WorldWideScience

Sample records for improved broadband shortwave

  1. Stabilized platform for tethered balloon soundings of broadband long- and short-wave radiation

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Anderson, G.A.; Whiteman, C.D.

    1993-01-01

    Changes in the composition of trace gases in the earth's atmosphere have been reported by many observers, and a general concern has been expressed regarding possible changes to the earth's climate that may be caused by radiatively active gases introduced into the earth's atmosphere by man's activities. Radiatively active trace gases produce temperature changes in the earth's atmosphere through changes in radiative flux divergence. Our knowledge of and means of measuring radiative flux divergence is very limited. A few observations of vertical radiative flux divergences have been reported from aircraft from radiometersondes from towers and from large tethered balloons. These measurement techniques suffers from one or more drawbacks, including shallow sounding depths (towers), high cost (aircraft), complicated logistics (large tethered balloons), and limitation to nighttime hours (radiometersondes). Changes in radiative flux divergence caused by anthropogenic trace gases are expected to be quite small, and will be difficult to measure with existing broadband radiative flux instruments. The emphasis of present research in global climate change is thus being focused on improving radiative transfer algorithms in global climate models. The radiative parameterizations in these models are at an early stage of development and information is needed regarding their performance, especially in cloudy conditions. The impetus for the research reported in this paper is the need for a device that can supplement existing means of measuring vertical profiles of long- and short-wave irradiance and radiative flux divergence. We have designed a small tethered-balloon-based system that can make radiometric soundings through the atmospheric boundary layer. This paper discusses the concept, the design considerations, and the design and construction of this sounding system. The performance of the system will be tested in a series of balloon flights scheduled for the fall and winter of 1992

  2. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  3. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  4. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  5. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  6. Application of multimedia services in the broadband environment to improve logistic needs of the army

    Directory of Open Access Journals (Sweden)

    Radiša R. Stefanović

    2012-07-01

    Full Text Available The paper analyzes the flow of some multimedia services, and points to the possibility of applying some of the services in the broadband environment to improve the logistic needs of the army. The need to convey information in different forms (from text, data, graphics, still pictures to video motion pictures is increasing continually. Requests for information transfer in high resolution require increasing the flow to several dozens of Mb/s. Broadband represents the platform for a wide range of multimedia services. Each multimedia service requires a certain flow which can be partially decreased with advanced coding techniques.

  7. Improved Separation of Tone and Broadband Noise Components from Open Rotor Acoustic Data

    Directory of Open Access Journals (Sweden)

    Dave Sree

    2016-09-01

    Full Text Available The term “open rotor” refers to unducted counter-rotating dual rotors or propellers used for propulsion. The noise generated by an open rotor is very complicated and requires special techniques for its analysis. The determination of its tone and broadband components is vital for properly assessing the noise control parameters and also for validating open rotor noise prediction codes. The data analysis technique developed by Sree for processing raw acoustic data of open rotors has been modified to yield much better results of tone and broadband separation particularly for the case when the two rotor speeds are approximately the same. The modified algorithm is found to eliminate most or all of the “spikes” previously observed in the broadband spectra computed from the original algorithm. A full description of the modified algorithm and examples of improved results from its application are presented in this paper.

  8. 78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies

    Science.gov (United States)

    2013-12-05

    ... license is required, which in turn extends to any apparatus for the transmission of energy, or... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...

  9. Improvements in Speech Understanding With Wireless Binaural Broadband Digital Hearing Instruments in Adults With Sensorineural Hearing Loss

    OpenAIRE

    Kreisman, Brian M.; Mazevski, Annette G.; Schum, Donald J.; Sockalingam, Ravichandran

    2010-01-01

    This investigation examined whether speech intelligibility in noise can be improved using a new, binaural broadband hearing instrument system. Participants were 36 adults with symmetrical, sensorineural hearing loss (18 experienced hearing instrument users and 18 without prior experience). Participants were fit binaurally in a planned comparison, randomized crossover design study with binaural broadband hearing instruments and advanced digital hearing instruments. Following an adjustment peri...

  10. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  11. Simple simulation training system for short-wave radio station

    Science.gov (United States)

    Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi

    2018-04-01

    The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.

  12. GEWEX SRB Shortwave Release 4

    Science.gov (United States)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  13. Broadband Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Broadband Access. Worldwide market for broadband access $30 Billion! Over 200 million broadband subscribers worldwide! Various Competing Broadband access. Digital Subscriber line; Wireless; Optical Fiber.

  14. Improvements in speech understanding with wireless binaural broadband digital hearing instruments in adults with sensorineural hearing loss.

    Science.gov (United States)

    Kreisman, Brian M; Mazevski, Annette G; Schum, Donald J; Sockalingam, Ravichandran

    2010-03-01

    This investigation examined whether speech intelligibility in noise can be improved using a new, binaural broadband hearing instrument system. Participants were 36 adults with symmetrical, sensorineural hearing loss (18 experienced hearing instrument users and 18 without prior experience). Participants were fit binaurally in a planned comparison, randomized crossover design study with binaural broadband hearing instruments and advanced digital hearing instruments. Following an adjustment period with each device, participants underwent two speech-in-noise tests: the QuickSIN and the Hearing in Noise Test (HINT). Results suggested significantly better performance on the QuickSIN and the HINT measures with the binaural broadband hearing instruments, when compared with the advanced digital hearing instruments and unaided, across and within all noise conditions.

  15. An improved broadband method to evaluate effective parameters of slab metamaterials in the microwave frequency range

    International Nuclear Information System (INIS)

    Rybin, O.; Nawaz, T.; Abbasi, T.

    2007-01-01

    An improved broadband method for determining complex effective refractive index, permittivity and permeability of an arbitrary passive metamaterial in microwave frequency range has been proposed. Evaluation of the effective parameters is realized using the reflection-transmission S-parameters obtained by simulation or experimental measurements and analytically evaluated interface reflection coefficient of the slab. Formulas for evaluation of effective permittivity and permeability which contain the square root of complex functions of S-parameters have been proposed in (1-2). But this method does not propose a way to avoid an ambiguity arising in choosing the square root branch of product of effective permittivity and permeability. Moreover the above calculation procedure requires evaluating the square root branch of function of S-parameters. Proposed way to choose the square root branch gives sometimes mistaken results. Our method is much simple as compared with the above mentioned formulas and it does not require making a choice of square root branch of complex functions of S-parameters in order to evaluate any of the parameters (refractive index, permittivity or permeability). Instead we obtain a formula for complex refractive index which is simple. On the basis of proposed model effective permittivity and permeability for rod meta-materials can be evaluated with enhanced precision and accuracy. Proposed method is easy to be implemented in engineering problems and does not require using complicated mathematical calculations. Comparison of precision of the presented method with the Nicolson-Ross techniques (1-2) has been made using the simulations for different configurations of rod meta-materials. Some discussion concerning the sensitivity of the effective parameters of meta-materials for the accuracy of the frequency dependent S -parameters is also presented in this paper. (author)

  16. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.

    2016-01-01

    Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016

  17. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    Directory of Open Access Journals (Sweden)

    G. Wohlfahrt

    2010-02-01

    Full Text Available The broad-band normalised difference vegetation index (NDVI and the simple ratio (SR were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  18. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  19. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  20. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Science.gov (United States)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  1. 3D electroplated inductors with thickness variation for improved broadband performance

    Science.gov (United States)

    Farm-Guoo Tseng, Victor; Bedair, Sarah S.; Lazarus, Nathan

    2017-01-01

    The performance of an RF spiral inductor is based on the balance between ohmic losses in the outer turns and eddy current losses dominant in the inner turns where the magnetic field is the strongest. In this work, air-core spiral inductors with winding trace thicknesses decreasing towards the center are demonstrated, achieving quality factor improvement over a wide frequency range compared to uniform thickness inductors. A custom 3D copper electroplating process was used to produce spiral inductors with varying winding thicknesses in a single plating step, with patterned gaps in a seed layer used to create delays in the vertical plating. The fabricated center-lowered coil inductors were 80 nH within a one square millimeter area with thickness varying from 60 µm to 10 µm from outer to inner winding. Within the 16 MHz-160 MHz range, the center-lowered inductors were shown to have a maximum to minimum quality factor improvement of 90%-10% when compared to uniform thickness inductors with thicknesses ranging from 60 µm to 10 µm. Compared to the 20 µm uniform thickness inductor which has the optimal performance among all uniform thickness inductors in this frequency range, the center-lowered inductors were shown to achieve a maximum quality factor improvement of 20% at the edge frequencies of 16 MHz and 160 MHz, and a minimum quality factor improvement of 10% near the geometric mean center frequency of 46 MHz.

  2. Broad-band Gausssian noise is most effective in improving motor performance and is most pleasant

    Directory of Open Access Journals (Sweden)

    Carlos eTrenado

    2014-02-01

    Full Text Available Modern attempts to improve human performance focus on stochastic resonance (SR. SR is a phenomenon in nonlinear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0-15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation. A possible explanation was a better sensorimotor integration caused by increase in sensitivity of peripheral receptors and/or of internal SR. The present study in 10 subjects compares SR effects in the performance of the same motor task and on pleasantness, by applying three Gaussian noises chosen on the sensitivity of the fingertip receptors (0-15 Hz mostly for Merkel receptors, 250-300 Hz for Pacini corpuscules and 0-300 Hz for all. We document that only the 0-300 Hz noise induced SR effect during the transitory phase of the task. In contrast, the motor performance was improved during the stationary phase for all three noise frequency bandwidths. This improvement was stronger for 0-300 Hz and 250-300 Hz than for 0-15 Hz noise. Further, we found higher degree of pleasantness for 0-300 Hz and 250-300 Hz noise bandwidths than for 0-15 Hz. Thus, we show that the most appropriate Gaussian noise that could be used in haptic gloves is the 0-300 Hz, as it improved motor performance during both stationary and transitory phases. In addition, this noise had the highest degree of pleasantness and thus reveals that the glabrous skin can also forward pleasant sensations. These new findings provide worthy information for neurorehabilitation.

  3. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.

    Science.gov (United States)

    Huang, Yi-Fan; Chattopadhyay, Surojit; Jen, Yi-Jun; Peng, Cheng-Yu; Liu, Tze-An; Hsu, Yu-Kuei; Pan, Ci-Ling; Lo, Hung-Chun; Hsu, Chih-Hsun; Chang, Yuan-Huei; Lee, Chih-Shan; Chen, Kuei-Hsien; Chen, Li-Chyong

    2007-12-01

    Nature routinely produces nanostructured surfaces with useful properties, such as the self-cleaning lotus leaf, the colour of the butterfly wing, the photoreceptor in brittlestar and the anti-reflection observed in the moth eye. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.

  4. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most suc....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  5. ARM Enhanced Shortwave Experiment (ARESE) Solar Radiation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The ARM Enhanced Shortwave Experiment (ARESE) was conducted at the Department of Energy's ARM Southern Great Plains (SGP) Central Facility between September 22, 1995...

  6. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer.

    Science.gov (United States)

    Dong, Hui-juan; Wu, Jian; Zhang, Guang-yu; Wu, Han-fu

    2012-02-01

    The phase-locked loop (PLL) method is widely used for automatic resonance frequency tracing (ARFT) of high-power ultrasonic transducers, which are usually vibrating systems with high mechanical quality factor (Qm). However, a heavily-loaded transducer usually has a low Qm because the load has a large mechanical loss. In this paper, a series of theoretical analyses is carried out to detail why the traditional PLL method could cause serious frequency tracing problems, including loss of lock, antiresonance frequency tracing, and large tracing errors. The authors propose an improved ARFT method based on static capacitance broadband compensation (SCBC), which is able to address these problems. Experiments using a generator based on the novel method were carried out using crude oil as the transducer load. The results obtained have demonstrated the effectiveness of the novel method, compared with the conventional PLL method, in terms of improved tracing accuracy (±9 Hz) and immunity to antiresonance frequency tracing and loss of lock.

  7. Establishing BRDF calibration capabilities through shortwave infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  8. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    Science.gov (United States)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  9. Sensitivity improvement for correlations involving arginine side-chain Nε/Hε resonances in multi-dimensional NMR experiments using broadband 15N 180o pulses

    International Nuclear Information System (INIS)

    Iwahara, Junji; Clore, G. Marius

    2006-01-01

    Due to practical limitations in available 15 N rf field strength, imperfections in 15 N 180 o pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15 Nε (∼85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε-Hε groups, we have incorporated 15 N broadband 180 deg. pulses into 3D 15 N-separated NOE-HSQC and HNCACB experiments. Two 15 N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15 N-separated NOE-HSQC pulse sequence resulted in a ∼1.5-fold increase in sensitivity for the Arg Nε-Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15 N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg 1 Hε- 15 Nε- 13 Cγ/ 13 Cδ correlation peaks was enhanced by a factor of ∼1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1 Hε and 15 Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15 Nε/ 1 Hε of Arg in 3D 15 N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains

  10. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    Science.gov (United States)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  11. CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.R.; Algieri, C.A.; Ong, J.R.; Collins, W.D.

    2011-04-01

    Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensively validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.

  12. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  13. Management of broadband technology and innovation policy, deployment, and use

    CERN Document Server

    Choudrie, Jyoti

    2013-01-01

    When one considers broadband, the Internet immediately springs to mind. However, broadband is impacting society in many ways. For instance, broadband networks can be used to deliver healthcare or community related services to individuals who don't have computers, have distance as an issue to contend with, or don't use the internet. Broadband can support better management of scarce energy resources with the advent of smart grids, enables improved teleworking capacity and opens up a world of new entertainment possibilities. Yet scholarly examinations of broadband technology have so far examin

  14. Updated thermal model using simplified short-wave radiosity calculations

    International Nuclear Information System (INIS)

    Smith, J.A.; Goltz, S.M.

    1994-01-01

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  15. Updated thermal model using simplified short-wave radiosity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. A.; Goltz, S. M.

    1994-02-15

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  16. Handheld, Broadband Electromagnetic UXO Sensor: Cost & Performance Report

    National Research Council Canada - National Science Library

    Won, I. J; SanFilipo, Bill; Oren, Alex

    2006-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  17. Broadband Faraday isolator.

    Science.gov (United States)

    Berent, Michał; Rangelov, Andon A; Vitanov, Nikolay V

    2013-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  18. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  19. Estimating net short-wave radiation with the Bellani pyranometer

    International Nuclear Information System (INIS)

    Bernier, Y.; Plamondon, A.P.

    1983-01-01

    Two methods were developed by which daily net short-wave radiation (K∗) can be evaluated from Bellani pyranometer readings. The first method involves a simple regression equation. The second method uses a physical approach taking into account the effect of the Bellani's geometry on its response to direct and diffuse radiation throughout the day. Both methods, when tested on experimental data, tended to underestimate the measured K∗, the regression approach exhibiting a higher variance of the error [fr

  20. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  1. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  2. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  3. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  4. Short-wave albedo of a pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A.

    1985-06-01

    In this paper nine years of continuous records of the short-wave albedo above a Scotch pine forest in middle Europe were analysed. Special emphasis was given to the dependencies of the albedo on its diurnal variation, its annual variation, the solar altitude, the structure of the stand, the cloud cover, the soil moisture and the spectral reflectance. A long-termed trend of the albedo could not be found, e.g. caused by the stand growth. Finally the annual variation of the albedo of the Scotch pine forest was compared with measurements above different surface types in middle Europe.

  5. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  6. Broadband Internet and Income Inequality

    OpenAIRE

    HOUNGBONON , Georges Vivien; Liang , Julienne

    2017-01-01

    Policy makers are aiming for a large coverage of high-speed broadband Internet. However , there is still a lack of evidence about its effects on income distribution. In this paper, we investigate the effects of fixed broadband Internet on mean income and income inequality using a unique town-level data on broadband adoption and quality in France. We find that broadband adoption and quality raise mean income and lower income inequality. These results are robust to initial conditions, and yield...

  7. Shortwave Array Spectroradiometer–Zenith (SASZe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer – Zenith (SASZe) provides measurements of zenith spectral shortwave radiance at 1Hz over a continuous spectral range from approximately 300 nm to 1700 nm. The SASZe design connects an optical collector located outdoors to a pair of spectrometers and data collections system located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector incorporates a collimator yielding a 1-degree Full Width at Half Maximum (FWHM) field of view. The data-acquisition electronics and spectrometers include an in-line fiber optic shutter and two Avantes fiber-coupled grating spectroradiometers within a temperature-controlled container. The Avantes Avaspec ULS 2048 charge-coupled device (CCD) spectrometer covers the wavelength range from about 300-1100 nm with a pixel spacing of less than 0.6 nm and a spectral resolution of about 2.4 nm FWHM. The Avantes Avaspec NIR256-1.7 spectrometer covers the wavelength range from about 950 nm to 1700 nm with a pixel spacing of less than 4 nm and a spectral resolution of about 6 nm FWHM.

  8. Broadband waveguided light sources

    NARCIS (Netherlands)

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  9. Advanced broadband baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.

    1991-01-01

    In this paper broadband performance characteristics of robust, light-weight, diffuse-absorptive baffle surfaces fabricated from sputter-deposited beryllium on cross-rolled Be ingot sheet material and on Be foam, plasma sprayed beryllium, plasma sprayed boron-on-beryllium, and chemical vapor deposited boron carbide on graphite are described and compared to Martin Black. An overview of the Optics Manufacturing Operations Development and Integration Laboratory (MODIL) Advanced Optical Baffle Program will be discussed

  10. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  11. Does shortwave absorption by methane influence its effectiveness?

