-03-01

    Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr(-/-) and Clc2(-/-) mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol.

  13. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations.

    Science.gov (United States)

    Veit, Gudio; Avramescu, Radu G; Chiang, Annette N; Houck, Scott A; Cai, Zhiwei; Peters, Kathryn W; Hong, Jeong S; Pollard, Harvey B; Guggino, William B; Balch, William E; Skach, William R; Cutting, Garry R; Frizzell, Raymond A; Sheppard, David N; Cyr, Douglas M; Sorscher, Eric J; Brodsky, Jeffrey L; Lukacs, Gergely L

    2016-02-01

    More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients.

  14. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

    Science.gov (United States)

    Veit, Gudio; Avramescu, Radu G.; Chiang, Annette N.; Houck, Scott A.; Cai, Zhiwei; Peters, Kathryn W.; Hong, Jeong S.; Pollard, Harvey B.; Guggino, William B.; Balch, William E.; Skach, William R.; Cutting, Garry R.; Frizzell, Raymond A.; Sheppard, David N.; Cyr, Douglas M.; Sorscher, Eric J.; Brodsky, Jeffrey L.; Lukacs, Gergely L.

    2016-01-01

    More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients. PMID:26823392

  15. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

    Science.gov (United States)

    Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch

    2010-12-01

    Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

  16. New insights into cystic fibrosis: molecular switches that regulate CFTR.

    Science.gov (United States)

    Guggino, William B; Stanton, Bruce A

    2006-06-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-)-selective ion channel, is a prototypic member of the ATP-binding cassette transporter superfamily that is expressed in several organs. In these organs, CFTR assembles into large, dynamic macromolecular complexes that contain signalling molecules, kinases, transport proteins, PDZ-domain-containing proteins, myosin motors, Rab GTPases, and SNAREs. Understanding how these complexes regulate the intracellular trafficking and activity of CFTR provides a unique insight into the aetiology of cystic fibrosis and other diseases.

  17. Analysis of CFTR Interactome in the Macromolecular Complexes

    OpenAIRE

    Li, Chunying; Naren, Anjaparavanda P.

    2011-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel localized primarily at the apical surface of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, and transporters, in addition to its role...

  18. TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-12-31

    The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

  19. TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-12-31

    The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

  20. Divergent signaling via SUMO modification: potential for CFTR modulation.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Frizzell, Raymond A

    2016-02-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is generally responsible for the cAMP/PKA regulated anion conductance at the apical membranes of secretory epithelial cells. Mutations in CFTR underlie cystic fibrosis (CF), in which the most common variant, F508del, causes protein misfolding and its proteasome-mediated degradation. A new pathway that contributes to mutant CFTR degradation is mediated by the small heat shock protein, Hsp27, which cooperates with Ubc9, the E2 enzyme for SUMOylation, to selectively conjugate mutant CFTR with SUMO-2/3. This SUMO paralog can form polychains, which are recognized by the ubiquitin E3 enzyme, RNF4, leading to CFTR ubiquitylation and recognition by the proteasome. We found also that F508del CFTR could be modified by SUMO-1, a paralog that does not support SUMO polychain formation. The use of different SUMO paralogs to modify and target a single substrate for divergent purposes is not uncommon. In this short review we discuss the possibility that conjugation with SUMO-1 could protect mutant CFTR from disposal by RNF4 and similar ubiquitin ligases. We hypothesize that such a pathway could contribute to therapeutic efforts to stabilize immature mutant CFTR and thereby enhance the action of therapeutics that correct CFTR trafficking to the apical membranes.

  1. New heavy crude oil flow improver increases delivery : application scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J.; Johnston, R.; Lauzon, P. [ConocoPhillips Specialty Products Inc., Houston, TX (United States)

    2009-07-01

    Flow improvers or drag reducing agents have been used for over 25 years as a method to increase fluid flow in hydrocarbon pipelines. The technology is effective in refined projects, light and medium crude oils. This paper presented a new development in flow improver technology that allows treatment of heavy crude oil slates. It discussed case studies of flow improver treatment of heavy oils in various pipeline system as well as factors that affect commercial success. tabs., figs.

  2. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Wine

    Full Text Available To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50 individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.

  3. Assessment of Extension Service Delivery on Improved Cassava ...

    African Journals Online (AJOL)

    SH

    included fertilizer procurement, agrochemicals, cooperative facilities, social networks, tractor hiring services, credit facilities, improved planting materials and marketing. The mean ... important food crop in the tropics after rice ..... Social network.

  4. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.

  5. Arbutin encapsulated micelles improved transdermal delivery and suppression of cellular melanin production

    OpenAIRE

    Liang, Ke; Xu, Keming; Bessarab, Dmitri; Obaje, Jonathan; Xu, Chenjie

    2016-01-01

    Background Hyperpigmentation is a skin disorder characterized by elevated production of melanin. Current treatment approaches mainly rely on the application of skin lightening chemicals, most of which have safety issues. Efficacy of delivery of the active ingredients to the target organ has also been a challenge. Transdermal based drug delivery platform has been shown to improve drug bioavailability, avoiding the hepatic first pass metabolism, decrease gastrointestinal side effects, and event...

  6. CFTR RECRUITMENT TO PHAGOSOMES IN NEUTROPHILS

    OpenAIRE

    Zhou, Yun; Song, Kejing; Painter, Richard G.; Aiken, Martha; Reiser, Jakob; Stanton, Bruce A.; Nauseef, William M.; Wang, Guoshun

    2013-01-01

    Optimal microbicidal activity of human polymorphonuclear leukocytes (PMN) relies on generation of toxic agents such as hypochlorous acid (HOCl) in phagosomes. HOCl formation requires H2O2 produced by the NADPH oxidase, myeloperoxidase derived from azurophilic granules, and chloride ion. Chloride transport from cytoplasm into phagosomes requires chloride channels which include cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. However, the phagosomal...

  7. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes.

    Science.gov (United States)

    Trouvé, Pascal; Kerbiriou, Mathieu; Teng, Ling; Benz, Nathalie; Taiya, Mehdi; Le Hir, Sophie; Férec, Claude

    2015-08-01

    Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype. Our aim was to identify specific interacting proteins of G551D-CFTR which could explain the channel defect. Wild-type CFTR (Wt-CFTR) was co-immunoprecipitated from stably transfected HeLa cells and resolved by 2D gel electrophoresis. Among the detected spots, one was expressed at a high level. Mass Spectrometry revealed that it corresponded to actin which is known to be involved in the CFTR's channel function. To assess whether actin could be involved in the altered G551D-CFTR function, its basal expression was studied. Because actin expression was the same in wt- and in G551D-CFTR expressing cells, its interaction with both wt- and G551D-CFTR was studied by co-immunoprecipitation, and we found that a higher amount of actin was bound onto G551D-CFTR than onto Wt-CFTR. The role of actin upon wt- and G551D-CFTR function was further studied by patch-clamp experiments after cytochalasin D treatment of the cells. We found a decrease of the very weak currents in G551D-CFTR expressing cells. Because a higher amount of actin is bound onto G551D-CFTR than onto Wt-CFTR, it is likely to be not involved in the mutated CFTR's defect. Nevertheless, because actin is necessary to maintain the very weak global currents observed in G551D-CFTR expressing HeLa cells, we conclude that more actin is necessary to maintain G551D-CFTR in the plasma membrane than for Wt-CFTR.

  8. Generic project definitions for improvement of health care delivery: A case-base approach

    NARCIS (Netherlands)

    Niemeijer, G.C.; Does, R.J.M.M.; de Mast, J.; Trip, A.; van den Heuvel, J.

    2011-01-01

    Background: The purpose of this article is to create actionable knowledge, making the definition of process improvement projects in health care delivery more effective. Methods: This study is a retrospective analysis of process improvement projects in hospitals, facilitating a case-based reasoning a

  9. Generic project definitions for improvement of health care delivery: A case-base approach

    NARCIS (Netherlands)

    Niemeijer, G.C.; Does, R.J.M.M.; de Mast, J.; Trip, A.; van den Heuvel, J.

    2011-01-01

    Background: The purpose of this article is to create actionable knowledge, making the definition of process improvement projects in health care delivery more effective. Methods: This study is a retrospective analysis of process improvement projects in hospitals, facilitating a case-based reasoning a

  10. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa

    Directory of Open Access Journals (Sweden)

    Tucker Torry A

    2012-09-01

    Full Text Available Abstract Background Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. Results Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR, inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD recordings and in Ussing chamber recordings of short-circuit current (ISC in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/− heterozygotes had no difference in their responses versus +/+ wild-type mice. Conclusions Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER. As a consequence, ΔF-CFTR slows WT-CFTR

  11. Novel therapeutic modalities and drug delivery in pancreatic cancer – an ongoing search for improved efficacy

    Directory of Open Access Journals (Sweden)

    Yuqing Zhang

    2012-12-01

    Full Text Available Pancreatic cancer is an incredibly challenging disease due to its high rates of resistance to traditional chemotherapy and radiotherapy. There has been little improvement in the prognosis of pancreatic cancer cases in the past decades, highlighting the crucial need for more effective therapeutic approaches. Erlotinib, an EGFR inhibitor, and gemcitabine, a nucleoside analog, are currently used in combination for chemotherapy treatment, but new developments in drug delivery systems using liposomes and nanoparticles may be promising new modalities for management of the disease. In addition to standard chemotherapeutic drugs, these delivery systems can be utilized to deliver therapeutic agents such as siRNA, oncolytic viruses, small molecule inhibitors, antibodies, and suicide genes. Further work is required to elucidate how ligands and antibodies could be used to enhance the targeted delivery of drugs, thus increasing specificity, improving stability, and reducing the effect of the drugs on healthy tissue. Despite significant preclinical data, there are currently very few clinical trials involving pancreatic cancer targeted drug delivery. This article summarizes current developments in targeted pancreatic cancer drug delivery, focusing on delivery systems, targets, and therapeutic agents.

  12. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury.

    Science.gov (United States)

    Xu, Fangjingwei; Hongbin Han; Yan, Junhao; Chen, He; He, Qingyuan; Xu, Weiguo; Zhu, Ning; Zhang, Hong; Zhou, Fugen; Lee, Kejia

    2011-01-01

    Limited penetration of neuroprotective drug citicoline into the central nervous system (CNS) by systemic administration led to poor efficiency. A novel method of stereotactic drug delivery was explored to make citicoline bypass the blood brain barrier (BBB) and take effect by direct contact with ischemic neurons. A permanent middle cerebral artery occlusion (pMCAO) model of rats was prepared. To get the optimal conditions for citicoline administration by the novel stereotactic delivery pathway, magnetic resonance imaging (MRI) tracer method was used, and a dose-dependent effect was given. Examinations of MRI, behavior evaluation, infarct volume assessment and histological staining were performed to evaluate the outcome. This MRI-guided stereotactic delivery of citicoline resulted in a notable reduction (>80%) in infarct size and a delayed ischemic injury in cortex 12 hours after onset of acute ischemia when compared with the systematic delivery. The improved neuroprotective efficiency was realized by a full distribution of citicoline in most of middle cerebral artery (MCA) territory and an adequate drug reaction in the involved areas of the brain. Brain lesions of treated rats by stereotactic delivery of citicoline were well predicted in the lateral ventricle and thalamus due to a limited drug deposition by MRI tracer method. Our study realized an improved neuroprotective efficiency of citicoline by stereotactic delivery, and an optimal therapeutic effect of this administration pathway can be achieved under MRI guidance.

  13. Phosphatase inhibitors activate normal and defective CFTR chloride channels

    OpenAIRE

    Becq, F; Jensen, T J; Chang, X B; Savoia, A.; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epi...

  14. Overview and appraisal of the current concept and technologies for improvement of sublingual drug delivery.

    Science.gov (United States)

    Wang, Zhijun; Chow, Moses Ss

    2014-07-01

    Sublingual drug delivery is capable of achieving high bioavailability by avoiding first-pass liver extraction and enzymatic degradation in the gastrointestinal tract, as well as achieving rapid onset of effect. Thus, this route of administration can offer attractive therapeutic advantages for certain drugs as a convenient substitute for parenteral administration and has been applied successfully to a number of therapeutic conditions, especially urgent cardiovascular conditions and acute severe pain control. However, due to inherent limitations such as small sublingual mucosa area for absorption, primarily passive mechanism of transport, short residence time, and potential local irritation, a relatively small number of sublingual products have been successfully developed to date. In this Review, key concepts and technologies for potential improvement of sublingual drug delivery are reviewed. The optimal application of these concepts and technologies, together with clinical need for non-parenteral delivery, will hopefully broaden the development of sublingual drug delivery in the future.

  15. Mobile phones as a health communication tool to improve skilled attendance at delivery in Zanzibar

    DEFF Research Database (Denmark)

    Lund, S; Hemed, M; Nielsen, Birgitte Bruun

    2012-01-01

    Please cite this paper as: Lund S, Hemed M, Nielsen B, Said A, Said K, Makungu M, Rasch V. Mobile phones as a health communication tool to improve skilled attendance at delivery in Zanzibar: a cluster-randomised controlled trial. BJOG 2012; DOI: 10.1111/j.1471-0528.2012.03413.x. Objective......  To examine the association between a mobile phone intervention and skilled delivery attendance in a resource-limited setting. Design  Pragmatic cluster-randomised controlled trial with primary healthcare facilities as the unit of randomisation. Setting  Primary healthcare facilities in Zanzibar. Population...... component. Main outcome measures  Skilled delivery attendance. Results  The mobile phone intervention was associated with an increase in skilled delivery attendance: 60% of the women in the intervention group versus 47% in the control group delivered with skilled attendance. The intervention produced...

  16. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    Science.gov (United States)

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  17. Potentiators exert distinct effects on human, murine, and Xenopus CFTR.

    Science.gov (United States)

    Cui, Guiying; Khazanov, Netaly; Stauffer, Brandon B; Infield, Daniel T; Imhoff, Barry R; Senderowitz, Hanoch; McCarty, Nael A

    2016-08-01

    VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.

  18. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery.

    Science.gov (United States)

    Chourasia, Manish K; Kang, Lifeng; Chan, Sui Yung

    2011-05-01

    The potential of ethosomes for delivering ketoprofen via skin was evaluated. The ethosomes were prepared, optimized and characterized. Vesicular shape, size and entrapment efficiency were determined by transmission electron microscopy, dynamic light scattering and minicolumn centrifugation technique, respectively. Vesicle sizes varied from 120.3±6.1 to 410.2±21.8 nm depending on the concentrations of soya phosphatidyl choline (SPC) and ethanol. Entrapment efficiency increased with concentrations of SPC and ethanol. The formulations exhibited entrapment efficiencies of 42-78%. In vitro release through cellophane membrane showed sustained release of drug from ethosomal formulations in contrast to hydroalcoholic drug solution (HA), which released most of the drug within 2-3 h. In vitro drug permeation across human skin revealed improved drug permeation and higher transdermal flux with ethosomal formulations compared to hydroethanolic drug solution. Kinetics of in vitro skin permeation showed zero order drug release from formulations. Based on in vitro transdermal flux, the estimated steady state in vivo plasma concentration from ethosomes attained therapeutic drug levels whereas hydroalcoholic drug solution exhibited sub therapeutic drug concentration with a patch size of 50 cm(2). Skin permeation of ethosomal formulations assessed by confocal microscopy revealed enhanced permeation of Rhodamine 123 loaded formulation in comparison to the hydroalcoholic solution.

  19. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel

    OpenAIRE

    Nagel, Georg; Szellas, Tanjef; Riordan, John R.; Friedrich, Thomas; Hartung, Klaus

    2001-01-01

    The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride ...

  20. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine;

    2015-01-01

    delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6. μg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers......Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....

  1. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals.

    Directory of Open Access Journals (Sweden)

    Peng Ren

    Full Text Available Preterm delivery increases the risk of infant mortality and morbidity, and therefore developing reliable methods for predicting its likelihood are of great importance. Previous work using uterine electromyography (EMG recordings has shown that they may provide a promising and objective way for predicting risk of preterm delivery. However, to date attempts at utilizing computational approaches to achieve sufficient predictive confidence, in terms of area under the curve (AUC values, have not achieved the high discrimination accuracy that a clinical application requires. In our study, we propose a new analytical approach for assessing the risk of preterm delivery using EMG recordings which firstly employs Empirical Mode Decomposition (EMD to obtain their Intrinsic Mode Functions (IMF. Next, the entropy values of both instantaneous amplitude and instantaneous frequency of the first ten IMF components are computed in order to derive ratios of these two distinct components as features. Discrimination accuracy of this approach compared to those proposed previously was then calculated using six differently representative classifiers. Finally, three different electrode positions were analyzed for their prediction accuracy of preterm delivery in order to establish which uterine EMG recording location was optimal signal data. Overall, our results show a clear improvement in prediction accuracy of preterm delivery risk compared with previous approaches, achieving an impressive maximum AUC value of 0.986 when using signals from an electrode positioned below the navel. In sum, this provides a promising new method for analyzing uterine EMG signals to permit accurate clinical assessment of preterm delivery risk.

  2. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers

    Directory of Open Access Journals (Sweden)

    Xi J

    2015-02-01

    Full Text Available Jinxiang Xi,1 Ze Zhang,1 Xiuhua A Si21School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, 2Department of Mechanical Engineering, California Baptist University, Riverside, CA, USABackground: Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1% to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region.Materials and methods: We introduced a delivery method that used magnetophoresis to improve olfactory delivery efficiency. The performance of the proposed method was assessed numerically in an image-based human nose model. Influences of the magnet layout, magnet strength, drug-release position, and particle diameter on the olfactory dosage were examined.Results and discussion: Results showed that particle diameter was a critical factor in controlling the motion of nasally inhaled ferromagnetic drug particles. The optimal particle size was found to be approximately 15 µm for effective magnetophoretic guidance while avoiding loss of particles to the walls in the anterior nose. Olfactory delivery efficiency was shown to be sensitive to the position and strength of magnets and the release position of drug particles. The results of this study showed that clinically significant olfactory doses (up to 45% were feasible using the optimal combination of magnet layout, selective drug release, and microsphere-carrier diameter. A 64-fold-higher delivery of dosage was predicted in the magnetized nose compared to the control case, which did not have a magnetic field. However, the sensitivity of olfactory dosage to operating conditions and the unstable nature of magnetophoresis make controlled guidance of nasally inhaled aerosols still highly challenging.Keywords: direct nose–brain delivery, olfactory deposition, magnetophoretic

  3. 205_WS: Improving the Delivery of Primary Care Through Risk Stratification

    DEFF Research Database (Denmark)

    Kinder, Karen; Kristensen, Troels; Abrams, Chad

    Objectives The aim of this workshop is to provide an insight into how information gained through applications of risk stratification in the primary health care sector, from integrated care networks to primary care clinics and finally at the individual clinician level can improve the delivery of p...

  4. Online Learning Communities and Teacher Professional Development: Methods for Improved Education Delivery

    Science.gov (United States)

    Lindberg, J. Ola, Ed.; Olofsson, Anders D., Ed.

    2009-01-01

    In today's society, the professional development of teachers is urgent due to the constant change in working conditions and the impact that information and communication technologies have in teaching practices. "Online Learning Communities and Teacher Professional Development: Methods for Improved Education Delivery" features innovative…

  5. Improving Bilingual Service Delivery in Catholic Schools through Two-Way Immersion

    Science.gov (United States)

    Scanlan, Martin; Zehrbach, Gareth

    2010-01-01

    Catholic elementary schools underserve Latino students, especially those who are bilingual. This paper presents a conceptual argument for Catholic elementary schools to improve this by pursuing the two-way immersion model of bilingual service delivery in Spanish and English. The argument is presented in three stages. First, we show that Catholic…

  6. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  7. Lack of conventional ATPase properties in CFTR chloride channel gating.

    Science.gov (United States)

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  8. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR.

    Science.gov (United States)

    Huguet, F; Calvez, M L; Benz, N; Le Hir, S; Mignen, O; Buscaglia, P; Horgen, F D; Férec, C; Kerbiriou, M; Trouvé, P

    2016-09-01

    Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.

  9. Regulated recycling of mutant CFTR is partially restored by pharmacological treatment.

    Science.gov (United States)

    Holleran, John P; Zeng, Jianxin; Frizzell, Raymond A; Watkins, Simon C

    2013-06-15

    Efficient trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to and from the cell surface is essential for maintaining channel density at the plasma membrane (PM) and ensuring proper physiological activity. The most common mutation, F508del, exhibits reduced surface expression and impaired function despite treatment with currently available pharmacological small molecules, called correctors. To gain more detailed insight into whether CFTR enters compartments that allow corrector stabilization in the cell periphery, we investigated the peripheral trafficking itineraries and kinetics of wild type (WT) and F508del in living cells using high-speed fluorescence microscopy together with fluorogen activating protein detection. We directly visualized internalization and accumulation of CFTR WT from the PM to a perinuclear compartment that colocalized with the endosomal recycling compartment (ERC) markers Rab11 and EHD1, reaching steady-state distribution by 25 minutes. Stimulation by protein kinase A (PKA) depleted this intracellular pool and redistributed CFTR channels to the cell surface, elicited by reduced endocytosis and active translocation to the PM. Corrector or temperature rescue of F508del also resulted in targeting to the ERC and exhibited subsequent PKA-stimulated trafficking to the PM. Corrector treatment (24 hours) led to persistent residence of F508del in the ERC, while thermally destabilized F508del was targeted to lysosomal compartments by 3 hours. Acute addition of individual correctors, C4 or C18, acted on peripheral trafficking steps to partially block lysosomal targeting of thermally destabilized F508del. Taken together, corrector treatment redirects F508del trafficking from a degradative pathway to a regulated recycling route, and proteins that mediate this process become potential targets for improving the efficacy of current and future correctors.

  10. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial

    Science.gov (United States)

    Alton, Eric W F W; Armstrong, David K; Ashby, Deborah; Bayfield, Katie J; Bilton, Diana; Bloomfield, Emily V; Boyd, A Christopher; Brand, June; Buchan, Ruaridh; Calcedo, Roberto; Carvelli, Paula; Chan, Mario; Cheng, Seng H; Collie, D David S; Cunningham, Steve; Davidson, Heather E; Davies, Gwyneth; Davies, Jane C; Davies, Lee A; Dewar, Maria H; Doherty, Ann; Donovan, Jackie; Dwyer, Natalie S; Elgmati, Hala I; Featherstone, Rosanna F; Gavino, Jemyr; Gea-Sorli, Sabrina; Geddes, Duncan M; Gibson, James S R; Gill, Deborah R; Greening, Andrew P; Griesenbach, Uta; Hansell, David M; Harman, Katharine; Higgins, Tracy E; Hodges, Samantha L; Hyde, Stephen C; Hyndman, Laura; Innes, J Alastair; Jacob, Joseph; Jones, Nancy; Keogh, Brian F; Limberis, Maria P; Lloyd-Evans, Paul; Maclean, Alan W; Manvell, Michelle C; McCormick, Dominique; McGovern, Michael; McLachlan, Gerry; Meng, Cuixiang; Montero, M Angeles; Milligan, Hazel; Moyce, Laura J; Murray, Gordon D; Nicholson, Andrew G; Osadolor, Tina; Parra-Leiton, Javier; Porteous, David J; Pringle, Ian A; Punch, Emma K; Pytel, Kamila M; Quittner, Alexandra L; Rivellini, Gina; Saunders, Clare J; Scheule, Ronald K; Sheard, Sarah; Simmonds, Nicholas J; Smith, Keith; Smith, Stephen N; Soussi, Najwa; Soussi, Samia; Spearing, Emma J; Stevenson, Barbara J; Sumner-Jones, Stephanie G; Turkkila, Minna; Ureta, Rosa P; Waller, Michael D; Wasowicz, Marguerite Y; Wilson, James M; Wolstenholme-Hogg, Paul

    2015-01-01

    Summary Background Lung delivery of plasmid DNA encoding the CFTR gene complexed with a cationic liposome is a potential treatment option for patients with cystic fibrosis. We aimed to assess the efficacy of non-viral CFTR gene therapy in patients with cystic fibrosis. Methods We did this randomised, double-blind, placebo-controlled, phase 2b trial in two cystic fibrosis centres with patients recruited from 18 sites in the UK. Patients (aged ≥12 years) with a forced expiratory volume in 1 s (FEV1) of 50–90% predicted and any combination of CFTR mutations, were randomly assigned, via a computer-based randomisation system, to receive 5 mL of either nebulised pGM169/GL67A gene–liposome complex or 0·9% saline (placebo) every 28 days (plus or minus 5 days) for 1 year. Randomisation was stratified by % predicted FEV1 (<70 vs ≥70%), age (<18 vs ≥18 years), inclusion in the mechanistic substudy, and dosing site (London or Edinburgh). Participants and investigators were masked to treatment allocation. The primary endpoint was the relative change in % predicted FEV1. The primary analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT01621867. Findings Between June 12, 2012, and June 24, 2013, we randomly assigned 140 patients to receive placebo (n=62) or pGM169/GL67A (n=78), of whom 116 (83%) patients comprised the per-protocol population. We noted a significant, albeit modest, treatment effect in the pGM169/GL67A group versus placebo at 12 months' follow-up (3·7%, 95% CI 0·1–7·3; p=0·046). This outcome was associated with a stabilisation of lung function in the pGM169/GL67A group compared with a decline in the placebo group. We recorded no significant difference in treatment-attributable adverse events between groups. Interpretation Monthly application of the pGM169/GL67A gene therapy formulation was associated with a significant, albeit modest, benefit in FEV1 compared with placebo at 1 year, indicating a stabilisation of

  11. Proteomic identification of calumenin as a G551D-CFTR associated protein.

    Science.gov (United States)

    Teng, Ling; Kerbiriou, Mathieu; Taiya, Mehdi; Le Hir, Sophie; Mignen, Olivier; Benz, Nathalie; Trouvé, Pascal; Férec, Claude

    2012-01-01

    Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

  12. Proteomic identification of calumenin as a G551D-CFTR associated protein.

    Directory of Open Access Journals (Sweden)

    Ling Teng

    Full Text Available Cystic fibrosis (CF is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE. Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin's partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR's maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.

  13. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease.

    Science.gov (United States)

    Snyder, David S; Tradtrantip, Lukmanee; Yao, Chenjuan; Kurth, Mark J; Verkman, A S

    2011-08-11

    We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.

  14. Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed

    Directory of Open Access Journals (Sweden)

    Jorge E. Luzuriaga

    2016-01-01

    Full Text Available MQTT is being widely used for data delivery in IoT applications but its architecture does not properly handle mobility when disconnection periods tend to be large. In this paper we describe an experimental evaluation, made in a real environment, of a solution that guarantees that there is no information loss when variable length hand-offs appear due to the movement of a node. Our proposal modifies the classical publish/subscribe scheme by introducing an intermediate buffer that takes care of message transfer. Finally, we study the impact related to the connectivity of mobile devices of the use of the standard Linux Network Manager. We propose a cross-layer solution that improves the device connectivity in conjunction with the data layer management. We show that our solution improves the data delivery guaranteeing that no information is lost.

  15. In-flight food delivery and waste collection service: the passengers’ perspective and potential improvement

    Science.gov (United States)

    Romli, F. I.; Rahman, K. Abdul; Ishak, F. D.

    2016-10-01

    Increased competition in the commercial air transportation industry has made service quality of the airlines as one of the key competitive measures to attract passengers against their rivals. In-flight services, particularly food delivery and waste collection, have a notable impact on perception of the overall airline's service quality because they are directly and interactively provided to passengers during flight. An online public survey is conducted to explore general passengers' perception of current in-flight food delivery and waste collection services, and to identify potential rooms for improvement. The obtained survey results indicate that in-flight service does have an effect on passengers' choice of airlines. Several weaknesses of the current service method and possible improvements have been established from the collected responses.

  16. Immediate versus deferred delivery of the preterm baby with suspected fetal compromise for improving outcomes.

    Science.gov (United States)

    Stock, Sarah J; Bricker, Leanne; Norman, Jane E; West, Helen M

    2016-07-12

    several factors: blinding was not possible due to the nature of the intervention, data for childhood follow-up were incomplete due to attrition, and no adjustment was made in the analysis for the non-independence of babies from multiple pregnancies (39 out of 548 pregnancies). This study only included cases of suspected fetal compromise where there was uncertainty whether immediate delivery was indicated, thus results must be interpreted with caution. Currently there is insufficient evidence on the benefits and harms of immediate delivery compared with deferred delivery in cases of suspected fetal compromise at preterm gestations to make firm recommendations. There is a lack of trials addressing this question, and limitations of the one included trial means that caution must be used in interpreting and generalising the findings. More research is needed to guide clinical practice.Although the included trial is relatively large, it has insufficient power to detect differences in neonatal mortality. It did not report any maternal outcomes other than mode of delivery, or evaluate maternal satisfaction or economic outcomes. The applicability of the findings is limited by several factors: Women with a wide range of obstetric complications and gestational ages were included, and subgroup analysis is currently limited. Advances in Doppler assessment techniques may diagnose severe compromise more accurately and help make decisions about the timing of delivery. The potential benefits of deferring delivery for longer or shorter periods cannot be presumed.Where there is uncertainty whether or not to deliver a preterm fetus with suspected fetal compromise, there seems to be no benefit to immediate delivery. Deferring delivery until test results worsen or increasing gestation favours delivery may improve the outcomes for mother and baby.There is a need for high-quality randomised controlled trials comparing immediate and deferred delivery where there is suspected fetal compromise at

  17. CHD6 regulates the topological arrangement of the CFTR locus.

    Science.gov (United States)

    Sancho, Ana; Li, SiDe; Paul, Thankam; Zhang, Fan; Aguilo, Francesca; Vashisht, Ajay; Balasubramaniyan, Natarajan; Leleiko, Neal S; Suchy, Frederick J; Wohlschlegel, James A; Zhang, Weijia; Walsh, Martin J

    2015-05-15

    The control of transcription is regulated through the well-coordinated spatial and temporal interactions between distal genomic regulatory elements required for specialized cell-type and developmental gene expression programs. With recent findings CFTR has served as a model to understand the principles that govern genome-wide and topological organization of distal intra-chromosomal contacts as it relates to transcriptional control. This is due to the extensive characterization of the DNase hypersensitivity sites, modification of chromatin, transcription factor binding sites and the arrangement of these sites in CFTR consistent with the restrictive expression in epithelial cell types. Here, we identified CHD6 from a screen among several chromatin-remodeling proteins as a putative epigenetic modulator of CFTR expression. Moreover, our findings of CTCF interactions with CHD6 are consistent with the role described previously for CTCF in CFTR regulation. Our results now reveal that the CHD6 protein lies within the infrastructure of multiple transcriptional complexes, such as the FACT, PBAF, PAF1C, Mediator, SMC/Cohesion and MLL complexes. This model underlies the fundamental role CHD6 facilitates by tethering cis-acting regulatory elements of CFTR in proximity to these multi-subunit transcriptional protein complexes. Finally, we indicate that CHD6 structurally coordinates a three-dimensional stricture between intragenic elements of CFTR bound by several cell-type specific transcription factors, such as CDX2, SOX18, HNF4α and HNF1α. Therefore, our results reveal new insights into the epigenetic regulation of CFTR expression, whereas the manipulation of CFTR gene topology could be considered for treating specific indications of cystic fibrosis and/or pancreatitis.

  18. A conceptual framework to improve the delivery capability of an organisation

    Directory of Open Access Journals (Sweden)

    Carl Marnewick

    2010-12-01

    Full Text Available Purpose: The article focuses on organisations' capability to deliver their vision and strategies through the use of project management and, in particular, the project delivery capability of organisations themselves. Problem investigated: Although quantitative evidence does exist that organisations do receive value from project management, the track record of failed projects shows the opposite. This can be attributed to the fact that there is no holistic approach in the implementation of project management, which means that organisations do not receive the value they are supposed to get from project management. Design and/or methodology: The problem of a holistic approach is addressed through a theoretical framework that shows the various building blocks of project delivery capability as well as the relationship between the various components within the building blocks. The benefits of such a holistic framework are the improvement of project delivery capability and an understanding of what is required by organisations to ensure that the value is realised. Findings: The article lists three levels of management as well as two dimensions, i.e. proficiency and organisational requirements, that form the Project Management Capability Delivery Framework. The PMCDF provides a holistic framework that can be utilised to increase project success within organisations. Originality/value: The value of this article is that the holistic view provides organisations and the project management office ultimately with a way to manage projects, programmes and portfolios within the organisation, taking into account the synergy that is required. Components can no longer be managed in isolation. Conclusion: The conclusion can be drawn that although there are various aspects and components within the PM discipline, these affect other components and are interrelated. Without this holistic view, efforts to improve delivery capability could prove to be fruitless.

  19. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hojin [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 and Department of Electrical Engineering, Stanford University, Stanford, California 94305-9505 (United States); Becker, Stephen [Laboratoire Jacques-Louis Lions, Universite Pierre et Marie Curie, Paris 6, 75005 France (France); Lee, Rena; Lee, Soonhyouk [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Shin, Sukyoung [Medtronic CV RDN R and D, Santa Rosa, California 95403 (United States); Candes, Emmanuel [Department of Statistics, Stanford University, Stanford, California 94305-4065 (United States); Xing Lei; Li Ruijiang [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5304 (United States)

    2013-07-15

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of the objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments

  20. The Cystic Fibrosis Transmembrane Regulator (CFTR in the kidney

    Directory of Open Access Journals (Sweden)

    MORALES MARCELO M.

    2000-01-01

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a Cl- channel. Mutations of this transporter lead to a defect of chloride secretion by epithelial cells causing the Cystic Fibrosis disease (CF. In spite of the high expression of CFTR in the kidney, patients with CF do not show major renal dysfunction, but it is known that both the urinary excretion of drugs and the renal capacity to concentrate and dilute urine is deficient. CFTR mRNA is expressed in all nephron segments and its protein is involved with chloride secretion in the distal tubule, and the principal cells of the cortical (CCD and medullary (IMCD collecting ducts. Several studies have demonstrated that CFTR does not only transport Cl- but also secretes ATP and, thus, controls other conductances such as Na+ (ENaC and K+ (ROMK2 channels, especially in CCD. In the polycystic kidney the secretion of chloride through CFTR contributes to the cyst enlargement. This review is focused on the role of CFTR in the kidney and the implications of extracellular volume regulators, such as hormones, on its function and expression.