    Science.gov (United States)

    Modak, Angshuman; Bala, Govindasamy; Caldeira, Ken; Cao, Long

    2018-01-01

    In this study, using idealized step-forcing simulations, we examine the effective radiative forcing of CH4 relative to that of CO2 and compare the effects of CH4 and CO2 forcing on the climate system. A tenfold increase in CH4 concentration in the NCAR CAM5 climate model produces similar long term global mean surface warming ( 1.7 K) as a one-third increase in CO2 concentration. However, the radiative forcing estimated for CO2 using the prescribed-SST method is 81% that of CH4, indicating that the efficacy of CH4 forcing is 0.81. This estimate is nearly unchanged when the CO2 physiological effect is included in our simulations. Further, for the same long-term global mean surface warming, we simulate a smaller precipitation increase in the CH4 case compared to the CO2 case. This is because of the fast adjustment processes—precipitation reduction in the CH4 case is larger than that of the CO2 case. This is associated with a relatively more stable atmosphere and larger atmospheric radiative forcing in the CH4 case which occurs because of near-infrared absorption by CH4 in the upper troposphere and lower stratosphere. Within a month after an increase in CH4, this shortwave heating results in a temperature increase of 0.8 K in the lower stratosphere and upper troposphere. In contrast, within a month after a CO2 increase, longwave cooling results in a temperature decrease of 3 K in the stratosphere and a small change in the upper troposphere. These fast adjustments in the lower stratospheric and upper tropospheric temperature, along with the adjustments in clouds in the troposphere, influence the effective radiative forcing and the fast precipitation response. These differences in fast climate adjustments also produce differences in the climate states from which the slow response begins to evolve and hence they are likely associated with differing feedbacks. We also find that the tropics and subtropics are relatively warmer in the CH4 case for the same global mean

  12. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    Science.gov (United States)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  13. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  14. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  15. An Assessment of Emerging Wireless Broadband Technologies

    National Research Council Canada - National Science Library

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1991-present, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  17. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1991-present, Net Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  18. Broadband unidirectional ultrasound propagation

    Science.gov (United States)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  19. Sensitivity improvement for correlations involving arginine side-chain N{epsilon}/H{epsilon} resonances in multi-dimensional NMR experiments using broadband {sup 15}N 180{sup o} pulses

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Junji; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Disease (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-12-15

    Due to practical limitations in available {sup 15}N rf field strength, imperfections in {sup 15}N 180{sup o} pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino {sup 15}N{epsilon} ({approx}85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg N{epsilon}-H{epsilon} groups, we have incorporated {sup 15}N broadband 180 deg. pulses into 3D {sup 15}N-separated NOE-HSQC and HNCACB experiments. Two {sup 15}N-WURST pulses incorporated at the INEPT transfer steps of the 3D {sup 15}N-separated NOE-HSQC pulse sequence resulted in a {approx}1.5-fold increase in sensitivity for the Arg N{epsilon}-H{epsilon} signals at 800 MHz. For the 3D HNCACB experiment, five {sup 15}N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg{sup 1}H{epsilon}-{sup 15}N{epsilon}-{sup 13}C{gamma}/{sup 13}C{delta} correlation peaks was enhanced by a factor of {approx}1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg {sup 1}H{epsilon} and {sup 15}N{epsilon} resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the {sup 15}N{epsilon}/{sup 1}H{epsilon} of Arg in 3D {sup 15}N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains.

  20. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  1. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  2. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    Science.gov (United States)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame

  3. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  4. Broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  5. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  6. Design and fabrication of broadband rugate filter

    International Nuclear Information System (INIS)

    Zhang Jun-Chao; Fang Ming; Shao Yu-Chuan; Jin Yun-Xia; He Hong-Bo

    2012-01-01

    The design and the deposition of a rugate filter for broadband applications are discussed. The bandwidth is extended by increasing the rugate period continuously with depth. The width and the smoothness of the reflection band with the distribution of the periods are investigated. The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces. The rapidly alternating deposition technology is used to fabricate a rugate filter sample. The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband. Based on the analysis of the cross-sectional scanning electron microscopic image of the sample, it is found that the transmission peak is most likely to be caused by the instability of the deposition rate. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].

    Science.gov (United States)

    Li, Xiao-yun; Wang, Jia-hua; Huang, Ya-wei; Han, Dong-hai

    2011-03-01

    Near infrared diffuse reflectance spectroscopy calibrations of fat, protein and DM in raw milk were studied with partial least-squares (PLS) regression using portable short-wave near infrared spectrometer. The results indicated that good calibrations of fat and DM were found, the correlation coefficients were all 0.98, the RMSEC were 0.187 and 0.217, RMSEP were 0.187 and 0.296, the RPDs were 5.02 and 3.20 respectively; the calibration of protein needed to be improved but can be used for practice, the correlation coefficient was 0.95, RMSEC was 0.105, RMSEP was 0.120, and RPD was 2.60. Furthermore, the measuring accuracy was improved by analyzing the correction relation of fat and DM in raw milk This study will probably provide a new on-site method for nondestructive and rapid measurement of milk.

  9. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  10. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  11. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  12. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  13. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  14. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    International Nuclear Information System (INIS)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun; Park, Jae Hong; Lee, Won-Oh

    2015-01-01

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%

  15. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  16. Observations involving broadband impedance modelling

    International Nuclear Information System (INIS)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances

  17. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  18. Achieving universal access to broadband

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures...

  19. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  20. Implementation of Scientific Computing Applications on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Guochun Shi

    2009-01-01

    Full Text Available The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.

  1. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    Science.gov (United States)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  2. Optimizing UV Index determination from broadband irradiances

    Science.gov (United States)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  3. Broadband planar antenna with improved pattern bandwidth

    Directory of Open Access Journals (Sweden)

    Carlos Suárez

    2012-01-01

    Full Text Available En este articulo se presenta el diseño de una antena plana F invertida que utiliza una geometria en la cual se dividen en dos partes las placas superior (radiante, de corto, de tierra y de excitación capacitiva. Mediante esta geometria y la técnica de excitación capacitiva se logra alcanzar anchos de banda de diagrama y de impedancia cercanos al 52.44% (1.66 GHz a 2.84 GHz Ydel 8% (3.36 GHz a 3.64 GHz para un VSWR <: 2.0. Los resultados medidos para estos parámetros son superiores a los obtenidos mediante la técnica tradicional de excitación directa con terminal u otros métodos de excitación capacitiva utilizado en antenas planas F invertidas (PIFA. El prototipo construido permite la operación simultanea de la antena en las bandas de Des 1800, Des 1900, UMTS, WiFi, 2.4GHz, WiMAX (2.3GHz a 2.5GHz y (3.4GHz a 3.5GHz y en la banda asignada para el estándar (Bluetootb. Los diagramas de radiación obtenidos dentro de estos anchos de banda son razonablemente omnidireccionales.

  4. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  5. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  6. A broadband electromagnetic UT system

    International Nuclear Information System (INIS)

    Repplinger, W.; Salzburger, H.J.

    1985-01-01

    An ultrasonic testing system based on contactless electromagnetic acoustic (E.M.A.) transduction has been developed by which broadband ultrasonic pulses are excited. This system overcomes disadvantages of usual E.M.A. transducers with meanderlike coil configuration, namely the excitation of narrowband pulses and the symmetrical radiation pattern. By dividing up a meanderlike coil into single elements and a time-delayed firing of the elements, whereby the time delay is given by the distance of the elements and the phase velocity of the wave propagating along the surface, the ultrasonic pulse radiated in one preferred direction becomes broadband by constructive interference. The signals radiated in the opposite direction do no more interfere. Its amplitude is smaller than that of the other direction, so that the transducer becomes uni-directional. This technique can be applied for the excitation of all dispersionless waves (bulk waves and guided waves)

  7. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  8. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  9. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  10. Integrable discretizations for the short-wave model of the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.

  11. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2016-01-01

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  12. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  13. Upconversion imaging using short-wave infrared picosecond pulses

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter

    2017-01-01

    beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm—enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted...... repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump...... by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination....

  14. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    Science.gov (United States)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  15. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared

    Science.gov (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva

    2018-04-01

    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  16. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  17. Detector with internal gain for short-wave infrared ranging applications

    Science.gov (United States)

    Fathipour, Vala; Mohseni, Hooman

    2017-09-01

    Abstarct.Highly sensitive photon detectors are regarded as the key enabling elements in many applications. Due to the low photon energy at the short-wave infrared (SWIR), photon detection and imaging at this band are very challenging. As such, many efforts in photon detector research are directed toward improving the performance of the photon detectors operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high sensitivity at room temperature, a condition that is very difficult to achieve in conventional SWIR detectors. An EI detector offers an overall system-level sensitivity enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI detectors. The shortcomings of the first-generation devices were addressed in the second-generation detectors. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI detectors a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI detector with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR images obtained by our model show that the EI

  18. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  19. High efficiency and broadband acoustic diodes

    Science.gov (United States)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  20. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  1. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Directory of Open Access Journals (Sweden)

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  2. Tuchola County Broadband Network (TCBN)

    DEFF Research Database (Denmark)

    Zabludowski, Antoni; Dubalski, B.; Zabludowski, Lukasz

    2012-01-01

    In the paper the designing project (plan) of Tuchola City broadband IP optical network has been presented. The extended version of network plan constitute technical part of network Feasibility Study, that it is expected to be implemented in Tuchola and be financed from European Regional Development...... Funds. The network plan presented in the paper contains both topological structure of fiber optic network as well as the active equipment for the network. In the project described in the paper it has been suggested to use Modular Cable System - MCS for passive infrastructure and Metro Ethernet...

  3. Understanding broadband over power line

    CERN Document Server

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  4. Achieving Universal Access to Broadband

    Directory of Open Access Journals (Sweden)

    Morten FALCH

    2009-01-01

    Full Text Available The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization, demand stimulation, public support for extending the infrastructure, public private partnerships (PPP, and others.

  5. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  6. 75 FR 10464 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-08

    ... window for Public Computer Center (PCC) and Sustainable Broadband Adoption (SBA) projects. DATES: All...; Extension of Application Closing Deadline for Comprehensive Community Infrastructure (CCI) Projects. SUMMARY... Infrastructure (CCI) projects under the Broadband Technology Opportunities Program (BTOP) is extended until 5:00...

  7. Broadband for all closing the infrastructure gap

    CSIR Research Space (South Africa)

    Roux, K

    2015-10-01

    Full Text Available than just addressing the infrastructure issue. The CSIR is mapping the country’s broadband infrastructure to understand where the largest gaps are, is developing models for how those gaps in broadband infrastructure can be closed. In this presentation...

  8. Broadband solar absorption enhancement via periodic nanostructuring of electrodes.

    KAUST Repository

    Adachi, Michael M; Labelle, André J; Thon, Susanna M; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H

    2013-01-01

    Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1,100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.

  9. Broadband solar absorption enhancement via periodic nanostructuring of electrodes.

    KAUST Repository

    Adachi, Michael M

    2013-10-14

    Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1,100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.

  10. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  11. Economists' Statement on U.S. Broadband Policy

    OpenAIRE

    Kahn, Alfred E.; Goolsbee, Austan; Bailey, Elizabeth E.; Faulhaber, Gerald R.; Mayo, John; Flamm, Kenneth; Baily, Martin Neil; Milgrom, Paul; Cramton, Peter; Gilbert, Richard; Hall, Robert E.; Litan, Robert E.; Hahn, Robert W.; Greenstein, Shane; Hazlett, Thomas W.

    2006-01-01

    In this statement, a group of economists assembled by the AEI-Brookings Joint Center makes the following two recommendations to improve the competitive provision of broadband services. First, Congress should eliminate local franchising regulations, which serve as a barrier to new entry. Second, Congress and the Federal Communications Commission should make more spectrum available to private parties and allow them to use it as they see fit or trade their licenses in the market, so that spectru...

  12. Satellite observed impacts of wildfires on regional atmosphere composition and shortwave radiative forcing: multiple cases study

    Science.gov (United States)

    Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.

    2017-12-01

    Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke

  13. Spectral composition of shortwave radiation reflected and deep penetrating into snow near the Barentsburg settlement (Svalbard

    Directory of Open Access Journals (Sweden)

    P. N. Svyashchennikov

    2015-01-01

    Full Text Available Data on spectral composition of shortwave radiation that is reflected from snow and penetrates deep into the snow cover obtained near the Barentsburg settlement (Svalbard are discussed in the paper. Measurements were made by the use of the spectral radiometer TriOS Ramses within the wavelength range of 280–950 nm. The results will allow more proper taking account of the anthropogenic pollution effects on the radiative properties of snow cover under conditions of industrial activity related to the coal extraction and burning in Barentsburg.

  14. The influence of scrotonin on survival of Candida guillermondii, irradiated by short-wave ultraviolet

    International Nuclear Information System (INIS)

    Strakhovskaya, M.G.; Frajkin, G.Ya.; Goncharenko, E.N.

    1982-01-01

    A study was made on the influence of serotonin on survival of Candida quilliermondu yeast irradiated by 254 nm short-wave ultraviolet. It was established that incubation with serotonin, leading to its penetration inside cells causes two opposite effects - protection from ultraviolet inactivation in preliminary incubation and intensification of cells death in postradiation incubation. Serotonin action is similar to the effects induced in C. guillermondii yeast by 334 nm long-wave ultraviolet light, that is serotonin possesses photomimetic effect. The data obtained are considered as conformaition of participation of serotonin photoinduced synthesis in manifestation of effects of long-wave ultraviolet light action on yeast

  15. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  16. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  17. Gain-assisted broadband ring cavity enhanced spectroscopy

    Science.gov (United States)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  18. Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study

    Directory of Open Access Journals (Sweden)

    S. Gruber

    2018-05-01

    Full Text Available A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  19. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    Science.gov (United States)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  20. Advent of broadband public-switched communications

    Science.gov (United States)

    Casey, John J.

    1992-02-01

    Advances in data communications infrastructure, display technology, and man-machine interfaces have changed business applications and the requirements of public network data transport. These changes have created opportunities for a new generation of public broadband services to more efficiently extend high speed communications capabilities beyond the customer premises. This paper provides a view of the technology and market evolution of these public broadband data communications services, and suggests early customer networked applications that justify the deployment of a public switched broadband network infrastructure.

  1. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique....... Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  2. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  3. Broadband over powerline : advances and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gunther, E.W. [EnerNex Corp., Knoxville, TN (United States)

    2006-07-01

    An overview of the broadband over powerline (BPL) industry was presented with reference to the history of the technology; current trials and deployments; applications; and, technologies currently in service. The presentation offers background information and a history of BPL, an early adopters test lab, BPL deployment map and access BPL stats. A comparison of wireless, hybrid and fiber optic communication technologies was presented along with access BPL systems and a review of how BPL can enhance utility operations. Diagnostic monitoring, operations improvement, system protection, load and DG management, distribution automation, and customer interface were included in an eye chart for operations enhancement. Suggestions on how BPL can reduce distribution line radio interference were presented along with examples of how BPL EMI analysis can find faulty electrical equipment. BPL customer services include Internet access, consumer portal, voice over Internet protocol, video surveillance, video conferencing, and building automation and energy management. BPL technical issues include installation, operation and electromagnetic compatibility. BPL regulations and standard efforts were described. It was concluded that BPL has a variety of applications in the utility sector including power quality, reliability monitoring and improvement. 1 tab., 7 figs.

  4. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  5. 47 CFR 27.1305 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  6. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  7. Background estimation in short-wave region during determination of total sample composition by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Simakov, V.A.; Kordyukov, S.V.; Petrov, E.N.

    1988-01-01

    Method of background estimation in short-wave spectral region during determination of total sample composition by X-ray fluorescence method is described. 13 types of different rocks with considerable variations of base composition and Zr, Nb, Th, U content below 7x10 -3 % are investigated. The suggested method of background accounting provides for a less statistical error of the background estimation than direct isolated measurement and reliability of its determination in a short-wave region independent on the sample base. Possibilities of suggested method for artificial mixtures conforming by the content of main component to technological concemtrates - niobium, zirconium, tantalum are estimated

  8. Analysis of United States' Broadband Policy

    National Research Council Canada - National Science Library

    Uzarski, Joel S

    2007-01-01

    .... With every month that passes, the United States fails to close the gap in the digital divide both inside its borders as well as among the other countries that lead the world in broadband penetration...

  9. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available greener economy and environment. In this research, we investigate the concept of green radio communications in wireless networks and discuss approaches for energy efficient solutions in wireless broadband network deployments. These solutions include...

  10. Analyzing Broadband Divide in the Farming Sector

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    , upstream and downstream connection. The main constraint is that farms are naturally located in rural areas where the required access broadband data rates are not available. This paper studies the broadband divide in relation to the Danish agricultural sector. Results show how there is an important......Agriculture industry has been evolving for centuries. Currently, the technological development of Internet oriented farming tools allows to increase the productivity and efficiency of this sector. Many of the already available tools and applications require high bandwidth in both directions...... difference between the broadband availability for farms and the rest of the households/buildings the country. This divide may be slowing down the potential technological development of the farming industry, in order to keep their competitiveness in the market. Therefore, broadband development in rural areas...

  11. Catalyzing Broadband Internet in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... generates a 1.4% increase in gross domestic product (GDP) in low-income countries. ... Africa offers a good example of the potential benefits and challenges of ... the policy challenges related to providing affordable broadband services; ...

  12. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  13. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  14. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  15. Broadband and Unbundling Regulations in OECD Countries

    OpenAIRE

    Wallsten, Scott

    2006-01-01

    Broadband penetration and available speeds vary widely across OECD countries. Policymakers around the world, and especially in countries like the U.S. that lag in the rankings, are searching for policies to narrow those gaps. Relatively little empirical work tests possible reasons for these differences. In this paper I test the impacts of regulations and demographics on broadband development in a panel dataset across countries. In addition to adding to the meager empirical literature on broad...

  16. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  17. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  18. A broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AGS) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control Channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating System has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  19. Ultra-broadband photonic internet

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  20. Investigating broadband acoustic adsorption using rapid manufacturing

    Science.gov (United States)

    Godbold, O.

    The reduction of nuisance noise and the removal of unwanted sound modes within a room or component enclosure-area can be accomplished through the use of acoustic absorbers. Sound absorption can be achieved through conversion of the kinetic energy associated with pressure waves, into heat energy via viscous dissipation. This occurs within open porous materials, or by utilising resonant effects produced using simple cavity and orifice configurations. The manufacture of traditional porous and resonant absorbers is commonly realised using basic manufacturing techniques. These techniques restrict the geometry of a given resonant construction, and limit the configuration of porous absorbers. The aim of this work is to exploit new and emerging capabilities of Rapid Manufacturing (RM) to produce components with geometrical freedom, and apply it to the development of broadband acoustic absorption. New and novel absorber geometric configurations are identified and their absorption performance is determined. The capabilities and limitations of RM processes in reproducing these configurations are demonstrated. The geometric configuration of RM resonant absorbers is investigated. Cavity modifications aimed at damping the resonant effect by restricting the motion of cavity air, and adding increased viscous resistance are explored. Modifications relating to cavity shape, the addition of internal perforations and increased cavity surface area have all been shown to add acoustic resistance, thereby increasing the bandwidth of absorption. Decreasing the hydraulic radius of the cavity cross section and reducing internal feature dimensions provide improved resistance over conventional configurations..

  1. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    Science.gov (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  2. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  3. Developments of sausages in a z-pinch with short-wave perturbation of a boundary

    International Nuclear Information System (INIS)

    Vikhrev, V.V.; Ivanov, V.V.; Rozanova, G.A.