  1. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    Science.gov (United States)

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  2. Endosomal SNARE proteins regulate CFTR activity and trafficking in epithelial cells.

    Science.gov (United States)

    Bilan, Frédéric; Nacfer, Magali; Fresquet, Fleur; Norez, Caroline; Melin, Patricia; Martin-Berge, Alice; Costa de Beauregard, Marie-Alyette; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent

    2008-07-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein is a chloride channel localized at the apical plasma membrane of epithelial cells. We previously described that syntaxin 8, an endosomal SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) protein, interacts with CFTR and regulates its trafficking to the plasma membrane and hence its channel activity. Syntaxin 8 belongs to the endosomal SNARE complex which also contains syntaxin 7, vti1b and VAMP8. Here, we report that these four endosomal SNARE proteins physically and functionally interact with CFTR. In LLC-PK1 cells transfected with CFTR and in Caco-2 cells endogenously expressing CFTR, we demonstrated that endosomal SNARE protein overexpression inhibits CFTR activity but not swelling- or calcium-activated iodide efflux, indicating a specific effect upon CFTR activity. Moreover, co-immunoprecipitation experiments in LLC-PK1-CFTR cells showed that CFTR and SNARE proteins belong to a same complex and pull-down assays showed that VAMP8 and vti1b preferentially interact with CFTR N-terminus tail. By cell surface biotinylation and immunofluorescence experiments, we evidenced that endosomal SNARE overexpression disturbs CFTR apical targeting. Finally, we found a colocalization of CFTR and endosomal SNARE proteins in Rab11-positive recycling endosomes, suggesting a new role for endosomal SNARE proteins in CFTR trafficking in epithelial cells.

  3. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis.

    Science.gov (United States)

    Dekkers, Johanna F; Berkers, Gitte; Kruisselbrink, Evelien; Vonk, Annelotte; de Jonge, Hugo R; Janssens, Hettie M; Bronsveld, Inez; van de Graaf, Eduard A; Nieuwenhuis, Edward E S; Houwen, Roderick H J; Vleggaar, Frank P; Escher, Johanna C; de Rijke, Yolanda B; Majoor, Christof J; Heijerman, Harry G M; de Winter-de Groot, Karin M; Clevers, Hans; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-06-22

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation.

  4. Generic project definitions for improvement of health care delivery: a case-based approach.

    Science.gov (United States)

    Niemeijer, Gerard C; Does, Ronald J M M; de Mast, Jeroen; Trip, Albert; van den Heuvel, Jaap

    2011-01-01

    The purpose of this article is to create actionable knowledge, making the definition of process improvement projects in health care delivery more effective. This study is a retrospective analysis of process improvement projects in hospitals, facilitating a case-based reasoning approach to project definition. Data sources were project documentation and hospital-performance statistics of 271 Lean Six Sigma health care projects from 2002 to 2009 of general, teaching, and academic hospitals in the Netherlands and Belgium. Objectives and operational definitions of improvement projects in the sample, analyzed and structured in a uniform format and terminology. Extraction of reusable elements of earlier project definitions, presented in the form of 9 templates called generic project definitions. These templates function as exemplars for future process improvement projects, making the selection, definition, and operationalization of similar projects more efficient. Each template includes an explicated rationale, an operationalization in the form of metrics, and a prototypical example. Thus, a process of incremental and sustained learning based on case-based reasoning is facilitated. The quality of project definitions is a crucial success factor in pursuits to improve health care delivery. We offer 9 tried and tested improvement themes related to patient safety, patient satisfaction, and business-economic performance of hospitals.

  5. Improvements in the delivery of resuscitation and newborn care after Helping Babies Breathe training.

    Science.gov (United States)

    Kamath-Rayne, B D; Josyula, S; Rule, A R L; Vasquez, J C

    2017-07-20

    To evaluate changes in neonatal resuscitation and postnatal care following Helping Babies Breathe (HBB) training at a community hospital in rural Honduras. We hypothesized that HBB training would improve resuscitation and essential newborn care interventions. Direct observation and video recording of delivery room care spanned before and after an initial HBB workshop held in August 2013. Rates of essential newborn care interventions were compared in resuscitations performed by individuals who had and had not received HBB training, and run charts recording performance of newborn care practices over time were developed. Ten percent of deliveries (N=250) were observed over the study period, with 156 newborn resuscitations performed by individuals without HBB training, compared to 94 resuscitations performed by HBB trainees. After HBB training, significant improvements were seen in skin-to-skin care, breastfeeding within 60 min of age, and delayed cord clamping after 1 min (all Ptraining that were sustained during the study period, but remained below ideal goals. With improvement in drying/stimulation practices, fewer babies required bag/mask ventilation. In a rural Honduran community hospital, improvements in basic neonatal resuscitation and postnatal essential newborn care practices can be seen after HBB training. Further improvements in newborn care practices may require focused quality improvement initiatives for hospitals to sustain high quality care.Journal of Perinatology advance online publication, 20 July 2017; doi:10.1038/jp.2017.110.

  6. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    OpenAIRE

    De Stefano, Daniela; Villella, Valeria R.; Esposito, Speranza; Tosco, Antonella; Sepe, Angela; Gregorio, Fabiola De; Salvadori, Laura; Grassia, Rosa; Leone, Carlo A; Rosa, Giuseppe De; Maria C Maiuri; Pettoello-Mantovani, Massimo; Guido, Stefano; Bossi, Anna; Zolin, Anna

    2014-01-01

    Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in CftrF508del homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-app...

  7. Fortifier and Cream Improve Fat Delivery in Continuous Enteral Infant Feeding of Breast Milk

    Directory of Open Access Journals (Sweden)

    Mika Tabata

    2015-02-01

    Full Text Available Premature and high-risk infants require accurate delivery of nutrients to promote appropriate growth. Continuous enteral feeding methods may result in significant fat and micronutrient loss. This study evaluated fat loss in enteral nutrition using current strategies for providing high-risk infants fortified human milk (HM. The fat content of HM was measured by IR analyzer in a simulated feeding system using the Kangaroo epumpTM and the MedFusionTM 2010 pump. Comparisons in fat loss were made between HM, HM supplemented with donor HM-derived fortifier Prolacta + H2MFTM (H2MF, and HM supplemented with H2MF and donor HM-derived cream ProlactCRTM (cream. When using the Kangaroo epumpTM, the addition of H2MF and cream to HM increased fat delivery efficiency from 75.0% ± 1.2% to 83.7% ± 1.0% (p < 0.0001. When using the MedFusionTM 2010 pump, the addition of H2MF to HM increased fat delivery efficiency from 83.2% ± 2.8% to 88.8% ± 0.8% (p < 0.05, and the addition of H2MF and cream increased fat delivery efficiency to 92.0% ± 0.3% (p < 0.01. The addition of H2MF and cream to HM provides both the benefits of bioactive elements from mother’s milk and increased fat delivery, making the addition of H2MF and cream an appropriate method to improve infant weight gain.

  8. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery.

    Science.gov (United States)

    Chen, Chen; Wang, Lisha; Cao, Fangrui; Miao, Xiaoqing; Chen, Tongkai; Chang, Qi; Zheng, Ying

    2016-01-30

    The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future.

  9. SUPPORTIVE SUPERVISION AS A TECHNOLOGY OF IMPROVING THE QUALITY OF HOSPITAL CARE DELIVERY

    Directory of Open Access Journals (Sweden)

    Svetlana A. Mukhortova

    2017-01-01

    Full Text Available Improving the quality of medical care is a priority in countries with developed and developing health care system. There are various approaches to improve the quality and safety of patient’s care, as well as various strategies to encourage hospitals to achieve this goal. The purpose of the presented literature review was to analyze existing experience of the implementation of technology of supportive supervision in health care facilities to improve the quality of hospital care delivery. The data sources for publication were obtained from the following medical databases: PubMed, Cochrane Library, Medscape, e-library, and books on the topic of the review written by experts. The article discusses the results of the research studies demonstrating the successes and failures of supportive supervision technology application. Implementation of supportive supervision in medical facilities based on generalized experience of different countries is a promising direction in improving the quality of medical care delivery. This technology opens up opportunities to improve skills and work quality of the staff at pediatric hospitals in the Russian Federation.

  10. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR

    NARCIS (Netherlands)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lacti

  11. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...... delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6. μg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers...

  12. Action research to improve methods of delivery and feedback in an Access Grid Room environment

    Science.gov (United States)

    McArthur, Lynne C.; Klass, Lara; Eberhard, Andrew; Stacey, Andrew

    2011-12-01

    This article describes a qualitative study which was undertaken to improve the delivery methods and feedback opportunity in honours mathematics lectures which are delivered through Access Grid Rooms. Access Grid Rooms are facilities that provide two-way video and audio interactivity across multiple sites, with the inclusion of smart boards. The principal aim was to improve the student learning experience, given the new environment. The specific aspects of the course delivery that the study focused on included presentation of materials and provision of opportunities for interaction between the students and between students and lecturers. The practical considerations in the delivery of distance learning are well documented in the literature, and similar problems arise in the Access Grid Room environment; in particular, those of limited access to face-to-face interaction and the reduction in peer support. The nature of the Access Grid Room classes implies that students studying the same course can be physically situated in different cities, and possibly in different countries. When studying, it is important that students have opportunity to discuss new concepts with others; particularly their peers and their lecturer. The Access Grid Room environment also presents new challenges for the lecturer, who must learn new skills in the delivery of materials. The unique nature of Access Grid Room technology offers unprecedented opportunity for effective course delivery and positive outcomes for students, and was developed in response to a need to be able to interact with complex data, other students and the instructor, in real-time, at a distance and from multiple sites. This is a relatively new technology and as yet there has been little or no studies specifically addressing the use and misuse of the technology. The study found that the correct placement of cameras and the use of printed material and smart boards were all crucial to the student experience. In addition, the

  13. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart.

    Science.gov (United States)

    Evans, Cameron W; Iyer, K Swaminathan; Hool, Livia C

    2016-04-01

    Treatment of acute cardiac ischemia remains an area in which there are opportunities for therapeutic improvement. Despite significant advances, many patients still progress to cardiac hypertrophy and heart failure. Timely reperfusion is critical in rescuing vulnerable ischemic tissue and is directly related to patient outcome, but reperfusion of the ischemic myocardium also contributes to damage. Overproduction of reactive oxygen species, initiation of an inflammatory response and deregulation of calcium homeostasis all contribute to injury, and difficulties in delivering a sufficient quantity of drug to the affected tissue in a controlled manner is a limitation of current therapies. Nanotechnology may offer significant improvements in this respect. Here, we review recent examples of how nanoparticles can be used to improve delivery to the ischemic myocardium, and suggest some approaches that may lead to improved therapies for acute cardiac ischemia.

  14. Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102.

    Science.gov (United States)

    Weber, Gerhard J; Mehr, Ali Poyan; Sirota, Jeffrey C; Aller, Stephen G; Decker, Sarah E; Dawson, David C; Forrest, John N

    2006-03-01

    The apical membrane is an important site of mercury toxicity in shark rectal gland tubular cells. We compared the effects of mercury and other thiol-reacting agents on shark CFTR (sCFTR) and human CFTR (hCFTR) chloride channels using two-electrode voltage clamping of cRNA microinjected Xenopus laevis oocytes. Chloride conductance was stimulated by perfusing with 10 microM forskolin (FOR) and 1 mM IBMX, and then thio-reactive species were added. In oocytes expressing sCFTR, FOR + IBMX mean stimulated Cl(-) conductance was inhibited 69% by 1 microM mercuric chloride and 78% by 5 microM mercuric chloride (IC(50) of 0.8 microM). Despite comparable stimulation of conductance, hCFTR was insensitive to 1 microM HgCl(2) and maximum inhibition was 15% at the highest concentration used (5 microM). Subsequent exposure to glutathione (GSH) did not reverse the inhibition of sCFTR by mercury, but dithiothreitol (DTT) completely reversed this inhibition. Zinc (50-200 microM) also reversibly inhibited sCFTR (40-75%) but did not significantly inhibit hCFTR. Similar inhibition of sCFTR but not hCFTR was observed with an organic mercurial, p-chloromercuriphenylsulfonic acid (pCMBS). The first membrane spanning domain (MSD1) of sCFTR contains two unique cysteines, C102 and C303. A chimeric construct replacing MSD1 of hCFTR with the corresponding sequence of sCFTR was highly sensitive to mercury. Site-specific mutations introducing the first but not the second shark unique cysteine in hCFTR MSD1 resulted in full sensitivity to mercury. These experiments demonstrate a profound difference in the sensitivity of shark vs. human CFTR to inhibition by three thiol-reactive substances, an effect that involves C102 in the shark orthologue.

  15. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity.

    Science.gov (United States)

    Londino, James D; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F; Noah, James W; Matalon, Sadis

    2013-05-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.

  16. Plasma Membrane CFTR Regulates RANTES Expression via Its C-Terminal PDZ-Interacting Motif

    OpenAIRE

    Estell, Kim; Braunstein, Gavin; Tucker, Torry; Varga, Karoly; Collawn, James F.; Schwiebert, Lisa M.

    2003-01-01

    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immu...

  17. Improved nutrition delivery and nutrition status in critically ill children with heart disease.

    Science.gov (United States)

    Kaufman, Jon; Vichayavilas, Piyagarnt; Rannie, Michael; Peyton, Christine; Carpenter, Esther; Hull, Danielle; Alpern, Jennifer; Barrett, Cindy; da Cruz, Eduardo M; Roosevelt, Genie

    2015-03-01

    This initiative sought to improve nutrition delivery in critically ill children with heart disease admitted to the cardiac ICU (CICU) and neonates undergoing stage 1 palliation (S1P) for single-ventricle physiology through interdisciplinary team interventions. Specific goals were increased caloric and protein delivery for all patients and a more nourished state for infants with single ventricles at the time of discharge. We developed a nutrition flow sheet in the electronic health record to track whether daily nutrition goals were met. Interventions included nurses reporting daily whether caloric and protein goals were met, mandatory involvement of feeding specialists, and introduction of an enteral nutrition guideline. For infants undergoing S1P, weight-for-age z score (as an indicator for assessing malnutrition) was calculated at admission and discharge. The percentage of patient days per month when daily caloric goals were met increased from 50.1% to 60.7%, and protein goals met increased from 51.6% to 72.7%. Hospital length of stay, need for ventilation, and mortality did not differ. Patients undergoing S1P demonstrated a statistically significant improvement in weight-for-age z score compared with the preintervention group (P = .003). Thirteen S1P patients were discharged undernourished in the preintervention group; 5 were severely undernourished. In the intervention group, 4 patients were discharged undernourished, and none were severely undernourished. This initiative resulted in improved nutrition delivery for a heterogeneous population of cardiac patients in the CICU as well as significant improvements in weight gain and nourishment status at discharge in infants undergoing S1P. Copyright © 2015 by the American Academy of Pediatrics.

  18. Improving the Electronic Capture of Advance Care Directives in a Healthcare Delivery System.

    Science.gov (United States)

    Kamo, Norifumi; Williams, Barbara L; Smith, Donna L; Blackmore, C Craig

    2017-05-01

    To determine the effectiveness of a multifaceted quality improvement intervention in outpatient clinics at an integrated healthcare delivery system on capture rate of advance directives (ADs) in the electronic medical record (EMR). Interrupted time series analysis with control groups between January 2010 and June 2015. Oncology, nephrology, and primary care outpatient clinics in an integrated healthcare delivery system. All individuals aged 65 and older with at least one office visit in any outpatient clinic in the care delivery system (n = 77,350 with 502,446 office visits). A series of quality improvement interventions to improve rates of advance care planning discussions and capture of those discussions in the EMR between 2010 and 2014. Capture rate of ADs in the EMR. Visits in the intervention primary care clinic were twice as likely to mention ADs in the EMR (53.4%) than visits in nonintervention primary care clinics (26.5%). Visits in the intervention oncology clinic were more than eight times as likely to mention ADs in the EMR (49.3% vs 6.0%), and visits in the intervention nephrology clinic were 2.5 times as likely to mention ADs (15.4% vs 6.0%) than visits in other specialty clinics. A series of quality improvement interventions to increase discussions about advance care planning and capture of advance care directives in the EMR significantly increased the rate of capture in primary care and specialty care outpatient settings. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  19. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  20. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG... DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a...

  1. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis

    NARCIS (Netherlands)

    Dekkers, Johanna F; Berkers, Gitte; Kruisselbrink, Evelien; Vonk, Annelotte; de Jonge, Hugo R; Janssens, Hettie M; Bronsveld, Inez; van de Graaf, Eduard A; Nieuwenhuis, Edward E S; Houwen, Roderick H J; Vleggaar, Frank P; Escher, Johanna C; de Rijke, Yolanda B; Majoor, Christof J; Heijerman, Harry G M; de Winter-de Groot, Karin M; Clevers, Hans; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-01-01

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to tw

  2. Activation of G551D-CFTR by Bicyclooctane Compounds Is cAMP-dependent and Exhibits Low Sensitivity to Thiazolidinone CFTR Inhibitor CFTRinh-172

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; ZHAO Lu; HE Cheng-yan; XU Li-na; YANG Hong

    2005-01-01

    The G551D-CFTR mutation causing cystic fibrosis (CF) results from a missense mutation at codon 551(G551D) in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR). The G551D mutation in CFTR results in a reduced functional channel but G551D-CFTR is appropriately inserted in the apical membrane. In previous studies we discovered a class of high-affinity bicyclooctane (BCO)G551D-CFTR activators(G551DBCOs) with Kd down to 1μmol/L. In this study, we analyzed the pharmacological activation of G551D-CFTR by the G551DBcos by means of short circuit current analysis and cell-based fluorescence quenching assay. The G551DBCOs-induced G551D-CFTR activation is cAMP-dependent and is less sensitive to thiazolidinone CFTR inhibitor CFTRinh-172. These data suggest that (1) the phosphorylation of G551D-CFTR by protein kinase A is required for the activation by G551DBcos; (2) G551DBCos and CFTRinh-172 may act at the same site on the G551D-CFTR molecule.

  3. Improved Therapeutic Efficacy in Bone and Joint Disorders by Targeted Drug Delivery to Bone.

    Science.gov (United States)

    Takahashi, Tatsuo

    2016-01-01

     Site-specific drug delivery to bone is considered achievable using acidic amino acid (L-Asp or L-Glu) homopeptides known as acidic oligopeptides. We found that fluorescence-labeled acidic oligopeptides containing six or more residues bound strongly to hydroxyapatite, which is a major component of bone, and were selectively delivered to and retained in bone after systemic administration. We explored the applicability of this result for drug delivery by conjugation of estradiol and levofloxacin with an L-Asp hexapeptide. We also similarly tagged enzymes (tissue-nonspecific alkaline phosphatase, β-glucuronidase, and N-acetylgalactosamine-6-sulfate sulfatase) and decoy receptors (endogenous secretory receptor for advanced glycation end products and etanercept) to assess whether these would improve therapeutic efficacy. The L-Asp hexapeptide-tagged drugs, including enzymes and decoy receptors, were efficiently delivered to bone in comparison with the untagged drugs. An in vivo experiment confirmed the efficacy of L-Asp hexapeptide-tagged drugs on bone and joint disorders, although there was some loss of bioactivity of estradiol and levofloxacin in vitro, suggesting that the acidic hexapeptide was partly removed by hydrolysis in the body after delivery to bone. It was expected that the ester linkage to the hexapeptide would be susceptible to hydrolysis in situ, releasing the drug from the acidic oligopeptide. These results support the usefulness of acidic oligopeptides as bone-targeting carriers for therapeutic agents. We present some pharmacokinetic and pharmacological properties of the L-Asp hexapeptide-tagged drugs.

  4. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability.

    Science.gov (United States)

    Liu, Xuehong; Dawson, David C

    2014-09-01

    The G551D cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with severe disease in ∼5% of cystic fibrosis patients worldwide. This amino acid substitution in NBD1 results in a CFTR chloride channel characterized by a severe gating defect that can be at least partially overcome in vitro by exposure to a CFTR potentiator. In contrast, the more common ΔF508 mutation is associated with a severe protein trafficking defect, as well as impaired channel function. Recent clinical trials demonstrated a beneficial effect of the CFTR potentiator, Ivacaftor (VX-770), on lung function of patients bearing at least one copy of G551D CFTR, but no comparable effect on ΔF508 homozygotes. This difference in efficacy was not surprising in view of the established difference in the molecular phenotypes of the two mutant channels. Recently, however, it was shown that the structural defect introduced by the deletion of F508 is associated with the thermal instability of ΔF508 CFTR channel function in vitro. This additional mutant phenotype raised the possibility that the differences in the behavior of ΔF508 and G551D CFTR, as well as the disparate efficacy of Ivacaftor, might be a reflection of the differing thermal stabilities of the two channels at 37 °C. We compared the thermal stability of G551D and ΔF508 CFTR in Xenopus oocytes in the presence and absence of CTFR potentiators. G551D CFTR exhibited a thermal instability that was comparable to that of ΔF508 CFTR. G551D CFTR, however, was protected from thermal instability by CFTR potentiators, whereas ΔF508 CFTR was not. These results suggest that the efficacy of VX-770 in patients bearing the G551D mutation is due, at least in part, to the ability of the small molecule to protect the mutant channel from thermal instability at human body temperature.

  5. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis.

    Science.gov (United States)

    Faure, Grazyna; Bakouh, Naziha; Lourdel, Stéphane; Odolczyk, Norbert; Premchandar, Aiswarya; Servel, Nathalie; Hatton, Aurélie; Ostrowski, Maciej K; Xu, Haijin; Saul, Frederick A; Moquereau, Christelle; Bitam, Sara; Pranke, Iwona; Planelles, Gabrielle; Teulon, Jacques; Herrmann, Harald; Roldan, Ariel; Zielenkiewicz, Piotr; Dadlez, Michal; Lukacs, Gergely L; Sermet-Gaudelus, Isabelle; Ollero, Mario; Corringer, Pierre-Jean; Edelman, Aleksander

    2016-07-17

    Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.

  6. Recommendations to support nurses and improve the delivery of oncology and palliative care in India

    Directory of Open Access Journals (Sweden)

    Virginia T LeBaron

    2017-01-01

    Full Text Available Context: Nurses in India often practice in resource-constrained settings and care for cancer patients with high symptom burden yet receive little oncology or palliative care training. Aim: The aim of this study is to explore challenges encountered by nurses in India and offer recommendations to improve the delivery of oncology and palliative care. Methods: Qualitative ethnography. Setting: The study was conducted at a government cancer hospital in urban South India. Sample: Thirty-seven oncology/palliative care nurses and 22 others (physicians, social workers, pharmacists, patients/family members who interact closely with nurses were included in the study. Data Collection: Data were collected over 9 months (September 2011– June 2012. Key data sources included over 400 hours of participant observation and 54 audio-recorded semi-structured interviews. Analysis: Systematic qualitative analysis of field notes and interview transcripts identified key themes and patterns. Results: Key concerns of nurses included safety related to chemotherapy administration, workload and clerical responsibilities, patients who died on the wards, monitoring family attendants, and lack of supplies. Many participants verbalized distress that they received no formal oncology training. Conclusions: Recommendations to support nurses in India include: prioritize safety, optimize role of the nurse and explore innovative models of care delivery, empower staff nurses, strengthen nurse leadership, offer relevant educational programs, enhance teamwork, improve cancer pain management, and engage in research and quality improvement projects. Strong institutional commitment and leadership are required to implement interventions to support nurses. Successful interventions must account for existing cultural and professional norms and first address safety needs of nurses. Positive aspects from existing models of care delivery can be adapted and integrated into general nursing

  7. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  8. Production of Inhalable Submicrometer Aerosols from Conventional Mesh Nebulizers for Improved Respiratory Drug Delivery.

    Science.gov (United States)

    Longest, P Worth; Spence, Benjamin M; Holbrook, Landon T; Mossi, Karla M; Son, Yoen-Ju; Hindle, Michael

    2012-09-01

    Submicrometer and nanoparticle aerosols may significantly improve the delivery efficiency, dissolution characteristics, and bioavailability of inhaled pharmaceuticals. The objective of this study was to explore the formation of submicrometer and nanometer aerosols from mesh nebulizers suitable for respiratory drug delivery using experiments and computational fluid dynamics (CFD) modeling. Mesh nebulizers were coupled with add-on devices to promote aerosol drying and the formation of submicrometer particles, as well as to control the inhaled aerosol temperature and relative humidity. Cascade impaction experiments were used to determine the initial mass median aerodynamic diameters of 0.1% albuterol aerosols produced by the AeroNeb commercial (4.69 μm) and lab (3.90 μm) nebulizers and to validate the CFD model in terms of droplet evaporation. Through an appropriate selection of flow rates, nebulizers, and model drug concentrations, submicrometer and nanometer aerosols could be formed with the three devices considered. Based on CFD simulations, a wire heated design was shown to overheat the airstream producing unsafe conditions for inhalation if the aerosol was not uniformly distributed in the tube cross-section or if the nebulizer stopped producing droplets. In comparison, a counter-flow heated design provided sufficient thermal energy to produce submicrometer particles, but also automatically limited the maximum aerosol outlet temperature based on the physics of heat transfer. With the counter-flow design, submicrometer aerosols were produced at flow rates of 5, 15, and 30 LPM, which may be suitable for various forms of oral and nasal aerosol delivery. Thermodynamic conditions of the aerosol stream exiting the counter-flow design were found be in a range of 21-45 °C with relative humidity greater than 40% in some cases, which was considered safe for direct inhalation and advantageous for condensational growth delivery.

  9. Rapid Process Optimization: A Novel Process Improvement Methodology to Innovate Health Care Delivery.

    Science.gov (United States)

    Wiler, Jennifer L; Bookman, Kelly; Birznieks, Derek B; Leeret, Robert; Koehler, April; Planck, Shauna; Zane, Richard

    2016-03-26

    Health care systems have utilized various process redesign methodologies to improve care delivery. This article describes the creation of a novel process improvement methodology, Rapid Process Optimization (RPO). This system was used to redesign emergency care delivery within a large academic health care system, which resulted in a decrease: (1) door-to-physician time (Department A: 54 minutes pre vs 12 minutes 1 year post; Department B: 20 minutes pre vs 8 minutes 3 months post), (2) overall length of stay (Department A: 228 vs 184; Department B: 202 vs 192), (3) discharge length of stay (Department A: 216 vs 140; Department B: 179 vs 169), and (4) left without being seen rates (Department A: 5.5% vs 0.0%; Department B: 4.1% vs 0.5%) despite a 47% increased census at Department A (34 391 vs 50 691) and a 4% increase at Department B (8404 vs 8753). The novel RPO process improvement methodology can inform and guide successful care redesign.

  10. Learning to Learn: towards a Relational and Transformational Model of Learning for Improved Integrated Care Delivery

    Directory of Open Access Journals (Sweden)

    John Diamond

    2013-06-01

    Full Text Available Health and social care systems are implementing fundamental changes to organizational structures and work practices in an effort to achieve integrated care. While some integration initiatives have produced positive outcomes, many have not. We reframe the concept of integration as a learning process fueled by knowledge exchange across diverse professional and organizational communities. We thus focus on the cognitive and social dynamics of learning in complex adaptive systems, and on learning behaviours and conditions that foster collective learning and improved collaboration. We suggest that the capacity to learn how to learn shapes the extent to which diverse professional groups effectively exchange knowledge and self-organize for integrated care delivery.

  11. Transcriptional networks driving enhancer function in the CFTR gene.

    Science.gov (United States)

    Kerschner, Jenny L; Harris, Ann

    2012-09-01

    A critical cis-regulatory element for the CFTR (cystic fibrosis transmembrane conductance regulator) gene is located in intron 11, 100 kb distal to the promoter, with which it interacts. This sequence contains an intestine-selective enhancer and associates with enhancer signature proteins, such as p300, in addition to tissue-specific TFs (transcription factors). In the present study we identify critical TFs that are recruited to this element and demonstrate their importance in regulating CFTR expression. In vitro DNase I footprinting and EMSAs (electrophoretic mobility-shift assays) identified four cell-type-selective regions that bound TFs in vitro. ChIP (chromatin immunoprecipitation) identified FOXA1/A2 (forkhead box A1/A2), HNF1 (hepatocyte nuclear factor 1) and CDX2 (caudal-type homeobox 2) as in vivo trans-interacting factors. Mutation of their binding sites in the intron 11 core compromised its enhancer activity when measured by reporter gene assay. Moreover, siRNA (small interfering RNA)-mediated knockdown of CDX2 caused a significant reduction in endogenous CFTR transcription in intestinal cells, suggesting that this factor is critical for the maintenance of high levels of CFTR expression in these cells. The ChIP data also demonstrate that these TFs interact with multiple cis-regulatory elements across the CFTR locus, implicating a more global role in intestinal expression of the gene.

  12. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    Directory of Open Access Journals (Sweden)

    Ronny Tah Yen Ng

    2015-01-01

    Full Text Available The gold standard for diagnosing cystic fibrosis (CF is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients (G1, CF patients with classes IV-VI CFTR mutations (five patients (G2, and 21 healthy subjects (G3. The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ2, and Fisher’s exact tests, α=0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects.

  13. CFTR and Ca2+ signaling in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Fabrice eAntigny

    2011-10-01

    Full Text Available Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF disease the most common CFTR (Cystic Fibrosis Transmembrane conductance Regulator mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER compartment, rapidly degraded by the ubiquitine/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G protein-coupled receptors (GPCRs by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism to explain this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the origin of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease cystic fibrosis.

  14. Drug-induced secretory diarrhea: A role for CFTR.

    Science.gov (United States)

    Moon, Changsuk; Zhang, Weiqiang; Sundaram, Nambirajan; Yarlagadda, Sunitha; Reddy, Vadde Sudhakar; Arora, Kavisha; Helmrath, Michael A; Naren, Anjaparavanda P

    2015-12-01

    Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.

  15. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    Science.gov (United States)

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  16. Closing the delivery gaps in pediatric HIV care in Togo, West Africa: using the care delivery value chain framework to direct quality improvement.

    Science.gov (United States)

    Fiori, Kevin; Schechter, Jennifer; Dey, Monica; Braganza, Sandra; Rhatigan, Joseph; Houndenou, Spero; Gbeleou, Christophe; Palerbo, Emmanuel; Tchangani, Elfamozo; Lopez, Andrew; Bensen, Emily; Hirschhorn, Lisa R

    2016-03-01

    Providing quality care for all children living with HIV/AIDS remains a global challenge and requires the development of new healthcare delivery strategies. The care delivery value chain (CDVC) is a framework that maps activities required to provide effective and responsive care for a patient with a particular disease across the continuum of care. By mapping activities along a value chain, the CDVC enables managers to better allocate resources, improve communication, and coordinate activities. We report on the successful application of the CDVC as a strategy to optimize care delivery and inform quality improvement (QI) efforts with the overall aim of improving care for Pediatric HIV patients in Togo, West Africa. Over the course of 12 months, 13 distinct QI activities in Pediatric HIV/AIDS care delivery were monitored, and 11 of those activities met or exceeded established targets. Examples included: increase in infants receiving routine polymerase chain reaction testing at 2 months (39-95%), increase in HIV exposed children receiving confirmatory HIV testing at 18 months (67-100%), and increase in patients receiving initial CD4 testing within 3 months of HIV diagnosis (67-100%). The CDVC was an effective approach for evaluating existing systems and prioritizing gaps in delivery for QI over the full cycle of Pediatric HIV/AIDS care in three specific ways: (1) facilitating the first comprehensive mapping of Pediatric HIV/AIDS services, (2) identifying gaps in available services, and (3) catalyzing the creation of a responsive QI plan. The CDVC provided a framework to drive meaningful, strategic action to improve Pediatric HIV care in Togo.

  17. Improving immunization delivery using an electronic health record: the ImmProve project.

    Science.gov (United States)

    Bundy, David G; Persing, Nichole M; Solomon, Barry S; King, Tracy M; Murakami, Peter N; Thompson, Richard E; Engineer, Lilly D; Lehmann, Christoph U; Miller, Marlene R

    2013-01-01

    Though an essential pediatric preventive service, immunizations are challenging to deliver reliably. Our objective was to measure the impact on pediatric immunization rates of providing clinicians with electronic health record-derived immunization prompting. Operating in a large, urban, hospital-based pediatric primary care clinic, we evaluated 2 interventions to improve immunization delivery to children ages 2, 6, and 13 years: point-of-care, patient-specific electronic clinical decision support (CDS) when children overdue for immunizations presented for care, and provider-specific bulletins listing children overdue for immunizations. Overall, the proportion of children up to date for a composite of recommended immunizations at ages 2, 6, and 13 years was not different in the intervention (CDS active) and historical control (CDS not active) periods; historical immunization rates were high. The proportion of children receiving 2 doses of hepatitis A immunization before their second birthday was significantly improved during the intervention period. Human papillomavirus (HPV) immunization delivery was low during both control and intervention periods and was unchanged for 13-year-olds. For 14-year-olds, however, 4 of the 5 highest quarterly rates of complete HPV immunization occurred in the final year of the intervention. Provider-specific bulletins listing children overdue for immunizations increased the likelihood of identified children receiving catch-up hepatitis A immunizations (hazard ratio 1.32; 95% confidence interval 1.12-1.56); results for HPV and the composite of recommended immunizations were of a similar magnitude but not statistically significant. In our patient population, with high baseline uptake of recommended immunizations, electronic health record-derived immunization prompting had a limited effect on immunization delivery. Benefit was more clearly demonstrated for newer immunizations with lower baseline uptake. Copyright © 2013 Academic

  18. Modulation of Intercellular Junction by Utilization of Cadherin Peptides as an Effort to Improve Drug Delivery

    Directory of Open Access Journals (Sweden)

    Usman Sumo Friend Tambunan

    2004-04-01

    Full Text Available Rapid advances in combinatorial chemistry and molecular biology has influenced the discovery of many proteins, peptides and peptidomimetics as potential therapeutic agents. Unfortunately, the practical application of these potential drugs is often restricted by the difficulties of delivering them to target site(s due to the presence of biological barriers. Recently, a new method to improve the drug delivery, that is by modulating the intercellular junction, has been evaluated. Modulation of intercellular junction could be achieved by modulating the proteins which play important role in establishing the intercellular junction, one of which is cadherin. In the present work we have demonstrated the ability of several cadherin peptides, i.e. Ac-LFSHAVSSNG-NH2 (HAV-10, Ac-SHAVSS-NH2 (HAV-6, Ac-QGADTPPVGV-NH2 (ADT-10, and Ac-ADTPPV-NH2 (ADT-6 to modulate the intercellular junction of MDCK (Madin Darby Canine Kidney cells, this finding is a contribution to the establishment of a new method to improve the drug delivery by utilization of cadherin peptides by modulating the intercellular junction.

  19. Intranasal delivery of liposomal indole-3-carbinol improves its pulmonary bioavailability.

    Science.gov (United States)

    Song, Jung Min; Kirtane, Ameya R; Upadhyaya, Pramod; Qian, Xuemin; Balbo, Silvia; Teferi, Fitsum; Panyam, Jayanth; Kassie, Fekadu

    2014-12-30

    Indole-3-carbinol (I3C), a constituent of commonly consumed Brassica vegetables, has been shown to have anticancer effects in a variety of preclinical models of lung cancer. However, it has shown only limited efficacy in clinical trials, likely due to its poor oral bioavailability. Intranasal administration of I3C has the potential to enhance the pulmonary accumulation of the drug, thereby improving its availability at the target site of action. In this study, we developed a liposomal formulation of I3C and evaluated its lung delivery and chemopreventive potential in tobacco smoke carcinogen [4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK)]-treated mice. Intranasal administration of I3C liposomes led to a ∼100-fold higher lung exposure of I3C than the oral route of administration. Further, intranasal delivery of liposomal I3C led to a significant reduction (37%; pLiposomal I3C also significantly increased (by 10-fold) the expression of CYP1A1, a cytochrome P450 enzyme known to increase the detoxification of chemical carcinogens by enhancing their metabolism. Overall, our findings demonstrate that intranasal administration of liposomal I3C has the potential to significantly improve the efficacy of I3C for lung cancer chemoprevention.

  20. Point-of-care technology: integration for improved delivery of care.

    Science.gov (United States)

    Gregory, Debbie; Buckner, Martha

    2014-01-01

    The growing complexity of technology, equipment, and devices involved in patient care delivery can be staggering and overwhelming. Technology is intended to be a tool to help clinicians, but it can also be a frustrating hindrance if not thoughtfully planned and strategically aligned. Critical care nurses are key partners in the collaborations needed to improve safety and quality through health information technology (IT). Nurses must advocate for systems that are interoperable and adapted to the context of care experiences. The involvement and collaboration between clinicians, information technology specialists, biomedical engineers, and vendors has never been more relevant and applicable. Working together strategically with a shared vision can effectively provide a seamless clinical workflow, maximize technology investments, and ultimately improve patient care delivery and outcomes. Developing a strategic integrated clinical and IT roadmap is a critical component of today's health care environment. How can technology strategy be aligned from the executive suite to the bedside caregiver? What is the model for using clinical workflows to drive technology adoption? How can the voice of the critical care nurse strengthen this process? How can success be assured from the initial assessment and selection of technology to a sustainable support model? What is the vendor's role as a strategic partner and "co-caregiver"?

  1. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Kashi, Brenda B.; Celia, Samuel A.; Tamrazian, Eric [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Pepinsky, R. Blake [BiogenIdec, Inc., 14 Cambridge Center, Cambridge, MA 02142 (United States); Fishman, Paul S. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Brown, Robert H. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Francis, Jonathan W., E-mail: jwfrancisby@gmail.com [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States)

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

  2. Why we need interprofessional education to improve the delivery of safe and effective care

    Directory of Open Access Journals (Sweden)

    Scott Reeves

    2016-03-01

    Full Text Available Interprofessional education (IPE is an activity that involves two or more professions who learn interactively together to improve collaboration and the quality of care. Research has continually revealed that health and social care professionals encounter a range of problems with interprofessional coordination and collaboration which impact on the quality and safety of care. This empirical work resulted in policymakers across health care education and practice to invest in IPE to help resolve this collaborative failures. It is anticipated that IPE will provide health and social care professionals with the abilities required to work together effectively in providing safe high quality care to patients. Through a discussion of a range of key professional, educational and organization issues related to IPE, this paper argues that this form of education is an important strategy to improve the delivery of safe and effective care

  3. Using information technology for an improved pharmaceutical care delivery in developing countries. Study case: Benin.

    Science.gov (United States)

    Edoh, Thierry Oscar; Teege, Gunnar

    2011-10-01

    One of the problems in health care in developing countries is the bad accessibility of medicine in pharmacies for patients. Since this is mainly due to a lack of organization and information, it should be possible to improve the situation by introducing information and communication technology. However, for several reasons, standard solutions are not applicable here. In this paper, we describe a case study in Benin, a West African developing country. We identify the problem and the existing obstacles for applying standard ECommerce solutions. We develop an adapted system approach and describe a practical test which has shown that the approach has the potential of actually improving the pharmaceutical care delivery. Finally, we consider the security aspects of the system and propose an organizational solution for some specific security problems.

  4. CFTR mediated chloride secretion in the avian renal proximal tubule.

    Science.gov (United States)

    Laverty, Gary; Anttila, Ashley; Carty, Jenava; Reddy, Varudhini; Yum, Jamie; Arnason, Sighvatur S

    2012-01-01

    In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.

  5. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.

    Science.gov (United States)

    Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego; Martínez-Bartolomé, Salvador; Lavallée-Adam, Mathieu; Balch, William E; Yates, John R

    2015-12-24

    Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (∆F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue ∆F508 CFTR cellular processing defects and function. A favourable change of ∆F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and ∆F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a ∆F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote ∆F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of ∆F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.

  6. CFTR is a potential marker for nasopharyngeal carcinoma prognosis and metastasis.

    Science.gov (United States)

    Tu, Ziwei; Chen, Qu; Zhang, Jie Ting; Jiang, Xiaohua; Xia, Yunfei; Chan, Hsiao Chang

    2016-11-22

    While there is an increasing interest in the correlation of cystic fibrosis transmembrane conductance regulator (CFTR) and cancer incidence, the role of CFTR in nasopharyngeal carcinoma (NPC) development remains unknown. In this study, we aimed to explore the prognostic value of CFTR in NPC patients. The expression of CFTR was determined in NPC cell lines and tissues. Statistical analysis was utilized to evaluate the correlation between CFTR expression levels and clinicopathological characteristics and prognosis in 225 cases of NPC patients. The results showed that CFTR was down-regulated in NPC tissues and cell lines. Low expression of CFTR was correlated with advanced stage (p = 0.026), distant metastasis (p CFTR as an independent prognostic factor (p = 0.003). Additionally, wound healing and transwell assays revealed that overexpression of CFTR inhibited NPC cell migration and invasion, whereas knockdown of CFTR promoted cell migration and invasion. Thus, the current study indicates that CFTR, as demonstrated to play an important role in tumor migration and invasion, may be used as a potential prognostic indicator in NPC.

  7. The effects of resource improvement on decision-to-delivery times for cesarean deliveries in a Ghanaian regional hospital.

    Science.gov (United States)

    Onuoha, Onyi; Ramaswamy, Rohit; Srofenyoh, Emmanuel K; Kim, Sung M; Owen, Medge D

    2015-09-01

    To evaluate the effects of having a dedicated obstetric operating room (OR) on the decision-to-delivery interval (DDI) in a large referral hospital in Ghana. An observational study was undertaken of all patients undergoing cesarean delivery at Ridge Regional Hospital, Accra, before (pre-OR; August-September 2011) and after (post-OR; August-September 2012) introduction of an obstetric OR. The primary outcome was the DDI. In total, 581 cesareans were performed in the pre-OR period and 574 in the post-OR period. Overall, the median DDI decreased from 259 min (interquartile range [IQR] 161-432) in the pre-OR period to 195 min (IQR 138-319) in the post-OR period (Pdeliveries. Only one emergency cesarean-in the post-OR period-was conducted within the recommended 30-minute timeframe. An obstetric OR lowered the DDI for cesarean delivery; however, a realistic timeframe for emergency cesareans in low-income countries remains to be determined. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  8. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis.

    Science.gov (United States)

    Hegyi, Péter; Wilschanski, Michael; Muallem, Shmuel; Lukacs, Gergely L; Sahin-Tóth, Miklós; Uc, Aliye; Gray, Michael A; Rakonczay, Zoltán; Maléth, József

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.

  9. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol.

    Science.gov (United States)

    Balata, Gehan F; Essa, Ebtessam A; Shamardl, Hanan A; Zaidan, Samira H; Abourehab, Mohammed As

    2016-01-01

    Resveratrol is a nonflavonoid polyphenolic compound which has a broad range of desirable biological actions which include antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and antitumor activities. However, there is concern that the bioavailability of resveratrol may limit some of its clinical utility. So, the aim of this study was to enhance the dissolution rate and oral hypoglycemic and hypolipidemic effect of resveratrol. This was achieved using self-emulsifying drug delivery system. The solubility of resveratrol was determined in various oils, surfactants, and cosurfactants. Phase diagram was plotted to identify the efficient self-emulsification regions using olive oil, Tween 80, and propylene glycol. The prepared self-emulsifying drug delivery system formulations were tested for thermodynamic stability, emulsification efficiency, droplet size, zeta potential, and in vitro drug release. Self-emulsification time averaged 17-99 seconds without precipitation and the mean droplet sizes ranged from 285 to 823 nm with overall zeta potential of -2.24 to -15.4 mv. All formulations improved drug dissolution in relation to unprocessed drug with a trend of decreased dissolution parameters with increasing oil content. The optimized formula, F19, with dissolution efficiency of 94% compared to only 42% of pure drug was used to study the in vivo hypoglycemic and hypolipidemic effects of resveratrol in diabetic-induced albino rats and comparing these effects with that of pure resveratrol in different doses. Treatment with the optimized formula, F19, at 10 mg/kg had significant hypoglycemic and hypolipidemic effects in diabetic-induced albino rats which were nearly similar to the high dose (20 mg/kg) of unprocessed resveratrol. From the study, it was concluded that formulation F19 has good emulsification property with uniform globule size, satisfactory in vitro drug release profile, and significant in vivo hypoglycemic effects which identify future opportunities

  10. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hai-dong [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Cui, Guo-hong; Yang, Jia-jun [Department of Neurology, Shanghai No. 6 People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233 (China); Wang, Cun [Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Jing; Zhang, Li-sheng; Jiang, Jun [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shao, Shui-jin, E-mail: shaoshuijin@163.com [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  11. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy.

    Science.gov (United States)

    Fan, Yuchen; Moon, James J

    2015-01-01

    Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens) and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.

  12. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy

    Directory of Open Access Journals (Sweden)

    Yuchen Fan

    2015-08-01

    Full Text Available Recent studies have demonstrated great therapeutic potential of educating and unleashing our own immune system for cancer treatment. However, there are still major challenges in cancer immunotherapy, including poor immunogenicity of cancer vaccines, off-target side effects of immunotherapeutics, as well as suboptimal outcomes of adoptive T cell transfer-based therapies. Nanomaterials with defined physico-biochemical properties are versatile drug delivery platforms that may address these key technical challenges facing cancer vaccines and immunotherapy. Nanoparticle systems have been shown to improve targeted delivery of tumor antigens and therapeutics against immune checkpoint molecules, amplify immune activation via the use of new stimuli-responsive or immunostimulatory materials, and augment the efficacy of adoptive cell therapies. Here, we review the current state-of-the-art in nanoparticle-based strategies designed to potentiate cancer immunotherapies, including cancer vaccines with subunit antigens (e.g., oncoproteins, mutated neo-antigens, DNA and mRNA antigens and whole-cell tumor antigens, dendritic cell-based vaccines, artificial antigen-presenting cells, and immunotherapeutics based on immunogenic cell death, immune checkpoint blockade, and adoptive T-cell therapy.

  13. Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules

    Science.gov (United States)

    Pavlov, Anton M.; Gabriel, Samantha A.; Sukhorukov, Gleb B.; Gould, David J.

    2015-05-01

    Despite our increasing knowledge of cell biology and the recognition of an increasing repertoire of druggable intracellular therapeutic targets, there remain a limited number of approaches to deliver bioactive molecules to cells and even fewer that enable targeted delivery. Layer-by-layer (LbL) microcapsules are assembled using alternate layers of oppositely charged molecules and are potential cell delivery vehicles for applications in nanomedicine. There are a wide variety of charged molecules that can be included in the microcapsule structure including metal nanoparticles that introduce physical attributes. Delivery of bioactive molecules to cells with LbL microcapsules has recently been demonstrated, so in this study we explore the delivery of bioactive molecules (luciferase enzyme and plasmid DNA) to cells using biodegradable microcapsules containing a layer of magnetite nanoparticles. Interestingly, significantly improved intracellular luciferase enzyme activity (25 fold) and increased transfection efficiency with plasmid DNA (3.4 fold) was observed with magnetic microcapsules. The use of a neodymium magnet enabled efficient targeting of magnetic microcapsules which further improved the delivery efficiency of the cargoes as a consequence of increased microcapsule concentration at the magnetic site. Microcapsules were well tolerated by cells in these experiments and only displayed signs of toxicity at a capsule : cell ratio of 100 : 1 and with extended exposure. These studies illustrate how multi-functionalization of LbL microcapsules can improve and target delivery of bioactive molecules to cells.

  14. Aligning health information technologies with effective service delivery models to improve chronic disease care

    Science.gov (United States)

    Bauer, Amy M.; Thielke, Stephen M.; Katon, Wayne; Unützer, Jürgen; Areán, Patricia

    2014-01-01

    Objective Healthcare reforms in the United States, including the Affordable Care and HITECH Acts, and the NCQA criteria for the Patient Centered Medical Home have promoted health information technology (HIT) and the integration of general medical and mental health services. These developments, which aim to improve chronic disease care have largely occurred in parallel, with little attention to the need for coordination. In this article, the fundamental connections between HIT and improvements in chronic disease management are explored. We use the evidence-based collaborative care model as an example, with attention to health literacy improvement for supporting patient engagement in care. Method A review of the literature was conducted to identify how HIT and collaborative care, an evidence-based model of chronic disease care, support each other. Results Five key principles of effective collaborative care are outlined: care is patient-centered, evidence-based, measurement-based, population-based, and accountable. The potential role of HIT in implementing each principle is discussed. Key features of the mobile health paradigm are described, including how they can extend evidence-based treatment beyond traditional clinical settings. Conclusion HIT, and particularly mobile health, can enhance collaborative care interventions, and thus improve the health of individuals and populations when deployed in integrated delivery systems. PMID:24963895

  15. Improving consistency and quality of service delivery: implications for the addiction treatment field.

    Science.gov (United States)

    Knott, Anne Marie; Corredoira, Rafael; Kimberly, John

    2008-09-01

    Addiction treatment providers face serious problems in delivering consistent, high-quality services over time. Among those providers with multiple treatment sites, there is also intersite variability. This is a serious problem in the addiction field, likely to be made worse as new technologies are introduced and/or as there is industry consolidation (Corredoira, R., Kimberly, J. (2006) Industry evolution through consolidation: Implications for addiction treatment. Journal of Substance Abuse Treatment 31, 255-265.). Although serious, these problems in managing and monitoring to assure consistent service quality have been faced by many other industries. Here, we review evidence from research in other industries regarding three different forms of management (vertical integration, franchising, and licensing) across a chain of individual service providers. We show how each management form affects the level, consistency, and improvement of service delivery over time. In addition, we discuss how such performance advantages affect customer demand as well as regulatory endorsement of the consolidated firm and its approach.

  16. Service delivery interventions to improve adolescents' linkage, retention and adherence to antiretroviral therapy and HIV care.

    Science.gov (United States)

    MacPherson, Peter; Munthali, Chigomezgo; Ferguson, Jane; Armstrong, Alice; Kranzer, Katharina; Ferrand, Rashida A; Ross, David A

    2015-08-01

    Adolescents living with HIV face substantial difficulties in accessing HIV care services and have worse treatment outcomes than other age groups. The objective of this review was to evaluate the effectiveness of service delivery interventions to improve adolescents' linkage from HIV diagnosis to antiretroviral therapy (ART) initiation, retention in HIV care and adherence to ART. We systematically searched the Medline, SCOPUS and Web of Sciences databases and conference abstracts from the International AIDS Conference and International Conference on AIDS and STIs in Africa (ICASA). Studies published in English between 1st January 2001 and 9th June 2014 were included. Two authors independently evaluated reports for eligibility, extracted data and assessed methodological quality using the Cochrane risk of bias tool and Newcastle-Ottawa Scale. Eleven studies from nine countries were eligible for review. Three studies were randomised controlled trials. Interventions assessed included individual and group counselling and education; peer support; directly observed therapy; financial incentives; and interventions to improve the adolescent-friendliness of clinics. Most studies were of low to moderate methodological quality. This review identified limited evidence on the effectiveness of service delivery interventions to support adolescents' linkage from HIV diagnosis to ART initiation, retention on ART and adherence to ART. Although recommendations are qualified because of the small numbers of studies and limited methodological quality, offering individual and group education and counselling, financial incentives, increasing clinic accessibility and provision of specific adolescent-tailored services appear promising interventions and warrant further investigation. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  17. Constraints in animal health service delivery and sustainable improvement alternatives in North Gondar, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hassen Kebede

    2014-02-01

    Full Text Available Poor livestock health services remain one of the main constraints to livestock production in many developing countries, including Ethiopia. A study was carried out in 11 districts of North Gondar, from December 2011 to September 2012, with the objective of identifying the existing status and constraints of animal health service delivery, and thus recommending possible alternatives for its sustainable improvement. Data were collected by using pre-tested questionnaires and focus group discussion. Findings revealed that 46.34% of the responding farmers had taken their animals to government veterinary clinics after initially trying treatments with local medication. More than 90.00% of the clinical cases were diagnosed solely on clinical signs or even history alone. The antibacterial drugs found in veterinary clinics were procaine penicillin (with or without streptomycin, oxytetracycline and sulphonamides, whilst albendazole, tetramisole and ivermectin were the only anthelmintics. A thermometer was the only clinical aid available in all clinics, whilst only nine (45.00% clinics had a refrigerator. In the private sector, almost 95.00% were retail veterinary pharmacies and only 41.20% fulfilled the requirement criteria set. Professionals working in the government indicated the following problems: lack of incentives (70.00%, poor management and lack of awareness (60.00% and inadequate budget (40.00%. For farmers, the most frequent problems were failure of private practitioners to adhere to ethical procedures (74.00% and lack of knowledge of animal diseases and physical distance from the service centre (50.00%. Of all responding farmers, 58.54% preferred the government service, 21.14% liked both services equally and 20.33% preferred the private service. Farmers’ indiscriminate use of drugs from the black market (23.00% was also mentioned as a problem by private practitioners. Sustainable improvement of animal health service delivery needs increased

  18. Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    Science.gov (United States)

    Lee, Ha Won; Cheng, Jie; Kovbasnjuk, Olga; Donowitz, Mark; Guggino, William B

    2013-01-01

    Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  19. Insulin-like growth factor 1 (IGF-1 enhances the protein expression of CFTR.

    Directory of Open Access Journals (Sweden)

    Ha Won Lee

    Full Text Available Low levels of insulin-like growth factor 1 (IGF-1 have been observed in the serum of cystic fibrosis (CF patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR, whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  20. Anion conductance selectivity mechanism of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  1. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  2. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets

    NARCIS (Netherlands)

    J.T. Fisher (John); S.R. Tyler (Scott); Y. Zhang (Yulong); B.J. Lee (Ben); X. Liu (Xiaoming); X. Sun (Xinying); H. Sui (Hongshu); B. Liang (Bo); M. Luo (Ma); W. Xie (Weiliang); I. Yi (Iasson); W. Zhou (Weili); Y. Song (Yiqing); N. Keiser (Nicholas); K. Wang (Kai); H.R. de Jonge (Hugo); J.F. Engelhardt (John)

    2013-01-01

    textabstractCystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to un

  3. CFTR Mutations in Congenital Absence of Vas Deferens

    Directory of Open Access Journals (Sweden)

    Ramin Radpour

    2007-01-01

    Full Text Available A qualitative diagnosis of infertility requires attention to female and male physical abnormalities,endocrine anomalies and genetic conditions that interfere with reproduction. Many genes arelikely to be involved in the complex process of reproduction. Cystic fibrosis (CF incidence variesin different White people populations (a higher incidence of CF is observed in northern–westernEuropean populations than in southern European populations, and therefore the incidence ofcongenital bilateral absence of the vas deferens (CBAVD may also vary in different Whitepeople populations. As CF is mainly observed in White people, hardly any data are available ofCBAVD in non-White people, but frequent polymorphisms such as 5T are observed in mostpopulations. The spectrum and distribution of cystic fibrosis transmembrane conductanceregulator gene (CFTR mutations differs between CBAVD and CF patients, and even comparedwith control individuals. Combinations of particular alleles at several polymorphic loci yieldinsufficient functional CFTR. The combination of the 5T allele in one copy of the CFTR genewith a cystic fibrosis mutation in the other copy is the most common cause of CBAVD in Iran.Because of techniques such as intracytoplasmic sperm injection (ICSI, CBAVD patients are nowable to father children, however such couples have an increased risk of having a child with cysticfibrosis, and therefore genetic testing and counseling should be provided. Around 10% ofobstructive azoospermia is congenital and is due to mutations the CF gene. This paper reviews therelationship of mutations in the CFTR gene with CBAVD.

  4. CFTR biomarkers : Time for promotion to surrogate end-point?

    NARCIS (Netherlands)

    De Boeck, K.; Kent, L.; Davies, J.; Derichs, N.; Amaral, M.; Rowe, S. M.; Middleton, P.; de Jonge, Hendrik; Bronsveld, I.; Wilschanski, M.; Melotti, P.; Danner-Boucher, I.; Boerner, S.; Fajac, I.; Southern, K.; de Nooijer, R. A.; Bot, A.; de Rijke, Y.; de Wachter, E.; Leal, T.; Vermeulen, F.; Hug, M. J.; Rault, G.; Nguyen-Khoa, T.; Barreto, C.; Proesmans, M.; Sermet-Gaudelus, I.

    2013-01-01

    In patients with cystic fibrosis, cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers, such as sweat chloride concentration and/or nasal potential difference, are used as end-points of efficacy in phase-III clinical trials with the disease modifying drugs ivacaftor (VX-770), VX809

  5. CFTR biomarkers: Time for promotion to surrogate end-point?

    NARCIS (Netherlands)

    K. de Boeck; L. Kent; J. Davies (J.); N. Derichs; M.D. Amaral (Margarida); S.M. Rowe (S.); P. Middleton (P.); H.R. de Jonge (Hugo); I. Bronsveld (Inez); M. Wilschanski (Michael); P. Melotti; I. Danner-Boucher (I.); S. Boerner (S.); I. Fajac; K. Southern; R.A. de Nooijer; A.G. Bot (Alice); Y.B. de Rijke (Yolanda); E. de Wachter (E.); T. Leal (Teresinha); F. Vermeulen; M. Hug; G. Rault (G.); T. Nguyen-Khoa (T.); C. Barreto (C.); W. Proesmans (Willem); I. Sermet-Gaudelus (I.)

    2013-01-01

    textabstractIn patients with cystic fibrosis, cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers, such as sweat chloride concentration and/or nasal potential difference, are used as end-points of efficacy in phase-III clinical trials with the disease modifying drugs ivacaftor (VX-

  6. CFTR biomarkers: Time for promotion to surrogate end-point?

    NARCIS (Netherlands)

    K. de Boeck; L. Kent; J. Davies (J.); N. Derichs; M.D. Amaral (Margarida); S.M. Rowe (S.); P. Middleton (P.); H.R. de Jonge (Hugo); I. Bronsveld (Inez); M. Wilschanski (Michael); P. Melotti; I. Danner-Boucher (I.); S. Boerner (S.); I. Fajac; K. Southern; R.A. de Nooijer; A.G. Bot (Alice); Y.B. de Rijke (Yolanda); E. de Wachter (E.); T. Leal (Teresinha); F. Vermeulen; M. Hug; G. Rault (G.); T. Nguyen-Khoa (T.); C. Barreto (C.); W. Proesmans (Willem); I. Sermet-Gaudelus (I.)

    2013-01-01

    textabstractIn patients with cystic fibrosis, cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers, such as sweat chloride concentration and/or nasal potential difference, are used as end-points of efficacy in phase-III clinical trials with the disease modifying drugs ivacaftor (VX-

  7. CFTR biomarkers : Time for promotion to surrogate end-point?

    NARCIS (Netherlands)

    De Boeck, K.; Kent, L.; Davies, J.; Derichs, N.; Amaral, M.; Rowe, S. M.; Middleton, P.; de Jonge, Hendrik; Bronsveld, I.; Wilschanski, M.; Melotti, P.; Danner-Boucher, I.; Boerner, S.; Fajac, I.; Southern, K.; de Nooijer, R. A.; Bot, A.; de Rijke, Y.; de Wachter, E.; Leal, T.; Vermeulen, F.; Hug, M. J.; Rault, G.; Nguyen-Khoa, T.; Barreto, C.; Proesmans, M.; Sermet-Gaudelus, I.

    2013-01-01

    In patients with cystic fibrosis, cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers, such as sweat chloride concentration and/or nasal potential difference, are used as end-points of efficacy in phase-III clinical trials with the disease modifying drugs ivacaftor (VX-770), VX809

  8. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-12-01

    Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.

  9. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    Science.gov (United States)

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation.

  10. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.

    Science.gov (United States)

    Dekkers, Johanna F; Gogorza Gondra, Ricardo A; Kruisselbrink, Evelien; Vonk, Annelotte M; Janssens, Hettie M; de Winter-de Groot, Karin M; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-08-01

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1-C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu.

  11. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  12. A novel fluorescent sensor for measurement of CFTR function by flow cytometry.

    Science.gov (United States)

    Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2013-06-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting.

  13. CFTR: a hub for kinases and crosstalk of cAMP and Ca2+.

    Science.gov (United States)

    Kunzelmann, Karl; Mehta, Anil

    2013-09-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). The resulting disease is pleiotropic consistent with the idea that CFTR acts as a node within a network of signalling proteins. CFTR is not only a regulator of multiple transport proteins and controlled by numerous kinases but also participates in many signalling pathways that are disrupted after expression of its commonest mutant (F508del-CFTR). It operates in membrane compartments creating a scaffold for cytoskeletal elements, surface receptors, kinases and phosphodiesterases. CFTR is exposed to membrane-local second messengers such that a CFTR-interacting, low cellular energy sensor kinase (AMP- and ADP-activated kinase, AMPK) signals through a high energy phosphohistidine protein kinase (nucleoside diphosphate kinase, NDPK). CFTR also translocates a Ca(2+)-dependent adenylate cyclase to its proximity so that a rigid separation between cAMP-dependent and Ca(2+)-dependent regulation of Cl(-) transport becomes obsolete. In the presence of wild-type CFTR, parallel activation of CFTR and outwardly rectifying anoctamin 6 Cl(-) channels is observed, while the Ca(2+)-activated anoctamin 1 Cl(-) channel is inhibited. In contrast, in CF cells, CFTR is missing/mislocalized and the outwardly rectifying chloride channel is attenuated while Ca(2+)-dependent Cl(-) secretion (anoctamin 1) appears upregulated. Additionally, we consider the idea that F508del-CFTR when trapped in the endoplasmic reticulum augments IP3-mediated Ca(2+) release by providing a shunt pathway for Cl(-). CFTR and the IP3 receptor share the characteristic that they both assemble their partner proteins to increase the plasticity of their hub responses. In CF, the CFTR hub fails to form at the plasma membrane, with widespread detrimental consequences for cell signalling.

  14. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.

    Science.gov (United States)

    Li, Chunying; Naren, Anjaparavanda P

    2010-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.

  15. Improving Access to Institutional Delivery through Janani Shishu Suraksha Karyakram: Evidence from Rural Haryana, North India.

    Science.gov (United States)

    Salve, Harshal R; Charlette, Lena; Kankaria, Ankita; Rai, Sanjay K; Krishnan, Anand; Kant, Shashi

    2017-01-01

    In India, Janani Shishu Suraksha Karyakaram (JSSK) was launched in the year 2011 to assure cashless institutional delivery to pregnant women, including free transport and diet. To assess the impact of JSSK on institutional delivery. A record review was done at the primary health care facility in Faridabad district of Haryana from August 2010 to March 2013. Focus group discussion/ informal interviews were carried out to get an insight about various factors determining use / non-use of health facilities for delivery. Institutional delivery increased by almost 2.7 times (197 Vs 537) after launch of JSSK (p < 0.001). For institutional deliveries, the most important facilitator as well as barrier was identified as ambulance service under JSSK and pressure by elders in the family respectively. JSSK scheme had a positive impact on institutional deliveries. It should be supported with targeted intervention designed to facilitate appropriate decision-making at family level in order to address barriers to institutional delivery.

  16. Improving efficiency and safety in external beam radiation therapy treatment delivery using a Kaizen approach.

    Science.gov (United States)

    Kapur, Ajay; Adair, Nilda; O'Brien, Mildred; Naparstek, Nikoleta; Cangelosi, Thomas; Zuvic, Petrina; Joseph, Sherin; Meier, Jason; Bloom, Beatrice; Potters, Louis

    2017-06-29

    Modern external beam radiation therapy treatment delivery processes potentially increase the number of tasks to be performed by therapists and thus opportunities for errors, yet the need to treat a large number of patients daily requires a balanced allocation of time per treatment slot. The goal of this work was to streamline the underlying workflow in such time-interval constrained processes to enhance both execution efficiency and active safety surveillance using a Kaizen approach. A Kaizen project was initiated by mapping the workflow within each treatment slot for 3 Varian TrueBeam linear accelerators. More than 90 steps were identified, and average execution times for each were measured. The time-consuming steps were stratified into a 2 × 2 matrix arranged by potential workflow improvement versus the level of corrective effort required. A work plan was created to launch initiatives with high potential for workflow improvement but modest effort to implement. Time spent on safety surveillance and average durations of treatment slots were used to assess corresponding workflow improvements. Three initiatives were implemented to mitigate unnecessary therapist motion, overprocessing of data, and wait time for data transfer defects, respectively. A fourth initiative was implemented to make the division of labor by treating therapists as well as peer review more explicit. The average duration of treatment slots reduced by 6.7% in the 9 months following implementation of the initiatives (P = .001). A reduction of 21% in duration of treatment slots was observed on 1 of the machines (P Kaizen approach has the potential to improve operational efficiency and safety with quick turnaround in radiation therapy practice by addressing non-value-adding steps characteristic of individual department workflows. Higher effort opportunities are identified to guide continual downstream quality improvements. Copyright © 2017. Published by Elsevier Inc.

  17. Calumenin contributes to ER-Ca(2+) homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention.

    Science.gov (United States)

    Philippe, Réginald; Antigny, Fabrice; Buscaglia, Paul; Norez, Caroline; Huguet, Florentin; Castelbou, Cyril; Trouvé, Pascal; Becq, Frédéric; Frieden, Maud; Férec, Claude; Mignen, Olivier

    2017-03-01

    Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca(2+)) homeostasis. In this study, we discovered that the Ca(2+) binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca(2+) calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca(2+) concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.

  18. Contribution of CFTR to Alveolar Fluid Clearance by Lipoxin A4 via PI3K/Akt Pathway in LPS-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available The lipoxins are the first proresolution mediators to be recognized and described as the endogenous “braking signals” for inflammation. We evaluated the anti-inflammatory and proresolution bioactions of lipoxin A4 in our lipopolysaccharide (LPS-induced lung injury model. We demonstrated that lipoxin A4 significantly improved histology of rat lungs and inhibited IL-6 and TNF-α in LPS-induced lung injury. In addition, lipoxin A4 increased alveolar fluid clearance (AFC and the effect of lipoxin A4 on AFC was abolished by CFTRinh-172 (a specific inhibitor of CFTR. Moreover, lipoxin A4 could increase cystic fibrosis transmembrane conductance regulator (CFTR protein expression in vitro and in vivo. In rat primary alveolar type II (ATII cells, LPS decreased CFTR protein expression via activation of PI3K/Akt, and lipoxin A4 suppressed LPS-stimulated phosphorylation of Akt. These results showed that lipoxin A4 enhanced CFTR protein expression and increased AFC via PI3K/Akt pathway. Thus, lipoxin A4 may provide a potential therapeutic approach for acute lung injury.

  19. Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Crane

    2015-04-01

    Full Text Available Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC lines. We then utilized zinc-finger nucleases (ZFNs, designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR. We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.

  20. Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells

    Directory of Open Access Journals (Sweden)

    Droogmans Guy

    2001-05-01

    Full Text Available Abstract Background This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC. Results MAEC cells express CFTR transcripts as shown by RT-PCR analysis. Application of a phosphorylating cocktail activated a Cl- current with characteristics similar to those of CFTR mediated currents in other cells types (slow activation by cAMP, absence of rectification, block by glibenclamide. The current is present in trp4 +/+ MAEC, but not in trp4 -/- cells, although the expression of CFTR seems unchanged in the trp4 deficient cells as judged from RT-PCR analysis. Conclusions It is concluded that TRP4 is necessary for CFTR activation in endothelium, possibly by providing a scaffold for the formation of functional CFTR channels.