    1989-01-01

    A numeric simulation of sausage evolution in z-pinch during short-wave excitation of the boundary of plasma column pinch is carried out. The simulation has shown that due to nonlinear development of sausages in a pinch plasma colomn the cavities filled with a magnetic field in a rarefied pinch plasma are formed. Simultaneously compact column of tense plasma whose temperature is much higher than the average temperature of pinch plasma column are formed on the pinch axis. In the region of inlet in the cavity plasma is radially directed due to ponderomotoric force 1/2 x jB up to velocities greatly increasing the thermal velocity of ions in a plasma column

  4. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  5. A practical approach to compute short-wave irradiance interacting with subgrid-scale buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Uwe; Frueh, Barbara [Deutscher Wetterdienst, Offenbach am Main (Germany)

    2012-08-15

    A numerical approach for the calculation of short-wave irradiances at the ground as well as the walls and roofs of buildings in an environment with unresolved built-up is presented. In this radiative parameterization scheme the properties of the unresolved built-up are assigned to settlement types which are characterized by mean values of the volume density of the buildings and their wall area density. Therefore it is named wall area approach. In the vertical direction the range of building heights may be subdivided into several layers. In the case of non-uniform building heights the shadowing of the lower roofs by the taller buildings is taken into account. The method includes the approximate calculation of sky view and sun view factors. For an idealized building arrangement it is shown that the obtained approximate factors are in good agreement with exact calculations just as for the comparison of the calculated and measured effective albedo values. For arrangements with isolated single buildings the presented wall area approach yields a better agreement with the observations than similar methods where the unresolved built-up is characterized by the aspect ratio of a representative street canyon (aspect ratio approach). In the limiting case where the built-up is well represented by an ensemble of idealized street canyons both approaches become equivalent. The presented short-wave radiation scheme is part of the microscale atmospheric model MUKLIMO 3 where it contributes to the calculation of surface temperatures on the basis of energy-flux equilibrium conditions. (orig.)

  6. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  7. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  8. The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties

    NARCIS (Netherlands)

    Bunnik, N.J.J.

    1978-01-01

    Relations between morphological properties of uniform canopies. optical properties of the leaves and reflection of shortwave radiation, in the visible light region and the near infrared, by crops are the subject of this thesis.

    The aim of the study was a further investigation of

  9. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  10. Broadband in schools: towards a definition and model of broadband for South African schools

    CSIR Research Space (South Africa)

    Ford, Merryl

    2017-05-01

    Full Text Available South Africa is about to provide broadband internet connectivity to all schools in the country via the implementation of the national broadband policy. The challenge is to ensure a balance between the schools’ demand-side usage and supply...

  11. Broad-band beam buncher

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1986-01-01

    This patent describes a broad-band beam buncher. This beam buncher consists of: a housing adapted to be eacuated, an electron gun in the housing for producing a beam of electrons, buncher means in the housing forming a buncher cavity which has an entrance opening for receiving the electron beam and an exit opening through which the electron beam passes out of the buncher cavity, a drift tube electrode in the buncher cavity and disposed between the entrance opening and the exit opening with first and second gaps between the drift tube electrode and the entrance and exit openings, the drift tube electrode which has a first drift space through which the electron beam passes in traveling between the entrance and exit openings, modulating means for supplying an ultrahigh frequeny modulating signal to the drift tube electrode for producing velocity modulation of the electrons in the electron beam as the electrons pass through the buncher cavity and the drift tube electrode between the entrance opening and the exit opening, drift space means in the housing forming a second drift space for receiving the velocity modulated electron beam from the exit opening, the velocity modulated electron beam being bunched as it passes along the second drift space, the drift space means has a discharge opening through which the electron beam is discharged from the second drift space after being bunched therein, the modulating means containing a signal source for producing an ultrahigh frequency signal, a transmission line connected between the signal source and the drift tube electrode, and terminating means connected to the drift tube electrode for terminating the transmission line in approximately its characteristic impedance to afford a broad response band with minimum 6 variations therein

  12. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2015-01-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL's High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  13. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  14. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  15. A hybrid optical system for broadband imaging in guidance and control

    Science.gov (United States)

    Wu, Xiaofang; Jiang, Yuesong; Shen, Chunyan; Zhao, Yiming

    2006-11-01

    A binary optics method has been adopted to improve upon a conventional optical system in guidance and control, and a hybrid broadband imaging system that includes a binary surface is analyzed and evaluated by optical design software ZEMAX. The practical design shows that the introduction of binary optics can simplify the structure of the imaging system and reduce the size and weight of the broadband guidance and control system. Moreover, it can help to acquire images of radiation of different wavelengths from targets; hence it will result in improved overall performance of missiles in wars.

  16. Is European Broadband Ready for Smart Grid?

    DEFF Research Database (Denmark)

    Balachandran, Kartheepan; Pedersen, Jens Myrup

    2014-01-01

    In this short paper we compare the communication requirements for three Smart Grid scenarios with the availability of broadband and mobile communication networks in Europe. We show that only in the most demanding case - where data is collected and transmitted every second - a standard GSM/GPRS co....../GPRS connection is not enough. Whereas in the less demanding scenarios it is almost all of the European households that can be covered by a standard broadband technology for use with Smart Grid.......In this short paper we compare the communication requirements for three Smart Grid scenarios with the availability of broadband and mobile communication networks in Europe. We show that only in the most demanding case - where data is collected and transmitted every second - a standard GSM...

  17. Magnetically levitated autoparametric broadband vibration energy harvesting

    International Nuclear Information System (INIS)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-01-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation. (paper)

  18. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...... access providers are implementing service differentiation in their networks where voice and video gets prioritised before data. This paper discusses the role of network access providers in multipurpose packet based networks and the available migration strategies for supporting multimedia services...... in digital subscriber line (DSL) based residential broadband networks. Four possible implementation scenarios and their technical characteristics and effects are described. To conclude, the paper discusses how network access providers can be induced to open their networks for third party service providers....

  19. Policy factors affecting broadband development in Poland

    DEFF Research Database (Denmark)

    Henten, Anders; Windekilde, Iwona Maria

    2014-01-01

    of telecommunications network development in Poland than other countries in the European Union is the reason that the circumstances and also the effects of the implementation of some solutions of the EU regulation model are different in Poland than in the most developed EU countries. The aim of the paper is to examine...... and discuss broadband access development in Poland and the policy factors influencing this development as well as to examine national strategies used to stimulate service and infrastructure competition in Poland. There are, indeed, many other factors affecting broadband development such as the income level....../distribution in the country and the infrastructural point of departure. The paper, therefore, analyses the implications of the policy initiatives in light of these basic conditions and the broader context of factors influencing broadband development. In the paper, different kinds of policy initiatives are examined...

  20. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-01-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  1. Participation in the broadband society in Denmark

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders; Skouby, Knud Erik

    2009-01-01

    passed the threshold set by the EU with respect to the relevance of initiating a discussion on the implementation of a universal service obligation on broadband. As documented in the paper, there are groups among primarily the elderly and the unemployed who do not have Internet access. Their own......The purpose of the paper is to provide an empirical overview of broadband developments in Denmark. The overview includes sections on coverage and penetration, connection speeds, retail prices, competition, interconnection prices, and residential access to Internet. The documentation shows...

  2. Computing broadband accelerograms using kinematic rupture modeling

    International Nuclear Information System (INIS)

    Ruiz Paredes, J.A.

    2007-05-01

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k -2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w 2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity C d . To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C d , as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M w 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  3. Specdata: Automated Analysis Software for Broadband Spectra

    Science.gov (United States)

    Oliveira, Jasmine N.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    With the advancement of chirped-pulse techniques, broadband rotational spectra with a few tens to several hundred GHz of spectral coverage are now routinely recorded. When studying multi-component mixtures that might result, for example, with the use of an electrical discharge, lines of new chemical species are often obscured by those of known compounds, and analysis can be laborious. To address this issue, we have developed SPECdata, an open source, interactive tool which is designed to simplify and greatly accelerate the spectral analysis and discovery. Our software tool combines both automated and manual components that free the user from computation, while giving him/her considerable flexibility to assign, manipulate, interpret and export their analysis. The automated - and key - component of the new software is a database query system that rapidly assigns transitions of known species in an experimental spectrum. For each experiment, the software identifies spectral features, and subsequently assigns them to known molecules within an in-house database (Pickett .cat files, list of frequencies...), or those catalogued in Splatalogue (using automatic on-line queries). With suggested assignments, the control is then handed over to the user who can choose to accept, decline or add additional species. Data visualization, statistical information, and interactive widgets assist the user in making decisions about their data. SPECdata has several other useful features intended to improve the user experience. Exporting a full report of the analysis, or a peak file in which assigned lines are removed are among several options. A user may also save their progress to continue at another time. Additional features of SPECdata help the user to maintain and expand their database for future use. A user-friendly interface allows one to search, upload, edit or update catalog or experiment entries.

  4. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  5. VT Wireline Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  6. VT Public Locations of Broadband Data - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  7. VT Public Locations of Broadband Data - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  8. VT Public Locations of Broadband Data - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  9. VT Cable Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  10. VT Total Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  11. VT Cable Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  12. VT Detailed Broadband Availability by Census Block -12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  13. VT Detailed Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  14. VT Detailed Broadband Availability by Census Block -12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  15. VT Detailed Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  16. VT Wireline Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  17. VT Wireless Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  18. VT Total Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  19. VT Wireline Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  20. VT Wireless Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  1. VT Total Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  2. VT Cable Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  3. VT Wireless Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  4. VT Detailed Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  5. VT Total Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  6. VT DSL Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  7. VT Wireline Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  8. VT DSL Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  9. VT Wireless Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  10. 7 CFR 1738.11 - Availability of broadband service.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BROADBAND ACCESS LOANS AND LOAN GUARANTEES Loan Purposes and Basic Policies... given to loans to finance service to eligible rural communities in which broadband service is not...

  11. VT Wireless Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  12. VT Public Locations of Broadband Data - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  13. VT DSL Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  14. VT Cable Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  15. VT Wireline Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  16. VT Cable Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  17. VT Wireless Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  18. VT DSL Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  19. VT Wireline Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  20. VT Public Locations of Broadband Data - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  1. VT Cable Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  2. VT Total Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  3. VT Detailed Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  4. VT DSL Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  5. VT DSL Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  6. VT Public Locations of Broadband Data - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  7. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-01-01

    multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which

  8. VT Total Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  9. Shortwave and longwave radiative contributions to global warming under increasing CO2

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  10. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    Science.gov (United States)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  11. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    Science.gov (United States)

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  12. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies

    International Nuclear Information System (INIS)

    Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A.

    1996-01-01

    Techniques that measure the N status of corn (Zea mays L.) can aid in management decisions that have economic and environmental implications. This study was conducted to identify reflected electromagnetic wavelengths most sensitive to detecting N deficiencies in a corn canopy with the possibility for use as a management tool. Reflected shortwave radiation was measured from an irrigated corn N response trial with four hybrids and five N rates at 0, 40, 80, 120, and 160 kg N ha -1 in 1992 and 0, 50, 100, 150, and 200 kg N ha -1 in 1993. A portable spectroradiometer was used to measure reflected radiation (400-1100 nm in 1992, 350-1050 nm in 1993) from corn canopies at approximately the R5 growth stage. Regression analyses revealed that reflected radiation near 550 and 710 nm was superior to reflected radiation near 450 or 650 nm for detecting N deficiencies. The ratio of light reflectance between 550 and 600 nm to light reflectance between 800 and 900 nm also provided sensitive detection of N stress. In 1993, an inexpensive photometric cell, which has peak sensitivity to light centered at 550 nm, was also used to measure reflected radiation from a corn canopy. Photometric cell readings correlated with relative grain yield (P < 0.001, r 2 = 0.74), but more research will be required to develop procedures to account for varying daylight conditions. These results provide information needed for the development of variable-rate fertilizer N application technology. (author)

  13. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  14. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  15. Penetrating Shortwave Radiation and Sea Ice Algae feedbacks using the Community Earth System Model

    Science.gov (United States)

    Arntsen, A. E.; Perovich, D. K.; Bailey, D. A.; Holland, M. M.

    2017-12-01

    Transmittance of solar radiation through the sea ice cover determines energy transfer to the upper ocean in the form of heat as well as photosynthetically active radiation (PAR) available for the growth of under ice phytoplankton and bottom ice algal communities. A thinning ice cover, increased pond coverage, and earlier melt onset has increased light availability to the upper ocean in contemporary Arctic ice-covered waters. To investigate seasonal and spatial variability of solar shortwave irradiance penetrating the ice cover in the Beaufort and Chukchi Sea regions, we use the fully coupled Community Earth System Model (CESM) in conjunction with a multistream radiative transfer model constrained and initiated by in situ observations. Results inform the importance of light attenuation by ice-based algal pigments within large scale global climate models. We demonstrate the presence of bio-optical feedbacks related to a younger ice cover and examine how these relationships are impacting the trajectory of under ice blooms and the energy budget of the ice-ocean system.

  16. Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

    Directory of Open Access Journals (Sweden)

    Qingbo Fu

    2012-01-01

    Full Text Available A multichannel short-wave near-infrared (SW-NIR spectrometer module based on charge-coupled device (CCD detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp. in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C. And an 2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

  17. Broadband luminescent materials in waveguide geometry

    NARCIS (Netherlands)

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  18. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  19. WIRELESS FIDELITY (Wi-Fi) BROADBAND NETWORK ...

    African Journals Online (AJOL)

    ES Obe

    broadband speed and coverage, while Wi-Fi can be integrated with WiMAX networks to provide Internet ... Microwave Access (WiMAX), IEEE 802.11 standards. 1.0 INTRODUCTION .... These 2G systems provided circuit- switched data ...

  20. 77 FR 36903 - Accelerating Broadband Infrastructure Deployment

    Science.gov (United States)

    2012-06-20

    ... the Nation's global competitiveness in the 21st century, driving job creation, promoting innovation, and expanding markets for American businesses. Broadband access also affords public safety agencies... infrastructure has been deployed in a vast majority of communities across the country, today too many areas still...

  1. 75 FR 27984 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-05-19

    ... applications, including: streaming video (surveillance, remote monitoring); digital imaging; automatic vehicle location; computer-aided dispatching; electronic mail; mapping and GPS; remote database access; report... entities to deploy public safety broadband systems using the 700 MHz spectrum licensed to the PSST.\\13\\ The...

  2. 75 FR 29516 - Broadband Researchers' Data Workshop

    Science.gov (United States)

    2010-05-26

    ... foundation for long-term economic stability and prosperity.\\1\\ The increased availability and use of... telecommunications policies pertaining to the Nation's economic and technological advancement. In order to achieve... stakeholders to develop and implement economic and regulatory policies that foster broadband deployment and...

  3. Electromagnetically induced transparency with broadband laser pulses

    International Nuclear Information System (INIS)

    Yavuz, D. D.

    2007-01-01

    We suggest a scheme to slow and stop broadband laser pulses inside an atomic medium using electromagnetically induced transparency. Extending the suggestion of Harris et al. [Phys. Rev. Lett. 70, 552 (1993)], the key idea is to use matched Fourier components for the probe and coupling laser beams

  4. Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations

    International Nuclear Information System (INIS)

    Yang Pei; Li Zhibin; Chen Yong

    2010-01-01

    In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)

  5. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  6. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  7. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    Science.gov (United States)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  8. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    Directory of Open Access Journals (Sweden)

    SRUTHY.S

    2015-08-01

    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  9. Local government broadband policies for areas with limited Internet access

    Directory of Open Access Journals (Sweden)

    Yoshio Arai

    2014-03-01

    Full Text Available Despite their wide diffusion in developed countries, broadband services are still limited in areas where providing them is not profitable for private telecom carriers. To address this, many local governments in Japan have implemented broadband deployment projects subsidized by the national government. In this paper, we discuss local government broadband policies based on survey data collected from municipalities throughout the country. With the support of national promotion policies, broadband services were rapidly introduced to most local municipalities in Japan during the 2000s. Local government deployment policies helped to reduce the number of areas with no broadband access. A business model based on the Indefeasible Right of Use (IRU contract between a private telecom carrier and a local government has been developed in recent years. Even local governments without the technical capacity to operate a broadband business can introduce broadband services into their territory using the IRU business model.

  10. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Science.gov (United States)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  11. Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2018-01-01

    Full Text Available Downward shortwave radiation (DSR is an essential parameter in the terrestrial radiation budget and a necessary input for models of land-surface processes. Although several radiation products using satellite observations have been released, coarse spatial resolution and low accuracy limited their application. It is important to develop robust and accurate retrieval methods with higher spatial resolution. Machine learning methods may be powerful candidates for estimating the DSR from remotely sensed data because of their ability to perform adaptive, nonlinear data fitting. In this study, the gradient boosting regression tree (GBRT was employed to retrieve DSR measurements with the ground observation data in China collected from the China Meteorological Administration (CMA Meteorological Information Center and the satellite observations from the Advanced Very High Resolution Radiometer (AVHRR at a spatial resolution of 5 km. The validation results of the DSR estimates based on the GBRT method in China at a daily time scale for clear sky conditions show an R2 value of 0.82 and a root mean square error (RMSE value of 27.71 W·m−2 (38.38%. These values are 0.64 and 42.97 W·m−2 (34.57%, respectively, for cloudy sky conditions. The monthly DSR estimates were also evaluated using ground measurements. The monthly DSR estimates have an overall R2 value of 0.92 and an RMSE of 15.40 W·m−2 (12.93%. Comparison of the DSR estimates with the reanalyzed and retrieved DSR measurements from satellite observations showed that the estimated DSR is reasonably accurate but has a higher spatial resolution. Moreover, the proposed GBRT method has good scalability and is easy to apply to other parameter inversion problems by changing the parameters and training data.

  12. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents

    International Nuclear Information System (INIS)

    You, Jinfeng; Xing, Lixin; Pan, Jun; Meng, Tao; Liang, Liheng

    2014-01-01

    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300∼2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R 2 ) of 0.791; Illite content: a RMSEC of 1.126 with a R 2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R 2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil

  13. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  14. Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance

    Science.gov (United States)

    Roberts, Yolanda, L.; Pilewskie, P.; Kindel, B. C.; Feldman, D. R.; Collins, W. D.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth s climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7%and 99.9%of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance.

  15. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    Science.gov (United States)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  16. On the Use of Shortwave Infrared for Tree Species Discrimination in Tropical Semideciduous Forest

    Science.gov (United States)

    Ferreira, M. P.; Zortea, M.; Zanotta, D. C.; Féret, J. B.; Shimabukuro, Y. E.; Souza Filho, C. R.