  1. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR

    DEFF Research Database (Denmark)

    Wainwright, Claire E; Elborn, J Stuart; Ramsey, Bonnie W

    2015-01-01

    BACKGROUND: Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation. METHODS: We conducted two phase 3, randomized, double-blind, placebo......-controlled studies that were designed to assess the effects of lumacaftor (VX-809), a CFTR corrector, in combination with ivacaftor (VX-770), a CFTR potentiator, in patients 12 years of age or older who had cystic fibrosis and were homozygous for the Phe508del CFTR mutation. In both studies, patients were randomly...... homozygous for the Phe508del CFTR mutation. (Funded by Vertex Pharmaceuticals and others; TRAFFIC and TRANSPORT ClinicalTrials.gov numbers, NCT01807923 and NCT01807949.)....

  2. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E

    2012-10-26

    The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.

  3. Synonymous codon usage affects the expression of wild type and F508del CFTR.

    Science.gov (United States)

    Shah, Kalpit; Cheng, Yi; Hahn, Brian; Bridges, Robert; Bradbury, Neil A; Mueller, David M

    2015-03-27

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508 (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic-reticulum-associated degradation. This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements was expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady-state levels of the mRNA varied by as much as 30-fold. Experiments support that this apparent inconsistency is attributed to nonsense mediated decay independent of exon junction complex. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high-expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped endoplasmic-reticulum-associated degradation resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that codon usage has an effect on mRNA levels and protein expression, for CFTR, and likely on chaperone-assisted folding pathway, for F508del CFTR.

  4. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR.

    Science.gov (United States)

    Trzcińska-Daneluti, Agata M; Chen, Anthony; Nguyen, Leo; Murchie, Ryan; Jiang, Chong; Moffat, Jason; Pelletier, Lawrence; Rotin, Daniela

    2015-06-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.

  5. Applying Cystic Fibrosis Transmembrane Conductance Regulator Genetics and CFTR2 Data to Facilitate Diagnoses.

    Science.gov (United States)

    Sosnay, Patrick R; Salinas, Danieli B; White, Terry B; Ren, Clement L; Farrell, Philip M; Raraigh, Karen S; Girodon, Emmanuelle; Castellani, Carlo

    2017-02-01

    As a Mendelian disease, genetics plays an integral role in the diagnosis of cystic fibrosis (CF). The identification of 2 disease-causing mutations in the CF transmembrane conductance regulator (CFTR) in an individual with a phenotype provides evidence that the disease is CF. However, not all variations in CFTR always result in CF. Therefore, for CFTR genotype to provide the same level of evidence of CFTR dysfunction as shown by direct tests such as sweat chloride or nasal potential difference, the mutations identified must be known to always result in CF. The use of CFTR genetics in CF diagnosis, therefore, relies heavily on mutation interpretation. Progress that has been made on mutation interpretation and annotation was reviewed at the recent CF Foundation Diagnosis Consensus Conference. A modified Delphi method was used to identify consensus statements on the use of genetic analysis in CF diagnosis. The largest recent advance in CF genetics has come through the Clinical and Functional Translation of CFTR (CFTR2) project. This undertaking seeks to characterize CFTR mutations from patients with CF around the world. The project also established guidelines for the clinical, functional, and population/penetrance criteria that can be used to interpret mutations not yet included in CFTR2's review. The use of CFTR genetics to aid in diagnosis of CF requires that the mutations identified have a known disease liability. The demonstration of 2 in trans mutations known to always result in CF is satisfactory evidence of CFTR dysfunction. However, if the identified mutations are known to be associated with variable outcomes, or have unknown consequence, that genotype may not result in a CF phenotype. In these cases, other tests of CFTR function may help. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions.

    Science.gov (United States)

    Fan, Yating; Li, Xinru; Zhou, Yanxia; Fan, Chao; Wang, Xiaoning; Huang, Yanqing; Liu, Yan

    2011-09-15

    Therapeutic peptides are highly potent and specific in their functions, but difficulties in their oral administration require parallel development of viable delivery systems to improve their oral bioavailability. The objective of this study was to explore the feasibility of water-in-oil (w/o) microemulsions for improving the absorption of intraduodenally administered salmon calcitonin (sCT). The w/o microemulsions were prepared from medium chain triglyceride, Tween 80 and Span 80 or soybean phosphatidylcholine, propylene glycol and phosphate saline, and characterized by particle size and in vitro physical stability under dilution with different physiologically relevant diluents. The effects of addition of polymers such as hydroxypropylmethylcellulose and Carbomer into aqueous phase on the properties of microemulsions were assessed. sCT was efficiently encapsulated into microemulsions with nanoscaled diameter ranged from about 6 to 134nm. As expected from the non-ionic nature of the investigated microemulsions, the physical stability, evaluated by visual inspection, the particle size and leakage percent under dilution, was found to be unaffected by pH and/or ionic strength of diluents and it was opposite for the microemulsions with ionic components. In addition, the dilution extent had a pronounced effect on the physical stability of the diluted microemulsions. The effect of polymers added into aqueous phase of the microemulsions on the absorption of the drug entrapped in microemulsions with different components was investigated. The optimized microemulsions were shown to generate substantial enhancement (up to 4-fold) of relative pharmacological activity of sCT with regard to the control solution of the drug. This indicated that the w/o microemulsions could offer the potential to significantly improve intestinal absorption of sCT.

  7. Social Insurance for Delivery (Jampersal Policy in Indonesia: Culture-Based Approach for Improving Delivery by Health Workers in Rural Areas

    Directory of Open Access Journals (Sweden)

    Riswati Riswati

    2015-06-01

    Full Text Available Background: Jampersal program was launched in Indonesia in January of 2011 by Permenkes No.631/Menkes/PER/III/2011. The aim was to improve the coverage of antenatal care, delivery, postpartum care, postnatal, and family planning by health professionals free of charge. After over a year Jampersal program runs, The ANC figures of Jampersal utilization were still very low. Methods:Quantitative and qualitative research on socio- cultural factors in relation to the selection of health personnel by utilizing Jampersal conducted in 2012 which was then followed by a round table discussion to review the policy options related to the Jampersal utilization of the 6 rural districts. Results: Policy options suggested in Jampersal socialization activities need Intersectoral Commitment:The Ministry of Home Affairs, Ministry of Religious Affairs, and BKKBN, followed by a clear and decisive political commitment. They need active partnerships of the midwives, TBAs and cadres in Jampersal socialization. Midwives in the health center level should be prohibited from private practice, but the total amount of compensation of midwife in helping delivery should be adjusted. Regulations are required and procedures should be set for Jamkesnas, Jamkesda, and Jampersal; They need regulation on cooperation between the health centers staffs and village chiefs to further reinforce ID requirement;The transportation cost to refferal unit; TBAs services (division of task and cost; Financial restrictions to cover by Jampersal on second or third delivery. Additionally need a regulation of reward and punishment for midwives,TBAs and cadres involvement in serving pregnancy and delivery. In village level, they need to establish regulation, that TbaS AND Cadres should write the pregnat women data at the board office of village chiefts. Lastly, MoU between head of district health center and midwife assosiation related to midwife understanding of cultural approaches and on

  8. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  9. Improving health service delivery organisational performance in health systems: a taxonomy of strategy areas and conceptual framework for strategy selection.

    Science.gov (United States)

    Pallas, Sarah W; Curry, Leslie; Bashyal, Chhitij; Berman, Peter; Bradley, Elizabeth H

    2012-03-01

    Health systems strengthening (HSS) is a priority for global health funders, policy-makers and practitioners. Although many HSS efforts have focused on policy levers such as financing approaches, payment schemes or regulatory reforms, less attention has been directed to targeting the organisations that deliver health services such as hospitals, health centres and clinics. Evidence suggests that the impact of organisation-level interventions varies by context; however, we lack a general framework for integrating organisational context into performance improvement strategies for health service delivery organisations. Drawing on open systems theories from organisational behaviour and management as well as a review of 181 empirical studies of health service delivery organisations in low- and middle-income countries, we propose a taxonomy of seven strategy areas for improving organisational performance as well as a multistage conceptual framework for selecting among them. We propose that the choice of strategy for improving health service delivery organisational performance should be informed by: (i) the root cause of the organisation's performance gap; (ii) the environmental conditions facing the organisation; and (iii) the implementation capability of the organisation. We also highlight conditions under which different strategy areas may be expected to be optimally effective. The approaches presented in this paper offer a way for health system decision-makers and researchers to systematically assess and incorporate organisational context in the process of developing strategies to improve the performance of health service delivery organisations and, ultimately, of health systems.

  10. CFTR-NHERF2-LPA2 Complex in the Airway and Gut Epithelia

    Directory of Open Access Journals (Sweden)

    Weiqiang Zhang

    2017-09-01

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is a cAMP- and cGMP-regulated chloride (Cl− and bicarbonate (HCO3− channel localized primarily at the apical plasma membrane of epithelial cells lining the airway, gut and exocrine glands, where it is responsible for transepithelial salt and water transport. Several human diseases are associated with altered CFTR channel function. Cystic fibrosis (CF is caused by the absence or dysfunction of CFTR channel activity, resulting from mutations in the gene. Secretory diarrhea is caused by the hyperactivation of CFTR channel activity in the gastrointestinal tract. CFTR is a validated target for drug development to treat CF, and extensive research has been conducted to develop CFTR inhibitors for therapeutic interventions of secretory diarrhea. The intracellular processing, trafficking, apical membrane localization, and channel function of CFTR are regulated by dynamic protein–protein interactions in a complex network. In this paper, we review the current knowledge of a macromolecular complex of CFTR, Na+/H+ exchanger regulatory factor 2 (NHERF2, and lysophosphatidic acids (LPA receptor 2 (LPA2 at the apical plasma membrane of airway and gut epithelial cells, and discuss its relevance in human physiology and diseases. We also explore the possibilities of targeting this complex to fine tune CFTR channel activity, with a hope to open up new avenues to develop novel therapies for CF and secretory diarrhea.

  11. RNA interference for CFTR attenuates lung fluid absorption at birth in rats

    Directory of Open Access Journals (Sweden)

    Folkesson Hans G

    2008-07-01

    Full Text Available Abstract Background Small interfering RNA (siRNA against αENaC (α-subunit of the epithelial Na channel and CFTR (cystic fibrosis transmembrane conductance regulator was used to explore ENaC and CTFR function in newborn rat lungs. Methods Twenty-four hours after trans-thoracic intrapulmonary (ttip injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2, we measured CFTR and ENaC expression, extravascular lung water, and mortality. Results αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein. Conclusion Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth.

  12. CFTR Controls the Activity of NF-κB by Enhancing the Degradation of TRADD

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2016-12-01

    Full Text Available Background/Aims: Chronic lung infection in cystic fibrosis leads to an inflammatory response that persists because of the chronic presence of bacteria and ultimately leads to a catastrophic failure of lung function. Methods: We use a combination of biochemistry, cell and molecular biology to study the interaction of TRADD, a key adaptor molecule in TNFα signaling, with CFTR in the regulation of NFκB. Results: We show that Wt CFTR binds to and colocalizes with TRADD. TRADD is a key signaling intermediate connecting TNFα with activation of NFκB. By contrast, ΔF508 CFTR does not bind to TRADD. NF-κB activation is higher in CFBE expressing ΔF508 CFTR than in cells expressing Wt CFTR. However, this differential effect is abolished when TRADD levels are knocked down. Transfecting Wt CFTR into CFBE cells reduces NF-κB activity. However the reduction is abolished by the CFTR chloride transport inhibitor-172. Consistently, transfecting in the correctly trafficked CFTR conduction mutants G551D or S341A also fail to reduce NFκB activity. Thus CFTR must be functional if it is to regulate NF-κB activity. We also found that TNFα produced a greater increase in NF-κB activity in CFBE cells than in the same cell when Wt CFTR-corrected. Consistently, the effect is also abolished when TRADD is knocked down by shRNA. Thus, Wt CFTR control of TRADD modulates the physiological activation of NF-κB by TNFα. Based on studies with proteosomal and lysosomal inhibitors, the mechanism by which Wt CFTR, but not ΔF508 CFTR, suppresses TRADD is by lysosomal degradation. Conclusion: We have uncovered a novel mechanism whereby Wt CFTR regulates TNFα signaling by enhancing TRADD degradation. Thus by reducing the levels of TRADD, Wt CFTR suppresses downstream proinflammatory NFκB signaling. By contrast, suppression of NF-κB activation fails in CF cells expressing ΔF508 CFTR.

  13. Synergy of cAMP and calcium signaling pathways in CFTR regulation.

    Science.gov (United States)

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P; Bear, Christine E; Forman-Kay, Julie D

    2017-03-14

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.

  14. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Science.gov (United States)

    Ebner, Andreas; Nikova, Dessy; Lange, Tobias; Häberle, Johannes; Falk, Sabine; Dübbers, Angelika; Bruns, Reimer; Hinterdorfer, Peter; Oberleithner, Hans; Schillers, Hermann

    2008-09-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  15. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis.

    Science.gov (United States)

    Mayer-Hamblett, Nicole; Boyle, Michael; VanDevanter, Donald

    2016-05-01

    Cystic fibrosis (CF) is a life-shortening genetic disease affecting approximately 70,000 individuals worldwide. Until recently, drug development efforts have emphasised therapies treating downstream signs and symptoms resulting from the underlying CF biological defect: reduced function of the CF transmembrane conductance regulator (CFTR) protein. The current CF drug development landscape has expanded to include therapies that enhance CFTR function by either restoring wild-type CFTR protein expression or increasing (modulating) the function of mutant CFTR proteins in cells. To date, two systemic small-molecule CFTR modulators have been evaluated in pivotal clinical trials in individuals with CF and specific mutant CFTR genotypes that have led to regulatory review and/or approval. Advances in the discovery of CFTR modulators as a promising new class of therapies have been impressive, yet work remains to develop highly effective, disease-modifying modulators for individuals of all CF genotypes. The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF.

  16. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Andreas; Hinterdorfer, Peter [Institute for Biophysics, University of Linz, A-4040 Linz (Austria); Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann [Institute of Physiology II, University of Muenster, D-48149 Muenster (Germany); Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika [Department of Pediatrics, University Hospitals of Muenster, D-48149 Muenster (Germany)], E-mail: schille@uni-muenster.de

    2008-09-24

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl{sup -}) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  17. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions.

    Science.gov (United States)

    Wong, Marty Kwok-Shing; Pipil, Supriya; Kato, Akira; Takei, Yoshio

    2016-09-01

    Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.

  18. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice.

    Directory of Open Access Journals (Sweden)

    Frank A J A Bodewes

    Full Text Available The cause of Cystic fibrosis liver disease (CFLD, is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobic bile salts, are related to the development CFLD. To test our hypothesis we studied, in Cftr-/- and control mice, bile production, bile composition and liver pathology, in normal feeding condition and during cholate exposure, either acute (intravenous or chronic (three weeks via the diet. In Cftr-/- and control mice the basal bile production was comparable. Intravenous taurocholate increased bile production to the same extent in Cftr-/- and control mice. However, chronic cholate exposure increased the bile flow significantly less in Cftr-/- mice than in controls, together with significantly higher biliary bile salt concentration in Cftr-/- mice. Prolonged cholate exposure, however, did not induce CFLD like pathology in Cftr-/- mice. Chronic cholate exposure did induce a significant increase in liver mass in controls that was absent in Cftr-/- mice. Chronic cholate administration induces a cystic fibrosis-specific hepatobiliary phenotype, including changes in bile composition. These changes could not be associated with CFLD like pathological changes in CF mouse livers. However, chronic cholate administration induces liver growth in controls that is absent in Cftr-/- mice. Our findings point to an impaired adaptive homeotrophic liver response to prolonged hydrophobic bile salt exposure in CF conditions.

  19. CFTR is involved in the regulation of glucagon secretion in human and rodent alpha cells.

    Science.gov (United States)

    Edlund, Anna; Pedersen, Morten Gram; Lindqvist, Andreas; Wierup, Nils; Flodström-Tullberg, Malin; Eliasson, Lena

    2017-12-01

    Glucagon is the main counterregulatory hormone in the body. Still, the mechanism involved in the regulation of glucagon secretion from pancreatic alpha cells remains elusive. Dysregulated glucagon secretion is common in patients with Cystic Fibrosis (CF) that develop CF related diabetes (CFRD). CF is caused by a mutation in the Cl(-) channel Cystic fibrosis transmembrane conductance regulator (CFTR), but whether CFTR is present in human alpha cells and regulate glucagon secretion has not been investigated in detail. Here, both human and mouse alpha cells showed CFTR protein expression, whereas CFTR was absent in somatostatin secreting delta cells. CFTR-current activity induced by cAMP was measured in single alpha cells. Glucagon secretion at different glucose levels and in the presence of forskolin was increased by CFTR-inhibition in human islets, whereas depolarization-induced glucagon secretion was unaffected. CFTR is suggested to mainly regulate the membrane potential through an intrinsic alpha cell effect, as supported by a mathematical model of alpha cell electrophysiology. In conclusion, CFTR channels are present in alpha cells and act as important negative regulators of cAMP-enhanced glucagon secretion through effects on alpha cell membrane potential. Our data support that loss-of-function mutations in CFTR contributes to dysregulated glucagon secretion in CFRD.

  20. The promise of multimedia technology for STI/HIV prevention: frameworks for understanding improved facilitator delivery and participant learning.

    Science.gov (United States)

    Khan, Maria R; Epperson, Matthew W; Gilbert, Louisa; Goddard, Dawn; Hunt, Timothy; Sarfo, Bright; El-Bassel, Nabila

    2012-10-01

    There is increasing excitement about multimedia sexually transmitted infection (STI) and HIV prevention interventions, yet there has been limited discussion of how use of multimedia technology may improve STI/HIV prevention efforts. The purpose of this paper is to describe the mechanisms through which multimedia technology may work to improve the delivery and uptake of intervention material. We present conceptual frameworks describing how multimedia technology may improve intervention delivery by increasing standardization and fidelity to the intervention material and the participant's ability to learn by improving attention, cognition, emotional engagement, skills-building, and uptake of sensitive material about sexual and drug risks. In addition, we describe how the non-multimedia behavioral STI/HIV prevention intervention, Project WORTH, was adapted into a multimedia format for women involved in the criminal justice system and provide examples of how multimedia activities can more effectively target key mediators of behavioral change in this intervention.

  1. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion.

    Science.gov (United States)

    Cossu, Irene; Bottoni, Gianluca; Loi, Monica; Emionite, Laura; Bartolini, Alice; Di Paolo, Daniela; Brignole, Chiara; Piaggio, Francesca; Perri, Patrizia; Sacchi, Angelina; Curnis, Flavio; Gagliani, Maria Cristina; Bruno, Silvia; Marini, Cecilia; Gori, Alessandro; Longhi, Renato; Murgia, Daniele; Sementa, Angela Rita; Cilli, Michele; Tacchetti, Carlo; Corti, Angelo; Sambuceti, Gianmario; Marchiò, Serena; Ponzoni, Mirco; Pastorino, Fabio

    2015-11-01

    Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.

  2. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-05-01

    Full Text Available Huperzine A (Hup-A is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion (SPIP technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve (AUC of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension (P<0.01. The absorption rate constant (Ka and the apparent permeability coefficient (Papp for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of Ka and Papp of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration (Cmax of the blocking model were significantly lower than those of the control model (P<0.05. The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%, respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.

  3. Recent Advances in Platinum (IV) Complex-Based Delivery Systems to Improve Platinum (II) Anticancer Therapy.

    Science.gov (United States)

    Han, Xiaopeng; Sun, Jin; Wang, Yongjun; He, Zhonggui

    2015-11-01

    Cisplatin and its platinum (Pt) (II) derivatives play a key role in the fight against various human cancers such as testicular, ovarian, head and neck, lung tumors. However, their application in clinic is limited due to dose- dependent toxicities and acquired drug resistances, which have prompted extensive research effort toward the development of more effective Pt (II) delivery strategies. The synthesis of Pt (IV) complex is one such an area of intense research fields, which involves their in vivo conversion into active Pt (II) molecules under the reducing intracellular environment, and has demonstrated encouraging preclinical and clinical outcomes. Compared with Pt (II) complexes, Pt (IV) complexes not only exhibit an increased stability and reduced side effects, but also facilitate the intravenous-to-oral switch in cancer chemotherapy. The overview briefly analyzes statuses of Pt (II) complex that are in clinical use, and then focuses on the development of Pt (IV) complexes. Finally, recent advances in Pt (IV) complexes in combination with nanocarriers are highlighted, addressing the shortcomings of Pt (IV) complexes, such as their instability in blood and irreversibly binding to plasma proteins and nonspecific distribution, and taking advantage of passive and active targeting effect to improve Pt (II) anticancer therapy. © 2015 Wiley Periodicals, Inc.

  4. Improving Delivery of Construction Projects in Ghana’s Cities: A Lean Construction Approach

    Directory of Open Access Journals (Sweden)

    Emmanuel Kwaku Salifu-Asubay

    2015-01-01

    Full Text Available The construction industry plays a vital role in the physical and socio-economic development of cities. However, poor execution and frequent breakdown of construction works such as roads and houses obstruct the overall development of cities since most social and economic activities depend of these projects. This paper sought to assess the extent to which lean construction principles are utilised in construction activities in Ghana’s cities and ways that these principles can be applied effectively to improve the delivery of construction works. The study concentrated in Accra, Kumasi and Sekondi-Takoradi cities whilst officials from the Metro Works Departments of the selected cities and various construction professionals constituted the target population. Questionnaire was the research instrument employed and Spearman Rank Correlation Coefficient Test was used to analyse the results. It was revealed that various lean construction principles such as value, value stream, flow, pull and perfection are poorly implemented with each of these principles having less than 50 percent rate of application. Barriers such as long lead time, poor procurement system and contracts, cultural and human factors, political influence, and lack of financial and management commitment were found to be responsible for that. To successfully apply the lean construction principles and enhance the sustainability of construction projects, measures such as benchmarking, process mapping, last planner procedures and continuous training of workers in the construction industry have been recommended.

  5. A comparative study on the nanoparticles for improved drug delivery systems.

    Science.gov (United States)

    Mahmoodi, Nosrat O; Ghavidast, Atefeh; Amirmahani, Najmeh

    2016-09-01

    Nanoparticles have attracted considerable recent interest for diverse biomedical applications because of the unique properties of the nanomaterials. It is already known that one of the major advances in the relative application of nanoparticles is the recognition of the steric stabilization which can increase the particle stability in the biological environment and provide the opportunities of the application of nanoparticles in the development of drug delivery systems (DDSs) for achieving drug targeting and controlled drug release. To facilitate their use in such applications, the appropriate design of surface ligands on these nanoparticles is necessary. In view of these, functionalized nanoparticles through surface modification can be utilized to specifically interact with the target molecules on the cell membrane or intracellular ones. This review briefly presents self-assembled nanoparticles with molecules of therapeutic significance with two strategies. The first strategy attempts to improve the placement of the drugs using conjugating the appropriate ligands or adding targeting moieties to the DDS. The second strategy utilizes trigger-controlled drug-release, which restricts drug release at the targeted site to kill cancer cells by externally controlled mechanisms. Among external stimulations, conveniently light has attracted much interest because it, as an orthogonal external stimulus, gives spatiotemporal control of payload release.

  6. Systematic Development of Self-Emulsifying Drug Delivery Systems of Atorvastatin with Improved Bioavailability Potential

    Science.gov (United States)

    Khan, Fariba; Islam, Md. Saiful; Roni, Monzurul Amin; Jalil, Reza-Ul

    2012-01-01

    The aim of this study was to prepare and characterize a self-emulsifying drug delivery system (SEDDS) with a high drug load of poorly water-soluble atorvastatin for the enhancement of dissolution and oral bioavailability. Solubility of atorvastatin in oil, surfactant, and cosurfactant was determined. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations. A high drug load (10% w/w) was achieved with a combination of oleic acid, Tween 80, and polyethylene glycol 400, ensuring the maximum dissolution property (in the case of SES6). Effects of lipids and surfactants on physical properties of SEDDS such as in vitro emulsification efficiency in terms of self-emulsification time, emulsion droplet size, and percent transmittance were measured. Multiple regression analysis revealed that a higher amount of surfactants significantly increased dissolution of ATV while decreasing emulsion droplet size and emulsification time. About a four-fold increase in dissolution was achieved by SEDDS compared to pure ATV powder. Overall, this study suggests that dissolution and oral bioavailability of ATV could be improved by SEDDS technology. PMID:23264948

  7. Linking outcomes management and practice improvement. Structured care methodologies: evolution and use in patient care delivery.

    Science.gov (United States)

    Cole, L; Houston, S

    1999-01-01

    Structured care methodologies are tools that provide a comprehensive approach to patient care delivery. These tools have evolved in their application and purpose over the years. In many situations, multiple tools are needed to obtain the best outcomes for a patient. The presence of a SCM does not preclude clinical judgment. On the contrary, the fundamental purpose of any SCM is to assist practitioners in implementing practice patterns associated with good clinical judgment, research-based interventions, and improved patient outcomes. These tools support smooth operation and appropriate use of resources, establish a means of patient management across the continuum of care, facilitate collaboration among disciplines, reflect patient outcomes, and provide outcomes data. Data from SCMs permit benchmarking, comparison of pre-implementation and post-implementation outcomes, development of action plans for quality enhancement, identification of high-risk patients, identification of issues and problems in the system that require interventions, and the development of research protocols and studies. Structured care methodology development and implementation can be challenging, rewarding, and at times frustrating. When used appropriately, these tools can have a major impact on the standardization of care and the achievement of desired outcomes. However, individual patient needs may supersede adherence to a tool. The challenge then becomes one of balancing the unique needs of each patient and appropriate use of SCMs. Change comes slowly, but persistence pays off.

  8. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib.

    Science.gov (United States)

    Bragagni, Marco; Mennini, Natascia; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola

    2012-01-01

    Topical administration of celecoxib proved to be an effective mean of preventing skin cancer development and improving anticancer drugs effectiveness in skin tumors treatment. The aim of this study was the development of an effective topical formulation of celecoxib, able to promote drug skin delivery, providing its in depth penetration through the skin layers. Three kinds of vesicular formulations have been investigated as drug carriers: liposomes containing a surfactant, or transfersomes and ethosomes, containing suitable edge activators. Firstly, the effect of membrane composition variations on the system performance has been evaluated for each vesicle type. Selected formulations were characterized for particle size, polydispersity index and encapsulation efficiency. The best formulations were subjected to ex vivo permeation studies through excised human skin. All vesicular formulations markedly (p ethosomes, respectively. In particular, ethosomes containing Tween 20 as edge activator not only showed the best vesicle dimensions and homogeneity, and the highest encapsulation efficacy (54.4%), but also enabled the highest increase in drug penetration through the skin, probably due to the simultaneous presence in their composition of ethanol and Tween 20, both acting as permeation enhancers. Therefore, among the various vesicular formulations examined in the study, Tween 20-ethosomes can be considered the most promising one as carrier for topical celecoxib applications aimed to prevent skin cancer development and increase the anticancer drugs effectiveness against skin tumors.

  9. Evaluation of a continuous improvement programme of enhanced recovery after caesarean delivery under neuraxial anaesthesia.

    Science.gov (United States)

    Deniau, Benjamin; Bouhadjari, Nacima; Faitot, Valentina; Mortazavi, Antoine; Kayem, Gilles; Mandelbrot, Laurent; Keita, Hawa

    2016-12-01

    To assess the performance of a multidisciplinary programme for enhanced recovery after caesarean delivery under neuraxial anaesthesia. Prospective single-centre study. Programme in 6 steps including 3 professional practice audits based on clinical records and questioning patients: audit T0, first "existing state", creation of a working group, drafting and implementation of a multidisciplinary rehabilitation procedure, second audit (T0+4 months), information about and implementation of corrective measures and a third audit (T0+8 months). Assessment of the performance of the continuous improvement programmes based on six measures comprising the post-caesarean rehabilitation score: duration infusion, early oral analgesia, time to removal of the urinary catheter, time to return to drinking, eating recovery time, use of carbetocin. Two hundred and thirty-one patients were included, with 45, 64 and 122 patients at T0, T0+4 months and T0+8 months, respectively. There was a significant increase in patients who received the recovery measures (P<0.0001 for all items) between T0 and T0+8 months: removal of the infusion before 24h (49% versus 93.5%), drinking before 6h (31% versus 55%), eating before 6h (2% versus 38.5%), early oral analgesia before 24h (38% versus 95%), withdrawal of the urinary catheter before 24h (80% versus 95%), use of carbetocin (0% versus 99%). Improved practices in rehabilitation after caesarean can be obtained by setting up a multidisciplinary programme as part of a quality approach. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  10. Isoxazolopyrimidines as Novel ΔF508-CFTR Correctors.

    Science.gov (United States)

    Yu, Gui Jun; Yang, Baoxue; Verkman, A S; Kurth, Mark J

    2010-04-01

    Using a cell-based high-throughput screen, we identified isoxazolo[5,4-d]pyrimidines as novel small-molecule correctors of the cystic fibrosis mutant protein ΔF508-CFTR. 22 Isoxazolo[5,4-d]pyrimidine analogues were synthesized and tested. Synthesis of the key intermediate, 5-amino-3-arylisoxazole-4-carboxamide, was accomplished by nitrile oxide cycloaddition to (2-amino-1-cyano-2-oxoethyl)sodium. Formation of 3-arylisoxazolo-[5,4-d]pyrimidin-4(5H)-one and chlorination gave 4-chloro-3-arylisoxazolo[5,4-d]pyrimidine. Finally, functionalization at C-4 of the pyrimidine ring by nucleophilic substitution gave the targeted isoxazolo[5,4-d]pyrimidines. Six of the reported analogues had low micromolar potency for increasing halide transport in ΔF508-CFTR cells.

  11. Topical iontophoretic delivery of ionizable, biolabile aciclovir prodrugs: A rational approach to improve cutaneous bioavailability.

    Science.gov (United States)

    Chen, Yong; Alberti, Ingo; Kalia, Yogeshvar N

    2016-02-01

    The objective was to investigate the topical iontophoretic delivery of a series of amino acid ester prodrugs of aciclovir (ACV-X, where ACV=aciclovir and X=Arg, Gly, Ile, Phe, Trp and Val) as a means to enhance cutaneous delivery of ACV. The newly synthesized prodrugs were characterized by (1)H NMR and high resolution mass spectrometry. Analytical methods using HPLC-UV were developed for their quantification and each method was validated. Investigation of solution stability as a function of pH showed that all ACV-X prodrugs were relatively stable in acid conditions at pH 2.0 and pH 5.5 for up to 8h but susceptible to extensive hydrolysis at pH 7.4 and under alkaline conditions (pH 10). No ACV-X hydrolysis was observed after contact for 2h with the external surface of porcine stratum corneum. However, there was significant hydrolysis following contact with the dermal surface of dermatomed porcine skin, in particular, for ACV-Arg. Passive transport of ACV and ACV-X prodrugs from aqueous solution after 2h was below the limit of detection. Iontophoresis of ACV at 0.5 mA/cm(2) for 2h led to modest ACV skin deposition (QDEP,ACV) of 4.6 ± 0.3 nmol/cm(2). In contrast, iontophoresis of ACV-X prodrugs under the same conditions produced order of magnitude increases in cutaneous deposition of ACV species, that is, QDEP,TOTAL=QDEP,ACV+QDEP,ACV-X. QDEP,TOTAL for ACV-Gly, ACV-Val, ACV-Ile, ACV-Phe, ACV-Trp and ACV-Arg was 412.8 ± 44.0, 358.8 ± 66.8, 434.1 ± 68.2, 249.8 ± 81.4, 156.1 ± 76.3, 785.9 ± 78.1 nmol/cm(2), respectively. The extent of bioconversion of ACV-X to ACV in the skin was high and the proportion of ACV present ranged from 81% to 100%. The skin retention ratio, a measure of the selectivity of ACV species for deposition over permeation after iontophoretic delivery of ACV-X prodrugs, was dependent on both the rate of transport and the susceptibility to hydrolysis of the prodrugs. Skin deposition of ACV and its six prodrugs were investigated further as a

  12. Mechanisms of CFTR folding at the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2012-12-01

    Full Text Available In the past decade much has been learned about how CFTR folds and misfolds as the etiologic cause of cystic fibrosis (CF. CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries. Insertion of transmembrane (TM segments into the endoplasmic reticulum (ER membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure. Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding. While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jigsaw puzzle wherein the structure of each interlocking piece influences its neighbors. Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane. While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s caused by ∆F508 that provides a molecular target(s for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.

  13. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    Science.gov (United States)

    Klein, Hélène; Abu-Arish, Asmahan; Trinh, Nguyen Thu Ngan; Luo, Yishan; Wiseman, Paul W; Hanrahan, John W; Brochiero, Emmanuelle; Sauvé, Rémy

    2016-01-01

    In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on

  14. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator.

    Science.gov (United States)

    Tripathi, Rashmi; Benz, Nathalie; Culleton, Bridget; Trouvé, Pascal; Férec, Claude

    2014-01-01

    The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is

  15. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    Science.gov (United States)

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  16. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    Science.gov (United States)

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  17. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator.

    Directory of Open Access Journals (Sweden)

    Rashmi Tripathi

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs. We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with

  18. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9.

    Science.gov (United States)

    Bertrand, Carol A; Mitra, Shalini; Mishra, Sanjay K; Wang, Xiaohui; Zhao, Yu; Pilewski, Joseph M; Madden, Dean R; Frizzell, Raymond A

    2017-03-30

    Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. This association is thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia. However, it's unclear which PDZ-domain protein(s) interact with SLC26A9, a SLC26A family member found in airway epithelia. We have previously shown that primary, human bronchial epithelia (HBE) from non-CF donors exhibit constitutive anion secretion attributable to SLC26A9. However, constitutive anion secretion is absent in HBE from CF donors. We examined whether changes in SLC26A9 constitutive activity could be attributed to a loss of CFTR trafficking, and what role PDZ interactions played. HEK293 co-expressing SLC26A9 with the trafficking mutant F508del CFTR exhibited a significant reduction in constitutive current compared to cells co-expressing SLC26A9 and wt CFTR. We found that SLC26A9 exhibits complex glycosylation when co-expressed with F508del CFTR, but its expression at the plasma membrane is decreased. SLC26A9 interacted with both NHERF-1 and CAL, and its interaction with both significantly increased with co-expression of wt CFTR. However, co-expression with F508del CFTR only increased SLC26A9's interaction with CAL. Mutation of SLC26A9's PDZ motif decreased this association with CAL, and restored its constitutive activity. Correcting aberrant F508del CFTR trafficking in CF HBE with corrector VX-809 also restored SLC26A9 activity. We conclude that when SLC26A9 is co-expressed with F508del CFTR, its trafficking defect leads to a PDZ motif-sensitive intracellular retention of SLC26A9.

  19. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Sunny Yang XIANG; Linda L YE; LI-lu Marie DUAN; Li-hui LIU; Zhi-dong GE; John A AUCHAMPACH; Garrett J GROSS; Dayue Darrel DUAN

    2011-01-01

    Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postcondtioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.Methods: CFTR knockout (CFTR-/-) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used.In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4%±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4%±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR-/-) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTRgene abolished the protective effects of IPC against I/R-induced apoptosis.Conclusion: These results provide compelling evidence for a critical role for CFTR Cl- channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.

  20. Simple image-based no-wash method for quantitative detection of surface expressed CFTR.

    Science.gov (United States)

    Larsen, Mads Breum; Hu, Jennifer; Frizzell, Raymond A; Watkins, Simon C

    2016-03-01

    Cystic fibrosis (CF) is the most common lethal genetic disease among Caucasians. It is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, which encodes an apical membrane anion channel that is required for regulating the volume and composition of epithelial secretions. The most common CFTR mutation, present on at least one allele in >90% of CF patients, deletes phenylalanine at position 508 (F508del), which causes the protein to misfold. Endoplasmic reticulum (ER) quality control elicits the degradation of mutant CFTR, compromising its trafficking to the epithelial cell apical membrane. The absence of functional CFTR leads to depletion of airway surface liquid, impaired clearance of mucus and bacteria from the lung, and predisposes to recurrent infections. Ultimately, respiratory failure results from inflammation and bronchiectasis. Although high throughput screening has identified small molecules that can restore the anion transport function of F508del CFTR, they correct less than 15% of WT CFTR activity, yielding insufficient clinical benefit. To date, most primary CF drug discovery assays have employed measurements of CFTR's anion transport function, a method that depends on the recruitment of a functional CFTR to the cell surface, involves multiple wash steps, and relies on a signal that saturates rapidly. Screening efforts have also included assays for detection of extracellularly HA-tagged or HRP-tagged CFTR, which require multiple washing steps. We have recently developed tools and cell lines that report the correction of mutant CFTR trafficking by currently available small molecules, and have extended this assay to the 96-well format. This new and simple no-wash assay of F508del CFTR at the cell surface may permit the discovery of more efficacious drugs, and hopefully thereby prevent the catastrophic effects of this disease. In addition, the modular design of this platform should make it useful for other diseases where loss

  1. Improving drug delivery strategies for lymphatic filariasis elimination in urban areas in Ghana.

    Directory of Open Access Journals (Sweden)

    Nana-Kwadwo Biritwum

    2017-05-01

    Full Text Available The Global Program to Eliminate Lymphatic Filariasis (GPELF advocates for the treatment of entire endemic communities, in order to achieve its elimination targets. LF is predominantly a rural disease, and achieving the required treatment coverage in these areas is much easier compared to urban areas that are more complex. In Ghana, parts of the Greater Accra Region with Accra as the capital city are also endemic for LF. Mass Drug Administration (MDA in Accra started in 2006. However, after four years of treatment, the coverage has always been far below the 65% epidemiologic coverage for interrupting transmission. As such, there was a need to identify the reasons for poor treatment coverage and design specific strategies to improve the delivery of MDA. This study therefore set out to identify the opportunities and barriers for implementing MDA in urban settings, and to develop appropriate strategies for MDA in these settings. An experimental, exploratory study was undertaken in three districts in the Greater Accra region. The study identified various types of non-rural settings, the social structures, stakeholders and resources that could be employed for MDA. Qualitative assessment such as in-depth interviews (IDIs and focus group discussions (FGDs with community leaders, community members, health providers, NGOs and other stakeholders in the community was undertaken. The study was carried out in three phases: pre-intervention, intervention and post-intervention phases, to assess the profile of the urban areas and identify reasons for poor treatment coverage using both qualitative and quantitative research methods. The outcomes from the study revealed that, knowledge, attitudes and practices of community members to MDA improved slightly from the pre-intervention phase to the post-intervention phase, in the districts where the interventions were readily implemented by health workers. Many factors such as adequate leadership, funding, planning and

  2. DOPC-Detergent Conjugates: Fusogenic Carriers for Improved In Vitro and In Vivo Gene Delivery.

    Science.gov (United States)

    Pierrat, Philippe; Casset, Anne; Kereselidze, Dimitri; Lux, Marie; Pons, Françoise; Lebeau, Luc

    2016-07-01

    Phospholipid-detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined. Their DNA delivery efficiency and cytotoxicity are assessed in vitro. Lipoplexes are administered in the mouse lung, and transgene expression Indeterminate inflammatory activity are measured. The results show that conjugation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with C12 E4 produces a carrier that can efficiently deliver DNA to cells, with negligible -associated toxicity. Fusogenicity of the conjugates shows good correlation with in vitro transfection efficiency and crucially depends on the length of the polyether moiety of the detergent. Finally, DOPC-C12 E4 reveals highly potent for in vivo DNA delivery and favorably compares to GL67A, the current golden standard for gene delivery to the airway, opening the way for further promising developments.

  3. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    Science.gov (United States)

    Miao, Jing; Du, Yongzhong; Yuan, Hong; Zhang, Xingguo; Li, Qian; Rao, Yuefeng; Zhao, Mengdan; Hu, Fuqiang

    2015-01-01

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC50) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL-1, respectively, while the IC50 of TaxolTM was 1.72 ± 0.09 µg mL-1. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  4. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin.

    Science.gov (United States)

    Khdair, Ayman; Hamad, Islam; Alkhatib, Hatim; Bustanji, Yasser; Mohammad, Mohammad; Tayem, Rabab; Aiedeh, Khaled

    2016-10-10

    The efficacy of most anticancer drugs is highly limited in vivo due mainly to poor pharmacokinetics behavior including poor bioavailability after extravascular administration. We have developed novel chitosan-modified polymeric nanoparticles for oral as well as i.v. administration. Nanoparticles were developed utilizing the double emulsion solvent evaporation technique for sustained delivery of various anticancer drugs. Chitosan diacetate (CDA) and chitosan triacetate (CTA) polymers were previously modified in our laboratory and used as novel matrix. Nanoparticles, loaded with various anticancer drugs, were characterized for particle size using dynamic light scattering as well as transmission electron microscopy and net surface charge using dynamic light scattering. Particles size was below 100nm in diameter and zeta potential ranged - (25-30). Encapsulation efficiency of anticancer drugs varied considerably and was dependent on the physicochemical characteristics of the encapsulated drug. However, chitosan triacetate nanoparticles showed relatively higher encapsulation efficiency than chitosan diacetate nanoparticles. In vitro release of encapsulated drugs was sustained over a period of 14days. Nanoparticles enhanced cellular accumulation of encapsulated drugs, compared to the free drugs, in vitro in MCF-7 and Caco-II tumor cell lines. In conclusion, diacetate and triacetate chitosan are novel polymers that can be used to formulate nanoparticles which efficiently encapsulated anticancer drugs, and sustained the release and enhanced tumor cellular uptake of these drugs. Further, chitosan triacetate nanoparticles enhanced oral bioavailability of doxorubicin. CDA and CTA nanoparticles can be used to efficiently deliver anticancer drugs and improve their in vivo profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia.

    Directory of Open Access Journals (Sweden)

    Wen Ming Xu

    Full Text Available Cystic fibrosis (CF is the most common life-limiting recessive genetic disease among Caucasians caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR with over 95% male patients infertile. However, whether CFTR mutations could affect spermatogenesis and result in azoospermia remains an open question. Here we report compromised spermatogenesis, with significantly reduced testicular weight and sperm count, and decreased cAMP-responsive element binding protein (CREB expression in the testes of CFTR knockout mice. The involvement of CFTR in HCO(3 (- transport and the expression of the HCO(3 (- sensor, soluble adenylyl cyclase (sAC, are demonstrated for the first time in the primary culture of rat Sertoli cells. Inhibition of CFTR or depletion of HCO(3 (- could reduce FSH-stimulated, sAC-dependent cAMP production and phosphorylation of CREB, the key transcription factor in spermatogenesis. Decreased CFTR and CREB expression are also observed in human testes with azoospermia. The present study reveals a previously undefined role of CFTR and sAC in regulating the cAMP-CREB signaling pathway in Sertoli cells, defect of which may result in impaired spermatogenesis and azoospermia. Altered CFTR-sAC-cAMP-CREB functional loop may also underline the pathogenesis of various CF-related diseases.

  6. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis

    NARCIS (Netherlands)

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-01-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intesti

  7. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer.

    Science.gov (United States)

    Sun, Ting Ting; Wang, Yan; Cheng, Hong; Xiao, Hu Zhang; Xiang, Juan Juan; Zhang, Jie Ting; Yu, Siu Bun Sydney; Martin, Tracey Amanda; Ye, Lin; Tsang, Lai Ling; Jiang, Wen Guo; Xiaohua, Jiang; Chan, Hsiao Chang

    2014-03-01

    How mutations or dysfunction of CFTR may increase the risk of malignancies in various tissues remains an open question. Here we report the interaction between CFTR and an adherens junction molecule, AF-6/afadin, and its involvement in the development of colon cancer. We have found that CFTR and AF-6/afadin are co-localized at the cell-cell contacts and physically interact with each other in colon cancer cell lines. Knockdown of CFTR results in reduced epithelial tightness and enhanced malignancies, with increased degradation and reduced stability of AF-6/afadin protein. The enhanced invasive phenotype of CFTR-knockdown cells can be completely reversed by either AF-6/afadin over-expression or ERK inhibitor, indicating the involvement of AF-6/MAPK pathway. More interestingly, the expression levels of CFTR and AF-6/afadin are significantly downregulated in human colon cancer tissues and lower expression of CFTR and/or AF-6/afadin is correlated with poor prognosis of colon cancer patients. The present study has revealed a previously unrecognized interaction between CFTR and AF-6/afadin that is involved in the pathogenesis of colon cancer and indicated the potential of the two as novel markers of metastasis and prognostic predictors for human colon cancer.

  8. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins.

    Science.gov (United States)

    Gee, Heon Yung; Kim, Joo Young; Lee, Min Goo

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic transmembrane protein that functions as a cAMP-activated anion channel at the apical membrane of epithelial cells. Mutations in CFTR cause cystic fibrosis and are also associated with monosymptomatic diseases in the lung, pancreas, intestines, and vas deferens. Many disease-causing CFTR mutations, including the deletion of a single phenylalanine residue at position 508 (ΔF508-CFTR), result in protein misfolding and trafficking defects. Therefore, intracellular trafficking of wild-type and mutant CFTR has been studied extensively, and results from these studies significantly contribute to our general understanding of mechanisms involved in the cell-surface trafficking of membrane proteins. CFTR is a glycoprotein that undergoes complex N-glycosylation as it passes through Golgi-mediated conventional exocytosis. Interestingly, results from recent studies revealed that CFTR and other membrane proteins can reach the plasma membrane via an unconventional alternative route that bypasses Golgi in specific cellular conditions. Here, we describe methods that have been used to investigate the conventional and unconventional surface trafficking of CFTR. With appropriate modifications, the protocols described in this chapter can also be applied to studies investigating the intracellular trafficking of other plasma membrane proteins.

  9. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.

    Science.gov (United States)

    Corradi, Valentina; Vergani, Paola; Tieleman, D Peter

    2015-09-18

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.

  10. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    Science.gov (United States)

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  11. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.

    Science.gov (United States)

    Yang, Shuang; Yu, B O; Sui, Yujie; Zhang, Yaofang; Wang, Xue; Hou, Shuguang; Ma, Tonghui; Yang, Hong

    2013-09-01

    The naturally occurring polyphenol compound resveratrol (RES) has been receiving wide attention because of its variety of health benefits and favourable biological activities. Previous studies have shown that RES could induce intestinal chloride secretion in mouse jejunum and stimulate cAMP-dependent Cl- secretion in T84, primary cultured murine nasal septal and human sinonasal epithelial cells, but the precise molecular target is not clear. We therefore tested the hypothesis that RES may stimulate the activity of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Using cell-based fluorescent assays, transepithelial short-circuit current measurements and excised inside-out patch-clamp analysis; we found that RES dose-dependently potentiate CFTR Cl- channel activities, which was reversed by CFTR inhibitors CFTR(inh)-172 and GlyH101. Transepithelial Cl- secretion by CFTR-expressing FRT cells was stimulated by RES with half maximal concentration -80 microM. Intracellular cAMP content was not elevated by RES in FRT cells. Excised inside-out patch-clamp analysis indicated that RES significantly increased the chloride currents of CFTR. In ex vivo studies, RES stimulated the transmucosal chloride current of rat colon by short-circuit current assay. These data suggested that CFTR is a molecular target of RES. Our findings add a new molecular target to RES, and RES may represent a novel class of therapeutic lead compounds in treating CFTR-related diseases including CF and habitual constipation.

  12. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice.

    Directory of Open Access Journals (Sweden)

    Hang Pong Ng

    Full Text Available Cystic fibrosis (CF is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr-/- mice and the non-inactivated control (Cftrfl10 mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr-/- lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection.

  13. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  14. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids

    NARCIS (Netherlands)

    Dekkers, Johanna F; Gogorza Gondra, Ricardo A; Kruisselbrink, Evelien; Vonk, Annelotte M; Janssens, Hettie M; de Winter-de Groot, Karin M; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-01-01

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508d

  15. Home grocery delivery improves the household food environments of behavioral weight loss participants: Results of an 8-week pilot study

    Directory of Open Access Journals (Sweden)

    Niemeier Heather M

    2007-11-01

    Full Text Available Abstract Background Household food availability is consistently linked to dietary intake; yet behavioral weight control treatment includes only minimal instruction on how to change the home environment to support dietary goals. This pilot study examined whether it is feasible to change the household food environments of behavioral weight loss participants through the use of a commercially available grocery home delivery service. Methods Overweight participants (N = 28; BMI = 31.7 ± 3.6 kg/m2; 89.3% women, 47.9 ± 9.5 years were randomly assigned to 8-weeks of standard behavioral weight loss (SBT or to SBT plus home food delivery (SBT+Home. SBT+Home participants were instructed to do their household grocery shopping via an online service affiliated with a regional supermarket chain and were reimbursed for delivery charges. Results Compared to SBT, SBT+Home produced significantly greater reductions in the total number of foods in the home (p = .01 and number of foods that were high in fat (p = .002. While the groups did not differ in 8-week weight losses, within SBT+Home there was a trend for the number of home deliveries to be associated with weight loss (p = .08. Participants reported that the home delivery service was easy to use and that it helped decrease impulse purchases and lead to healthier choices; however, few planned to continue using the service after the study. Conclusion Encouraging weight loss participants to use a commercially available online grocery ordering and home delivery service reduces the overall number of food items in the home and decreases access to high-fat food choices. More research is needed to determine whether this is a viable strategy to strengthen stimulus control and improve weight loss outcomes.

  16. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  17. National Initiatives to Improve Healthcare Outcomes: A Comparative Study of Health Delivery Systems in Slovakia and the United States.

    Science.gov (United States)

    Curtis, Robert; Caplanova, Anetta; Novak, Marcel

    2015-01-01

    While the United States and Slovakia offer different healthcare delivery systems, each country faces the same challenges of improving the health status of their populations. The authors explore the impact of their respective systems on the health of their populations and compare the health outcomes of both nations. They point out that socioeconomic factors play a far more important role in determining population health outcomes than do the structures of the systems surrounding the care delivery. The authors illustrate this finding through a comparison of the poverty and education levels of a selected minority group from each country in relation to the health outcomes for each population group. The comparison reveals that education is a more influential determinant in a population's health outcomes, than the improved access to care offered by a universal system.

  18. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca(2+)-activated Cl(-) channel activity to maintain contraction rate.

    Science.gov (United States)

    Sellers, Zachary M; De Arcangelis, Vania; Xiang, Yang; Best, Philip M

    2010-07-01

    The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular ([Ca(2+)](i)) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTR(inh)-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyocytes activated L-type Ca(2+) channels, leading to a transient increase of [Ca(2+)](i) and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and Ca(2+)-activated Cl(-) channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTR(inh)-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease.

  19. The secret life of CFTR as a calcium-activated chloride channel.

    Science.gov (United States)

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.

  20. Involvement of CFTR in Uterine Bicarbonate Secretion and the Fertilizing Capacity of Sperm

    Institute of Scientific and Technical Information of China (English)

    WangXiao,Fei; ZhouChen-Xi; ShiQi-Xian; YuanYu-Ying; YuMei-Kuen; LouisChukwuemekaAjonuma

    2005-01-01

    Cystic fibrosis transmembrane conductance regulator (CFFR)is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells,mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis(CF).Although CFTR has been implicated in bicarbonate secretion,its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown.We demonstrate here that endometriaI epithelial ceils possess a CFTR-mediated bicarbonate transport mechanism.Co-culture of sperm with endometrial ceils treated with antisense oligonucleotide against CFTR,or with bicarbonate secretion-defective CF epithelial cells,resulted in lower sperm capacitation and egg-fertilizing ability.These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm,providing a link between defective CFTR and lower female fertility in CF.

  1. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.

    2002-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex pattern of expression, with temporal and spatial regulation that is not accounted for by elements in the promoter. One approach to identifying the regulatory elements for CFTR is the mapping of DNase I...... hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer....../reporter constructs containing the DHS regions showed that those in introns 20 and 21 augmented the activity of the CFTR promoter. Structural analysis of the DNA sequence at the DHS suggested that only the one intron 21 might be caused by inherent DNA structures. Cell specificity of the DHS suggested a role...

  2. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO 0.9 when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5% due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein.

  3. Towards comprehensive early abortion service delivery in high income countries: insights for improving universal access to abortion in Australia

    OpenAIRE

    2016-01-01

    Background Improving access to safe abortion is an essential strategy in the provision of universal access to reproductive health care. Australians are largely supportive of the provision of abortion and its decriminalization. However, the lack of data and the complex legal and service delivery situation impacts upon access for women seeking an early termination of pregnancy. There are no systematic reviews from a health services perspective to help direct health planners and policy makers to...

  4. A Study to Assess the Role of Educational Intervention in Improving the Delivery of Routine Immunization Services

    Directory of Open Access Journals (Sweden)

    Bhatia M

    2015-10-01

    Full Text Available Background: Immunization has been regarded as the most cost-effective intervention for child health promotion. Even after improvements, the developing countries are still struggling with low coverage rates, immunization failure, high rates of adverse events following immunization (AEFI etc. The present study was conducted to assess the role of educational intervention in improving immunization delivery services. Methodology: It was a pre-post intervention observational study carried out in immunization clinics of two tertiary care hospitals. The data from pre and post educational intervention assessment was compared and analyzed using SPSS 10.0. Results: At both clinics there was 40% and 45% increase in cleaning of the spoon used for administration of vitamin A. Post-intervention there was 40% increase in use of hub cutter at both the centres. After intervention, there was 30% and 35% increase in the delivery of four key messages by staff nurse. Conclusion: Unlike Doctors, the health staff is not motivated for regular touch with the theory part of their work field and continued knowledge up-gradation. This strategy of periodic re-orientation of the topic in the form of educational intervention may help in improving service delivery to the beneficiaries. Further research is required in this aspect.

  5. Improved percutaneous delivery of some NSAIDs for the treatment of arthritis

    Directory of Open Access Journals (Sweden)

    Rushabh Thosani

    2012-01-01

    Full Text Available Arthritis is a heterogeneous group of conditions that leads to joint symptoms and signs which are associated with defective integrity of articular cartilage. Major classes of drugs which are widely used for the treatment of arthritis are Non-Steroidal Anti-inflammatory Drugs (NSAIDs. Development of an efficient means of percutaneous delivery can increase drug concentration in local soft-tissues and joints while reducing the systemic distribution of a drug and its side effects. The present work is aimed at synthesisand evaluation of prodrugs of some NSAIDs for percutaneous drug delivery for the treatment of arthritis.

  6. Drug-delivery systems of green tea catechins for improved stability and bioavailability.

    Science.gov (United States)

    Rodrigues, C F; Ascenção, K; Silva, F A M; Sarmento, B; Oliveira, M B P P; Andrade, J C

    2013-01-01

    Numerous studies in humans, animal models and cell lines have suggested the potential benefits from the consumption of green tea polyphenols, including prevention of cancer and heart diseases. However these potential effects have been strongly limited by green tea catechins low bioavailability, which hinders the development of therapeutic applications. In this review formulations that are being proposed for delivery of green tea catechins are discussed. New delivery systems are presented as valid alternatives to overcome the limitations such as green tea catechins poor stability or intestinal absorption.

  7. Intraperitoneal Instillation of Lidocaine Improves Postoperative Analgesia at Cesarean Delivery: A Randomized, Double-Blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Patel, Ruchira; Carvalho, Jose C A; Downey, Kristi; Kanczuk, Marcelo; Bernstein, Paul; Siddiqui, Naveed

    2017-02-01

    Cesarean delivery is a commonly performed procedure worldwide. Despite improvements in balanced multimodal analgesia, there remains a proportion of women for whom postoperative pain relief and patient satisfaction are still inadequate. Intraperitoneal instillation of local anesthetic has been shown to be effective in reducing postoperative pain after abdominal surgery. We sought to investigate the effect of intraperitoneal instillation of lidocaine on postcesarean delivery pain as part of a multimodal analgesia regimen. We studied women scheduled for elective cesarean delivery under spinal anesthesia. Spinal anesthesia was performed with 0.75% hyperbaric bupivacaine, fentanyl, and morphine. At the end of the cesarean delivery, immediately before parietal peritoneum or fascia closure, patients were randomized to receive either lidocaine (20 mL 2% lidocaine with epinephrine) or placebo (20 mL normal saline) instilled into the peritoneal cavity. The primary outcome was pain score on movement at 24 hours. Secondary outcomes were pain score at rest and on movement at 2, 24, and 48 hours; maternal satisfaction score; analgesic consumption; incidence of nausea, vomiting, and itching; and return of bowel function. Two hundred four women were recruited. Baseline characteristics were similar between the lidocaine and placebo groups. Pain scores at 24 hours postcesarean delivery on movement (parameter estimate 0.02 [95% confidence interval {CI} -0.14 to 0.18]; P = .823) and at rest (parameter estimate 0.00 [95% CI -0.32 to 0.33]; P = .986) were similar in both groups. Pain scores at 2 hours postcesarean delivery on movement (parameter estimate -0.58 [95% CI -0.90 to -0.26]; P = .001) and at rest (parameter estimate -1.00 [95% CI -1.57 to -0.43]; P = .001) were lower in the lidocaine group. Subgroup analysis of patients with peritoneum closure revealed significantly lower pain scores at 24 hours on movement (parameter estimate -0.33 [95% CI -0.64 to -0.03]; P = .032) in the

  8. The use of a realistic VMAT delivery emulator to optimize dynamic machine parameters for improved treatment efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, C J; Rowbottom, C G; Mackay, R I, E-mail: Christopher.Boylan@physics.cr.man.ac.uk [North Western Medical Physics, Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX (United Kingdom)

    2011-07-07

    The delivery of volumetric modulated arc therapy (VMAT) requires the simultaneous movement of the linear accelerator gantry, multi-leaf collimators and jaws while the dose rate is varied. In this study, a VMAT delivery emulator was developed to accurately predict the characteristics of a given treatment plan, incorporating realistic parameters for gantry inertia and the variation in leaf speed with respect to gravity. The emulator was used to assess the impact of dynamic machine parameters on the delivery efficiency, using a set of prostate and head and neck VMAT plans. Initially, assuming a VMAT system with fixed dose rate bins, the allowable leaf and jaw speeds were increased and a significant improvement in treatment time and average dose rate was observed. The software was then adapted to simulate a VMAT system with continuously varying dose rate, and the increase in delivery efficiency was quantified, along with the impact of an increased leaf and jaw speed. Finally, a set of optimal dynamic machine parameters was derived assuming an idealized scenario in which the treatment is delivered in a single arc at constant maximum gantry speed.

  9. Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Directory of Open Access Journals (Sweden)

    Somasundaram Sivagurunathan

    2001-10-01

    Full Text Available Abstract Background Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT and rates of diffusional (sodium independent and active (sodium dependent uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. Methods Wild-type, heterozygous cftr (+/- and homozygous cftr (-/- mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer 3H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. Results In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/- and two-fold higher in cftr (+/- mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/- mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/- animals. Conclusions In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/- mice > cftr (+/- > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function.

  10. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  11. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma

    Science.gov (United States)

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-01-01

    Background The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. Material/Methods Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. Results Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. Conclusions The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells. PMID:28225751

  12. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma.

    Science.gov (United States)

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-02-22

    BACKGROUND The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. MATERIAL AND METHODS Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. RESULTS Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. CONCLUSIONS The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells.

  13. An unexpected effect of TNF-α on F508del-CFTR maturation and function.

    Science.gov (United States)

    Bitam, Sara; Pranke, Iwona; Hollenhorst, Monika; Servel, Nathalie; Moquereau, Christelle; Tondelier, Danielle; Hatton, Aurélie; Urbach, Valérie; Sermet-Gaudelus, Isabelle; Hinzpeter, Alexandre; Edelman, Aleksander

    2015-01-01

    Cystic fibrosis (CF) is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene ( CFTR), which encodes a cAMP-dependent Cl (-) channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT) CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml) of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE) leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC) signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.

  14. [Post-translational ligation and function of dual-vector transferred split CFTR gene].

    Science.gov (United States)

    Zhu, Fu-Xiang; Liu, Ze-Long; Qu, Hui-Ge; Chi, Xiao-Yan

    2010-01-01

    The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

  15. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jing, E-mail: joemj1005@163.com, E-mail: miaojing@zju.edu.cn [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Du, Yongzhong; Yuan, Hong [Zhejiang University, College of Pharmaceutical Sciences (China); Zhang, Xingguo; Li, Qian; Rao, Yuefeng [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Zhao, Mengdan [Zhejiang University, Women’s Hospital, College of Medicine (China); Hu, Fuqiang, E-mail: hufq@zju.edu.cn [Zhejiang University, College of Pharmaceutical Sciences (China)

    2015-01-15

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC{sub 50}) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL{sup −1}, respectively, while the IC{sub 50} of Taxol{sup TM} was 1.72 ± 0.09 µg mL{sup −1}. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  16. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  17. Improving Service Delivery: Investigating the Role of Information Sharing, Job Characteristics, and Employee Satisfaction

    Science.gov (United States)

    Bontis, Nick; Richards, David; Serenko, Alexander

    2011-01-01

    Purpose: The purpose of this study is to propose and test a model designed to investigate the impact of job characteristics, employee satisfaction, and information sharing on two key indicators of quality service delivery, such as worker perceptions of their efficiency and customer focus. Design/methodology/approach: During the project, 9,060…

  18. Improving the Quality and Cost of Healthcare Delivery: The Potential of Radio Frequency Identification (RFID) Technology

    Science.gov (United States)

    Vilamovska, Anna-Marie

    2010-01-01

    The study investigated whether an upcoming class of health information technology (HIT) can be used to address currently outstanding issues in the quality and cost of healthcare delivery. Expert interviews and a literature review were used to describe the 2009 universe of in- and outpatient healthcare RFID applications and to identify those…

  19. Improving the Quality and Cost of Healthcare Delivery: The Potential of Radio Frequency Identification (RFID) Technology

    Science.gov (United States)

    Vilamovska, Anna-Marie

    2010-01-01

    The study investigated whether an upcoming class of health information technology (HIT) can be used to address currently outstanding issues in the quality and cost of healthcare delivery. Expert interviews and a literature review were used to describe the 2009 universe of in- and outpatient healthcare RFID applications and to identify those…

  20. Improving Service Delivery: Investigating the Role of Information Sharing, Job Characteristics, and Employee Satisfaction

    Science.gov (United States)

    Bontis, Nick; Richards, David; Serenko, Alexander

    2011-01-01

    Purpose: The purpose of this study is to propose and test a model designed to investigate the impact of job characteristics, employee satisfaction, and information sharing on two key indicators of quality service delivery, such as worker perceptions of their efficiency and customer focus. Design/methodology/approach: During the project, 9,060…

  1. Transdermal iontophoretic delivery of apomorphine in patients improved by surfactant formulation pretreatment

    NARCIS (Netherlands)

    Li, GL; de Vries, Joeke; van Steeg, TJ; van den Busche, H; Maas, HJ; Reeuwijk, HJEM; Danhof, M; Bouwstra, JA; van Laar, T

    2005-01-01

    The objective of the present study is to evaluate the efficacy and the safety of transdermal iontophoretic delivery of Rapomorphine, a potent dopamine agonist, in combination with surfactant pretreatment in patients with advanced Parkinson's disease. Iontophoresis patches were applied in 16 patients

  2. Improving the location of low income housing delivery in South African urban areas.

    CSIR Research Space (South Africa)

    Biermann, SM

    2007-07-01

    Full Text Available of density and the reduction of the component costs of delivery to common monetary terms. Application of the PSS to Gauteng province, South Africa shows that the total cost of higher density housing on well-located land is very similar to that of existing...

  3. Status and Perceptions of the Application of Building Information Modeling for Improved Building Projects Delivery in Nigeria

    Directory of Open Access Journals (Sweden)

    S.C Ugochukwu

    2015-11-01

    Full Text Available Building Information Modeling (BIM is a new and innovative approach to building design, construction, and management. It is a cutting-edge, state of the art technology that is not only transforming, but improving the building delivery/production process in developed countries of the world. Sadly, Nigeria is yet to adopt this revolutionary technology in her construction industry. This study thus, sought to evaluate the present status of application of BIM in building projects in Nigeria, with a view to betoning its importance in improving the present state of building delivery in the country. This was effected by means of a field survey of building professionals in which their perceptions were analyzed, based on a structured questionnaire administration; in order to elicit their level of awareness of BIM application, determine their extent of participation in BIM projects, identify and rank the most suitable procurement method that encourages BIM application, the barriers to the application of BIM and the benefits of BIM application to building delivery in Nigeria. Results/Findings revealed that knowledge of BIM application among professionals is very poor (33%, participation/use of BIM in projects is non-existent, the collaborative method of procurement best supports BIM application, lack of awareness remains the major barrier to BIM application, while simultaneous access to project database by stakeholders is the highest ranked benefit of BIM application. The study concludes that Nigeria still has a long way to go in understanding, embracing and applying BIM to improve the traditional and stagnant state of her building delivery process. Hence, all hands should be on deck; the government, professional bodies, construction organizations and the academia to ensure that BIM becomes a priority with respect to legislations, training, research and use in the Nigerian building industry

  4. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    Science.gov (United States)

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function.

  5. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.

    Science.gov (United States)

    Luz, Simão; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D; Kunzelmann, Karl; Farinha, Carlos M

    2011-11-01

    Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation.

  6. Anchored PDE4 regulates chloride conductance in wild-type and ΔF508-CFTR human airway epithelia.

    Science.gov (United States)

    Blanchard, Elise; Zlock, Lorna; Lao, Anna; Mika, Delphine; Namkung, Wan; Xie, Moses; Scheitrum, Colleen; Gruenert, Dieter C; Verkman, Alan S; Finkbeiner, Walter E; Conti, Marco; Richter, Wito

    2014-02-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 μA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 μA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.

  7. Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C.

    Science.gov (United States)

    Kongsuphol, Patthara; Cassidy, Diane; Romeiras, Francisco; Schreiber, Rainer; Mehta, Anil; Kunzelmann, Karl

    2010-01-01

    Metformin use in diabetes can cause acidosis and might be linked to pancreatitis. Here, we mechanistically focus on this relationship via a point mutation in the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7). CFTR is an ATP-hydrolyzing, cAMP/PKA-activated anion channel regulating pancreatic bicarbonate/chloride secretion across duct-facing apical membranes in epithelia. CFTR has two nucleotide binding domains (NBD1/2) which clamp two ATP molecules across their opposed, inverted interfacial surfaces which generates anion-conductance after ATP hydrolysis. Notably, CFTR mutations not causal for classical cystic fibrosis segregate with unexplained pancreatitis and one of these lies in NBD1 near its ATP-clamp (S573C; close to the Walker B aspartate D572). We recently showed that after raising [cAMP], wt-CFTR chloride-conductance, when expressed in Xenopus oocytes, remains elevated despite the presence of metformin. Yet here, we find that S573C-CFTR manifests a metformin-inhibitable whole cell chloride-conductance after cAMP elevation. In the absence of metformin, cAMP-activated S573C-CFTR also displays a reduced anion-conductance relative to wt-CFTR. Furthermore, intra-oocyte acidification inhibited wt-CFTR and abolished S573C-CFTR conductance. We conclude that defective S573C-CFTR remains both poorly conducting and inhibited by metformin and intracellular acidosis. This might explain the propensity to pancreatitis with this rare CF mutation.

  8. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion.