    2015-08-01

    Tree species mapping in tropical forests provides valuable insights for forest managers. Keystone species can be located for collection of seeds for forest restoration, reducing fieldwork costs. However, mapping of tree species in tropical forests using remote sensing data is a challenge due to high floristic and spectral diversity. Little is known about the use of different spectral regions as most of studies performed so far used visible/near-infrared (390-1000 nm) features. In this paper we show the contribution of shortwave infrared (SWIR, 1045-2395 nm) for tree species discrimination in a tropical semideciduous forest. Using high-resolution hyperspectral data we also simulated WorldView-3 (WV-3) multispectral bands for classification purposes. Three machine learning methods were tested to discriminate species at the pixel-level: Linear Discriminant Analysis (LDA), Support Vector Machines with Linear (L-SVM) and Radial Basis Function (RBF-SVM) kernels, and Random Forest (RF). Experiments were performed using all and selected features from the VNIR individually and combined with SWIR. Feature selection was applied to evaluate the effects of dimensionality reduction and identify potential wavelengths that may optimize species discrimination. Using VNIR hyperspectral bands, RBF-SVM achieved the highest average accuracy (77.4%). Inclusion of the SWIR increased accuracy to 85% with LDA. The same pattern was also observed when WV-3 simulated channels were used to classify the species. The VNIR bands provided and accuracy of 64.2% for LDA, which was increased to 79.8 % using the new SWIR bands that are operationally available in this platform. Results show that incorporating SWIR bands increased significantly average accuracy for both the hyperspectral data and WorldView-3 simulated bands.

  17. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Directory of Open Access Journals (Sweden)

    S. Lange

    2018-05-01

    Full Text Available Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds. Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016 rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011 data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016. This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  18. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  19. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  20. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  1. Broadband cloaking using composite dielectrics

    Directory of Open Access Journals (Sweden)

    Ruey-Bing Hwang

    2011-03-01

    Full Text Available In this paper, we present a novel cloaking structure that is able to make a metallic block invisible in a metallic waveguide. Such a cloak is made up of a stack of commonly used dielectric slabs. We carry out the numerical simulation and observe the detour of the vector Poynting power through the cloak. Moreover, the experiment is conducted for measuring the scattering characteristics including the reflection and transmission coefficients. The great improvement in the transmission coefficient in a broad bandwidth after cloaking is demonstrated. Significantly, the theory of mode conversion is developed for explaining the cloaking phenomenon.

  2. Broadband phase-preserved optical elevator

    OpenAIRE

    Luo, Yuan; Han, Tiancheng; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George

    2011-01-01

    Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards...

  3. Switched Broadband Services For The Home

    Science.gov (United States)

    Sawyer, Don M.

    1990-01-01

    In considering the deployment of fiber optics to the residence, two critical questions arise: what are the leading services that could be offered to justify the required investment; and what is the nature of the business that would offer these services to the consumer ? This talk will address these two questions together with the related issue of how the "financial engine" of today's television distribution infrastructure - TV advertising - would be affected by an open access system based on fiber optics coupled with broadband switching. On the business side, the talk concludes that the potential for open ended capacity expansion, fair competition between service providers, and new interactive services inherent in an open access, switched broadband system are the critical items in differentiating it from existing video and TV distribution systems. On the question of broadband services, the talk will highlight several new opportunities together with some findings from recent market research conducted by BNR. The talk will show that there are variations on existing services plus many new services that could be offered and which have real consumer appeal. The postulated open access system discussed here is visualized as having ultimately 1,000 to 2,000 video channels available to the consumer. Although this may appear to hopelessly fragment the TV audience and destroy the current TV advertising infrastructure, the technology of open access, switched broadband will present many new advertising techniques, which have the potential to be far more effective than those available today. Some of these techniques will be described in this talk.

  4. Broadband Spectroscopy of Nanoporous-Gold Promoter

    Directory of Open Access Journals (Sweden)

    S. K. Nakatani

    2014-02-01

    Full Text Available The efficiency of UV photocatalysis on TiO2 particles was increased by mixing TiO2 particles with nanoporous gold (NPG with pore diameters of 10–40 nm. This means that NPG acts as a promoter in the photocatalytic reaction of TiO2. Broadband spectroscopic results from millimeter wave to ultra violet of NPG membrane are discussed to estimate plasmonic effect on the catalysis.

  5. Broadband S-band class E HPA

    NARCIS (Netherlands)

    Wanum, M.; van Dijk, R.; de Hek, A.P.; van Vliet, Frank Edward

    2009-01-01

    A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 times 2.8 mm2.

  6. Diagonalizing sensing matrix of broadband RSE

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-01-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described

  7. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  8. Broadband adoption, digital divide, and the global economic competitiveness of Western Balkan countries

    Directory of Open Access Journals (Sweden)

    Mitrović Đorđe

    2015-01-01

    Full Text Available The existing variation in economic performance between countries is significantly affected by the level, diffusion, and use of different types of information and communication technology. In the last several years economic competitiveness increasingly depends on broadband availability and the adoption, use, and speed of this technology. Broadband access to the internet fosters economic growth and development and increases a country’s global competitiveness. This technology could have a big impact on the competitive advantage of Western Balkan countries because they currently experience a large digital divide, both within countries (between regions, urban and rural areas, different vulnerable groups, etc. and with EU countries. The purpose of the paper is to analyse the current level and dynamics of the digital divide in Western Balkan countries using the Broadband Achievement Index (BAI, the Data Envelopment Analysis (DEA-based model, the Global Competitiveness Index (GCI, the Corruption Perception Index (CPI, and cross-country methodology. This paper measures and compares Western Balkan countries’ current level of broadband adoption and their position on the evolutionary path towards closing the existing economic and digital gap with EU countries. Comparative analysis of calculated BAI data values, GCI, and CPI shows that Western Balkan countries belong to the ‘laggard’ group regarding their broadband achievement and global economic competitiveness. The values of the calculated BAI sub-indexes in this paper indicate the strong and weak sides of the corresponding aspects of broadband technology implementation and give directions for setting further priorities for political intervention, not only in the building of information society but also in the improvement of the economic competitiveness of Western Balkan countries.

  9. Broadband electromagnetic analysis of compacted kaolin

    International Nuclear Information System (INIS)

    Bore, Thierry; Scheuermann, Alexander; Wagner, Norman; Cai, Caifang

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz–3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification. (paper)

  10. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  11. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    Science.gov (United States)

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  13. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcing (ΔF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  14. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  15. Energy efficient evolution of mobile broadband networks

    Energy Technology Data Exchange (ETDEWEB)

    Micallef, G.

    2013-04-15

    existing macro base station sites together with the deployment of outdoor or indoor small cells (heterogeneous network) provide the best compromise between performance and power consumption. Focusing on one of the case studies, it is noted that the upgrade of both HSPA and LTE network layers results in the power consumption of the network increasing by a factor of 4. When coupled with the growth in capacity introduced by the various upgrades (x50), the efficiency of the network is still greatly improved. Over the evolution period, the stated increase in power consumption does not consider improvement in base station equipment. By considering a number of different equipment versions, the evolution study is further extended to also include the impact of replacing old equipment. Results show that an aggressive replacement strategy and the upgrade of sites to remote radio head can restrain the increase in power consumption of the network to just 17%. In addition to upgrading equipment, mobile network operators can further reduce power consumption by enabling a number of power saving features. These features often exploit redundancies within the network and/or the variation in traffic over a daily period. An example of such feature is sleep mode, which allows for base station sites to be systematically powered down during hours with low network traffic. While dependent on the traffic profile, within an urban area sleep mode can reduce the daily energy consumption of the network by around 20%. In addition to the different variances of sleep mode, the potential savings of other features are also described. Selecting a power efficient network capacity evolution path, replacing old and less efficient equipment, and enabling power saving features, can all considerably reduce the power consumption of future mobile broadband networks. Studies and recommendations presented within this thesis demonstrate that it is realistic for mobile network operators to boost network capacity by a

  16. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27. 12 MHz) near a shortwave diathermy device

    Energy Technology Data Exchange (ETDEWEB)

    Brown-Woodman, P.D.; Hadley, J.A.; Richardson, L.; Bright, D.; Porter, D.

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession.

  17. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.

    Science.gov (United States)

    Tang, Zhanghong; Wang, Qun; Ji, Zhijiang; Shi, Meiwu; Hou, Guoyan; Tan, Danjun; Wang, Pengqi; Qiu, Xianbo

    2014-12-01

    With the increasing city size, high-power electromagnetic radiation devices such as high-power medium-wave (MW) and short-wave (SW) antennas have been inevitably getting closer and closer to buildings, which resulted in the pollution of indoor electromagnetic radiation becoming worsened. To avoid such radiation exceeding the exposure limits by national standards, it is necessary to predict and survey the electromagnetic radiation by MW and SW antennas before constructing the buildings. In this paper, a modified prediction method for the far-field electromagnetic radiation is proposed and successfully applied to predict the electromagnetic environment of an area close to a group of typical high-power MW and SW wave antennas. Different from currently used simplified prediction method defined in the Radiation Protection Management Guidelines (H J/T 10. 3-1996), the new method in this article makes use of more information such as antennas' patterns to predict the electromagnetic environment. Therefore, it improves the prediction accuracy significantly by the new feature of resolution at different directions. At the end of this article, a comparison between the prediction data and the measured results is given to demonstrate the effectiveness of the proposed new method. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Broadband quantitative NQR for authentication of vitamins and dietary supplements

    Science.gov (United States)

    Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit

    2017-05-01

    We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.

  19. Rail-based Broadband Synthetic Aperture Ocean Measurement System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables collection of broadband acoustic scattering databases where acoustic sources and receivers can be translated on a precise linear path under program...

  20. Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.

    Science.gov (United States)

    Chan, Yum-Ji; Huang, Lixi; Lam, James

    2013-07-01

    Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.

  1. A Discourse On Broadband Technologies And Curriculum Access In Elective Home Learning

    Directory of Open Access Journals (Sweden)

    Andrew MCAVOY

    2014-12-01

    Full Text Available The extent, to which broadband technologies are being considered, when accessing the curriculum, is increasingly evident in traditional learning environments such as schools and colleges. This article explores the impact that these technologies are having on the home schooling community by offering enhanced access and opportunities. It suggests that they have generated improved choices and greater freedoms for learning communities. They have shone a light on the curriculum and removed it from the shadows. The curriculum is no longer the preserve of the educational establishment. The secret garden has been breached by technologies such as broadband and the democratisation of the curriculum is progressively evident as more diverse learning communities are given increased access and control over the curriculum. The author asks how this is being reflected in policy and translated into practice by the home schooling community whilst acknowledging the contemporary nature of broadband technologies and how they are influencing the decision making process of potential home schoolers. Looking to the future, the author suggests that the political agenda is not providing clear direction and that this is being determined by social reform outside the political sphere and largely driven by the consumer. In this case the learner. The relatively current nature of this debate is in itself justification for further research if we are to develop a clearer understanding of how new technologies such as broadband are influencing policy and practice in the home schooling community.

  2. Optimization of an integrated optic broadband duplexer for 0.8/1.3-micrometer applications

    Science.gov (United States)

    Ghibaudo, Elise; Broquin, Jean-Emmanuel; Benech, Pierre

    2003-06-01

    These last years, the growth of data traffic has increased the interest for broadband integrated optic devices. Their applications include, for example, the fiber communications on a single fiber by adding the transmission capacity of two optical telecommunication windows for Local Area Networks (LAN) and Wide Area Networks (WAN) or by combining pump and signal wavelenghts in rare earth doped intergrated optical amplifiers. A promising technology to realize those devices is ion-exchange on glass. Indeed, it allows the integration of different functions in a glass substrate with efficient results and a better compatibility in fiber systems with a low cost. We propose in this paper an original broadband duplexer based on a leaky structure. First, the physical principle of the component is explained. The core of the structure is a leaky zone which involves a non-resonant coupling and ensures a broadband spectral behavior to the component. Then, the broadband duplexer is presented and the focus is specially made on the improvement of the outputs crosstalk through the suppression of parasitical back reflections. Theoretical optimization and validation by simulations are presented. Finally, perspectives of this work are proposed.

  3. Resource Management in Broadband Communication Networks

    DEFF Research Database (Denmark)

    Hansen, Mads Stenhuus

    2003-01-01

    . The first part gives a brief description of some of the existing protocols for routing and controlling resources, such as RSVP, OSPF, BGP, PNNI, etc. The remaining part concerns the following two fundamentally different approaches to resource management etc.: - Software agents - Simulated ants......This thesis - Resource Management in Broadband Communication Networks - deals with different ways of optimizing the available resources of data- or telecommunication networks. Especially topics like optimal routing, load balancing and fast recovery of routes in case of link failures are covered...

  4. Designing Broadband Access Networks with Triple Redundancy

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Riaz, Muhammad Tahir; Knudsen, Thomas Phillip

    2005-01-01

    An architecture is proposed for designing broadband access networks, which offer triple redundancy to the end users, resulting in networks providing connectivity even in case of any two independent node or line failures. Two physically independent connections are offered by fiber, and the last...... provided by some wireless solution. Based on experience with planning Fiber To The Home, the architecture is designed to meet a number of demands, making it practicable and useful in realworld network planning. The proposed wired topology is planar, and suitable for being fitted onto the road network...

  5. Broadband Planar 5:1 Impedence Transformer

    Science.gov (United States)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  6. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...

  7. Source of broadband Jovian Kilometric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Leblanc, Y.

    1987-02-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.

  8. Source of broadband Jovian Kilometric radiation

    International Nuclear Information System (INIS)

    Jones, D.; Leblanc, Y.

    1987-01-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients

  9. Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2012-01-01

    We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...

  10. Peramalan Pengguna Broadband di Indonesia [Forecasting of Broadband Users in Indonesia

    Directory of Open Access Journals (Sweden)

    Azwar Aziz

    2016-07-01

    Full Text Available Negara Indonesia memiliki peluang yang sangat besar untuk merealisasikan potensi pitalebar, mengingat Indonesia memiliki jumlah penduduk 253 juta orang dan pengguna internet 88,1 juta orang pada tahun 2014. Di sisi lain sektor komunikasi (salah satunya termasuk telekomunikasi merupakan satu-satunya sektor yang secara konsisten memberikan kontribusi pertumbuhan terhadap Pendapatan Domestik Bruto (PDB sebesar dua angka (double digit. Kemudian peran penting pemerintah adalah selalu mengantisipasi dalam membuat regulasi telekomunikasi, salah satu nya untuk mempercepat penggelaran prasarana pitalebar, seperti menerbitkan Peraturan Presiden RI. Nomor 96 Tahun 2014 tentang Rencana Pitalebar Indonesia 2014 – 2019.  Secara riil pembangunan jaringan pitalebar di Indonesia masih dilakukan di kota-kota besar, mengingat pengguna telekomunikasi sebagian besar berada di kota-kota besar. Selain itu perangkat hanset atau handphone, ketersediaan di pasaran masih terbatas dan harganya masih mahal. Kajian ini menggunakan metodologi penelitian kuantitatif dengan menghitung peramalan dan kualitatif, dengan melakukan observasi atau pengamatan langsung ke lapangan kepada perusahaan Telkom, Telkomsel, XL Axiata dan Indosat. Selanjutnya hasil penelitian ini diperoleh lima faktor yang mempengaruhi penggunaan pitalebar yaitu jumlah penduduk, produk domestik bruto, pendapatan per kapita, laju pertumbuhan ekonomi dan inflasi, dan laju penetrasi. Selain itu, hasil pitalebar menunjukkan pengguna pitalebar lima tahun kedepan selalu meningkat.*****Indonesia has a tremendous opportunity to implement the potential of broadband, as Indonesia has a population of 253 million people and 88.1 million Internet users in 2014. On the other hand, the communication sector (one of them including telecommunications is the only sector that is consistently contributed to the growth of Gross Domestic Product (GDP as many as two numbers (double-digit. Then the important role of government is

  11. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  12. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  13. Development of an airborne three-channel LED-based broadband cavity enhanced absorption spectrometer: towards an improved understanding of nighttime chemistry of NO3 and N2O5 in northwest Europe

    Science.gov (United States)

    Ouyang, Bin

    2015-04-01

    A three-channel cavity-enhanced absorption spectrometer capable of covering a broad UV-vis spectrum range has been developed in Cambridge for deployment on board the UK FAAM BAe-146 atmospheric research aircraft for measuring in situ concentrations of important atmospheric absorbers such as NO3, N2O5, NO2, IO and H2O and also aerosol extinction. So far this instrument has been deployed in two aircraft campaigns (the ROle of Nighttime chemistry in controlling the Oxidative Capacity of the atmOsphere, RONOCO, during July 2010 and January 2011; and the Coordinated Airborne Studies in the Tropics, CAST, during February 2014) with focuses on measuring NO2/NO3/N2O5 (for RONOCO) and IO (for CAST). In this talk, I will start by briefly presenting the working principle, design consideration, sensitivity test as well as intercomparison results of this novel aircraft instrument. I will then move on to present recent results from the analysis of the RONOCO campaign data, to illustrate the spatial and temporal variability of nighttime chemistry processes revealed by the high-resolution NO3 and N2O5 data collected. Significant improvements were made towards a better understanding of the oxidation of reactive VOCs by NO3 and O3 and the contribution of peroxy radicals (HO2 and RO2, of which only HO2 was successfully measured) to NO3 direct losses, and towards determining factors (organics and nitrate components of the aerosol particles, and relative humidity) that greatly influence the rate of N2O5 uptake by aerosol particles as well as directly probing the role of cloud, rain and ice scavenging in removing N2O5, in this typical northwest European environment.

  14. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  15. Analysis and assessment of Shortwave Angle and Slope Index for monitoring rice phenology and hydroperiod.

    Science.gov (United States)

    Tornos, Lucía; Moyano, María Carmen; Huesca, Margarita; Cicuendez, Victor; Recuero, Laura; Domínguez, Jose Antonio; Palacios-Orueta, Alicia

    2014-05-01

    According to the United Nations, more than 50 percent of the world population depends on rice for about 80 percent of its food requirements. Besides, rice fields are important aquatic ecosystems, hosting a great variety of aquatic species. However, environmental issues such as water consumption and the emission of greenhouse gases, as well as the effects of climate change in crops, may endanger their sustainability. In this context, the determination of rice hydroperiod and phenology is necessary for rice monitoring and impact management, and is expected to become more relevant in the near future. The present study has explored the potential of Shortwave Angle Slope Index (SASI), based on the spectral data contained in Moderate Resolution Imaging Spectroradiometer, to monitoring rice paddy fields under different water management practices. SASI is a spectral shape index (SSI), based on the angle formed in SWIR1 vertex with NIR and SWIR2 in the spectrum, and the slope of the line linking NIR and SWIR2 vertices. This index was developed to distinguish between dry soil, wet soil, dry vegetation and green vegetation. It takes large, positive values for dry soil and large, negative values for green vegetation. Two case studies in Spain, the Ebro Delta and Orellana are presented. The behaviour of the index in each zone for the period 2001-2012 has been evaluated to characterize the response of SASI index to phenological and flooding events in rice. The average values and standard deviation of the index for the period 2001-2012 were calculated to identify the significant points of SASI in coincidence with phenological and flooding field data. An algorithm for the detection of significant points was also applied to determine phenological metrics, based on the information obtained. SASI presented similar values for both zones during the rice growing period. Differences arose during the non-growing period when the Delta was flooded for environmental reasons (i

  16. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  17. Asymmetric quantum well broadband thyristor laser

    Science.gov (United States)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  18. Broadband impedance of the NESTOR storage ring

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gladkikh, P.I.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.

    2011-01-01

    The contributions from lossy and inductive vacuum chamber components to the broadband impedance of the NESTOR storage ring are obtained by using both low-frequency analytical approaches and computer simulations. As was expected considering the small ring circumference (15.44m), the main contributions both to the longitudinal impedance Z || /n and the loss factor k loss come from the RF-cavity. Cavity impedance was also estimated with CST Microwave Studio (CST Studio Suite TM 2006) by simulating coaxial wire method commonly used for impedance measurements. Both estimates agree well. Finally, we performed the simulations of a number of inductive elements with CST Particle Studio 2010 by using wake field solver. We have also evaluated the bunch length in NESTOR taking the conservative estimate of 3 Ohm for the ring broadband impedance and have found that the bunch length s z = 0.5 cm could be obtained in steady state operation mode for the designed bunch current of 10 mA and RF-voltage of 250 kV.

  19. Broadband acoustic properties of a murine skull.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  20. Telemedicina: a multimedia broadband teleradiology and radiosurgery project

    Science.gov (United States)

    de Blas-Garcia, Pedro; Lopez-Viver, Rodolfo; Martinez, Demetrio; Ruiz, Ignacio; Barriuso, Daniel; Janez-Escalada, Luis; Gomez, Jose L.; Luyando, Luis

    1996-05-01

    Telemedicina is a Spanish project that covers teleradiology and radiosurgery areas. This project is under the frame of the Spanish Broadband National Plan (PLANBA). The final technical tests are being ended over Ethernet and ATM and it is planned to get their first clinical results on February-96. Two pilots will be installed: one in Madrid linking two sites through a ATM network (provided by Telefonica, Spanish PTT) and a second one in Asturias (north of Spain) using ISDN primary access (2 Mbps). The system handles still images, voice and video records, scanned documents, text and slides allowing doctors to interchange this data using cooperative tools. The system is based on a multimedia Unix platform with voice, video and videoconference devices and boards. The platform will be used in several ways: as desktop videoconferencing, primary diagnosis and review. Communications are based on ATM (over AAL5) at 155 Mbps and ISDN (primary access). The protocol used in both networks is TCP/IP. The application is written in C++ (object oriented design and programming) and C. GUI is built under X-Windows and Motif. The codification of video is MJPEG done through dedicated hardware. The system is integrated in a small PACS (previously installed); the images are captured from the modalities such as CT using the DICOM standard and it is connected with the Radiological Information System. The application allows collaborative work: telepointer, shared windows, editors and actions. Main news of the Telemedicina project will be the incorporation of broadband networks (ATM at 155 Mbps) and the integration of collaborative work. This two aspects allow the doctors to improve their work speeding up the transmission and retrieval of medical records. Also this platform can be used to achieve several goals: such as primary diagnosis, videoconference, review.

  1. Optical broadband in-home networks for converged service delivery

    NARCIS (Netherlands)

    Shi, Y.

    2013-01-01

    Broadband access networks, and in particular fibre-to-the-home (FTTH) networks, are offering abundantly available bandwidth in the local loop with high quality of services. Under such broadband connectivity conditions, in-home networks should not represent the bottleneck for high capacity service

  2. Radio-over-fibre technology for broadband wireless communication systems

    NARCIS (Netherlands)

    Ng'Oma, A.

    2005-01-01

    Wireless coverage of the end-user domain, be it outdoors or indoors (in-building), is poised to become an essential part of broadband communication networks. In order to offer integrated broadband services (combining voice, data, video, multimedia services, and new value added services), these

  3. Broadband Liner Optimization for the Source Diagnostic Test Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  4. Techno-economic evaluation of broadband access technologies

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias; Skouby, Knud Erik

    2005-01-01

    Broadband for all is an essential element in the EU policy concerning the future of ICT-based society. The overall purpose of this paper is to present a model for evaluation of different broadband access technologies and to present some preliminary results based on the model that has been carried...

  5. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  6. The role of public initiatives facilitating investments in broadband infrastructures

    DEFF Research Database (Denmark)

    Falch, Morten; Tadayoni, Reza; Henten, Anders

    2015-01-01

    This paper discusses the role of a developmental approach to broadband policy. The policy approaches made in Denmark and Sweden are compared, and the scope for public intervention at the broadband market is discussed. The paper includes a case study on public intervention in the rural areas of th...

  7. Analisis Perkembangan Internet Broadband di Daerah Perbatasan Sulawesi Utara

    Directory of Open Access Journals (Sweden)

    Riva'atul Adaniah Wahab

    2016-12-01

    Full Text Available Adopsi teknologi internet broadband dapat memberikan dampak ekonomi bagi masyarakat perbatasan. Karenanya pemerataan pembangunan internet broadband di wilayah  ini harus segera diwujudkan. Penelitian deskriptif kuantitatif ini dilaksanakan di wilayah perbatasan Provinsi Sulawesi Utara untuk mengetahui kondisi aspek supply dan demand perkembangan internet broadband di wilayah tersebut. Berdasarkan hasil penelitian, dapat disimpulkan bahwa dari aspek supply, kondisi infrastruktur masih sangat kurang, ketersediaan layanan internet broadband berkualitas tinggi dengan tarif rendah juga masih sulit diwujudkan. Dari aspek demand, stigma atau persepsi masyarakat bahwa internet tidak penting menjadi salah satu faktor penyebab tidak memiliki akses internet. Adapun hambatan yang paling dominan adalah ketidakpahaman dalam penggunaan internet. Faktor ini juga menjadi mendasari literasi internet broadband masyarakat pada level 0 yaitu  tidak peduli akan pentinya internet. Menanggapai kondisi ini, penyusunan dan penetapan kebijakan serta regulasi seperti QoS layanan, tarif interkoneksi, infrastructure sharing dibuat untuk menyediakan internet broadband berkualitas tinggi dengan harga murah. Selain itu distribusi perangkat mobile berharga murah (smartphone juga perlu didorong dengan penerapan TKDN untuk produksi perangkat. Tidak kalah pentingnya adalah peningkatan literasi internet broadband masyarakat melalui sosialisasi atau pelatihan baik formal maupun nonformal. Abstract   Adoption of internet broadband internet can provide the economic impact for border communities. Hence equitable development of internet broadband in the region should be immediately implemented. This quantitative descriptive study was conducted in the border region of North Sulawesi to determine the condition of supply and demand aspects of the development of internet broadband. Based on the results, it can be concluded that from the aspect of supply, the condition of the

  8. Chaos-assisted broadband momentum transformation in optical microresonators.

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Chaos-assisted broadband momentum transformation in optical microresonators

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  10. Design and Fabrication of Large Diameter Gradient-Index Lenses for Dual-Band Visible to Short-Wave Infrared Imaging Applications

    Science.gov (United States)

    Visconti, Anthony Joseph

    The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system

  11. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    OpenAIRE

    Papathanassiou Apostolos; Davydov Alexei

    2011-01-01

    Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO) and orthogonal frequency division multiple access (OFDMA) provide the appropriate technologies for improving the downlink performance of third generation (3G) code division multip...

  12. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  13. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  14. Energy efficient evolution of mobile broadband networks

    Energy Technology Data Exchange (ETDEWEB)

    Micallef, G.

    2013-04-15

    existing macro base station sites together with the deployment of outdoor or indoor small cells (heterogeneous network) provide the best compromise between performance and power consumption. Focusing on one of the case studies, it is noted that the upgrade of both HSPA and LTE network layers results in the power consumption of the network increasing by a factor of 4. When coupled with the growth in capacity introduced by the various upgrades (x50), the efficiency of the network is still greatly improved. Over the evolution period, the stated increase in power consumption does not consider improvement in base station equipment. By considering a number of different equipment versions, the evolution study is further extended to also include the impact of replacing old equipment. Results show that an aggressive replacement strategy and the upgrade of sites to remote radio head can restrain the increase in power consumption of the network to just 17%. In addition to upgrading equipment, mobile network operators can further reduce power consumption by enabling a number of power saving features. These features often exploit redundancies within the network and/or the variation in traffic over a daily period. An example of such feature is sleep mode, which allows for base station sites to be systematically powered down during hours with low network traffic. While dependent on the traffic profile, within an urban area sleep mode can reduce the daily energy consumption of the network by around 20%. In addition to the different variances of sleep mode, the potential savings of other features are also described. Selecting a power efficient network capacity evolution path, replacing old and less efficient equipment, and enabling power saving features, can all considerably reduce the power consumption of future mobile broadband networks. Studies and recommendations presented within this thesis demonstrate that it is realistic for mobile network operators to boost network capacity by a

  15. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    Science.gov (United States)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  16. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua

    2013-04-25

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.

  17. Piezoelectric energy harvesting from broadband random vibrations

    International Nuclear Information System (INIS)

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  18. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  19. Techno-Economics of Residential Broadband Deployment

    DEFF Research Database (Denmark)

    Sigurdsson, Halldor Matthias

    2007-01-01

    on account of their existing telecom network (”the raw copper”), and typically they will prefer an xDSL-based strategy (various types of Digital Subscriber Line-technology: ADSL, VDSL, etc.), where the rate of speed of data connections are increased gradually to 10-50 Mbit/s or even more, in order to gain...... broadband deployment strategy is depending on a complexed set of parameters, and there is a demand for precise techno-economic cost models estimating financial feasibility. The existing cost models do not consider the dynamic developments in the market caused by competition. The PhD thesis has a profound...... the general principles from the Danish LRAIC-model (Long Run Average Incremental Cost) and divides Denmark in 4 geografical profiles. Considering the existing copper-infrastructure the most advantageous strategies for the players of each of these profiles are identified. The importance of the time horizon...

  20. Broadband plasmon induced transparency in terahertz metamaterials

    International Nuclear Information System (INIS)

    Zhu Zhihua; Yang Xu; Gu Jianqiang; Jiang Jun; Tian Zhen; Han Jiaguang; Zhang Weili; Yue Weisheng; Tonouchi, Masayoshi

    2013-01-01

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. (paper)

  1. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  2. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  3. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  4. Patient portals and broadband internet inequality.

    Science.gov (United States)

    Perzynski, Adam T; Roach, Mary Joan; Shick, Sarah; Callahan, Bill; Gunzler, Douglas; Cebul, Randall; Kaelber, David C; Huml, Anne; Thornton, John Daryl; Einstadter, Douglas

    2017-09-01

    Patient portals have shown potential for increasing health care quality and efficiency. Internet access and other factors influencing patient portal use could worsen health disparities. Observational study of adults with 1 or more visits to the outpatient clinics of an urban public health care system from 2012 to 2015. We used mixed effects logistic regression to evaluate the association between broadband internet access and (1) patient portal initiation (whether a patient logged in at least 1 time) and (2) messaging, controlling for demographic and neighborhood characteristics. There were 243 248 adults with 1 or more visits during 2012-2015 and 70 835 (29.1%) initiated portal use. Portal initiation was 34.1% for whites, 23.4% for blacks, and 23.8% for Hispanics, and was lower for Medicaid (26.5%), Medicare (23.4%), and uninsured patients (17.4%) than commercially insured patients (39.3%). In multivariate analysis, both initiation of portal use (odds ratio [OR] = 1.24 per quintile, 95% confidence interval [CI], 1.23-1.24, P  internet access. The majority of adults with outpatient visits to a large urban health care system did not use the patient portal, and initiation of use was lower for racial and ethnic minorities, persons of lower socioeconomic status, and those without neighborhood broadband internet access. These results suggest the emergence of a digital divide in patient portal use. Given the scale of investment in patient portals and other internet-dependent health information technologies, efforts are urgently needed to address this growing inequality. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...... Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations...

  6. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  7. Metropolitan area networks: a corner stone in the broadband era

    Science.gov (United States)

    Ghanem, Adel

    1991-02-01

    Deployment of Broadband ISDN is being influenced by both a market pull and a technology push. New broadband service opportunities exist in the business and residential sectors of the market place. It is envisioned that some customers will need connections directly to broadband switches because of the high bandwidth needed for their applications. At the same time Metropolitan Area Network (MAN) systems will serve those customers with bandwidth requirements less than or equal to 150 Mbps. A given MAN will have a geographical domain to serve where it will carry out the switching tasks within this domain. While MANs couldbe designed using differentarchitecturalconcepts the setofservices expected tobeprovidedby MANs could be equivalent to thelist ofservices thatwillbe supported by the targetbroadband network. This paperpositions MANs as a major building block for Broadband networks. It also examines the evolution process ofMANs as a needed step to assure the successful deployment of these new broadband services. 2. BISDN - OVERVIEW Broadband ISDN (BISDN) is being driven into existence by both a market pull as well as a technology push. Opportunities for new valueadded services are the prime market pull for future broadband networks. These services opportunities extend beyond simple voice and low speed data applications and cover both the residential and the business sectors of the market. It is noted for instance that business customers have growing needs for sophisticated telecommunication vehicles to support their

  8. Broadband availability in metropolitan and non-metropolitan Pennsylvania

    Directory of Open Access Journals (Sweden)

    Lawrence E. Wood

    2016-09-01

    Full Text Available Over the past few years having a broadband connection has become essential for many Internet activities. As broadband increases in importance, it becomes imperative to assess how its use and availability may vary, especially in relation to issues such as geographic location. For rural areas in particular, the availability of broadband service is especially important. This research assesses broadband service availability in rural areas of Pennsylvania, USA. In particular, it examines the extent to which Digital Subscriber Line (DSL and broadband cable modem services are being deployed throughout rural Pennsylvania. It compares this deployment with the availability of such services in the state’s urban and metropolitan areas. The results of this research suggest that there is a “digital divide” in terms of broadband availability between rural and urban areas of Pennsylvania. However, this “divide” is perhaps not as wide as might be expected. Thus, as broadband is becoming increasingly available in rural areas of the U.S. and throughout much of the rest of the world, this research concludes that while research must remain vigilant in terms of assessing advanced telecommunications availability in rural areas, future research should also be sure to focus on how such technologies can be used to promote economic and social concerns, including in relation to building online networks and diminishing social and professional isolation in rural areas.

  9. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  10. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  11. Broadband manipulation of refracted wavefronts by gradient acoustic metasurface with V-shape structure

    Science.gov (United States)

    Lan, Jun; Li, Yifeng; Liu, Xiaozhou

    2017-12-01

    We present a space folding acoustic metasurface with a V-shaped structure, which exhibits ultra-broadband and high efficiency transmission compared to previously investigated space folding metasurfaces. The proposal employs a gradient refractive index profile to redirect the refracted wave arbitrarily and an existence of air channels with direct sound propagation to improve impedance matching between the metasurface and the background medium. As expected from frequency-independent generalized Snell's law, the demonstrated acoustic metasurface can steer refracted wavefronts at will, including anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat lens, and conversion of the propagating wave into the surface wave. The designed V-shape metasurface overcomes the limitation of narrowband, which may offer potential applications in medical ultrasound imaging and broadband acoustical devices.

  12. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    Science.gov (United States)

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  13. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.

    Science.gov (United States)

    Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T

    2015-01-21

    Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

  14. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    Science.gov (United States)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  15. Progress on Broadband Access to the Internet and Use of Mobile Devices in the United States.

    Science.gov (United States)

    Serrano, Katrina J; Thai, Chan L; Greenberg, Alexandra J; Blake, Kelly D; Moser, Richard P; Hesse, Bradford W

    Healthy People 2020 (HP2020) aims to improve population health outcomes through several objectives, including health communication and health information technology. We used 7 administrations of the Health Information National Trends Survey to examine HP2020 goals toward access to the Internet through broadband and mobile devices (N = 34 080). We conducted descriptive analyses and obtained predicted marginals, also known as model-adjusted risks, to estimate the association between demographic characteristics and use of mobile devices. The HP2020 target (7.7% of the US population) for accessing the Internet through a cellular network was surpassed in 2014 (59.7%), but the HP2020 target (83.2%) for broadband access fell short (63.8%). Sex and age were associated with accessing the Internet through a cellular network throughout the years (Wald F test, P Internet through mobile devices presents an opportunity for technology-based health interventions that should be explored.

  16. Multicarrier Block-Spread CDMA for Broadband Cellular Downlink

    Directory of Open Access Journals (Sweden)

    Leus Geert

    2004-01-01

    Full Text Available Effective suppression of multiuser interference (MUI and mitigation of frequency-selective fading effects within the complexity constraints of the mobile constitute major challenges for broadband cellular downlink transceiver design. Existing wideband direct-sequence (DS code division multiple access (CDMA transceivers suppress MUI statistically by restoring the orthogonality among users at the receiver. However, they call for receive diversity and multichannel equalization to improve the fading effects caused by deep channel fades. Relying on redundant block spreading and linear precoding, we design a so-called multicarrier block-spread- (MCBS-CDMA transceiver that preserves the orthogonality among users and guarantees symbol detection, regardless of the underlying frequency-selective fading channels. These properties allow for deterministic MUI elimination through low-complexity block despreading and enable full diversity gains, irrespective of the system load. Different options to perform equalization and decoding, either jointly or separately, strike the trade-off between performance and complexity. To improve the performance over multi-input multi-output (MIMO multipath fading channels, our MCBS-CDMA transceiver combines well with space-time block-coding (STBC techniques, to exploit both multiantenna and multipath diversity gains, irrespective of the system load. Simulation results demonstrate the superior performance of MCBS-CDMA compared to competing alternatives.

  17. Opportunistic Nonorthogonal Packet Scheduling in Fixed Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed H

    2006-01-01

    Full Text Available In order to mitigate high cochannel interference resulting from dense channel reuse, the interference management issues are often considered as essential part of scheduling schemes in fixed broadband wireless access (FBWA networks. To that end, a series of literature has been published recently, in which a group of base stations forms an interferer group (downlink transmissions from each base station become dominant interference for the users in other in-group base stations, and the scheduling scheme deployed in the group allows only one base station to transmit at a time. As a result of time orthogonality in transmissions, the dominant cochannel interferers are prevented, and hence the packet error rate can be improved. However, prohibiting concurrent transmissions in these orthogonal schemes introduces throughput penalty as well as higher end-to-end packet delay which might not be desirable for real-time services. In this paper, we utilize opportunistic nonorthogonality among the in-group transmissions whenever possible and propose a novel transmission scheduling scheme for FBWA networks. The proposed scheme, in contrast to the proactive interference avoidance techniques, strives for the improvements in delay and throughput efficiency. To facilitate opportunistic nonorthogonal transmissions in the interferer group, estimation of signal-to-interference-plus-noise ratio (SINR is required at the scheduler. We have observed from simulations that the proposed scheme outperforms the reference orthogonal scheme in terms of spectral efficiency, mean packet delay, and packet dropping rate.