    Science.gov (United States)

    Ma, Tonghui; Thiagarajah, Jay R; Yang, Hong; Sonawane, Nitin D; Folli, Chiara; Galietta, Luis J V; Verkman, A S

    2002-12-01

    Secretory diarrhea is the leading cause of infant death in developing countries and a major cause of morbidity in adults. The cystic fibrosis transmembrane conductance regulator (CFTR) protein is required for fluid secretion in the intestine and airways and, when defective, causes the lethal genetic disease cystic fibrosis. We screened 50,000 chemically diverse compounds for inhibition of cAMP/flavone-stimulated Cl(-) transport in epithelial cells expressing CFTR. Six CFTR inhibitors of the 2-thioxo-4-thiazolidinone chemical class were identified. The most potent compound discovered by screening of structural analogs, CFTR(inh)-172, reversibly inhibited CFTR short-circuit current in less than 2 minutes in a voltage-independent manner with K(I) approximately 300 nM. CFTR(inh)-172 was nontoxic at high concentrations in cell culture and mouse models. At concentrations fully inhibiting CFTR, CFTR(inh)-172 did not prevent elevation of cellular cAMP or inhibit non-CFTR Cl(-) channels, multidrug resistance protein-1 (MDR-1), ATP-sensitive K(+) channels, or a series of other transporters. A single intraperitoneal injection of CFTR(inh)-172 (250 micro g/kg) in mice reduced by more than 90% cholera toxin-induced fluid secretion in the small intestine over 6 hours. Thiazolidinone CFTR inhibitors may be useful in developing large-animal models of cystic fibrosis and in reducing intestinal fluid loss in cholera and other secretory diarrheas.

  9. Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis.

    Directory of Open Access Journals (Sweden)

    Vedrana Bali

    Full Text Available The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR gene leads to deletion of the phenylalanine at position 508 (ΔF508 in the CFTR protein and causes multiple folding and functional defects. Contrary to large-scale efforts by industry and academia, no significant therapeutic benefit has been achieved with a single "corrector". Therefore, investigations concentrate on drug combinations. Orkambi (Vertex Pharmaceuticals, the first FDA-approved drug for treatment of cystic fibrosis (CF caused by this mutation, is a combination of a corrector (VX-809 that facilitates ΔF508 CFTR biogenesis and a potentiator (VX-770, which improves its function. Yet, clinical trials utilizing this combination showed only modest therapeutic benefit. The low efficacy Orkambi has been attributed to VX-770-mediated destabilization of VX-809-rescued ΔF508 CFTR. Here we report that the negative effects of VX-770 can be reversed by increasing the half-life of the endoplasmic reticulum (ER form (band B of ΔF508 CFTR with another corrector (Corr-4a. Although Corr-4a alone has only minimal effects on ΔF508 CFTR rescue, it increases the half-life of ΔF508 CFTR band B when it is present during half-life measurements. Our data shows that stabilization of band B ΔF508 CFTR with Corr-4a and simultaneous rescue with VX-809, leads to a >2-fold increase in cAMP-activated, CFTRinh-172-inhibited currents compared to VX-809 alone, or VX-809+VX-770. The negative effects of VX-770 and the Corr-4a protection are specific to the native I507-ATT ΔF508 CFTR without affecting the inherently more stable, synonymous variant I507-ATC ΔF508 CFTR. Our studies emphasize that stabilization of ΔF508 CFTR band B in the ER might improve its functional rescue by Orkambi.

  10. A High-affinity Activator of G551D-CFTR Chloride Channel Identified By High Throughput Screening

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lu; HE Cheng-yan; LIU Yan-li; ZHOU Hong-lan; ZHOU Jin-song; SHANG De-jing; YANG Hong

    2004-01-01

    A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(Kd=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.

  11. Towards improving service delivery in screening and intervention services in community pharmacies: a case study of an alcohol IBA service.

    Science.gov (United States)

    Mackridge, A J; Krska, J; Stokes, E C; Heim, D

    2016-03-01

    Previous studies have demonstrated positive outcomes from a range of pharmacy public health services, but barriers to delivery remain. This paper explores the processes of delivering an alcohol screening and intervention service, with a view to improving service delivery. A mixed-methods, multi-perspective approach was used, comprising in-pharmacy observations and recording of service provision, follow-up interviews with service users and interactive feedback sessions with service providers. Observations and recordings indicate that staff missed opportunities to offer the service and that both availability and delivery of the service were inconsistent, partly owing to unavailability of trained staff and service restrictions. Most service users gave positive accounts of the service and considered pharmacies to be appropriate places for this service. Respondents also described positive impacts, ranging from thinking more about alcohol consumption generally to substantial reductions in consumption. Key facilitators to service provision included building staff confidence and service champions. Barriers included commissioning issues and staff perception of alcohol as a sensitive topic. Findings support expansion of pharmacies' role in delivering public health services and highlight benefits of providing feedback to pharmacy staff on their service provision as a possible avenue for service improvement. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives.

    Science.gov (United States)

    Pibiri, Ivana; Lentini, Laura; Melfi, Raffaella; Gallucci, Giulia; Pace, Andrea; Spinello, Angelo; Barone, Giampaolo; Di Leonardo, Aldo

    2015-08-28

    Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Dehydrocostuslactone, a sesquiterpene lactone activates wild-type and ΔF508 mutant CFTR chloride channel.

    Science.gov (United States)

    Wang, Xue; Zhang, Yao-Fang; Yu, Bo; Yang, Shuang; Luan, Jian; Liu, Xin; Yang, Hong

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) represents the main cAMP-activated Cl⁻ channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. The aim of this study was to identify natural compounds that are able to stimulate wild-type (wt) and ΔF508 mutant CFTR channel activities in CFTR-expressing Fischer rat thyroid (FRT) cells. We found that dehydrocostuslactone [DHC, (3aS, 6aR, 9aR, 9bS)-decahydro-3,6,9-tris (methylene) azuleno [4,5-b] furan-2(3H)-one)] dose dependently potentiates both wt and ΔF508 mutant CFTR-mediated iodide influx in cell-based fluorescent assays and CFTR-mediated Cl⁻ currents in short-circuit current studies, and the activations could be reversed by the CFTR inhibitor CFTRinh-172. Maximal CFTR-mediated apical Cl⁻ current secretion in CFTR-expressing FRT cells was stimulated by 100 μM DHC. Determination of intracellular cAMP content showed that DHC modestly but significantly increased cAMP level in FRT cells, but cAMP elevation effects contributed little to DHC-stimulated iodide influx. DHC also stimulated CFTR-mediated apical Cl⁻ current secretion in FRT cells expressing ΔF508-CFTR. Subsequent studies demonstrated that activation of CFTR by DHC is forskolin dependent. DHC represents a new class of CFTR potentiators that may have therapeutic potential in CFTR-related diseases.

  14. Improving the translation in Europe of nanomedicines (a.k.a. drug delivery) from academia to industry.

    Science.gov (United States)

    Eaton, Michael A W

    2012-12-28

    Over the last decade the involvement of European academic scientists in the translation of Nanomedicines and Drug Delivery into useful therapeutics has been modest. Funders have become increasingly concerned and some attempts have been made in Europe to improve impact. While the consequences are minimal at present for stakeholders, the eventual impact at national and political levels could be serious and is likely to lead to reverse innovation - the import of healthcare products from developing economies - if not addressed. Some knowledge of industrial drug development is critical for innovation in this regulated sector - this information being not easily obtained outside Pharma. While peer review has failings, more important is project inception, since once started research takes on a life of its own. This paper aims to encourage healthcare researchers to take a more translational approach to selecting (applied) drug delivery projects.

  15. Exploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2013-03-01

    Full Text Available As versatile drug delivery systems, polymeric micelles have demonstrated particular strength in solubilizing hydrophobic anticancer drugs while eliminating the use of toxic organic solvents and surfactants. However, the true promise of polymeric micelles as drug carriers for cancer therapy resides in their potential ability to preferentially elevate drug exposure in the tumor and achieve enhanced anticancer efficacy, which still remains to be fully exploited. Here, we review various micellar constructs that exhibit the enhanced permeation and retention effect in the tumor, the targeting ligands that potentiate the anticancer efficacy of micellar drugs, and the polyplex micelle systems suitable for the delivery of plasmid DNA and small interference RNA. Together, these preclinical studies in animal models help us further explore polymeric micelles as emerging drug carriers for targeted cancer therapy.

  16. Training and development as a tool for improving basic service delivery: the case of a selected municipality

    Directory of Open Access Journals (Sweden)

    Mthokozisi Mpofu

    2015-12-01

    Full Text Available Municipal employees have come under fire for poor performance and conduct in their work as some engage in corruption and others are not qualified enough to discharge their duties to the required levels. Employee training and development has become one of the key aspects in improving employee performance in organisations, thus leading to improved organizational performance and growth. The study investigated the relationship between the quality of employee training and development on service delivery in a selected municipality with data collected from 150 employees. The results indicated the need for effective employee training and development systems and processes to achieve improved employee performance thus improved provision of basic services to the communities.

  17. OM Forum--The Vital Role of Operations Analysis in Improving Healthcare Delivery

    OpenAIRE

    Green, Linda V.

    2012-01-01

    There is now a broad consensus among healthcare professionals that the U.S. healthcare delivery system is woefully inefficient and needs to be radically redesigned. Healthcare costs have always been a driving force in policy and management, but quality has become equally important in driving decisions, particularly since emerging payment systems include metrics on clinical and operational performance. With the increasing use of information technology to capture financial, operational, and cli...

  18. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

    Science.gov (United States)

    Wu, Yanning; Wang, Shuo; Li, Chunying

    2012-08-13

    Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis(1-3). CFTR has been implicated in two major diseases: cystic fibrosis (CF)(4) and secretory diarrhea(5). In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States(6). Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut(7). Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo(8-19). In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP(20-27). The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)(20). Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities(22). This multivalency with respect to CFTR binding

  19. Self-Micro Emulsifying Drug Delivery Systems: a Strategy to Improve Oral Bioavailability

    Directory of Open Access Journals (Sweden)

    Vijay K. Sharma

    Full Text Available Aim: Oral route has always been the favorite route of drug administration in many diseases and till today it is the first way investigated in the development of new dosage forms. The major problem in oral drug formulations is low and erratic bioavailability, which mainly results from poor aqueous solubility, thereby pose problems in their formulation. For the therapeutic delivery of lipophilic active moieties (BCS class II drugs, lipid based formulations are inviting increasing attention. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the formulation and development of self-micro emulsifying drug delivery systems as well as its therapeutic activity. Results: Self-emulsifying drug delivery system (SMEDDS has gained more attention due to enhanced oral bio-availability enabling reduction in dose, more consistent temporal profiles of drug absorption, selective targeting of drug(s toward specific absorption window in GIT, and protection of drug(s from the unreceptive environment in gut. Conclusions: This article gives a complete overview of SMEDDS as a promising approach to effectively deal with the problem of poorly soluble molecules.

  20. Planned early delivery versus expectant management of the term suspected compromised baby for improving outcomes.

    Science.gov (United States)

    Bond, Diana M; Gordon, Adrienne; Hyett, Jon; de Vries, Bradley; Carberry, Angela E; Morris, Jonathan

    2015-11-24

    Fetal compromise in the term pregnancy is suspected when the following clinical indicators are present: intrauterine growth restriction (IUGR), decreased fetal movement (DFM), or when investigations such as cardiotocography (CTG) and ultrasound reveal results inconsistent with standard measurements. Pathological results would necessitate the need for immediate delivery, but the management for 'suspicious' results remains unclear and varies widely across clinical centres. There is clinical uncertainty as to how to best manage women presenting with a suspected term compromised baby in an otherwise healthy pregnancy. To assess, using the best available evidence, the effects of immediate delivery versus expectant management of the term suspected compromised baby on neonatal, maternal and long-term outcomes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 May 2015) and reference lists of retrieved studies. Randomised or quasi-randomised controlled trials comparing expectant management versus planned early delivery for women with a suspected compromised fetus from 37 weeks' gestation or more. Two review authors independently assessed trials for inclusion and assessed trial quality. Two review authors independently extracted data. Data were checked for accuracy. We assessed the quality of the evidence using the GRADE approach. Of the 20 reports identified by the search strategy, we included three trials (546 participants: 269 to early delivery and 277 to expectant management), which met our inclusion criteria. Two of the trials compared outcomes in 492 pregnancies with IUGR of the fetus, and one in 54 pregnancies with oligohydramnios. All three trials were of reasonable quality and at low risk of bias. The level of evidence was graded moderate, low or very low, downgrading mostly for imprecision and for some indirectness. Overall, there was no difference in the primary neonatal outcomes of perinatal mortality (no deaths in either group, one

  1. Interference with ubiquitination in CFTR modifies stability of core glycosylated and cell surface pools.

    Science.gov (United States)

    Lee, Seakwoo; Henderson, Mark J; Schiffhauer, Eric; Despanie, Jordan; Henry, Katherine; Kang, Po Wei; Walker, Douglas; McClure, Michelle L; Wilson, Landon; Sorscher, Eric J; Zeitlin, Pamela L

    2014-07-01

    It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band CCFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.

  2. Unravelling druggable signalling networks that control F508del-CFTR proteostasis.

    Science.gov (United States)

    Hegde, Ramanath Narayana; Parashuraman, Seetharaman; Iorio, Francesco; Ciciriello, Fabiana; Capuani, Fabrizio; Carissimo, Annamaria; Carrella, Diego; Belcastro, Vincenzo; Subramanian, Advait; Bounti, Laura; Persico, Maria; Carlile, Graeme; Galietta, Luis; Thomas, David Y; Di Bernardo, Diego; Luini, Alberto

    2015-12-23

    Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether 'classical' signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect.

  3. Analysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements.

    Science.gov (United States)

    Moisan, Stéphanie; Berlivet, Soizik; Ka, Chandran; Le Gac, Gérald; Dostie, Josée; Férec, Claude

    2016-04-07

    A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.

  4. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C; Penmatsa, Himabindu; Marrs, Kevin L; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J; Schuetz, John D; Naren, Anjaparavanda P

    2007-11-30

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.

  5. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  6. Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia

    Science.gov (United States)

    Li, Chunying; Krishnamurthy, Partha C.; Penmatsa, Himabindu; Marrs, Kevin L.; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J.; Schuetz, John D.; Naren, Anjaparavanda P.

    2007-01-01

    SUMMARY Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, is functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. MRP4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea. PMID:18045536

  7. Improving service delivery of water, sanitation, and hygiene in primary schools: a cluster-randomized trial in western Kenya.

    Science.gov (United States)

    Alexander, Kelly T; Dreibelbis, Robert; Freeman, Matthew C; Ojeny, Betty; Rheingans, Richard

    2013-09-01

    Water, sanitation, and hygiene (WASH) programs in schools have been shown to improve health and reduce absence. In resource-poor settings, barriers such as inadequate budgets, lack of oversight, and competing priorities limit effective and sustained WASH service delivery in schools. We employed a cluster-randomized trial to examine if schools could improve WASH conditions within existing administrative structures. Seventy schools were divided into a control group and three intervention groups. All intervention schools received a budget for purchasing WASH-related items. One group received no further intervention. A second group received additional funding for hiring a WASH attendant and making repairs to WASH infrastructure, and a third group was given guides for student and community monitoring of conditions. Intervention schools made significant improvements in provision of soap and handwashing water, treated drinking water, and clean latrines compared with controls. Teachers reported benefits of monitoring, repairs, and a WASH attendant, but quantitative data of WASH conditions did not determine whether expanded interventions out-performed our budget-only intervention. Providing schools with budgets for WASH operational costs improved access to necessary supplies, but did not ensure consistent service delivery to students. Further work is needed to clarify how schools can provide WASH services daily.

  8. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)).

    Science.gov (United States)

    Norimatsu, Yohei; Moran, Aurelia R; MacDonald, Kelvin D

    2012-09-28

    The goal of this study was to determine the mechanism of lubiprostone activation of epithelial chloride transport. Lubiprostone is a bicyclic fatty acid approved for the treatment of constipation [1]. There is uncertainty, however, as to how lubiprostone increases epithelial chloride transport. Direct stimulation of ClC-2 and CFTR chloride channels as well as stimulation of these channels via the EP(4) receptor has been described [2-5]. To better define this mechanism, two-electrode voltage clamp was used to assay Xenopus oocytes expressing ClC-2, with or without co-expression of the EP(4) receptor or β adrenergic receptor (βAR), for changes in conductance elicited by lubiprostone. Oocytes co-expressing CFTR and either βAR or the EP(4) receptor were also studied. In oocytes co-expressing ClC-2 and βAR conductance was stimulated by hyperpolarization and acidic pH (pH = 6), but there was no response to the β adrenergic agonist, isoproterenol. Oocytes expressing ClC-2 only or co-expressing ClC-2 and EP(4) did not respond to the presence of 0.1, 1, or 10 μM lubiprostone in the superperfusate. Oocytes co-expressing CFTR and βAR did not respond to hyperpolarization, acidic pH, or 1 μM lubiprostone. However, conductance was elevated by isoproterenol and inhibited by CFTR(inh)172. Co-expression of CFTR and EP(4) resulted in lubiprostone-stimulated conductance, which was also sensitive to CFTR(inh)172. The EC(50) for lubiprostone mediated CFTR activation was ~10 nM. These results demonstrate no direct action of lubiprostone on either ClC-2 or CFTR channels expressed in oocytes. However, the results confirm that CFTR can be activated by lubiprostone via the EP(4) receptor in oocytes.

  9. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  10. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR.

    Science.gov (United States)

    Steen, Anton; Wiederhold, Elena; Gandhi, Tejas; Breitling, Rainer; Slotboom, Dirk Jan

    2011-07-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.

  11. Towards comprehensive early abortion service delivery in high income countries: insights for improving universal access to abortion in Australia.

    Science.gov (United States)

    Dawson, Angela; Bateson, Deborah; Estoesta, Jane; Sullivan, Elizabeth

    2016-10-22

    Improving access to safe abortion is an essential strategy in the provision of universal access to reproductive health care. Australians are largely supportive of the provision of abortion and its decriminalization. However, the lack of data and the complex legal and service delivery situation impacts upon access for women seeking an early termination of pregnancy. There are no systematic reviews from a health services perspective to help direct health planners and policy makers to improve access comprehensive medical and early surgical abortion in high income countries. This review therefore aims to identify quality studies of abortion services to provide insight into how access to services can be improved in Australia. We undertook a structured search of six bibliographic databases and hand-searching to ascertain peer reviewed primary research in English between 2005 and 2015. Qualitative and quantitative study designs were deemed suitable for inclusion. A deductive content analysis methodology was employed to analyse selected manuscripts based upon a framework we developed to examine access to early abortion services. This review identified the dimensions of access to surgical and medical abortion at clinic or hospital-outpatient based abortion services, as well as new service delivery approaches utilising a remote telemedicine approach. A range of factors, mostly from studies in the United Kingdom and United States of America were found to facilitate improved access to abortion, in particular, flexible service delivery approaches that provide women with cost effective options and technology based services. Standards, recommendations and targets were also identified that provided services and providers with guidance regarding the quality of abortion care. Key insights for service delivery in Australia include the: establishment of standards, provision of choice of procedure, improved provider education and training and the expansion of telemedicine for medical

  12. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation.

    Science.gov (United States)

    Schmidt, Béla Z; Watts, Rebecca J; Aridor, Meir; Frizzell, Raymond A

    2009-02-13

    Cysteine string protein (Csp) is a J-domain-containing protein whose overexpression blocks the exit of cystic fibrosis transmembrane conductance regulator (CFTR) from the endoplasmic reticulum (ER). Another method of blocking ER exit, the overexpression of Sar1-GTP, however, yielded twice as much immature CFTR compared with Csp overexpression. This finding suggested that Csp not only inhibits CFTR ER exit but also facilitates the degradation of immature CFTR. This was confirmed by treatment with a proteasome inhibitor, which returned the level of immature CFTR to that found in cells expressing Sar1-GTP only. CspH43Q, which does not interact with Hsc70/Hsp70 efficiently, did not promote CFTR degradation, suggesting that the pro-degradative effect of Csp requires Hsc70/Hsp70 binding/activation. In agreement with this, Csp overexpression increased the amount of Hsc70/Hsp70 co-immunoprecipitated with CFTR, whereas overexpression of CspH43Q did not. The Hsc70/Hsp70 binding partner C terminus of Hsp70-interacting protein (CHIP) can target CFTR for proteasome-mediated degradation. Csp overexpression also increased the amount of CHIP co-immunoprecipitated with CFTR. In addition, CHIP interacted directly with Csp, which was confirmed by in vitro binding experiments. Csp overexpression also increased CFTR ubiquitylation and reduced the half-life of immature CFTR. These findings indicate that Csp not only regulates the exit of CFTR from the ER, but that this action is accompanied by Hsc70/Hsp70 and CHIP-mediated CFTR degradation.

  13. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation

    OpenAIRE

    Jih, Kang-Yang; Sohma, Yoshiro; Hwang, Tzyh-Chang

    2012-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR’s gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR ...

  14. Molecular chaperones as targets to circumvent the CFTR defect in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Rebecca A Chanoux

    2012-07-01

    Full Text Available Cystic Fibrosis (CF is the most common autosomal recessive lethal disorder among Caucasian populations. CF results from mutations and resulting dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. CFTR is a cyclic AMP-dependent chloride channel that is localized to the apical membrane in epithelial cells where it plays a key role in salt and water homeostasis. An intricate network of molecular chaperone proteins regulates CFTR’s proper maturation and trafficking to the apical membrane. Understanding and manipulation of this network may lead to therapeutics for Cystic Fibrosis in cases where mutant CFTR has aberrant trafficking.

  15. Activation Effect of Cathartic Natural Compound Rhein to CFTR Chloride Channel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in intestinal exocrine glands, which plays a key role in intestinal fluid secretion. A natural anthraquinone activator of CFTR Cl- channel, rhein, was identified by screening 217 single compounds from Chinese herbs via a cellbased halide-sensitive fluorescent assay. Rhein activates CFTR Cl- transportation in a dose-dependent manner in the presence of cAMP with a physiological concentration. This study provides a novel molecular pharmacological mechanism for the laxative drugs in Traditional Chinese Medicine such as aloe, cascara and senna.

  16. Gold Nanoparticle–Mediated Targeted Delivery of Recombinant Human Endostatin Normalizes Tumour Vasculature and Improves Cancer Therapy

    Science.gov (United States)

    Li, Wei; Zhao, Xiaoxu; Du, Bin; Li, Xin; Liu, Shuhao; Yang, Xiao-Yan; Ding, Hui; Yang, Wende; Pan, Fan; Wu, Xiaobo; Qin, Li; Pan, Yunlong

    2016-01-01

    Tumour vasculature is generally disordered because of the production of excessive angiogenic factors by tumour cells, which results in tumour progression and reduces the effectiveness of radiotherapy or chemotherapy. Transient anti-angiogenic therapies that regulate tumour vascular morphology and function and improve the efficiency of antitumour therapy are under investigation. Recombinant human endostatin (Endostar/rhES) is a vascular angiogenesis–disrupting agent that has been used to treat non-small cell lung cancer (NSCLC) in the clinical setting. In this study, we used gold nanoparticles (AuNPs) as a drug-delivery system (DDS) for targeted tumour delivery of rhES for short therapy, which resulted in transient tumour vascular normalization, reduced permeability and hypoxia, strengthened blood vessel integrity, and increased blood-flow perfusion. Moreover, combination therapy with 5-FU over this timeframe was substantially more effective than 5-FU monotherapy. In conclusion, our research demonstrates the potential use of AuNPs as a drug-delivery platform for transporting rhES into a tumour to induce transient tumour vascular normalization and enhance the antitumour efficacy of cytotoxic drugs. PMID:27470938

  17. Attitudinal orientation of first level managers for improvement of municipal service delivery: Experience of training intervention in Kolkata

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Roy

    2010-07-01

    Full Text Available This paper discusses a program of attitudinal orientation courses provided for functionaries of a large municipal corporation in India. Almost 450 Assistant Managers from the Kolkata Municipal Corporation took part in the training, which was held at the Administrative Training Institute (ATI of the Government of West Bengal, India. Under the 74th Constitutional Amendment Act, Indian Municipalities/Corporations (Urban Local Bodies are empowered and entrusted to perform planning, development and governance for the city/ town and to provide services to the citizens. The change in outlook towards the local government reflected in the Act has highlighted the need for greater awareness and a better attitude amongst municipal staff as well as elected representatives towards service delivery. Good governance can be achieved through the overall performance of officials of an organization, provided they possess the necessary knowledge, skills, attitudes and competencies. For historical reasons, knowledge, skills and attitudes amongst officials of Urban Local Bodies (ULBs in India have been traditionally of a low standard. Willingness to perform better in the role of municipal service delivery is not common. Therein lies the need for training for improvement in service delivery, especially for organizations like large municipal corporations and municipalities.

  18. Nutritional Status Improved in Cystic Fibrosis Patients with the G551D Mutation After Treatment with Ivacaftor

    NARCIS (Netherlands)

    Borowitz, Drucy; Lubarsky, Barry; Wilschanski, Michael; Munck, Anne; Gelfond, Daniel; Bodewes, Frank; Schwarzenberg, Sarah Jane

    2016-01-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gating mutation G551D prevents sufficient ion transport due to reduced channel-open probability. Ivacaftor, an oral CFTR potentiator, increases the channel-open probability. To further analyze improvements in weight and body mass in

  19. Natural products to improve quality of life targeting for colon drug delivery.

    Science.gov (United States)

    Kim, Hyunjo

    2012-03-01

    The colon is largely being investigated as a site for administration of protein and peptides, which are degraded by digestive enzymes in the upper GIT. Also for local diseases of the colon such as inflammatory bowel disease, colorectal cancer and ameobiasis, drug administration to the site of action can not only reduce the dose to be administered, but also decrease the side effects. Inflammatory Bowel Disease (IBD) such as Ulcerative colitis and Crohn's disease are characterized by chronic intestinal inflammation. Intestinal bacteria initiate the activation of intestinal inflammatory processes, which are mediated by pro-inflammatory cytokines and chemokine. Increased chemokine expression has also been observed in epithelial cells, endothelial cells, and smooth muscle cells. Future trials of specific agents capable of inhibiting chemokine synthesis and secretion or blocking chemokine-chemokine receptor interaction will be important to study in patients with ulcerative colitis and Crohn's disease. Many important bioactive compounds have been discovered from natural sources using bioactivity directed fractionation and isolation (BDFl) Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. The present review includes various approaches investigated for colon drug delivery and their site specificity. To achieve successful colonic delivery, a drug needs to be protected from absorption and the environment of the upper gastrointestinal tract and then be abruptly released into the proximal colon, which is considered the optimum site for colon targeted delivery of drugs.

  20. Novel designed polyoxyethylene nonionic surfactant with improved safety and efficiency for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Li C

    2014-04-01

    Full Text Available Chang Li,1 Chunmeng Sun,1 Shasha Li,1 Peng Han,2 Huimin Sun,3 Ammar Ouahab,1 Yan Shen,1 Yourui Xu,1 Yerong Xiong,1 Jiasheng Tu11State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 2Chinese Pharmacopoeia Commission, Beijing, 3National Institute for Food and Drug Control, Beijing, People's Republic of ChinaAbstract: In order to limit the adverse reactions caused by polysorbate 80 in Taxotere®, a widely used formulation of docetaxel, a safe and effective nanocarrier for this drug has been developed based on micelles formed by a new class of well-defined polyoxyethylene sorbitol oleate (PSO with sorbitol as the matrix in aqueous solution. The physicochemical properties of the amphiphilic surfactant and the resulting micelles can be easily fine-tuned by the homogeneous sorbitol matrix and pure oleic acid. Composition, critical micelle concentration, and entrapment efficiency were investigated by ultraviolet visible spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, fluorospectrophotometry, and high-performance liquid chromatography. In vitro and in vivo evaluation revealed that PSO had exceptionally low hemolysis and histamine release rates compared with commercial polysorbate 80. Moreover, the tumor targeting delivery of PSO was investigated by in vivo imaging in S180 tumor-bearing mice. The results suggest that this novel delivery system, PSO, provides an acceptable alternative to polysorbate 80 for delivery of docetaxel. Further, due to the hypoallergenic nature of PSO, the mechanism of pseudoallergy caused by the polyoxyethylene nonionic surfactant was investigated. Based on in vitro cell analysis, it was assumed that the initial contact of polyoxyethylene nonionic surfactant with mast cells provoked pseudoallergy via polyamine receptor-mediated endocytosis.Keywords: polyoxyethylene nonionic surfactant, sorbitol, isosorbide, pseudoallergy

  1. Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed

    OpenAIRE

    Luzuriaga, Jorge E.; Miguel Perez; Pablo Boronat; Juan Carlos Cano; Carlos Calafate; Pietro Manzoni

    2016-01-01

    MQTT is being widely used for data delivery in IoT applications but its architecture does not properly handle mobility when disconnection periods tend to be large. In this paper we describe an experimental evaluation, made in a real environment, of a solution that guarantees that there is no information loss when variable length hand-offs appear due to the movement of a node. Our proposal modifies the classical publish/subscribe scheme by introducing an intermediate buffer that takes care of ...

  2. Further characterization of theobroma oil-beeswax admixtures as lipid matrices for improved drug delivery systems.

    Science.gov (United States)

    Attama, A A; Schicke, B C; Müller-Goymann, C C

    2006-11-01

    There is an increasing interest in lipid based drug delivery systems due to factors such as better characterization of lipidic excipients and formulation versatility and the choice of different drug delivery systems. It is important to know the thermal characteristics, crystal habit, texture, and appearance of a new lipid matrix when determining its suitability for use in certain pharmaceutical application. It is line with this that this research was embarked upon to characterize mixtures of beeswax and theobroma oil with a view to applying their admixtures in drug delivery systems such as solid lipid nanoparticles and nanostructured lipid carriers. Admixtures of theobroma oil and beeswax were prepared to contain 25% w/w, 50% w/w, and 75% w/w of theobroma oil. The admixtures were analyzed by differential scanning calorimetry (DSC), small angle X-ray diffraction (SAXD), wide angle X-ray diffraction (WAXD), and isothermal heat conduction microcalorimetry (IMC). The melting behavior and microstructures of the lipid admixtures were monitored by polarized light microscopy (PLM). Transmission electron microscopy (TEM) was used to study the internal structures of the lipid bases. DSC traces indicated that the higher melting peaks were roughly constant for the different admixtures, but lower melting peaks significantly increased (p beeswax in all the lipid matrix admixtures at all stages of the study. PLM micrographs revealed differences with regard to the thermal and optical behaviors depending on the composition of the matrix. The lipid matrix consisting of 75% w/w of theobroma oil showed a spherulite texture after 4 weeks of isothermal storage. Crystallization exotherms of lipid matrices containing 50% w/w and 25% w/w of theobroma oil showed change in modification after 30 min with the latter having a greater time-dependent crystallization. Generally, low non-integral Avrami exponents and growth rate constants were obtained for all the lipid matrices, with the admixture

  3. Very mild disease phenotype of congenic CftrTgH(neoimHgu cystic fibrosis mice

    Directory of Open Access Journals (Sweden)

    Leonhard-Marek Sabine

    2008-04-01

    Full Text Available Abstract Background A major boost to cystic fibrosis disease research was given by the generation of various mouse models using gene targeting in embryonal stem cells. Moreover, the introduction of the same mutation on different inbred strains generating congenic strains facilitated the search for modifier genes. From the original CftrTgH(neoimHgu mouse model with a divergent genetic background (129/Sv, C57BL/6, HsdOla:MF1 two inbred mutant mouse strains CF/1-CftrTgH(neoimHgu and CF/3-CftrTgH(neoimHgu had been generated using strict brother × sister mating. CF/1-CftrTgH(neoimHgu and CF/3-CftrTgH(neoimHgu mice were fertile and showed normal growth and lifespan. In this work the CftrTgH(neoimHgu insertional mutation was backcrossed from CF/3-CftrTgH(neoimHgu onto the inbred backgrounds C57BL/6J and DBA/2J generating congenic animals in order to clarify the differential impact of the Cftr mutation and the genetic background on the disease phenotype of the cystic fibrosis mutant mice. Clinical and electrophysiological features of the two congenic strains were compared with those of CF/1-CftrTgH(neoimHgu and CF/3-CftrTgH(neoimHgu and wild type controls. Results Under the standardized housing conditions of the animal facility, the four mouse strains CF/1-CftrTgH(neoimHgu, CF/3-CftrTgH(neoimHgu, D2.129P2(CF/3-CftrTgH(neoimHgu and B6.129P2(CF/3-CftrTgH(neoimHgu exhibited normal life expectancy. Growth of congenic cystic fibrosis mice was comparable with that of wild type controls. All mice but D2.129P2(CF/3-CftrTgH(neoimHgu females were fertile. Short circuit current measurements revealed characteristic response profiles of the HsdOla:MF1, DBA/2J and C57BL/6J backgrounds in nose, ileum and colon. All cystic fibrosis mouse lines showed the disease-typical hyperresponsiveness to amiloride in the respiratory epithelium. The mean chloride secretory responses to carbachol or forskolin were 15–100% of those of the cognate wild type control animals

  4. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity.

    Science.gov (United States)

    Mendes, A I; Silva, A C; Catita, J A M; Cerqueira, F; Gabriel, C; Lopes, C M

    2013-11-01

    Miconazole is a widely used antifungal agent with poor aqueous solubility, which requires the development of drug delivery systems able to improve its therapeutic activity. For this purpose, a miconazole-loaded nanostructured lipid carriers (NLC) dispersion was prepared and characterized. Further, the dispersion was used to prepare a NLC-based hydrogel formulation proposed as an alternative system to improve the local delivery of miconazole to the oral mucosa. NLC dispersion showed particles in the nanometer range (≈ 200 nm) with low polidispersity index (87%). A controlled miconazole release was observed from NLC and NLC-based hydrogel formulations, in contrast to a commercial oral gel formulation, which demonstrated a faster release. Additionally, it was observed that the encapsulation of miconazole in the NLC improved its antifungal activity against Candida albicans. Therefore, it was demonstrated that the encapsulation of miconazole in NLC allows for obtaining the same therapeutic effect of a commercial oral gel formulation, using a 17-fold lower dose of miconazole. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    Directory of Open Access Journals (Sweden)

    Bates Jason HT

    2004-07-01

    Full Text Available Abstract Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung.

  6. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Science.gov (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  7. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations.