  18. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  19. Fixed Broadband Deployment Data: June, 2016 Status V1

    Data.gov (United States)

    Federal Communications Commission — Version 1 reflects data filed by the March 1, 2016 filing deadline and any revisions made before February 10, 2017. All facilities-based broadband providers are...

  20. Broadband Reflective Coating Process for Large FUVOIR Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZeCoat Corporation will develop and demonstrate a set of revolutionary coating processes for making broadband reflective coatings suitable for very large mirrors (4+...

  1. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  2. Fixed Broadband Deployment Data: June, 2016 Status V2

    Data.gov (United States)

    Federal Communications Commission — This data contains status reports for June 2016, with revisions accepted through May 2017. All facilities-based broadband providers are required to file data with...

  3. Expressive Communication and Human Development in the New Broadband Environment

    Science.gov (United States)

    Carey, John

    2004-01-01

    An understanding of the structure and functions of expressive communication in face-to-face communication and audiovisual media can inform the development of new educational services for human development across cultures in the emerging broadband environment.

  4. Broadband Wireless Data Acquisition and Control Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum is proposing to develop a broadband wireless device for real-time data acquisition and monitoring applicable to the field instrumentation and control...

  5. 76 FR 13769 - Rural Broadband Access Loans and Loan Guarantees

    Science.gov (United States)

    2011-03-14

    ... pharmacy work, and savings to health facilities from outsourcing specialized medical procedures. One study... international markets and enables new, small, and home-based businesses to thrive. Broadband access affords...

  6. 78 FR 8353 - Rural Broadband Access Loans and Loan Guarantees

    Science.gov (United States)

    2013-02-06

    ... outsourcing specialized medical procedures. One study of 24 rural hospitals placed the annual cost of not... a key to economic growth. For rural businesses, broadband gives access to national and international...

  7. Broadband and High power Reactive Jamming Resilient Wireless Communication

    Science.gov (United States)

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  8. Crosstalk analysis of a broadband data communications system

    Science.gov (United States)

    Crutcher, R. I.; Ewing, P. D.; Hayes, T. W.

    1987-11-01

    A broadband cable system represents a significant resource for data transmission within a facility. Duplication of a broadband network to provide services of varying sensitivity levels within the same area is wasteful of capital resources. The sharing of a network by different data services is financially attractive providing that sensitive data are inaccessible from nonsensitive ports. The use of equipment from two manufacturers introduces a deliberate incompatibility for the purpose of data isolation. This report presents test results obtained by this technique.

  9. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  11. Silicon Micromachined Sensor for Broadband Vibration Analysis

    Science.gov (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  12. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  13. Ionomer Dynamics: Insights from Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Runt, James

    2015-03-01

    Ionomers (polymers containing ionic functionality) have been traditionally used as packaging materials and in molding applications, and are now of increasing interest as candidate single ion conductors for energy storage devices, in energy conversion, and for other electroactive materials applications. The focus of this presentation is on the insight that broadband dielectric (impedance) spectroscopy brings to our understanding of ion and polymer dynamics of this family of materials. As an example of our recent work on relatively conductive ionomers, the first portion of the presentation will focus on anion conducting polyphosphazene ionomers, in which polymer bound cations are quaternized with either short alkyl or short ether oxygen chains. The low Tg, amorphous nature, and cation-solvating backbone distinguish polyphosphazenes as promising materials for ion conduction, the iodide variants being of particular interest in solar cells. In the second part of this overview, the first findings on the molecular dynamics of linear precise polyethylene-based ionomers containing 1-methylimidazolium bromide pendants on exactly every 9th, 15th, or 21st carbon atom will be summarized. In order to develop a robust interpretation of the dynamics of these materials, it is imperative to develop a thorough understanding of microphase separation (e.g. ion aggregation), and each of the above studies is complimented by multiangle X-ray scattering experiments. Supported by the NSF Polymers Program and DOE Basic Energy Sciences.

  14. Broadband unidirectional invisibility for airborne sound

    Science.gov (United States)

    Kan, Weiwei; Guo, Mengping; Shen, Zhonghua

    2018-05-01

    We present a metafluid-based broadband cloak capable of guiding acoustic waves around obstacles along given directions while maintaining the wavefront undisturbed. The required parameter distribution of the proposed cloak is derived by coordinate transformation and practically implemented by employing the acoustic metafluid formed with periodically arranged slabs in acoustic chambers. The method for independently modulating the effective mass density and bulk modulus of the metafluid is developed by tuning the geometry parameters and the temperature of the acoustic chamber in a specific process. By virtue of this free-modulated method, the range of realizable effective parameters is substantially broadened, and the acoustic impedance of the anisotropic structures can be well matched to the background. The performance of the designed structure is quantitatively evaluated in the frequency range of 3-4 kHz by the averaged invisibility factor. The results show that the proposed cloak is effective in manipulating the acoustic field along the given direction and suppressing the wave scattering from the hidden object.

  15. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  16. A Broadband Ultrathin Nonlinear Switching Metamaterial

    Directory of Open Access Journals (Sweden)

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  17. Pricing by timing: innovating broadband data plans

    Science.gov (United States)

    Ha, Sangtae; Joe-Wong, Carlee; Sen, Soumya; Chiang, Mung

    2012-01-01

    Wireless Internet usage is doubling every year. Users are using more of high bandwidth data applications, and the heavy usage concentrates on several peak hours in a day, forcing ISPs to overprovision their networks accordingly. In order to remain profitable, ISPs have been using pricing as a congestion management tool. We review many of such pricing schemes in practice today and argue that they do not solve ISPs' problem of growing data traffic. We believe that dynamic, time-dependent usage pricing, which charges users based on when they access the Internet, can incentivize users to spread out their bandwidth consumption more evenly across different times of the day, thus helping ISPs to overcome the problem of peak congestion. Congestion pricing is not a new idea in itself, but the time for its implementation in data networks has finally arrived. Our key contribution lies in developing new analysis and a fully integrated system architecture, called TUBE (Time-dependent Usage-based Broadband price Engineering) that enables ISPs to implement the proposed TDP plan. The theory, simulation, and system implementation of TUBE system is further complemented with consumer surveys conducted in India and the US, along with preparations for a field trial that is currently underway.

  18. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  19. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.

  20. Speech recognition systems on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Jones, H; Vaidya, S; Perrone, M; Tydlitat, B; Nanda, A

    2007-04-20

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.

  1. Broadband PLC for Clustered Advanced Metering Infrastructure (AMI Architecture

    Directory of Open Access Journals (Sweden)

    Augustine Ikpehai

    2016-07-01

    Full Text Available Advanced metering infrastructure (AMI subsystems monitor and control energy distribution through exchange of information between smart meters and utility networks. A key challenge is how to select a cost-effective communication system without compromising the performance of the applications. Current communication technologies were developed for conventional data networks with different requirements. It is therefore necessary to investigate how much of existing communication technologies can be retrofitted into the new energy infrastructure to cost-effectively deliver acceptable level of service. This paper investigates broadband power line communications (BPLC as a backhaul solution in AMI. By applying the disparate traffic characteristics of selected AMI applications, the network performance is evaluated. This study also examines the communication network response to changes in application configurations in terms of packet sizes. In each case, the network is stress-tested and performance is assessed against acceptable thresholds documented in the literature. Results show that, like every other communication technology, BPLC has certain limitations; however, with some modifications in the network topology, it indeed can fulfill most AMI traffic requirements for flexible and time-bounded applications. These opportunities, if tapped, can significantly improve fiscal and operational efficiencies in AMI services. Simulation results also reveal that BPLC as a backhaul can support flat and clustered AMI structures with cluster size ranging from 1 to 150 smart meters.

  2. Influences on the reflectance of Arctic sea ice and the impact of anthropogenic impurities on the surface shortwave radiation balance

    OpenAIRE

    Schulz, Hannes; Herber, Andreas; Birnbaum, Gerit; Seckmeyer, Gunther

    2014-01-01

    In order to investigate influences on the reflectance of snow covered Arctic sea ice, a discrete ordinate method and Mie-Theory based radiative transfer model has been set up. This model, the Snow on Sea Ice Model (SoSIM), is able to investigate changes in spectral and spectrally integrated (broadband) albedo of a multi-layer snow cover on sea ice due to varying snow microphysical parameters, atmospheric composition and incoming solar radiation. For typical conditions in the Arctic sea-ice ar...

  3. BROADBAND OBSERVATIONS OF HIGH REDSHIFT BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Stalin, C. S., E-mail: vpaliya@g.clemson.edu [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ( z = 3.37), CGRaBS J0225+1846 ( z = 2.69), BZQ J1430+4205 ( z = 4.72), and 3FGL J1656.2−3303 ( z = 2.40) using quasi-simultaneous data from the Swift , Nuclear Spectroscopic Telescope Array ( NuSTAR ) and the Fermi -Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ -ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ -ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ -ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  4. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  5. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  6. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  7. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  9. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    Science.gov (United States)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  10. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    OpenAIRE

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  11. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data

    Science.gov (United States)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.

    2009-05-01

    Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.

  12. The relationship investigation between factors affecting demand for broadband and the level of satisfaction among broadband customers in the South East Coast of Sabah, Malaysia

    Science.gov (United States)

    Hashim, S. H. A.; Hamid, F. A.; Kiram, J. J.; Sulaiman, J.

    2017-09-01

    This paper aims to investigate the relationship between factors that affecting the demand for broadband and the level of satisfaction. Previous researchers have found that the adoption of broadband is greatly influenced by many factors. Thus, in this study, a self-administered questionnaire was developed to obtain the factors affecting demand for broadband among broadband customers as well as their level of satisfaction. Pearson correlation, one-way analysis of variance (ANOVA) and t-test were used for statistical interpretation of the relationship. This study shows that there are better relationships between several factors over demand for broadband and satisfaction level.

  13. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.

    Science.gov (United States)

    Nechayev, Sergey; Rotschild, Carmel

    2017-09-13

    Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.

  14. Broadband set-top box using MAP-CA processor

    Science.gov (United States)

    Bush, John E.; Lee, Woobin; Basoglu, Chris

    2001-12-01

    Advances in broadband access are expected to exert a profound impact in our everyday life. It will be the key to the digital convergence of communication, computer and consumer equipment. A common thread that facilitates this convergence comprises digital media and Internet. To address this market, Equator Technologies, Inc., is developing the Dolphin broadband set-top box reference platform using its MAP-CA Broadband Signal ProcessorT chip. The Dolphin reference platform is a universal media platform for display and presentation of digital contents on end-user entertainment systems. The objective of the Dolphin reference platform is to provide a complete set-top box system based on the MAP-CA processor. It includes all the necessary hardware and software components for the emerging broadcast and the broadband digital media market based on IP protocols. Such reference design requires a broadband Internet access and high-performance digital signal processing. By using the MAP-CA processor, the Dolphin reference platform is completely programmable, allowing various codecs to be implemented in software, such as MPEG-2, MPEG-4, H.263 and proprietary codecs. The software implementation also enables field upgrades to keep pace with evolving technology and industry demands.

  15. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  16. Broadband low-frequency sound isolation by lightweight adaptive metamaterials

    Science.gov (United States)

    Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming

    2018-03-01

    Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.

  17. Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation.

    Science.gov (United States)

    Wan, Jiayu; Xu, Yue; Ozdemir, Burak; Xu, Lisha; Sushkov, Andrei B; Yang, Zhi; Yang, Bao; Drew, Dennis; Barone, Veronica; Hu, Liangbing

    2017-01-24

    Optical transparent and electrical conducting materials with broadband transmission are important for many applications in optoelectronic, telecommunications, and military devices. However, studies of broadband transparent conductors and their controlled modulation are scarce. In this study, we report that reversible transmittance modulation has been achieved with sandwiched nanocarbon thin films (containing carbon nanotubes (CNTs) and reduced graphene oxide (rGO)) via electrochemical alkali-ion intercalation/deintercalation. The transmittance modulation covers a broad range from the visible (450 nm) to the infrared (5 μm), which can be achieved only by rGO rather than pristine graphene films. The large broadband transmittance modulation is understood with DFT calculations, which suggest a decrease in interband transitions in the visible range as well as a reduced reflection in the IR range upon intercalation. We find that a larger interlayer distance in few-layer rGO results in a significant increase in transparency in the infrared region of the spectrum, in agreement with experimental results. Furthermore, a reduced plasma frequency in rGO compared to few-layer graphene is also important to understand the experimental results for broadband transparency in rGO. The broadband transmittance modulation of the CNT/rGO/CNT systems can potentially lead to electrochromic and thermal camouflage applications.

  18. System and method for detection of dispersed broadband signals

    Science.gov (United States)

    Qian, S.; Dunham, M.E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

  19. Bio-inspired heterogeneous composites for broadband vibration mitigation.

    Science.gov (United States)

    Chen, Yanyu; Wang, Lifeng

    2015-12-08

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  20. Prediction of broadband trailing edge noise from a NACA0012 airfoil using wall-modeled large-eddy simulation

    Science.gov (United States)

    Mehrabadi, Mohammad; Bodony, Daniel

    2017-11-01

    In modern high-bypass ratio turbofan engines, the reduction of jet exhaust noise through engine design has increased the acoustic importance of the main fan to the point where it can be the primary source of noise in the fight direction of an airplane. While fan noise has been reduced by improved fan designs, its broadband component, originating from the interaction of turbulent flow with a solid surface, still remains an issue. Broadband fan noise is generated by several mechanisms, usually involving a turbulent boundary layer interacting with a solid surface. To prepare for a wall modeled large eddy simulation (WMLES) of the NASA/GE source diagnostic test fan, we study the broadband noise due to the turbulent flow on a NACA0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000, and a Mach number of 0.115 using WMLES. We investigate the prediction of transition-to-turbulence and sound generation from the WMLES and examine its predictability compared with available experimental and DNS datasets for the same flow conditions. Verification of WMLES for such a canonical problem is crucial since it provides useful insight about the WMLES approach before using it for broadband fan noise prediction. AeroAcoustics Research Consortium.

  1. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    Science.gov (United States)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  2. Manta A New BroadBand OBS

    Science.gov (United States)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Philippe, O.

    2017-12-01

    Manta is a new BroadBand OBS developed at Geoazur and commercialized by Osean. The design is inspired by 3-years autonomy MUG-OBS a Multiparameter Ocean Bottom System which carry a lot of sort of sensor types. As Mug-OBS, Manta-OBS rated 6000m is designed to resist a trawling. All the components are non corrosive such polyethylene, titanium and buoyancy is ensured by syntactic foam. Equipped in standard version with a Trillium compact OBS Manta has an autonomy of 18 months, but can accept on its 4 input channels any kind of signal as low as from an hydrophone or larger from other type of a seismometer or accelerometer. Tri-axial geophones unit (2 Hz or 4.5 Hz ) can replace the seismometer and will expend the lifespan for the instrument. The seismometer is encapsulated in a central well established by four panels of the main structure to protect it from sea current convection and is decoupled from main chassis. An health bulletin is recoverable by acoustic any time to facilitate the installation and during a visit when instrument is deployed. Main parameters for acquisition can be changed by acoustics command from surface at any time. Once at the bottom, release for the main sensor installation is programmed on a timer but controlled by the tilt of the OBS. If the tilt is too important based on programmed limits, sensor will not released automatically, but this can be forced by acoustic command after returning the tilt informations to the boat operator. Manta is equipped with flash light and AIS system for easy location at recovery, and can also send it's position by Iridium satellite in case of an unexpected ascent such caused by a possible trawling if deployed in shallow water. Clock drift calculation is automatically made against GPS time signal once the OBS return at the surface. The recovery of the OBS is initiated by an acoustic command. These new features made Manta a very versatile instrument for monitoring earthquakes.

  3. Shortwave Direct Radiative Effects of Above-Cloud Aerosols Over Global Oceans Derived From 8 Years of CALIOP and MODIS Observations

    Science.gov (United States)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros

    2016-01-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and

  4. Broadband unidirectional cloaks based on flat metasurface focusing lenses

    International Nuclear Information System (INIS)

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Pang, Yongqiang; Xu, Zhuo; Zhang, Anxue

    2015-01-01

    Bandwidth extension and thickness reduction are now the two key issues of cloaks. In this paper, we propose to achieve broadband, thin uni-directional electromagnetic (EM) cloaks using metasurfaces. To this end, a wideband flat focusing lens is firstly devised based on high-efficiency transmissive metasurfaces. Due to the nearly dispersionless parabolic phase profile along the metasurface in the operating band, incident plane waves can be focused efficiently after passing through the metasurface. Broadband unidirectional EM cloaks were then designed by combining two identical flat lenses. Upon illumination, the incident plane waves are firstly focused by one lens and then are restored by the other lens, avoiding the cloaked region. Both simulation and experiment results verify the broadband unidirectional cloak. The broad bandwidth and small thickness of such cloaks have potential applications in achieving invisibility for electrically large objects. (paper)

  5. Broadband unidirectional cloaks based on flat metasurface focusing lenses

    Science.gov (United States)

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Pang, Yongqiang; Xu, Zhuo; Zhang, Anxue

    2015-08-01

    Bandwidth extension and thickness reduction are now the two key issues of cloaks. In this paper, we propose to achieve broadband, thin uni-directional electromagnetic (EM) cloaks using metasurfaces. To this end, a wideband flat focusing lens is firstly devised based on high-efficiency transmissive metasurfaces. Due to the nearly dispersionless parabolic phase profile along the metasurface in the operating band, incident plane waves can be focused efficiently after passing through the metasurface. Broadband unidirectional EM cloaks were then designed by combining two identical flat lenses. Upon illumination, the incident plane waves are firstly focused by one lens and then are restored by the other lens, avoiding the cloaked region. Both simulation and experiment results verify the broadband unidirectional cloak. The broad bandwidth and small thickness of such cloaks have potential applications in achieving invisibility for electrically large objects.

  6. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    Science.gov (United States)

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  7. Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance

    Science.gov (United States)

    Kostylev, M.; Stashkevich, A. A.; Adeyeye, A. O.; Shakespeare, C.; Kostylev, N.; Ross, N.; Kennewell, K.; Magaraggia, R.; Roussigné, Y.; Stamps, R. L.

    2010-11-01

    The broadband microstrip ferromagnetic resonance (FMR), cavity FMR, and Brillouin light scattering spectroscopy techniques have been applied for detection and characterization of a magnetic inhomogeneity in a film sample. In the case of a 100 nm thick permalloy film, an additional magnetically depleted top sublayer has been detected due to pinning effect it produces on the magnetization in the bulk of the film. The pinning results in appearance of an exchange standing spin wave mode in the broadband FMR absorption spectrum, whose amplitudes are different depending on whether the film or the film substrate faces the microstrip transducer. Comparison of the experimental amplitudes for this mode with results of our theory for both film placements revealed that the depleted layer is located at the film surface facing away from the film substrate. Subsequent broadband FMR characterization of a large number of other presumably single-layer films with thicknesses in the range 30-100 nm showed the same result.

  8. National Broadband strategies – The case of Brazil

    DEFF Research Database (Denmark)

    Falch, Morten; Iaskio, Emerson

    2018-01-01

    as differences in institutional factors. For instance has the government played a leading role in Japan and South Korea, while US and UK have a strong emphasis on market forces and competition. Brazil has chosen their own strategy for broadband development. This strategy is defined within a specific national...... of comparing broadband strategies in different countries. The paper first describes these dimensions, and how the framework relates to other kinds of categorisations. Second it provides a brief overview of how the Brazilian telecom market developed. The subsequent section presents various policy initiatives......). Broadband for all is a widely accepted policy objective in both developed and developing countries. However, the policy strategies for achieving this goal are very different in different countries. These differences are originated in different levels of economic and technological development, as well...

  9. Estimation of radiative forcing and chore length of shallow convective clouds (SCC) based on broadband pyranometer measurement network

    Science.gov (United States)

    Shi, H.

    2017-12-01

    We presented a method to identify and calculate cloud radiative forcing (CRF) and horizontal chore length (L) of shallow convective clouds (SCC) using a network of 9 broadband pyranometers. The analyzing data was collected from the SCC campaign during two years summers (2015 2016) at Baiqi site over Inner Mongolia grassland. The network of pyranometers was operated across a spatial domain covering 42.16-42.30° N and 114.83-114.98° E. The SCC detection method was verified by observer reports and cameras, which showed that the detection method and human observations were in agreement about 75 %. The differences between the SCC detection method and human observations can be responsible for following factors: 1) small or dissipating clouds can be neglected for the value of 1 min of temporal resolution of pyranometer; 2) human observation recorded weather conditions four times every day; 3) SCC was indistinguishable from coexistence of SCC and Cirrus (Ci); 4) the SCC detection method is weighted toward clouds crossing the sun's path, while the human observer can view clouds over the entire sky. The deviation of L can be attributed to two factors: 1) the accuracy of wind speed at height of SCC and the ratio of horizontal and vertical length play a key role in determine values of L; 2) the effect of variance of solar zenith angle can be negligible. The downwelling shortwave CRF of SCC was -134.1 Wm-2. The average value of L of SCC was 1129 m. Besides, the distribution of normalized cloud chore length agreed well with power-law fit.

  10. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    Science.gov (United States)

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  11. EM Simulation Accuracy Enhancement for Broadband Modeling of On-Wafer Passive Components

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Jiang, Chenhui; Hadziabdic, Dzenan

    2007-01-01

    This paper describes methods for accuracy enhancement in broadband modeling of on-wafer passive components using electromagnetic (EM) simulation. It is shown that standard excitation schemes for integrated component simulation leads to poor correlation with on-wafer measurements beyond the lower...... GHz frequency range. We show that this is due to parasitic effects and higher-order modes caused by the excitation schemes. We propose a simple equivalent circuit for the parasitic effects in the well-known ground ring excitation scheme. An extended L-2L calibration method is shown to improve...

  12. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-10-05

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  13. 77 FR 62461 - Implementing Public Safety Broadband Provisions of the Middle Class Tax Relief and Job Creation...

    Science.gov (United States)

    2012-10-15

    ... Wireless Broadband Network,'' ``Special Purpose Bankruptcy Remote Entity,'' ``Upper 700 MHz D Block license... definitions ``700 MHz Public/Private Partnership,'' ``Network Assets Holder,'' ``Network Sharing Agreement...,'' ``Public safety broadband network operator,'' ``Shared Wireless Broadband Network, '' ``Special Purpose...

  14. Comparison of VP broadband tiltmeter and VS vertical pendulum tiltmeter

    Directory of Open Access Journals (Sweden)

    Wugang Ma

    2015-05-01

    Full Text Available Vertical pendulum (VP tiltmeter is a kind of earthquake precursor observation equipment, which is used to record the interaction force associated with astronomical tidal tilts caused. Currently, VP broadband tiltmeter and vertical sensor (VS vertical pendulum tiltmeter are primarily used. In this paper, we compare the two different instruments by using four aspects—mechanical structure, circuitry, zeroing, and bandwidth—based on their working principles and applications. We conclude that VP broadband tiltmeter is more superior compared with VS vertical pendulum tiltmeter because of its higher bandwidth and degree of automation.

  15. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    Science.gov (United States)

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  16. Measurement uncertainty in broadband radiofrequency radiation level measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2014-01-01

    Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  17. Broadband polymer microstructured THz fiber coupler with downdoped cores

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2010-01-01

    We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz.......We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz....

  18. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  19. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    Energy Technology Data Exchange (ETDEWEB)

    Shields, Nora [School of Physiotherapy, La Trobe University, Victoria 3086 (Australia); O' Hare, Neil [Department of Medical Physics and Bioengineering, St James' s Hospital, Dublin 8 (Ireland); Gormley, John [School of Physiotherapy, Trinity College Dublin, Trinity Centre for Health Sciences, St James' s Hospital, Dublin 8 (Ireland)

    2004-07-07

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.

  20. An evaluation of safety guidelines to restrict exposure to stray radiofrequency radiation from short-wave diathermy units

    International Nuclear Information System (INIS)

    Shields, Nora; O'Hare, Neil; Gormley, John

    2004-01-01

    Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists

  1. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    Science.gov (United States)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  2. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    . This highlights the need to improve modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. An aerosol optical model based on the mean intensive properties of smoke from the southern part of the Amazon basin produced a radiative flux perturbation efficiency (RFPE of −158 Wm−2/AOD550 nm at noon. This value falls between −154 Wm−2/AOD550 nm and −187 Wm−2/AOD550 nm, the range obtained when spatially varying optical models were considered. The 24 h average surface radiative flux perturbation over the biomass burning season varied from −55 Wm−2 close to smoke sources in the southern part of the Amazon basin and cerrado to −10 Wm−2 in remote regions of the southeast Brazilian coast.

  3. Greenhouse gas emission rate estimates from airborne remote sensing in the short-wave infrared

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Thomas

    2013-01-30

    The quantification of emissions of the greenhouse gases carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) is essential for attributing the roles of anthropogenic activity and natural phenomena in global climate change. The current measurement systems and networks, whilst having improved during the last decades, are deficient in many respects. For example, the emissions from localised and point sources such as fossil fuel exploration sites are not readily assessed. A tool developed to better understand point sources of CO{sub 2} and CH{sub 4} is the optical remote sensing instrument MAMAP, operated from aircraft. With a ground scene size of the order of 50m and a relative accuracy of the column-averaged dry air mole fractions of about 0.3% for XCO{sub 2} and less than 0.4% for XCH{sub 4}, MAMAP can make a significant contribution in this respect. Detailed sensitivity studies showed that the modified WFM-DOAS retrieval algorithm used for MAMAP has an approximate accuracy of about 0.24% for XCH{sub 4} and XCO{sub 2} in typical atmospheric conditions. At the example of CO{sub 2} plumes from two different power plants and CH{sub 4} plumes from coal mine ventilation shafts, two inversion approaches to obtain emission rates were developed and tested. One is based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data and the other is based on a simple Gaussian integral method. Compared to CO{sub 2} emission estimates as reported by the power plants' operator within the framework of emission databases (24 and 13 MtCO{sub 2} yr{sup -1}), the results of the individual inversion techniques were within ±10% with uncertainties of ±20-30% mainly due to insufficient wind information and non-stationary atmospheric conditions. Measurements at the coal mine included on-site wind observations by an aircraft turbulence probe that could be utilised to calibrate the wind model. In this case, the inversion results have a bias of less than 1

  4. A disorder-based strategy for tunable, broadband wave attenuation

    Science.gov (United States)

    Zhang, Weiting; Celli, Paolo; Cardella, Davide; Gonella, Stefano

    2017-04-01

    One of the most daunting limitations of phononic crystals and acoustic/elastic metamaterials is their passivity: a given configuration is bound to display its phononic properties only around its design point, i.e., working at some pre-determined operating conditions. In the past decade, this shortcoming has inspired the design of phononic media with tunable wave characteristics; noteworthy results have been obtained through a family of methodologies involving shunted piezoelectric elements. Shunting a piezoelectric element means connecting it to a passive electric circuit; tunability stems from the ability to modify the effective mechanical properties of the piezoelectric medium by modifying the circuit characteristics. One of the most popular shunting circuits is the resistor-inductor, which allows the patch-and-shunt system to behave as an electromechanical resonator. A common motif among the works employing shunted piezos for phononic control is periodicity: the patches are typically periodically placed in the domain and the circuits are identically tuned. The objective of this work is to demonstrate that the wave attenuation performance of structures with shunted piezoelectric patches can be improved by leveraging notions of organized disorder. Based on the idea of rainbow trapping broadband wave attenuation obtained by tuning an array of resonators at distinct neighboring frequencies we design and test an electromechanical waveguide structure capable of attenuating waves over broad frequency ranges. In order to emphasize the fact that periodicity is not a binding requirement when working with RL shunts (which induce locally resonant bandgaps), we report on the performance of random arrangements of patches. In an attempt to demonstrate the tunability attribute of our strategy, we take advantage of the reconfigurability of the circuits to show how a single waveguide can attenuate both waves and vibrations over different frequency ranges.

  5. Performance analysis of OFDM modulation on indoor broadband PLC channels

    Science.gov (United States)

    Antonio Cortés, José; Díez, Luis; Cañete, Francisco Javier; Sánchez-Martínez, Juan José; Entrambasaguas, José Tomás

    2011-12-01

    Indoor broadband power-line communications is a suitable technology for home networking applications. In this context, orthogonal frequency-division multiplexing (OFDM) is the most widespread modulation technique. It has recently been adopted by the ITU-T Recommendation G.9960 and is also used by most of the commercial systems, whose number of carriers has gone from about 100 to a few thousands in less than a decade. However, indoor power-line channels are frequency-selective and exhibit periodic time variations. Hence, increasing the number of carriers does not always improves the performance, since it reduces the distortion because of the frequency selectivity, but increases the one caused by the channel time variation. In addition, the long impulse response of power-line channels obliges to use an insufficient cyclic prefix. Increasing its value reduces the distortion, but also the symbol rate. Therefore, there are optimum values for both modulation parameters. This article evaluates the performance of an OFDM system as a function of the number of carriers and the cyclic prefix length, determining their most appropriate values for the indoor power-line scenario. This task must be accomplished by means of time-consuming simulations employing a linear time-varying filtering, since no consensus on a tractable statistical channel model has been reached yet. However, this study presents a simpler procedure in which the distortion because of the frequency selectivity is computed using a time-invariant channel response, and an analytical expression is derived for the one caused by the channel time variation.

  6. VT Fiber Optic Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  7. VT Fiber Optic Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  8. Broadband Wireline Provider Service: Cable Modem - DOCSIS 3.0; BBRI_cableDOCSIS12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Cable Modem - DOCSIS 3.0" technology. Broadband availability is...

  9. VT Fiber Optic Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  10. Broadband Wireline Provider Service: Symmetric xDSL; BBRI_DSLsym12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via Symmetric xDSL technology. Broadband availability is summarized at...

  11. VT Fiber Optic Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  12. Broadband Wireline Provider Service: Cable Modem - Other; BBRI_cableOther12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Cable Modem - Other" technology. Broadband availability is...

  13. Broadband Wireline Provider Service: Asymmetric xDSL; BBRI_DSLasym12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via Asymmetric xDSL technology. Broadband availability is summarized...

  14. VT Fiber Optic Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  15. VT Fiber Optic Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  16. VT Current and Future Status of Broadband Availability by Sub-Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  17. Broadband Wireline Provider Service: Optical Carrier - Fiber to the End User; BBRI_fiber12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of wireline broadband Internet access in Rhode Island via "Optical Carrier - Fiber to the End User" technology. Broadband...

  18. 77 FR 14340 - Proposed Information Collection; Comment Request; Broadband Technology Opportunities Program...

    Science.gov (United States)

    2012-03-09

    ..., broadband service by public safety agencies; and (5) To stimulate the demand for broadband, economic growth, and job creation. OMB also requires agencies administering grant programs to [[Page 14341

  19. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

    KAUST Repository

    Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He, Jr-Hau

    2016-01-01

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.

  20. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

    KAUST Repository

    Yeh, Li-Ko

    2016-12-14

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.

  1. Community Broadband Networks and the Opportunity for E-Government Services

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2017-01-01

    Community Broadband Networks (CBN) facilitate Broadband connectivity in underserved areas in many countries. The lack of Broadband connectivity is one of the reasons for the slow diffusion of e-government services in many countries.This article explains how CBNs can be enabled by governments...... to facilitate the delivery of e–government services in underserved areas in the developed and developing countries.The Community Based Broadband Mobilization (CBNM) models are used as explanatory tools....

  2. Interoperability of Services in an Open Broadband Market : Cases from the Netherlands

    NARCIS (Netherlands)

    Burgmeijer, J.

    2006-01-01

    End-to-end interoperability of broadband services and networks is a condition for an open broadband market. A business model for broadband service interoperability is given. Two cases from the Netherlands, of initiatives from the market to reach interoperability, are presented: E-norm and FIST VoIP.

  3. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL...

  4. Will they fly? : PPPs and the ultrafast broadband initiative

    NARCIS (Netherlands)

    Sadowski, B.M.; Howell, B.

    2012-01-01

    The political perception of New Zealand's broadband market performance as ‘poor' has underpinned many significant changes to the telecommunications policy and regulatory environments since 2001. Most recently, this has been manifested in substantial government subsidies by way of public-private

  5. Impact of cyclostationarity on fan broadband noise prediction

    Science.gov (United States)

    Wohlbrandt, A.; Kissner, C.; Guérin, S.

    2018-04-01

    One of the dominant noise sources of modern Ultra High Bypass Ratio (UHBR) engines is the interaction of the rotor wakes with the leading edges of the stator vanes in the fan stage. While the tonal components of this noise generation mechanism are fairly well understood by now, the broadband components are not. This calls to further the understanding of the broadband noise generation in the fan stage. This article introduces a new extension to the Random Particle Mesh (RPM) method, which accommodates in-depth studies of the impact of cyclostationary wake characteristics on the broadband noise in the fan stage. The RPM method is used to synthesize a turbulence field in the stator domain using a URANS simulation characterized by time-periodic turbulence and mean flow. The rotor-stator interaction noise is predicted by a two-dimensional CAA computation of the stator cascade. The impact of cyclostationarity is decomposed into various effects, which are separately investigated. This leads to the finding that the periodic turbulent kinetic energy (TKE) and periodic flow have only a negligible effect on the radiated sound power. The impact of the periodic integral length scale (TLS) is, however, substantial. The limits of a stationary representation of the TLS are demonstrated making this new extension to the RPM method indispensable when background and wake TKE are of comparable level. Good agreement of the predictions with measurements obtained from the 2015 AIAA Fan Broadband Noise Prediction Workshop are also shown.

  6. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu; Raman, Aaswath; Fan, Shanhui

    2012-01-01

    to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar

  7. Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters

    NARCIS (Netherlands)

    Hayden, D.R.|info:eu-repo/dai/nl/412640694; Imhof, A.|info:eu-repo/dai/nl/145641600; Velikov, K. P.|info:eu-repo/dai/nl/239483472

    2016-01-01

    Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species

  8. Novel crystalline-waveguide broadband light sources for interferometry

    NARCIS (Netherlands)

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  9. Mission-Critical Mobile Broadband Communications in Open Pit Mines

    DEFF Research Database (Denmark)

    Uzeda Garcia, Luis Guilherme; Portela Lopes de Almeida, Erika; Barbosa, Viviane S. B.

    2016-01-01

    that need to be met by the wireless network. This article introduces fundamental concepts behind open-pit mining and discusses why this ever changing environment coupled with strict industrial reliability requirements pose unique challenges to traditional broadband network planning and optimization...

  10. Control over multiscale mixing in broadband-forced turbulence

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2008-01-01

    The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved

  11. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  12. Multicomponent gas analysis using broadband quantum cascade laser spectroscopy

    NARCIS (Netherlands)

    Reyes Reyes, A.; Hou, Z.; Van Mastrigt, E.; Horsten, R.C.; De Jongste, J.C.; Pijnenburg, M.W.; Urbach, H.P.; Bhattacharya, N.

    2014-01-01

    We present a broadband quantum cascade laser-based spectroscopic system covering the region between 850 and 1250 cm?1. Its robust multipass cavity ensures a constant interaction length over the entire spectral region. The device enables the detection and identification of numerous molecules present

  13. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Gu, Jianqiang; Yue, Weisheng; Zhang, Shuang; Han, Jiaguang; Zhang, Weili; Zhang, Weili

    2015-01-01

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  14. Catalyzing Broadband Internet in Africa | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to inform policies that help marginalized groups in Africa, such as women and the poor, to take advantage of the social and economic opportunities of broadband Internet. Internet access is critical for social and economic development in developing countries. According to a 2009 World Bank study, a 10% ...

  15. 75 FR 36071 - Framework for Broadband Internet Service

    Science.gov (United States)

    2010-06-24

    ... Internet service. Introduction 3. This Commission exists ``[f]or the purpose of regulating interstate and... news groups, the ability to create a personal Web page, and the ability to retrieve information from... broadband policies. 31. Some have suggested that although the D.C. Circuit rejected the Commission's theory...

  16. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  17. The social surplus of broadband initiatives in compulsory education

    Directory of Open Access Journals (Sweden)

    David Peter Parsons

    2016-10-01

    Full Text Available In 2010, the New Zealand government embarked upon an ambitious programme of broadband infrastructure investment, a process that will continue until at least 2019. Part of this investment is specifically targeted at compulsory education, with initiatives that include bringing fibre connections to the school gate, supporting on-site network upgrades (including wireless and providing teaching, learning and support services delivered through these networks. Such investments are not made without some projections of the likely rate of return, but calculating return on investment (ROI in educational broadband is complex, as it encompasses a range of factors. This article reports on an interview-based study engaging a range of stakeholders in educational broadband provision. The study utilises a research model that considers the various elements of social surplus, namely; producer surplus (savings, producer surplus (profit and consumer surplus (perceived value over and above cost, to explore the elements of social surplus that have been used to define educational broadband ROI calculations and justify the scale of investment. The results indicate that all three components of social surplus are relevant, though the concept of profit can only be seen in the broader context of long term contributions to the economy. A note of caution is that projections of ROI based only on positive returns fail to acknowledge the potential for some innovations to actually increase costs. Further, purely quantitative models do not properly take into account qualitative components of consumer surplus.