    Science.gov (United States)

    Dekkers, Johanna F; Van Mourik, Peter; Vonk, Annelotte M; Kruisselbrink, Evelien; Berkers, Gitte; de Winter-de Groot, Karin M; Janssens, Hettie M; Bronsveld, Inez; van der Ent, Cornelis K; de Jonge, Hugo R; Beekman, Jeffrey M

    2016-09-01

    The potentiator VX-770 (ivacaftor/KALYDECO™) targets defective gating of CFTR and has been approved for treatment of cystic fibrosis (CF) subjects carrying G551D, S1251N or one of 8 other mutations. Still, the current potentiator treatment does not normalize CFTR-dependent biomarkers, indicating the need for development of more effective potentiator strategies. We have recently pioneered a functional CFTR assay in primary rectal organoids and used this model to characterize interactions between VX-770, genistein and curcumin, the latter 2 being natural food components with established CFTR potentiation capacities. Results indicated that all possible combinations of VX-770, genistein and curcumin synergistically repaired CFTR-dependent forskolin-induced swelling of organoids with CFTR-S1251N or CFTR-G551D, even under suboptimal CFTR activation and compounds concentrations, conditions that may predominate in vivo. Genistein and curcumin also enhanced forskolin-induced swelling of F508del homozygous organoids that were treated with VX-770 and the prototypical CFTR corrector VX-809. These results indicate that VX-770, genistein and curcumin in double or triple combinations can synergize in restoring CFTR-dependent fluid secretion in primary CF cells and support the use of multiple potentiators for treatment of CF.

  8. An interprofessional quality improvement project to implement maternal/infant skin-to-skin contact during cesarean delivery.

    Science.gov (United States)

    Brady, Karen; Bulpitt, Denise; Chiarelli, Caren

    2014-01-01

    Immediate skin-to-skin contact between a mother and her newborn has been associated with successful breastfeeding outcomes. One of the challenges nurses face in promoting skin-to-skin occurs in the operating room during a cesarean delivery. Utilizing an interprofessional approach for this quality improvement project, we successfully implemented skin-to-skin contact for all eligible mother/infant couplets after cesarean birth. Exclusive breastfeeding rates for these women increased as a result. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  9. Improved health care delivery in an inner-city well-baby clinic run by general practitioners

    OpenAIRE

    Rossdale, Michael; Clark, Carol; James, John

    1986-01-01

    The delivery of health care has been improved in an inner-city well-baby clinic by staffing the clinic with members of a primary health care team and by offering a therapeutic service together with a preventive service. Over a three-year period attendance at the clinic has doubled and the uptake of immunization has increased. Of children registered with the practice supplying the health care team, 95% are up to date with diphtheria, tetanus and polio immunizations and 93% have been immunized ...

  10. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.

    Directory of Open Access Journals (Sweden)

    Jinhong Park

    Full Text Available The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508. Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.

  11. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.

    Science.gov (United States)

    Park, Jinhong; Khloya, Poonam; Seo, Yohan; Kumar, Satish; Lee, Ho K; Jeon, Dong-Kyu; Jo, Sungwoo; Sharma, Pawan K; Namkung, Wan

    2016-01-01

    The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.

  12. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    Science.gov (United States)

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

  13. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl− channel activity to maintain contraction rate

    Science.gov (United States)

    Sellers, Zachary M; De Arcangelis, Vania; Xiang, Yang; Best, Philip M

    2010-01-01

    The physiological role of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiomyocytes remains unclear. Using spontaneously beating neonatal ventricular cardiomyocytes from wild-type (WT) or CFTR knockout (KO) mice, we examined the role of CFTR in the modulation of cardiomyocyte contraction rate. Contraction rates of spontaneously beating myocytes were captured by video imaging. Real-time changes in intracellular ([Ca2+]i) and protein kinase A (PKA) activity were measured by fura-2 and fluorescence resonance energy transfer, respectively. Acute inhibition of CFTR in WT cardiomyocytes using the CFTR inhibitor CFTRinh-172 transiently inhibited the contraction rate. By contrast, cardiomyocytes from CFTR KO mice displayed normal contraction rates. Further investigation revealed that acute inhibition of CFTR activity in WT cardiomyoctyes activated L-type Ca2+ channels, leading to a transient increase of [Ca2+]i and inhibition of PKA activity. Additionally, we found that contraction rate normalization following acute CFTR inhibition in WT cardiomyocytes or chronic deletion in cardiomyocytes from CFTR KO mice requires the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and Ca2+-activated Cl− channels (CaCC) because simultaneous addition of myristoylated-autocamtide-2-related inhibitory peptide or niflumic acid and CFTRinh-172 to WT cardiomyocytes or treatment of cardiomyoctes from CFTR KO mice with these agents caused sustained attenuation of contraction rates. Our results demonstrate that regulation of cardiomyocyte contraction involves CFTR. They also reveal that activation of CaMKII and CaCC compensates for loss of CFTR function. Increased dependence on CaMKII upon loss of CFTR function might leave cystic fibrosis patients at increased risk of heart dysfunction and disease. PMID:20442264

  14. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery.

    Science.gov (United States)

    Vlieghe, Patrick; Khrestchatisky, Michel

    2013-05-01

    The central nervous system (CNS) is protected by various barriers, which regulate nervous tissue homeostasis and control the selective and specific uptake, efflux, and metabolism of endogenous and exogenous molecules. Among these barriers is the blood-brain barrier (BBB), a physical and physiological barrier that filters very efficiently and selectively the entry of compounds from the blood to the brain and protects nervous tissue from harmful substances and infectious agents present in the bloodstream. The BBB also prevents the entry of potential drugs. As a result, various drug targeting and delivery strategies are currently being developed to enhance the transport of drugs from the blood to the brain. Following a general introduction, we briefly overview in this review article the fundamental physiological properties of the BBB. Then, we describe current strategies to bypass the BBB (i.e., invasive methods, alternative approaches, and temporary opening) and to cross it (i.e., noninvasive approaches). This section is followed by a chapter addressing the chemical and technological solutions developed to cross the BBB. A special emphasis is given to prodrug-targeting approaches and targeted nanotechnology-based systems, two promising strategies for BBB targeting and delivery of drugs to the brain.

  15. Colloidal Gold-Mediated Delivery of Bleomycin for Improved Outcome in Chemotherapy

    Directory of Open Access Journals (Sweden)

    Celina Yang

    2016-03-01

    Full Text Available Nanoparticles (NPs can be used to overcome the side effects of poor distribution of anticancer drugs. Among other NPs, colloidal gold nanoparticles (GNPs offer the possibility of transporting major quantities of drugs due to their large surface-to-volume ratio. This is while confining these anticancer drugs as closely as possible to their biological targets through passive and active targeting, thus ensuring limited harmful systemic distribution. In this study, we chose to use bleomycin (BLM as the anticancer drug due to its limited therapeutic efficiency (harmful side effects. BLM was conjugated onto GNPs through a thiol bond. The effectiveness of the chemotherapeutic drug, BLM, is observed by visualizing DNA double strand breaks and by calculating the survival fraction. The action of the drug (where the drug takes effect is known to be in the nucleus, and our experiments have shown that some of the GNPs carrying BLM were present in the nucleus. The use of GNPs to deliver BLM increased the delivery and therapeutic efficacy of the drug. Having a better control over delivery of anticancer drugs using GNPs will establish a more successful NP-based platform for a combined therapeutic approach. This is due to the fact that GNPs can also be used as radiation dose enhancers in cancer research.

  16. Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice.

    Science.gov (United States)

    Cool, Steven K; Geers, Bart; Roels, Stefan; Stremersch, Stephan; Vanderperren, Katrien; Saunders, Jimmy H; De Smedt, Stefaan C; Demeester, Joseph; Sanders, Niek N

    2013-12-28

    Local extravasation and triggered drug delivery by use of ultrasound and microbubbles is a promising strategy to target drugs to their sites of action. In the past we have developed drug loaded microbubbles by coupling drug containing liposomes to the surface of microbubbles. Until now the advantages of this drug loading strategy have only been demonstrated in vitro. Therefore, in this paper, microbubbles with indocyanine green (ICG) containing liposomes at their surface or a mixture of ICG-liposomes and microbubbles was injected intravenously in mice. Immediately after injection the left hind leg was exposed to 1 MHz ultrasound and the ICG deposition was monitored 1, 4 and 7 days post-treatment by in vivo fluorescence imaging. In mice that received the ICG-liposome loaded microbubbles the local ICG deposition was, at each time point, about 2-fold higher than in mice that received ICG-liposomes mixed with microbubbles. We also showed that the perforations in the blood vessels allow the passage of ICG-liposomes up to 5h after microbubble and ultrasound treatment. An increase in tissue temperature to 41°C was observed in all ultrasound treated mice. However, ultrasound tissue heating was excluded to cause the local ICG deposition. We concluded that coupling of drug containing liposomes to microbubbles may increase ultrasound mediated drug delivery in vivo.

  17. Biomimickry of UPEC Cytoinvasion: A Novel Concept for Improved Drug Delivery in UTI.

    Science.gov (United States)

    Pichl, Clara Maria; Dunkl, Bernhard; Brauner, Bernhard; Gabor, Franz; Wirth, Michael; Neutsch, Lukas

    2016-02-04

    Urinary tract infections (UTIs) are among the most common bacterial infections. In an increasing number of cases, pathogen (multi-)resistance hampers durable treatment success via the standard therapies. On the functional level, the activity of urinary excreted antibiotics is compromized by the efficient tissue colonization mechanism of uropathogenic Escherichia coli (UPEC). Advanced drug delivery systems aim at exploiting a glycan-mediated targeting mechanism, similar to the UPEC invasion pathway, to increase bioavailability. This may be realized by conjugation of intravesically applied drugs or drug carriers to chosen plant lectins. Higher local drug concentrations in or nearby bacterial reservoirs may be gained, with higher chances for complete eradication. In this study, preliminary parameters to clarify the potential of this biorecognitive approach were evaluated. Glycan-triggered interaction cascades and uptake processes of several plant lectins with distinct carbohydrate specificities were characterized, and wheat germ agglutinin (WGA) could be identified as the most promising targeter for crossing the urothelial membrane barrier. In partially differentiated primary cells, intracellular accumulation sites were largely identical for GlcNAc- and Mannose-specific lectins. This indicates that WGA-mediated delivery may also enter host cells via the FimH-dependent uptake pathway.

  18. Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement

    Directory of Open Access Journals (Sweden)

    Shailesh T. Prajapati

    2013-01-01

    Full Text Available Olmesartan medoxomil (OLM is an angiotensin II receptor blocker (ARB antihypertensive agent administered orally that has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml. The aim of the present investigation was to develop a self-microemulsifying drug delivery system (SMEDDS to enhance the oral absorption of OLM. The solubility of OLM in various oils, surfactants, and cosurfactants was determined. Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region. Prepared SMEDDS was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro dissolution, and in vitro and ex vivo drug diffusion study. The optimized formulation S2 contained OLM (20 mg, Tween 80 (33%v/v, Transcutol P (33%v/v, and Acrysol EL 135 (34%v/v had shown the smallest particle size, maximum solubility, less emulsification time, good optical clarity, and in vitro release. The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension. It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.

  19. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.

    Science.gov (United States)

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph; Roldan, Ariel; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2014-07-01

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors.

  20. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response.

    Science.gov (United States)

    Gomes-Alves, Patrícia; Couto, Francisco; Pesquita, Cátia; Coelho, Ana V; Penque, Deborah

    2010-04-01

    F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca(2+)-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be 'restored', i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.

  1. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data

    National Research Council Canada - National Science Library

    Accurso, Frank J; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J; Dong, Qunming; Ordonez, Claudia L; Rowe, Steven M; Clancy, John Paul; Konstan, Michael W; Hoch, Heather E; Heltshe, Sonya L; Ramsey, Bonnie W; Campbell, Preston W; Ashlock, Melissa A

    2014-01-01

    ...) were integrated into a model of CFTR activity. Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects...

  2. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  3. IMPROVING BITTORRENT’S PEER SELECTION FOR MULTIMEDIA CONTENT ON-DEMAND DELIVERY

    Directory of Open Access Journals (Sweden)

    Ananda Görck Streit

    2015-11-01

    Full Text Available The great efficiency achieved by the BitTorrent protocol for the distribution of large amounts of data inspired its adoption to provide multimedia content on-demand delivery over the Internet. As it is not designed for this purpose, some adjustments have been proposed in order to meet the related QoS requirements like low startup delay and smooth playback continuity. Accordingly, this paper introduces a BitTorrent-like proposal named as Quota-Based Peer Selection (QBPS. This proposal is mainly based on the adaptation of the original peer-selection policy of the BitTorrent protocol. Its validation is achieved by means of simulations and competitive analysis. The final results show that QBPS outperforms other recent proposals of the literature. For instance, it achieves a throughput optimization of up to 48.0% in lowprovision capacity scenarios where users are very interactive.

  4. Free-standing cancer centers: rationale for improving cancer care delivery.

    Science.gov (United States)

    Lokich, J J; Silvers, S; Brereton, H; Byfield, J; Bick, R

    1989-10-01

    Free-standing cancer centers (FSCC) represent a growing trend in cancer care delivery within community practice. The critical components to FSCC are multidisciplinary cancer care, a complete menu of direct care and support services, a commitment to clinical trials and clinical investigation, and a comprehensive program for quality assurance. The advantages of FSCC to the community, to hospital programs, to the practicing surgical, medical, and radiation oncologists, and to the third-party carriers, including health maintenance organizations, are detailed. The development of an FSCC depends on the resolution of issues of (a) competition (between hospitals, hospitals and physicians, therapeutic disciplines, regional comprehensive cancer centers and FSCCs) and (b) concerns about conflict of interest. The ideal model of FSCC may well be represented by the joint venture of community hospital(s) and the community oncologists.

  5. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Science.gov (United States)

    Dey, Chaitali; Baishya, Kaushik; Ghosh, Arup; Goswami, Madhuri Mandal; Ghosh, Ajay; Mandal, Kalyan

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  6. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    Science.gov (United States)

    Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-04-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.

  7. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.

    Science.gov (United States)

    Böckenhoff, Annika; Cramer, Sandra; Wölte, Philipp; Knieling, Simeon; Wohlenberg, Claudia; Gieselmann, Volkmar; Galla, Hans-Joachim; Matzner, Ulrich

    2014-02-26

    Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.

  8. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR.

    Directory of Open Access Journals (Sweden)

    Lavanya Rishishwar

    Full Text Available Cystic fibrosis (CF is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%, along with the best set of paired sensitivity (58% and specificity (60% values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly

  9. Down-regulated CFTR During Aging Contributes to Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Xie, Chen; Sun, Xiao; Chen, Jing; Ng, Chi Fai; Lau, Kin Mang; Cai, Zhiming; Jiang, Xiaohua; Chan, Hsiao Chang

    2015-08-01

    Benign prostatic hyperplasia (BPH) is a hyper-proliferative disease of the aging prostate; however, the exact mechanism underlying the development of BPH remains incompletely understood. The present study investigated the possible involvement of the cystic fibrosis transmembrane conductance regulator (CFTR), which has been previously shown to negatively regulate nuclear factor-κB (NF-κB)/cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) pathway, in the pathogenesis of BPH. Our results showed decreasing CFTR and increasing COX2 expression in rat prostate tissues with aging. Furthermore, suppression of CFTR led to increased expression of COX2 and over-production of PGE2 in a normal human prostate epithelial cell line (PNT1A) with elevated NF-κB activity. PGE2 stimulated the proliferation of primary rat prostate stromal cells but not epithelial cells, with increased PCNA expression. In addition, the condition medium from PNT1A cells after inhibition or knockdown of CFTR promoted cell proliferation of prostate stromal cells which could be reversed by COX2 or NF-κB inhibitor. More importantly, the involvement of CFTR in BPH was further demonstrated by the down-regulation of CFTR and up-regulation of COX2/NF-κB in human BPH samples. The present results suggest that CFTR may be involved in regulating PGE2 production through its negative regulation on NF-κB/COX2 pathway in prostate epithelial cells, which consequently stimulates cell growth of prostate stromal cells. The overstimulation of prostate stromal cell proliferation by down-regulation of CFTR-enhanced PGE2 production and release during aging may contribute to the development of BPH.

  10. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    Science.gov (United States)

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  11. Identification of a novel post-hydrolytic state in CFTR gating

    OpenAIRE

    Jih, Kang-Yang; Sohma, Yoshiro; Li, Min; Hwang, Tzyh-Chang

    2012-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC pr...

  12. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    Directory of Open Access Journals (Sweden)

    Kyle E Roberts

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is an epithelial chloride channel mutated in patients with cystic fibrosis (CF. The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors", but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL, which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers" that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01 binds six-fold more tightly than the previous best hexamer (iCAL35, and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  13. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Institute of Scientific and Technical Information of China (English)

    Hong YANG; Li-na XU; Cheng-yan HE; Xin LIU; Rou-yu FANG; Tong-hui MA

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants.Methods: A cell-based fluorescent assay to measure I- influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl- current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo.Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated l- influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay,the three compound enhanced Cl- currents in epithelia formed by CFTR-expressing FRT cells with EC5o values of 73±1.4, 56±1.7, and 50±0.5 μmol/L, respectively, and Rhein also enhanced Cl- current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimu-lated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity.Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potsntiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs.

  14. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling.

    Science.gov (United States)

    Massip-Copiz, María Macarena; Clauzure, Mariángeles; Valdivieso, Ángel Gabriel; Santa-Coloma, Tomás Antonio

    2017-02-15

    Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.

  15. Validation of a semiconductor next-generation sequencing assay for the clinical genetic screening of CFTR.

    Science.gov (United States)

    Trujillano, Daniel; Weiss, Maximilian E R; Köster, Julia; Papachristos, Efstathios B; Werber, Martin; Kandaswamy, Krishna Kumar; Marais, Anett; Eichler, Sabrina; Creed, Jenny; Baysal, Erol; Jaber, Iqbal Yousuf; Mehaney, Dina Ahmed; Farra, Chantal; Rolfs, Arndt

    2015-09-01

    Genetic testing for cystic fibrosis and CFTR-related disorders mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the CFTR gene. We have explored a more efficient genetic screening strategy based on next-generation sequencing (NGS) of the CFTR gene. We validated this approach in a cohort of 177 patients with previously known CFTR mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeq™ CFTR panel. The DNA libraries were pooled, barcoded, and sequenced using an Ion Torrent PGM sequencer. The combination of different robust bioinformatics tools allowed us to detect previously known pathogenic mutations and polymorphisms in the 177 samples, without detecting spurious pathogenic calls. In summary, the assay achieves a sensitivity of 94.45% (95% CI: 92% to 96.9%), with a specificity of detecting nonvariant sites from the CFTR reference sequence of 100% (95% CI: 100% to 100%), a positive predictive value of 100% (95% CI: 100% to 100%), and a negative predictive value of 99.99% (95% CI: 99.99% to 100%). In addition, we describe the observed allelic frequencies of 94 unique definitely and likely pathogenic, uncertain, and neutral CFTR variants, some of them not previously annotated in the public databases. Strikingly, a seven exon spanning deletion as well as several more technically challenging variants such as pathogenic poly-thymidine-guanine and poly-thymidine (poly-TG-T) tracts were also detected. Targeted NGS is ready to substitute classical molecular methods to perform genetic testing on the CFTR gene.

  16. Refining the continuum of CFTR-associated disorders in the era of newborn screening

    Science.gov (United States)

    Levy, H.; Nugent, M.; Schneck, K.; Stachiw-Hietpas, D.; Laxova, A.; Lakser, O.; Rock, M.; Dahmer, M.K.; Biller, J.; Nasr, S.Z.; Baker, M.; McColley, S.A.; Simpson, P.; Farrell, P.M.

    2017-01-01

    Clinical heterogeneity in cystic fibrosis (CF) often causes diagnostic uncertainty in infants without symptoms and in older patients with milder phenotypes. We performed a cross-sectional evaluation of a comprehensive set of clinical and laboratory descriptors in a physician-defined cohort (N = 376; Children’s Hospital of Wisconsin and the American Family Children’s Hospital CF centers in Milwaukee and Madison, WI, USA) to determine the robustness of categorizing CF (N = 300), cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (N = 19), and CFTR-related (CRMS) metabolic syndrome (N = 57) according to current consensus guidelines. Outcome measures included patient demographics, clinical measures, sweat chloride levels, CFTR genotype, age at diagnosis, airway microbiology, pancreatic function, infection, and nutritional status. The CF cohort had a significantly higher median sweat chloride level (105 mmol/l) than CFTR-related disorder patients (43 mmol/l) and CFTR-related metabolic syndrome patients (35 mmol/l; p ≤ 0.001). Patient groups significantly differed in pancreatic sufficiency, immunoreactive trypsinogen levels, sweat chloride values, genotype, and positive Pseudomonas aeruginosa cultures (p ≤ 0.001). An automated classification algorithm using recursive partitioning demonstrated concordance between physician diagnoses and consensus guidelines. Our analysis suggests that integrating clinical information with sweat chloride levels, CFTR genotype, and pancreatic sufficiency provides a context for continued longitudinal monitoring of patients for personalized and effective treatment. PMID:26671754

  17. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    Science.gov (United States)

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  18. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  19. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    Science.gov (United States)

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.

  20. Quantitation of normal CFTR mRNA in CF patients with splice-site mutations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Olsen, J.C.; Silverman, L.M. [Univ. of North Carolina, Chapel Hill, NC (United States)] [and others

    1994-09-01

    Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in most nasal CFTR transcripts. The other mutation in intron 14B (2789+5 G to A) is associated with elevated sweat chloride levels, but mild pulmonary disease; exon 14B (38 bp) is spliced out of most nasal CFTR transcipts. The remaining CFTR cDNA sequences, other than the 84 bp insertion of exon 14B deletion, are identical to the published sequence. To correlate genotype and phenotype, we used quantitative RT-PCR to determine the levels of normally-spliced CFTR mRNA in nasal epithelia from these patients. CFTR cDNA was amplified (25 cycles) by using primers specific for normally-spliced species, {gamma}-actin cDNA was amplified as a standard.

  1. Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium.

    Science.gov (United States)

    Castellani, Stefano; Favia, Maria; Guerra, Lorenzo; Carbone, Annalucia; Abbattiscianni, Anna Claudia; Di Gioia, Sante; Casavola, Valeria; Conese, Massimo

    2017-05-01

    Cystic fibrosis (CF), one of the most common genetic disorders affecting primarily Caucasians, is due to mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, encoding for a chloride channel also acting as regulator of other transmembrane proteins. In healthy subjects, CFTR is maintained in its correct apical plasma membrane location via the formation of a multiprotein complex in which scaffold proteins (such as NHERF1) and signaling molecules (such as cAMP and protein kinases) guarantee its correct functioning. In CF, a disorganized and dysfunctional airway epithelium brings an altered flux of ions and water into the lumen of bronchioles, consequent bacterial infections and an enormous influx of inflammatory cells (mainly polymorphonuclear neutrophils) into the airway lumen. Recent evidence in healthy airway cells supports the notion that CFTR protein/function is strictly correlated with the actin cytoskeleton and tight junctions status. In CF cells, the most frequent CFTR gene mutation, F508del, has been shown to be associated with a disorganized actin cytoskeleton and altered tight junction permeability. Thus, the correct localization of CFTR on the apical plasma membrane domain through the formation of the scaffolding and signaling complex is likely fundamental to determine a physiological airway epithelium. The correction of CFTR mutations by either gene or drug therapies, as well as by stem cell-based interventions, can determine the resumption of a physiological organization of actin stress fibers and TJ structure and barrier function, further indicating the close interrelationship among these processes.

  2. High-Throughput Screening for Readthrough Modulators of CFTR PTC Mutations.

    Science.gov (United States)

    Liang, Feng; Shang, Haibo; Jordan, Nikole J; Wong, Eric; Mercadante, Dayna; Saltz, Josef; Mahiou, Jerome; Bihler, Hermann J; Mense, Martin

    2017-02-01

    Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.

  3. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect.

    Science.gov (United States)

    Pizzo, Lucilla; Iriarte, Andrés; Alvarez-Valin, Fernando; Marín, Mónica

    2015-05-01

    Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.

  4. Refining the continuum of CFTR-associated disorders in the era of newborn screening.

    Science.gov (United States)

    Levy, H; Nugent, M; Schneck, K; Stachiw-Hietpas, D; Laxova, A; Lakser, O; Rock, M; Dahmer, M K; Biller, J; Nasr, S Z; Baker, M; McColley, S A; Simpson, P; Farrell, P M

    2016-05-01

    Clinical heterogeneity in cystic fibrosis (CF) often causes diagnostic uncertainty in infants without symptoms and in older patients with milder phenotypes. We performed a cross-sectional evaluation of a comprehensive set of clinical and laboratory descriptors in a physician-defined cohort (N = 376; Children's Hospital of Wisconsin and the American Family Children's Hospital CF centers in Milwaukee and Madison, WI, USA) to determine the robustness of categorizing CF (N = 300), cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (N = 19), and CFTR-related (CRMS) metabolic syndrome (N = 57) according to current consensus guidelines. Outcome measures included patient demographics, clinical measures, sweat chloride levels, CFTR genotype, age at diagnosis, airway microbiology, pancreatic function, infection, and nutritional status. The CF cohort had a significantly higher median sweat chloride level (105 mmol/l) than CFTR-related disorder patients (43 mmol/l) and CFTR-related metabolic syndrome patients (35 mmol/l; p ≤ 0.001). Patient groups significantly differed in pancreatic sufficiency, immunoreactive trypsinogen levels, sweat chloride values, genotype, and positive Pseudomonas aeruginosa cultures (p ≤ 0.001). An automated classification algorithm using recursive partitioning demonstrated concordance between physician diagnoses and consensus guidelines. Our analysis suggests that integrating clinical information with sweat chloride levels, CFTR genotype, and pancreatic sufficiency provides a context for continued longitudinal monitoring of patients for personalized and effective treatment.

  5. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  6. Synthesis and Characterization of A Small Molecule CFTR Chloride Channel Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHANG Heng-jun; SU Zhong-min; ZHOU Jin-song; YANG Hong; MA Tong-hui

    2004-01-01

    A thiazolidinone CFTR inhibitor(CFTRinh-172) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor, CFTRinh-172, can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl-methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTRinh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay(Kd≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay(Kd≈0.2 μmol/L), indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTRinh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTRinh-172 for in vivo pharmacokinetics studies.

  7. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome.

    Science.gov (United States)

    Chen, Hui; Guo, Jing Hui; Zhang, Xiao Hu; Chan, Hsiao Chang

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.

  8. Design of lipid-based delivery systems for improving lymphatic transport and bioavailability of delta-tocopherol and nobiletin

    Science.gov (United States)

    Xia, Chunxin

    Lymphatic drug transport can confer bioavailability advantage by avoiding the first-pass metabolism normally observed in the portal vein hepatic route. It was reported that long chain lipid-based delivery systems can stimulate the formation of chylomicron and thus promote the lymphatic transport of drugs. In this study, a novel delta-tocopherol (delta-T) loaded Solid Lipid Nanoparticle (SLN) system was developed to investigate its effect on promoting the lymphatic transport of delta-T. The delta-T SLN was prepared with hot melt emulsification method by using glyceryl behenate (compritol RTM888) as the lipid phase and lecithin (PC75) as the emulsifier. Formula configuration, processing condition and loading capacity were carefully optimized. Physicochemical properties (particle size, surface charge, morphology) were also characterized. Moreover, excellent stability of the developed delta-T SLN in the gastrointestinal environment was observed by using an in vitro digestion model. Further investigations of the SLN in stimulating delta-T lymphatic transport were performed on mice without cannulation. Compared with the control group (delta-T corn oil dispersion), much lower delta-T levels in both blood and liver indicated reduced portal vein and hepatic transport of delta-T in the form of SLN. On the other hand, significantly higher concentrations of delta-T were observed in thymus, a major lymphatic tissue, indicating improved lymphatic transport of delta-T with the SLN delivery system. Finally, the far less excreted delta-T level in feces further confirmed improved lymphatic transport and overall bioavailability of delta-T by using SLN system. Nobiletin (NOB), one of most abundant polymethoxyflavones (PMFs) found in Citrus genus, has a low solubility in both water and oil at ambient temperatures. Thus it tends to form crystals when the loading exceeds its saturation level in the carrier system. This character greatly impaired its bioavailability and application. To

  9. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  10. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Science.gov (United States)

    Ferru-Clément, Romain; Fresquet, Fleur; Norez, Caroline; Métayé, Thierry; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed on the apical plasma membrane (PM) of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD) and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o-) expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i) Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii) it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii) it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  11. Involvement of the Cdc42 Pathway in CFTR Post-Translational Turnover and in Its Plasma Membrane Stability in Airway Epithelial Cells

    Science.gov (United States)

    Ferru-Clément, Romain; Fresquet, Fleur; Norez, Caroline; Métayé, Thierry; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed on the apical plasma membrane (PM) of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD) and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o-) expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i) Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii) it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii) it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation. PMID:25768293

  12. The Improvement of Current Tax Document Delivery System in China%我国现行税收文书送达制度的完善

    Institute of Scientific and Technical Information of China (English)

    孙哲

    2012-01-01

    Starting from the current method of tax document delivery of China,the paper analyzes the problems in the current tax document delivery system: the contradiction between the Manner of delivery and tax law enforcement practice,the contradiction between the Manner of delivery and Technology development,the contradiction between the Manner of delivery and the period of tax administrative cases.To solve these problems,the paper proposes that it should improve the operability of the current delivery system,improve the ways to deliver by mail and add the new mode of delivery.%本文从我国现行的税收文书送达方式入手,分析目前我国税收文书送达制度存在着送达方式分别与税收行政执法实践、与技术环境发展及税收行政案件期限存在矛盾,并针对这些问题,提出了提高现行送达制度可操作性、改进邮寄送达方式和增加新的送达方式等完善税收文书送达制度的建议。

  13. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system

    Directory of Open Access Journals (Sweden)

    Gomes MJ

    2014-04-01

    Full Text Available Maria João Gomes,1 José das Neves,1,2 Bruno Sarmento1,2 1Instituto de Engenharia Biomédica (INEB, Porto, Portugal; 2Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS, Instituto Superior de Ciências da Saúde-Norte, CESPU, Gandra, Portugal Abstract: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood–brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood–brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS. Keywords: HIV/AIDS, blood–brain barrier, protease inhibitors, efflux transporters, drug targeting

  14. Localized Delivery of Mechano-Growth Factor E-domain Peptide via Polymeric Microstructures Improves Cardiac Function following Myocardial Infarction

    Science.gov (United States)

    Peña, James R.; Pinney, James; Ayala, Perla; Desai, Tejal; Goldspink, Paul H.

    2015-01-01

    The Insulin like growth factor-I isoform mechano-growth factor (MGF), is expressed in the heart following myocardial infarction and encodes a unique E-domain region. To examine E-domain function, we delivered a synthetic peptide corresponding to the unique E-domain region of the human MGF (IGF-1Ec) via peptide eluting polymeric microstructures to the heart. The microstructures were made of poly (ethylene glycol) dimethacrylate hydrogel and bioengineered to be the same size as an adult cardiac myocyte (100×15×15 μm) and with a stiffness of 20 kPa. Peptide eluting microrods and empty microrods were delivered via intramuscular injection following coronary artery ligation in mice. To examine the physiologic consequences, we assessed the impact of peptide delivery on cardiac function and cardiovascular hemodynamics using pressure-volume loops and gene expression by quantitative RT-PCR. A significant decline in both systolic and diastolic function accompanied by pathologic hypertrophy occurred by 2 weeks which decompensated further by 10 weeks post-infarct in the untreated groups. Delivery of the E-domain peptide eluting microrods decreased mortality, ameliorated the decline in hemodynamics, and delayed decompensation. This was associated with the inhibition of pathologic hypertrophy despite increasing vascular impedance. Delivery of the empty microrods had limited effects on hemodynamics and while pathologic hypertrophy persisted there was a decrease in ventricular stiffness. Our data show that cardiac restricted administration of the MGF E-domain peptide using polymeric microstructures may be used to prevent adverse remodeling of the heart and improve function following myocardial infarction. PMID:25678113

  15. SU-F-BRD-10: Improving Plan Delivery Efficiency of Intensity Modulated Proton Plans with Prioritized Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Müller, BS; Wilkens, JJ [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich (Germany); Physik-Department, Technische Universität München, Munich, DE (Germany)

    2015-06-15

    Purpose: To integrate treatment delivery time into plan optimization in spot scanning intensity modulated proton therapy. Utilizing a dedicated research treatment planning system we present an optimization approach to explore the trade-off between the correlated parameters treatment time and plan quality on an astrocytoma patient case. Methods: The planning system is based on prioritized optimization, a stepwise approach of implementing clinical goals. After each optimization step, dosimetric achievements are turned into hard constraints to maintain the achieved plan quality. Prior achievements can be violated by a so-called slip-factor which allows to study possible trade-offs of conflicting goals. Plan quality is obtained in the first two steps, while the third step optimizes delivery efficiency by working on the spot weight distribution via four alternative Methods: elimination of low weighted spots (1), elimination of spots hardly contributing to PTV dose, followed by reoptimization of the resulting smaller optimization problem (2), reduction of spot weights variance within each energy layer (3), and reduction of the overall spot weight sum (4). Treatment times were calculated assuming either constant or variable beam current depending on the lowest spot weight. Results: Delivery efficiency can be improved remarkably without influencing the plan quality. Absolute time savings depend on the utilized method and facility properties. By varying slip-factor and spot reduction limits, a border of worsening quality is detectable for all methods.Deleting low weighted spots by 10% results in a noticeable decrease in minimum target dose. Further reduction results in more heterogeneous dose distributions and insufficient coverage. Option 2 showed constant plan quality for spot reductions of more than 10%. Conclusion: Including treatment time optimization as a final step into prioritized optimization allows for more efficient treatment plans by redistributing the spot

  16. Redesigning service delivery for hypertensive patients: a methodological guideline to improve the management of chronic diseases.

    Science.gov (United States)

    Ippolito, Adelaide; Cannavacciuolo, Lorella; Ponsiglione, Cristina; De Luca, Nicola; Iaccarino, Guido; Illario, Maddalena

    2014-04-01

    Best care is not necessarily the most expensive, but the most appropriate, and prevention is the most powerful tool to promote health. A novel approach might envision the reduction of hospital admittance (thus meeting a requirement from long term condition patients: they would rather not being hospitalized!) and the enforcement of peripheral (both on the territory and at home) assistance. In this direction, experiences of reshaping new service deliveries towards an integrated disease management, namely clinical pathways, can be observed in Europe and in different parts of the world. Aim of this paper is to provide a methodological guideline to support the management in planning clinical pathways, also outlining the main barriers limiting the process. In particular, we present the results of planning a clinical pathway at the Centre for Hypertension of the Federico II University Hospital (Naples, Italy). The case study showed that the introduction of a similar service impacts on the organisation of the structure. An analysis of organizational processes "as are" and the re-design of processes "to be" are necessary to integrate the clinical pathway into the actual activities.

  17. Preparation and characterization of docetaxel self-nanoemulsifying powders (SNEPs): A strategy for improved oral delivery

    Energy Technology Data Exchange (ETDEWEB)

    Sunkavalli, Sharath; Eedara, Basanth Babu; Janga, Karthik Yadav; Velpula, Ashok; Jukanti, Raju; Bandari, Suresh [St. Peter' s Institute of Pharmaceutical Sciences, Warangal (India)

    2016-03-15

    Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) of docetaxel were prepared using varying ratios of Capmul PG 8 NF (oil), Cremophor EL (surfactant) and Transcutol-P (co-surfactant). The optimized L-SNEDDS (L{sub 11}) was transformed into self-nanoemulsifying powder (SNEP) by physical adsorption on to Neusilin US2 and evaluated for dissolution behavior, in vitro cytotoxicity and in vivo oral bioavailability. Optimized L-SNEDDS (L{sub 11}) composed of 50% of oil, 41.7% of surfactant and 8.3% co-surfactant produced stable emulsion with smaller globules (43±3 nm). In vitro dissolution studies showed the rapid drug release within 5min (95.42±1%) from SNEP{sub N}. In vitro cytotoxicity assessed by the MTT assay using MCF-7 human breast cancer cell lines revealed that L-SNEDDS significantly reduced the IC{sub 50} value and was 2.3 times lower than the pure docetaxel. Further, the oral bioavailability studies in male Wistar rats showed higher C{sub max} values following treatment with SNEP{sub N} (0.98±0.13 μg/mL) and L-SNEDDS (1.09± 0.06 μg/mL) compared to pure docetaxel (0.37±0.04 μg/mL).

  18. Folic Acid-Chitosan Conjugated Nanoparticles for Improving Tumor-Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huijuan Song

    2013-01-01

    Full Text Available Objective. To prepare folic acid-chitosan conjugated nanoparticles (FA-CS NPs and evaluate their targeting specificity on tumor cells. Methods. Chitosan (CS NPs were prepared by ionic cross linking method, and folic acid (FA was conjugated with CS NPs by electrostatic interaction. The properties of NPs were investigated, and doxorubicin hydrochloride (Dox as a model drug was encapsulated for investigating drug release pattern in vitro. The cytotoxicity and cellular uptake of FA-CS NPs were also investigated. Results. The results reveal that the obtained FA-CS NPs were monodisperse nanoparticles with suitable average size and positive surface charge. Dox was easily loaded into FA-CS NPs, and the release pattern showed a long and biphasic drug release. Noticeable phagocytosis effect was observed in the presence of rhodamine B-labeled FA-CSNPs when incubating with the folate receptor-positive SMMC-7221 cells. Conclusion. Compared with the unmodified CS NPs, FA-CS NPs showed much higher cell uptaking ability due to the known folate-receptor mediated endocytosis. FA-CS NPs provide a potential way to enhance the using efficiency of antitumor drug by folate receptor mediated targeting delivery.

  19. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  20. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells.

    Science.gov (United States)

    Kumar, P; Bhattacharyya, S; Peters, K W; Glover, M L; Sen, A; Cox, R T; Kundu, S; Caohuy, H; Frizzell, R A; Pollard, H B; Biswas, R

    2015-11-01

    Cystic fibrosis (CF) is due to mutations in the CFTR gene, which prevents correct folding, trafficking and function of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein. The dysfunctional effect of CFTR mutations, principally the F508del-CFTR mutant, is further manifested by hypersecretion of the pro-inflammatory chemokine interleukin-8 into the airway lumen, which further contributes to morbidity and mortality. We have hypothesized that microRNA (miR)-based therapeutics could rescue the dysfunctional consequences of mutant CFTR. Here we report that a miR-16 mimic can effectively rescue F508del-CFTR protein function in airway cell lines and primary cultures, of differentiated human bronchial epithelia from F508del homozygotes, which express mutant CFTR endogenously. We also identify two other miRs, miR-1 and miR-302a, which are also active. Although miR-16 is expressed at basal comparable levels in CF and control cells, miR-1 and miR-302a are undetectable. When miR mimics are expressed in CF lung or pancreatic cells, the expression of the F508del-CFTR protein is significantly increased. Importantly, miR-16 promotes functional rescue of the cyclic AMP-activated apical F508del-CFTR chloride channel in primary lung epithelial cells from CF patients. We interpret these findings to suggest that these miRs may constitute novel targets for CF therapy.

  1. The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR function.

    Directory of Open Access Journals (Sweden)

    Angel G Valdivieso

    Full Text Available Cystic fibrosis (CF is a frequent and lethal autosomal recessive disease. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel. We have previously studied the differential expression of genes in CF and CF corrected cell lines, and found a reduced expression of MTND4 in CF cells. MTND4 is a mitochondrial gene encoding the MTND4 subunit of the mitochondrial Complex I (mCx-I. Since this subunit is essential for the assembly and activity of mCx-I, we have now studied whether the activity of this complex was also affected in CF cells. By using Blue Native-PAGE, the in-gel activity (IGA of the mCx-I was found reduced in CFDE and IB3-1 cells (CF cell lines compared with CFDE/6RepCFTR and S9 cells, respectively (CFDE and IB3-1 cells ectopically expressing wild-type CFTR. Moreover, colon carcinoma T84 and Caco-2 cells, which express wt-CFTR, either treated with CFTR inhibitors (glibenclamide, CFTR(inh-172 or GlyH101 or transfected with a CFTR-specific shRNAi, showed a significant reduction on the IGA of mCx-I. The reduction of the mCx-I activity caused by CFTR inhibition under physiological or pathological conditions may have a profound impact on mitochondrial functions of CF and non-CF cells.

  2. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  3. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline.

    Science.gov (United States)

    Tormos, Christian J; Abraham, Carol; Madihally, Sundararajan V

    2015-12-01

    Although local cell delivery is an option to repair tissues, particularly using chitosan-based hydrogels, significant attrition of injected cells prior to engraftment has been a problem. To address this problem, we explored the possibility of stabilizing the chitosan-gelatin (CG) injectable hydrogels using (1) controlled release of doxycycline (DOX) to prevent premature degradation due to increased gelatinase activity (MMP-2 and MMP-9), and (2) transglutaminase (TG) to in situ cross-link gelatin to improve the mechanical stability. We prepared DOX-loaded PLGA nanoparticles, loaded into the CG hydrogels, measured DOX release for 5 days, and modeled using a single-compartmental assumption. Next, we assessed the influence of TG and DOX on hydrogel compression properties by incubating hydrogels for 7 days in PBS. We evaluated the effect of these changes on retention of fibroblasts and alterations in MMP-2/MMP-9 activity by seeding 500,000 fibroblasts for 5 days. These results showed that 90 % of DOX released from cross-linked CG hydrogels after 4 days, unlike CG hydrogels where 90 % of DOX was released within the first day. Addition of TG enhanced the CG hydrogel stability significantly. More than 60 % of seeded fibroblasts were recovered from the CG-TG hydrogels at day 5, unlike 40 % recovered from CG-hydrogels. Inhibition of MMP-2/MMP-9 were observed. In summary, controlled release of DOX from CG hydrogels cross-linked with TG shows a significant potential as a carrier for cell delivery.

  4. Improved survival for elderly married glioblastoma patients. Better treatment delivery, less toxicity, and fewer disease complications

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Florian; Goerig, Nicole; Knippen, Stefan; Gryc, Thomas; Semrau, Sabine; Lettmaier, Sebastian; Fietkau, Rainer [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany); Putz, Tobias [University of Bamberg, Professorship of Demography, Bamberg (Germany); Eyuepoglu, Ilker; Roessler, Karl [Friedrich-Alexander-University Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2016-11-15

    Marital status is a well-described prognostic factor in patients with gliomas but the observed survival difference is unexplained in the available population-based studies. A series of 57 elderly glioblastoma patients (≥70 years) were analyzed retrospectively. Patients received radiotherapy or chemoradiation with temozolomide. The prognostic significance of marital status was assessed. Disease complications, toxicity, and treatment delivery were evaluated in detail. Overall survival was significantly higher in married than in unmarried patients (median, 7.9 vs. 4.0 months; p = 0.006). The prognostic significance of marital status was preserved in the multivariate analysis (HR, 0.41; p = 0.011). Married patients could receive significantly higher daily temozolomide doses (mean, 53.7 mg/m{sup 2} vs. 33.1 mg/m{sup 2}; p = 0.020), were more likely to receive maintenance temozolomide (45.7 % vs. 11.8 %; p = 0.016), and had to be hospitalized less frequently during radiotherapy (55.0 % vs. 88.2 %; p = 0.016). Of the patients receiving temozolomide, married patients showed significantly lower rates of hematologic and liver toxicity. Most complications were infectious or neurologic in nature. Complications of any grade were more frequent in unmarried patients (58.8 % vs. 30.0 %; p = 0.041) with the incidence of grade 3-5 complications being particularly elevated (47.1 % vs. 15.0 %; p = 0.004). We found poorer treatment delivery as well as an unexpected severe increase in toxicity and disease complications in elderly unmarried glioblastoma patients. Marital status may be an important predictive factor for clinical decision-making and should be addressed in further studies. (orig.) [German] Fuer verheiratete Patienten mit malignen Gliomen ist ein verbessertes Gesamtueberleben gut beschrieben. Die zugrunde liegenden Mechanismen konnten bislang jedoch in den verfuegbaren bevoelkerungsbezogenen Arbeiten nicht erklaert werden. Eine Serie von 57 aelteren Patienten mit

  5. Improving delivery of acute stroke therapy: The TLL Temple Foundation Stroke Project.

    Science.gov (United States)

    Morgenstern, Lewis B; Staub, Lara; Chan, Wenyaw; Wein, Theodore H; Bartholomew, L Kay; King, Mary; Felberg, Robert A; Burgin, W Scott; Groff, Janet; Hickenbottom, Susan L; Saldin, Kamaldeen; Demchuk, Andrew M; Kalra, Anjali; Dhingra, Anupma; Grotta, James C

    2002-01-01

    Only a small minority of acute stroke patients receive approved acute stroke therapy. We performed a community and professional behavioral intervention project to increase the proportion of stroke patients treated with approved acute stroke therapy. This study used a quasi-experimental design. Intervention and comparison communities were compared at baseline and during educational intervention. The communities were based in 5 nonurban East Texas counties. The multilevel intervention worked with hospitals and community physicians while changing the stroke identification skills, outcome expectations, and social norms of community residents. The primary goal was to increase the proportion of patients treated with intravenous recombinant tissue plasminogen activator (rTPA) from 1% to 6% of all cerebrovascular events in the intervention community. We prospectively evaluated 1733 patients and validated 1189 cerebrovascular events. Intravenous rTPA treatment increased from 1.38% to 5.75% among all cerebrovascular event patients in the intervention community (P=0.01) compared with a change from 0.49% to 0.55% in the comparison community (P=1.00). Among the ischemic stroke patients, an increase from 2.21% to 8.65% was noted in the intervention community (P=0.02). The comparison group did not appreciably change (0.71% to 0.86%, P=1.00). Of eligible intravenous rTPA candidates, treatment increased in the intervention community from 14% to 52% (P=0.003) and was unchanged in the comparison community (7% to 6%, P=1.00). An aggressive, multilevel stroke educational intervention program can increase delivery of acute stroke therapy. This may have important public health implications for reducing disability on a national level.

  6. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers.

    Science.gov (United States)

    Zhang, Fuwu; Zhang, Shiyi; Pollack, Stephanie F; Li, Richen; Gonzalez, Amelia M; Fan, Jingwei; Zou, Jiong; Leininger, Sarah E; Pavía-Sanders, Adriana; Johnson, Rachel; Nelson, Laura D; Raymond, Jeffery E; Elsabahy, Mahmoud; Hughes, Dennis M P; Lenox, Mark W; Gustafson, Tiffany P; Wooley, Karen L

    2015-02-11

    Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 μg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma.

  7. Improving Packet Delivery Performance of Publish/Subscribe Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ernesto García Davis

    2013-01-01

    Full Text Available MQTT-S and CoAP are two protocols able to use the publish/subscribe model in Wireless Sensor Networks (WSNs. The high scalability provided by the publish/subscribe model may incur a high packet loss and therefore requires an efficient reliability mechanism to cope with this situation. The reliability mechanism of MQTT-S and CoAP employs a method which defines a fixed value for the retransmission timeout (RTO. This article argues that this method is not efficient for deploying publish/subscribe in WSN, because it may be unable to recover a packet, therefore resulting in a lower packet delivery ratio (PDR at the subscriber nodes. This article proposes and evaluates an adaptive RTO method, which consists in using a Smooth Round-trip Time and multiplying it by a constant parameter (K. Thanks to this method, the reliability mechanism of MQTT-S and CoAP would be able to react properly to packet loss and would also be lightweight in terms of energy, memory and computing for sensor nodes where these resources are critical. We present a detailed evaluation of the effects of the K value on the calculation of the adaptive RTO method. We also establish the setting for obtaining the highest PDR on the subscriber nodes for single-hop and multi-hop scenarios. The results for single-hop scenario show that use of the appropriate K value for the adaptive RTO method increases the PDR up to 76% for MQTT-S and up to 38% for CoAP when compared with the use of fixed RTO method for both protocols, respectively. Meanwhile the same comparison for multi-hop scenario, the adaptive RTO method increases the PDR up to 36% for MQTT-S and up to 14% for CoAP.

  8. Improving packet delivery performance of publish/subscribe protocols in wireless sensor networks.

    Science.gov (United States)

    Davis, Ernesto García; Calveras, Anna; Demirkol, Ilker

    2013-01-04

    MQTT-S and CoAP are two protocols able to use the publish/subscribe model in Wireless Sensor Networks (WSNs). The high scalability provided by the publish/subscribe model may incur a high packet loss and therefore requires an efficient reliability mechanism to cope with this situation. The reliability mechanism of MQTT-S and CoAP employs a method which defines a fixed value for the retransmission timeout (RTO). This article argues that this method is not efficient for deploying publish/subscribe in WSN, because it may be unable to recover a packet, therefore resulting in a lower packet delivery ratio (PDR) at the subscriber nodes. This article proposes and evaluates an adaptive RTO method, which consists in using a Smooth Round-trip Time and multiplying it by a constant parameter (K). Thanks to this method, the reliability mechanism of MQTT-S and CoAP would be able to react properly to packet loss and would also be lightweight in terms of energy, memory and computing for sensor nodes where these resources are critical. We present a detailed evaluation of the effects of the K value on the calculation of the adaptive RTO method. We also establish the setting for obtaining the highest PDR on the subscriber nodes for single-hop and multi-hop scenarios. The results for single-hop scenario show that use of the appropriate K value for the adaptive RTO method increases the PDR up to 76% for MQTT-S and up to 38% for CoAP when compared with the use of fixed RTO method for both protocols, respectively. Meanwhile the same comparison for multi-hop scenario, the adaptive RTO method increases the PDR up to 36% for MQTT-S and up to 14% for CoAP.

  9. Improving Packet Delivery Performance of Publish/Subscribe Protocols in Wireless Sensor Networks

    Science.gov (United States)

    Davis, Ernesto García; Calveras, Anna; Demirkol, Ilker

    2013-01-01

    MQTT-S and CoAP are two protocols able to use the publish/subscribe model in Wireless Sensor Networks (WSNs). The high scalability provided by the publish/subscribe model may incur a high packet loss and therefore requires an efficient reliability mechanism to cope with this situation. The reliability mechanism of MQTT-S and CoAP employs a method which defines a fixed value for the retransmission timeout (RTO). This article argues that this method is not efficient for deploying publish/subscribe in WSN, because it may be unable to recover a packet, therefore resulting in a lower packet delivery ratio (PDR) at the subscriber nodes. This article proposes and evaluates an adaptive RTO method, which consists in using a Smooth Round-trip Time and multiplying it by a constant parameter (K). Thanks to this method, the reliability mechanism of MQTT-S and CoAP would be able to react properly to packet loss and would also be lightweight in terms of energy, memory and computing for sensor nodes where these resources are critical. We present a detailed evaluation of the effects of the K value on the calculation of the adaptive RTO method. We also establish the setting for obtaining the highest PDR on the subscriber nodes for single-hop and multi-hop scenarios. The results for single-hop scenario show that use of the appropriate K value for the adaptive RTO method increases the PDR up to 76% for MQTT-S and up to 38% for CoAP when compared with the use of fixed RTO method for both protocols, respectively. Meanwhile the same comparison for multi-hop scenario, the adaptive RTO method increases the PDR up to 36% for MQTT-S and up to 14% for CoAP. PMID:23291579

  10. Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea

    Science.gov (United States)

    Tan, Justin; Wang, Yajun; Caruso, Frank; Shepherd, Robert K.

    2016-01-01

    Cochlear implants electrically stimulate spiral ganglion neurons (SGNs) in order to provide speech cues to severe-profoundly deaf patients. In normal hearing cochleae the SGNs depend on endogenous neurotrophins secreted by sensory cells in the organ of Corti for survival. SGNs gradually degenerate following deafness and consequently there is considerable interest in developing clinically relevant strategies to provide exogenous neurotrophins to preserve SGN survival. The present study investigated the safety and efficacy of a drug delivery system for the cochlea using nanoengineered silica supraparticles. In the present study we delivered Brain-derived neurotrophic factor (BDNF) over a period of four weeks and evaluated SGN survival as a measure of efficacy. Supraparticles were bilaterally implanted into the basal turn of cochleae in profoundly deafened guinea pigs. One ear received BDNF-loaded supraparticles and the other ear control (unloaded) supraparticles. After one month of treatment the cochleae were examined histologically. There was significantly greater survival of SGNs in cochleae that received BDNF supraparticles compared to the contralateral control cochleae (repeated measures ANOVA, p = 0.009). SGN survival was observed over a wide extent of the cochlea. The supraparticles were well tolerated within the cochlea with a tissue response that was localised to the site of implantation in the cochlear base. Although mild, the tissue response was significantly greater in cochleae treated with BDNF supraparticles compared to the controls (repeated measures ANOVA, p = 0.003). These data support the clinical potential of this technology particularly as the supraparticles can be loaded with a variety of therapeutic drugs. PMID:27788219

  11. Physicochemical Properties of Solid Phospholipid Particles as a Drug Delivery Platform for Improving Oral Absorption of Poorly Soluble Drugs.

    Science.gov (United States)

    Kawakami, Kohsaku; Miyazaki, Aoi; Fukushima, Mayuko; Sato, Keiko; Yamamura, Yuko; Mohri, Kohta; Sakuma, Shinji

    2017-01-01

    A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed. MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed. MPP is spherical in shape with a diameter typically in the range of 10-15 μm and a wide surface area that exceeds 10 m(2)/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion. MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.

  12. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction.

    Science.gov (United States)

    Della Rocca, Domenico G; Willenberg, Bradley J; Ferreira, Leonardo F; Wate, Prateek S; Petersen, John W; Handberg, Eileen M; Zheng, Tong; Steindler, Dennis A; Terada, Naohiro; Batich, Christopher D; Byrne, Barry J; Pepine, Carl J

    2012-11-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI.

  13. Improving patient experience in a pediatric ambulatory clinic : a mixed method appraisal of service delivery

    NARCIS (Netherlands)

    Soeteman, Marijn; Peters, Vera; Busari, Jamiu O

    2015-01-01

    OBJECTIVE: In 2013, customer satisfaction surveys showed that patients were unhappy with the services provided at our ambulatory clinic. In response, we performed an appraisal of our services, which resulted in the development of a strategy to reduce waiting time and improve quality of service. Infr

  14. Improving healthcare delivery with lean thinking : action research in an emergency department

    NARCIS (Netherlands)

    Rosmulder, Remco Willem

    2011-01-01

    The healthcare sector faces a challenge to deliver more and better patient care with less manpower and less financial resources. This action research (AR) thesis deals with the question if industrial engineers can contribute to this by applying process improvement concepts that were successful in in

  15. Cluster Randomized Trial of a Toolkit and Early Vaccine Delivery to Improve Childhood Influenza Vaccination Rates in Primary Care

    Science.gov (United States)

    Zimmerman, Richard K.; Nowalk, Mary Patricia; Lin, Chyongchiou Jeng; Hannibal, Kristin; Moehling, Krissy K.; Huang, Hsin-Hui; Matambanadzo, Annamore; Troy, Judith; Allred, Norma J.; Gallik, Greg; Reis, Evelyn C.

    2014-01-01

    Purpose To increase childhood influenza vaccination rates using a toolkit and early vaccine delivery in a randomized cluster trial. Methods Twenty primary care practices treating children (range for n=536-8,183) were randomly assigned to Intervention and Control arms to test the effectiveness of an evidence-based practice improvement toolkit (4 Pillars Toolkit) and early vaccine supplies for use among disadvantaged children on influenza vaccination rates among children 6 months-18 years. Follow-up staff meetings and surveys were used to assess use and acceptability of the intervention strategies in the Intervention arm. Rates for the 2010-2011 and 2011-2012 influenza seasons were compared. Two-level generalized linear mixed modeling was used to evaluate outcomes. Results Overall increases in influenza vaccination rates were significantly greater in the Intervention arm (7.9 percentage points) compared with the Control arm (4.4 percentage points; P58% did not significantly increase. In regression analyses, a child's likelihood of being vaccinated was significantly higher with: younger age, white race (Odds ratio [OR]=1.29; 95% confidence interval [CI]=1.23-1.34), having commercial insurance (OR=1.30; 95%CI=1.25-1.35), higher pre-intervention practice vaccination rate (OR=1.25; 95%CI=1.16-1.34), and being in the Intervention arm (OR=1.23; 95%CI=1.01-1.50). Early delivery of influenza vaccine was rated by Intervention practices as an effective strategy for raising rates. Conclusions Implementation of a multi-strategy toolkit and early vaccine supplies can significantly improve influenza vaccination rates among children in primary care practices but the effect may be less pronounced in practices with moderate to high existing vaccination rates. PMID:24793941

  16. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xiaolin Bi

    2016-04-01

    Full Text Available The active ingredients of salvia (dried root of Salvia miltiorrhiza include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I and hydrophilic (e.g., danshensu and salvianolic acid B constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%–80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  17. Delivery of maternal health care in Indigenous primary care services: baseline data for an ongoing quality improvement initiative

    Directory of Open Access Journals (Sweden)

    Kwedza Ru K

    2011-03-01

    Full Text Available Abstract Background Australia's Aboriginal and Torres Strait Islander (Indigenous populations have disproportionately high rates of adverse perinatal outcomes relative to other Australians. Poorer access to good quality maternal health care is a key driver of this disparity. The aim of this study was to describe patterns of delivery of maternity care and service gaps in primary care services in Australian Indigenous communities. Methods We undertook a cross-sectional baseline audit for a quality improvement intervention. Medical records of 535 women from 34 Indigenous community health centres in five regions (Top End of Northern Territory 13, Central Australia 2, Far West New South Wales 6, Western Australia 9, and North Queensland 4 were audited. The main outcome measures included: adherence to recommended protocols and procedures in the antenatal and postnatal periods including: clinical, laboratory and ultrasound investigations; screening for gestational diabetes and Group B Streptococcus; brief intervention/advice on health-related behaviours and risks; and follow up of identified health problems. Results The proportion of women presenting for their first antenatal visit in the first trimester ranged from 34% to 49% between regions; consequently, documentation of care early in pregnancy was poor. Overall, documentation of routine antenatal investigations and brief interventions/advice regarding health behaviours varied, and generally indicated that these services were underutilised. For example, 46% of known smokers received smoking cessation advice/counselling; 52% of all women received antenatal education and 51% had investigation for gestational diabetes. Overall, there was relatively good documentation of follow up of identified problems related to hypertension or diabetes, with over 70% of identified women being referred to a GP/Obstetrician. Conclusion Participating services had both strengths and weaknesses in the delivery of maternal

  18. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza.

    Science.gov (United States)

    Bi, Xiaolin; Liu, Xuan; Di, Liuqing; Zu, Qiang

    2016-04-08

    The active ingredients of salvia (dried root of Salvia miltiorrhiza) include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I) and hydrophilic (e.g., danshensu and salvianolic acid B) constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS) was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%-80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  19. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer

    Science.gov (United States)

    Swami Muddineti, Omkara; Kumari, Preeti; Ajjarapu, Srinivas; Manish Lakhani, Prit; Bahl, Rishabh; Ghosh, Balaram; Biswas, Swati

    2016-08-01

    In recent years, gold nanoparticles (AuNPs) have received immense interest in various biomedical applications including drug delivery, photothermal ablation of cancer and imaging agent for cancer diagnosis. However, the synthesis of AuNPs poses challenges due to the poor reproducibility and stability of the colloidal system. In the present work, we developed a one step, facile procedure for the synthesis of AuNPs from hydrogen tetrachloroaurate (III) hydrate (HAuCl4. 3H2O) by using ascorbic acid and xanthan gum (XG) as reducing agent and stabilizer, respectively. The effect of concentrations of HAuCl4, 3H2O, ascorbic acid and methoxy polyethylene glycol-thiol (mPEG800-SH) were optimized and it was observed that stable AuNPs were formed at concentrations of 0.25 mM, 50 μM and 1 mM for HAuCl4.3H2O, ascorbic acid, and mPEG800-SH, respectively. The XG stabilized, deep red wine colored AuNPs (XG-AuNPs) were obtained by drop-wise addition of aqueous solution of ascorbic acid (50 mM) and XG (1.5 mg ml-1). Synthesized XG-AuNPs showed λmax at 540 nm and a mean hydrodynamic diameter of 80 ± 3 nm. PEGylation was performed with mPEG800-SH to obtain PEGylated XG-AuNPs (PX-AuNPs) and confirmed by Ellman’s assay. No significant shift observed in λmax and hydrodynamic diameter between XG-AuNPs and PX-AuNPs. Colloidal stability of PX-AuNPs was studied in normal saline, buffers within a pH range of 1.2-7.4, DMEM complete medium and in normal storage condition at 4 ˚C. Further, water soluble curcumin was prepared using PVP-K30 as solid dispersion and loaded on to PX-AuNPs (CPX-AuNPs), and evaluated for cellular uptake and cytotoxicity in Murine melanoma (B16F10) cells. Time and concentration dependent studies using CPX-AuNPs showed efficient uptake and decreased cell viability compared to free curcumin.

  20. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    Science.gov (United States)

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  1. Improving patient experience in a pediatric ambulatory clinic: a mixed method appraisal of service delivery

    Directory of Open Access Journals (Sweden)

    Soeteman M

    2015-03-01

    Full Text Available Marijn Soeteman,1 Vera Peters,2 Jamiu O Busari1,3 1Department of Pediatrics, Atrium Medical Center, Heerlen, 2Faculty of Health, Medicine and Life Sciences, 3Department of Educational Development and Research, Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands Objective: In 2013, customer satisfaction surveys showed that patients were unhappy with the services provided at our ambulatory clinic. In response, we performed an appraisal of our services, which resulted in the development of a strategy to reduce waiting time and improve quality of service. Infrastructural changes to our clinic’s waiting room, consultation rooms, and back offices were performed, and schedules were redesigned to reduce wait time to 10 minutes and increase consultation time to 20 minutes. Our objective was to identify if this would improve 1 accessibility to caregivers and 2 quality of service and available amenities. Design: We conducted a multi-method survey using 1 a patient flow analysis to analyze the flow of service and understand the impact of our interventions on patient flow and 2 specially designed questionnaires to investigate patients’ perceptions of our wait time and how to improve our services. Results: The results showed that 79% of our respondents were called in to see a doctor within 20 minutes upon arrival. More patients (55% felt that 10–20 minutes was an acceptable wait time. We also observed a perceived increase in satisfaction with wait time (94%. Finally, a large number of patients (97% were satisfied with the quality of service and with the accessibility to caregivers (94%. Conclusion: The majority of our patients were satisfied with the accessibility to our ambulatory clinics and with the quality of services provided. The appraisal of our operational processes using a patient flow analysis also demonstrated how this strategy could effectively be applied to investigate and improve quality of

  2. Large Scale Data Analytics of User Behavior for Improving Content Delivery

    Science.gov (United States)

    2014-12-01

    advertisement - based and subscription-based revenue models. Finally, although mobile traffic is in- creasing, cellular networks are not as well designed as...maximize user engagement in order for better gains from their advertisement -based or subscription-based business models. This has led to improving user...who pro- vide content on the Internet primarily for revenue. These include news websites (e.g., CNN), social networking websites (e.g., Facebook , Yelp

  3. Improving patient experience in a pediatric ambulatory clinic: a mixed method appraisal of service delivery.

    Science.gov (United States)

    Soeteman, Marijn; Peters, Vera; Busari, Jamiu O

    2015-01-01

    In 2013, customer satisfaction surveys showed that patients were unhappy with the services provided at our ambulatory clinic. In response, we performed an appraisal of our services, which resulted in the development of a strategy to reduce waiting time and improve quality of service. Infrastructural changes to our clinic's waiting room, consultation rooms, and back offices were performed, and schedules were redesigned to reduce wait time to 10 minutes and increase consultation time to 20 minutes. Our objective was to identify if this would improve 1) accessibility to caregivers and 2) quality of service and available amenities. We conducted a multi-method survey using 1) a patient flow analysis to analyze the flow of service and understand the impact of our interventions on patient flow and 2) specially designed questionnaires to investigate patients' perceptions of our wait time and how to improve our services. The results showed that 79% of our respondents were called in to see a doctor within 20 minutes upon arrival. More patients (55%) felt that 10-20 minutes was an acceptable wait time. We also observed a perceived increase in satisfaction with wait time (94%). Finally, a large number of patients (97%) were satisfied with the quality of service and with the accessibility to caregivers (94%). The majority of our patients were satisfied with the accessibility to our ambulatory clinics and with the quality of services provided. The appraisal of our operational processes using a patient flow analysis also demonstrated how this strategy could effectively be applied to investigate and improve quality of service in patients.

  4. [Post-translational ligation of split CFTR severed before TMD2 and its chloride channel function].

    Science.gov (United States)

    Zhu, Fuxiang; Gong, Xiandi; Liu, Zelong; Yang, Shude; Qu, Huige; Chi, Xiaoyan

    2010-12-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion channel and the split Ssp DnaB intein-mediated protein trans-splicing was explored to co-deliver CFTR gene into eukaryotic cells with two vectors. The human CFTR cDNA was split after Glu838 codon before the second transmembrane dome (TMD2) into two halves of N- and C-parts and fused with the coding sequences of split Ssp DnaB intein. Pair of eukaryotic expression vectors pEGFP-NInt and pEYFP-IntC were constructed by inserting them into the vectors pEGFP-N1 and pEYFP-N1 respectively. The transient expression was carried out for observing the ligation of CFTR by Western blotting and recording the chloride current by patch clamps when cotransfection of the pair of vectors into baby hamster kidney (BHK) cells. The results showed that an obvious protein band proven to be ligated intact CFTR can be seen and a higher chloride current and activity of chloride channel were recorded after cotransfection. These data demonstrated that split Ssp DnaB intein could be used as a strategy in delivering CFTR gene by two vectors providing evidence for application of dual adeno-associated virus (AAV) vectors to overcome the limitation of packaging size in cystic fibrosis gene therapy.

  5. Effects of Pseudomonas aeruginosa on CFTR chloride secretion and the host immune response.

    Science.gov (United States)

    Stanton, Bruce A

    2017-04-01

    In the healthy lung the opportunistic pathogen, Pseudomonas aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl(-) and [Formula: see text] secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild-type and Phe508del-CFTR Cl(-) secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR inhibitory factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF and induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the Phe508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.

  6. Defective CFTR- β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis.

    Science.gov (United States)

    Liu, Kaisheng; Zhang, Xiaohu; Zhang, Jie Ting; Tsang, Lai Ling; Jiang, Xiaohua; Chan, Hsiao Chang

    2016-09-27

    While inflammation with aberrant activation of NF-κB pathway is a hallmark of cystic fibrosis (CF), the molecular mechanisms underlying the link between CFTR defect and activation of NF-κB-mediated pro-inflammatory response remain elusive. Here, we investigated the link between CFTR defect and NF-κB activation in ΔF508cftr-/- mouse intestine and human intestinal epithelial cell lines. Our results show that the NF-κB/COX-2/PGE2 pathway is activated whereas the β-catenin pathway is suppressed in CF mouse intestine and CFTR-knockdown cells. Activation of β-catenin pathway by GSK3 inhibitors suppresses CFTR mutation/knockdown-induced NF-κB/COX-2/PGE2 pathway in ΔF508 mouse intestine and CFTR-knockdown cells. In contrast, suppression of β-catenin signaling induces the nuclear translocation of NF-κB. In addition, CFTR co-localizes and interacts with β-catenin while CFTR mutation disrupts the interaction between NF-κB and β-catenin in mouse intestine. Treatment with proteasome inhibitor MG132 completely reverses the reduced expression of β-catenin in Caco-2 cells. Collectively, these results indicate that CFTR stabilizes β-catenin and prevents its degradation, defect of which results in the activation of NF-κB-mediated inflammatory cascade. The present study has demonstrated a previously unsuspected interaction between CFTR and β-catenin that regulates NF-κB nuclear translocation in mouse intestine. Therefore, our