  18. Fast elliptic-curve cryptography on the Cell Broadband Engine

    NARCIS (Netherlands)

    Costigan, N.; Schwabe, P.; Preneel, B.

    2009-01-01

    This paper is the first to investigate the power of the Cell Broadband Engine for state-of-the-art public-key cryptography. We present a high-speed implementation of elliptic-curve Diffie-Hellman (ECDH) key exchange for this processor, which needs 697080 cycles on one Synergistic Processor Unit for

  19. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  20. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  1. Multiphase lattice Boltzmann on the Cell Broadband Engine

    International Nuclear Information System (INIS)

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  2. Broadband illusion optical devices based on conformal mappings

    Science.gov (United States)

    Xiong, Zhan; Xu, Lin; Xu, Ya-Dong; Chen, Huan-Yang

    2017-10-01

    In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.

  3. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  4. Characterisation of optical filters for broadband UVA radiometer

    Science.gov (United States)

    Alves, Luciana C.; Coelho, Carla T.; Corrêa, Jaqueline S. P. M.; Menegotto, Thiago; Ferreira da Silva, Thiago; Aparecida de Souza, Muriel; Melo da Silva, Elisama; Simões de Lima, Maurício; Dornelles de Alvarenga, Ana Paula

    2016-07-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied.

  5. Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks

    Science.gov (United States)

    Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco

    2014-05-01

    This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.

  6. Advances in the density profile evaluation from broadband reflectometry on ASDEX upgrade

    International Nuclear Information System (INIS)

    Varela, P.; Manso, M.; Conway, G.

    2001-01-01

    The high temporal and spatial resolutions provided by broadband microwave reflectometry make it an attractive diagnostic technique to measure the density profile in fusion plasmas. However, great problems have been encountered due to the plasma turbulence that difficult, and sometimes prevent, the routine evaluation of density profiles. Advanced broadband systems employ ultra-fast sweeping in an attempt to perform the profile measurement in a time window smaller than the temporal scale of the main plasma fluctuations but this is not sufficient. Indeed, abrupt plasma movements and/or spatial turbulence always affect the reflectometry signals, as shown by numerical studies (with both one- and two-dimensional codes), for the case of ultra-fast sweeping and pulse radar systems. For this reason not only the system performance is important but the software tools also play a crucial role for reflectometry to become a standard density profile diagnostic. Here we present the recent advances towards automatic evaluation of density profiles from broadband reflectometry on ASDEX Upgrade. For regimes with moderate levels of plasma turbulence, density profiles are obtained from single reflectometry samples (temporal resolution of 20 μs), and for higher turbulence levels average profiles are obtained from bursts of ultra-fast (20 μs), closely spaced (10 μs) sweeps. This method improved the accuracy and reliability of density profiles, which can now be obtained automatically from the edge to the bulk plasma - using reflectometry alone - in most plasma regimes of ASDEX Upgrade. New data processing capability has been implemented that allows the profiles to be available to the end-users 10-12 minutes after each discharge. These developments were possible due to the flexibility and high performance of the control and data acquisition systems and to the large number of measurements that can be performed with the diagnostic during each discharge (720 profiles both on the low- and

  7. Broadband seismic deployments in East Antarctica: IPY contribution to monitoring the Earth’s interiors

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2014-06-01

    Full Text Available “Deployment of broadband seismic stations on the Antarctica continent” is an ambitious project to improve the spatial resolution of seismic data across the Antarctic Plate and surrounding regions. Several international collaborative programs for the purpose of geomonitoring were conducted in Antarctica during the International Polar Year (IPY 2007-2008. The Antarctica’s GAmburtsev Province (AGAP; IPY #147, the GAmburtsev Mountain SEISmic experiment (GAMSEIS, a part of AGAP, and the Polar Earth Observing Network (POLENET; IPY #185 were major contributions in establishing a geophysical network in Antarctica. The AGAP/GAMSEIS project was an internationally coordinated deployment of more than 30 broadband seismographs over the crest of the Gambursev Mountains (Dome-A, Dome-C and Dome-F area. The investigations provide detailed information on crustal thickness and mantle structure; provide key constraints on the origin of the Gamburtsev Mountains; and more broadly on the structure and evolution of the East Antarctic craton and subglacial environment. From GAMSEIS and POLENET data obtained, local and regional seismic signals associated with ice movements, oceanic loading, and local meteorological variations were recorded together with a significant number of teleseismic events. In this chapter, in addition to the Earth’s interiors, we will demonstrate some of the remarkable seismic signals detected during IPY that illustrate the capabilities of broadband seismometers to study the sub-glacial environment, particularly at the margins of Antarctica. Additionally, the AGAP and POLENET stations have an important role in the Federation of Digital Seismographic Network (FDSN in southern high latitude.

  8. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    International Nuclear Information System (INIS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-01-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude. -- Highlights: ► An efficient radiative transfer model is developed for cloud remote sensing. ► Multi-layered clouds and a non-Lambertian surface can be fully considered.

  9. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  10. Fourier transform holography with extended references using a coherent ultra-broadband light source.

    Science.gov (United States)

    Tenner, Vasco T; Eikema, Kjeld S E; Witte, Stefan

    2014-10-20

    We demonstrate a technique that enables lensless holographic imaging with extended reference structures, using ultra-broadband radiation sources for illumination. We show that this 'two-pulse imaging' approach works with one- and two-dimensional HERALDO reference structures, and demonstrate that the obtained spectrally resolved data can be used to improve the signal-to-noise ratio in the final image. Intensity stitching of multiple exposures is applied to increase the detected dynamic range, leading to an improved image reconstruction. Furthermore, we show that a combination of holography and iterative phase retrieval can be used to obtain high-quality images quickly and reliably, by using the HERALDO reconstruction as the initial support constraint in the iterative phase retrieval algorithm. A signal-to-noise improvement of two orders of magnitude is achieved compared to the basic HERALDO result.

  11. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    Directory of Open Access Journals (Sweden)

    Papathanassiou Apostolos

    2011-01-01

    Full Text Available Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO and orthogonal frequency division multiple access (OFDMA provide the appropriate technologies for improving the downlink performance of third generation (3G code division multiple access (CDMA-based mobile radio systems and, thus, address the current mobile internet requirements, a fundamental paradigm shift is required to cope with the constantly increasing mobile broadband data rate and spectral efficiency requirements. Among the different technologies available for making the paradigm shift from current to next-generation mobile broadband networks, multiuser MIMO (MU-MIMO constitutes the most promising technology because of its significant performance improvement advantages. In this article, we analyze the performance of MU-MIMO under a multitude of deployment scenarios and system parameters through extensive system-level simulations which are based on widely used system-level evaluation methodologies. The target mobile broadband system used in the simulations is IEEE 802.16 m which was recently adopted by ITU-R as an IMT-Advanced technology along with 3GPP LTE-Advanced. The results provide insights into different aspects of MU-MIMO with respect to system-level performance, parameter sensitivity, and deployment scenarios, and they can be used by the mobile broadband network designer for maximizing the benefits of MU-MIMO in a scenario with specific deployment requirements and goals.

  12. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  13. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  14. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  15. Development of dual-broadband rotational CARS for combustion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bood, Joakim

    2000-06-01

    The present thesis concerns development and application of dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) for temperature and species concentration measurements in combustion processes. Both fundamental development of the technique, including experimental as well as modelling results, and measurements in practical combustion devices were conducted. A code for calculation of rotational CARS spectra of pure acetylene as well as mixtures of acetylene and nitrogen was developed. Using this code, temperatures and relative acetylene to nitrogen concentrations were evaluated from DB-RCARS measurements in pure acetylene and different acetylene/nitrogen mixtures. Moreover, rotational CARS spectra of dimethyl-ether (DME) have been analyzed. A powerful tool for simultaneous temperature and multiple species concentration measurements was developed by combining rotational CARS with vibrational CARS. The concept was demonstrated for measurements of temperature, oxygen, and carbon monoxide concentrations simultaneously in a premixed sooting ethene/air flame. Rotational CARS spectra of nitrogen at very high pressures (0.1-44 MPa) at room temperature were investigated. The experimental spectra were compared with calculated spectra using different Raman linewidth models. The results indicate some shortcomings in the present model, basically the density calculation and neglecting overlapping effects between adjacent spectral lines. A new method for CARS measurements in several spatially separated points simultaneously was developed. By using DB-RCARS the method was demonstrated for quantitative measurements of profiles of temperatures and oxygen concentrations. An atomic filter for rejection of stray light was developed. The filter was shown to efficiently reject stray light from the narrowband laser without affecting the shape of the rotational CARS spectrum or causing any signal losses. Within an interdisciplinary project intended to increase the

  16. The development and characterization of advanced broadband mirror coatings for the far-UV

    Science.gov (United States)

    Egan, Arika; Fleming, Brian T.; Wiley, James; Quijada, Manuel; Del Hoyo, Javier; Hennessy, John; Hicks, Brian; France, Kevin; Kruczek, Nicholas; Erickson, Nicholas

    2017-08-01

    We present a progress report on the development of new broadband mirror coatings that demonstrate > 80% reflectivities from 1020-5000Å. Four different coating recipes are presented as candidates for future far-ultraviolet (FUV) sensitive broadband observatories. Three samples were first coated with aluminum (Al) and lithium fluoride (LiF) at the NASA Goddard Space Flight Center (GSFC) using a new high-temperature physical vapor deposition (PVD) process. Two of these samples then had an ultrathin (10-20 Å) protective coat of either magnesium fluoride (MgF2) or aluminum fluoride (AlF3) applied using atomic later deposition (ALD) at the NASA Jet Propulsion Laboratory (JPL). A fourth sample was coated with Al and a similar high temperature PVD coating of AlF3. Polarized reflectivities into the FUV for each sample were obtained through collaboration with the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. We present a procedure for using these reflectivities as a baseline for calculating the optical constants of each coating recipe. Given these results, we describe plans for improving our measurement methodology and techniques to develop and characterize these coating recipes for future FUV missions.

  17. Development of multilayer optics for X-ray broadband spectrometry of plasma emission

    International Nuclear Information System (INIS)

    Emprin, Benoit

    2014-01-01

    Within the framework of the research on inertial confinement fusion, the 'Commissariat a l'energie atomique et aux energies alternatives' has studied and implemented an absolute calibrated time-Resolved broadband soft x-Ray spectrometer, called 'Diagnostic de Mesure du rayonnement X'. This diagnostic, composed of 20 measurement channels, measures the emitted radiant power from a laser created plasma in the range from 50 eV to 20 keV. We have developed additional measurement channels to obtain redundancy and an improvement in measurement accuracy. The principle of these new channels is based on an original concept to obtain spectral bounded flat-Responses. Two channels have been developed for the 2 - 4 keV and 4 - 6 keV spectral ranges, using aperiodic multilayer mirrors made at the 'Laboratoire Charles Fabry' with Cr/Sc and Ni/W/SiC/W layers respectively. These mirrors were characterized at synchrotron radiation facilities and integrated into the spectrometer. The two new channels were used during laser-Plasma experimental campaigns at the OMEGA laser facility in Rochester (USA). This allowed us to determine directly the radiant power with only one measurement within a certain spectral band, and with a better precision when compared with using standard channels. The results, in good agreement with the standard measurement channels, allowed us to validate the use of aperiodic multilayer mirrors for X-Ray broadband spectrometry. (author) [fr

  18. The Importance of Broadband for Socio-Economic Development: A Perspective from Rural Australia

    Directory of Open Access Journals (Sweden)

    Julie Freeman

    2016-10-01

    Full Text Available Advanced connectivity offers rural communities prospects for socio-economic development. Despite Australia’s national broadband infrastructure plans, inferior availability and quality of rural Internet connections remain persistent issues. This article examines the impact of limited connectivity on rural socio-economic opportunities, drawing from the views of twelve citizens from the Boorowa local government area in New South Wales. The available fixed wireless and satellite connections in Boorowa are slow and unreliable, and remote regions in the municipality are still without any Internet access. Participants identified four key areas in their everyday lives that are impacted by insufficient connectivity: business development, education, emergency communication, and health. Rural citizens often already face challenges in these areas, and infrastructure advancements in urban spaces can exacerbate rural-urban disparities. Participants’ comments demonstrated apprehension that failure to improve connectivity would result in adverse long-term consequences for the municipality. This article suggests that current broadband policy frameworks require strategic adaptations to account for the socio-economic and geographic contexts of rural communities. In order to narrow Australia’s rural-urban digital divide, infrastructure developments should be prioritised in the most underserved regions.

  19. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy.

    Science.gov (United States)

    Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan

    2017-05-20

    The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.

  20. Nonlinear Analysis of Renal Autoregulation Under Broadband Forcing Conditions

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Chen, Y M

    1994-01-01

    Linear analysis of renal blood flow fluctuations, induced experimentally in rats by broad-band (pseudorandom) arterial blood pressure forcing at various power levels, has been unable to explain fully the dynamics of renal autoregulation at low frequencies. This observation has suggested...... the possibility of nonlinear mechanisms subserving renal autoregulation at frequencies below 0.2 Hz. This paper presents results of 3rd-order Volterra-Wiener analysis that appear to explain adequately the nonlinearities in the pressure-flow relation below 0.2 Hz in rats. The contribution of the 3rd-order kernel...... in describing the dynamic pressure-flow relation is found to be important. Furthermore, the dependence of 1st-order kernel waveforms on the power level of broadband pressure forcing indicates the presence of nonlinear feedback (of sigmoid type) based on previously reported analysis of a class of nonlinear...

  1. Efficient composite broadband polarization retarders and polarization filters

    Science.gov (United States)

    Dimova, E.; Ivanov, S. S.; Popkirov, G.; Vitanov, N. V.

    2014-12-01

    A new type of broadband polarization half-wave retarder and narrowband polarization filters are described and experimentally tested. Both, the retarders and the filters are designed as composite stacks of standard optical half-wave plates, each of them twisted at specific angles. The theoretical background of the proposed optical devices was obtained by analogy with the method of composite pulses, known from the nuclear and quantum physics. We show that combining two composite filters built from different numbers and types of waveplates, the transmission spectrum is reduced from about 700 nm to about 10 nm width.We experimentally demonstrate that this method can be applied to different types of waveplates (broadband, zero-order, multiple order, etc.).

  2. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    Science.gov (United States)

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  3. Characteristics of hybrid broadcast broadband television (HbbTV

    Directory of Open Access Journals (Sweden)

    Jakšić Branimir

    2017-01-01

    Full Text Available This paper describes the working principle of hybrid broadcast-broadband TV (Hybrid Broadcast Broadband TV - HbbTV. The architecture of HbbTV system is given, the principle of its operation, as well as an overview of HbbTV specification standards that are in use, with their basic characteristics. Here are described the services provided by Hybrid TV. It is also provided an overview of the distribution of HbbTV services in Europe in terms of the number of TV channels that HbbTV services offer, the number of active hybrid TV devices, HbbTV standards which are in use and models of broadcast networks used to distribute HbbTV service.

  4. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  5. The broadband spectral energy distributions of SDSS blazars

    Science.gov (United States)

    Li, Huai-Zhen; Chen, Luo-En; Jiang, Yun-Guo; Yi, Ting-Feng

    2015-07-01

    We compiled the radio, optical and X-ray data of blazars from the Sloan Digital Sky Survey database, and presented the distribution of luminosities and broadband spectral indices. The distribution of luminosities shows that the averaged luminosity of flat spectrum radio quasars (FSRQs) is larger than that of BL Lacertae (BL Lac) objects. On the other hand, the broadband spectral energy distribution reveals that FSRQs and low energy peaked BL Lac objects have similar spectral properties, but high energy peaked BL Lac objects have a distinct spectral property. This may be due to the fact that different subclasses of blazars have different intrinsic environments and are at different cooling levels. Even so, a unified scheme is also revealed from the color-color diagram, which hints that there are similar physical processes operating in all objects under a range of intrinsic physical conditions or beaming parameters. Supported by the National Natural Science Foundation of China.

  6. Broadband and chiral binary dielectric meta-holograms.

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics.

  7. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    Science.gov (United States)

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  8. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    International Nuclear Information System (INIS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-01-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light

  9. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  10. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  11. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  12. A broadband Soleil-Babinet compensator for ultrashort light pulses

    Science.gov (United States)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-12-01

    This letter reports a novel design for a broadband Soleil-Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil-Babinet compensator based on a MgF2/ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths.

  13. A broadband Soleil–Babinet compensator for ultrashort light pulses

    International Nuclear Information System (INIS)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-01-01

    This letter reports a novel design for a broadband Soleil–Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil–Babinet compensator based on a MgF 2 /ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths. (letter)

  14. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  15. Comparison of VP broadband tiltmeter and VS vertical pendulum tiltmeter

    OpenAIRE

    Ma, Wugang; Wu, Yanxia; Zhao, Huiqin

    2015-01-01

    Vertical pendulum (VP) tiltmeter is a kind of earthquake precursor observation equipment, which is used to record the interaction force associated with astronomical tidal tilts caused. Currently, VP broadband tiltmeter and vertical sensor (VS) vertical pendulum tiltmeter are primarily used. In this paper, we compare the two different instruments by using four aspects—mechanical structure, circuitry, zeroing, and bandwidth—based on their working principles and applications. We conclude that VP...

  16. Comparison of sine dwell and broadband methods for modal testing

    Science.gov (United States)

    Chen, Jay-Chung

    1989-01-01

    The objectives of modal tests for large complex spacecraft structural systems are outlined. The comparison criteria for the modal test methods, namely, the broadband excitation and the sine dwell methods, are established. Using the Galileo spacecraft modal test and the Centaur G Prime upper stage vehicle modal test as examples, the relative advantage or disadvantage of each method is examined. The usefulness or shortcomings of the methods are given from a practical engineering viewpoint.

  17. On sine dwell or broadband methods for modal testing

    Science.gov (United States)

    Chen, Jay-Chung; Wada, Ben K.

    1987-01-01

    For large, complex spacecraft structural systems, the objectives of the modal test are outlined. Based on these objectives, the comparison criteria for the modal test methods, namely, the broadband excitation and the sine dwell methods are established. Using the Galileo spacecraft modal test and the Centaur G Prime upper stage vehicle modal test as examples, the relative advantages or disadvantages of each method are examined. The usefulness or shortcoming of the methods are given from a practicing engineer's view point.

  18. Long-period pulses in broadband records of near earthquakes

    Czech Academy of Sciences Publication Activity Database

    Zahradník, J.; Plešinger, Axel

    2005-01-01

    Roč. 95, č. 5 (2005), s. 1928-1939 ISSN 0037-1106 R&D Projects: GA ČR GA205/02/0381; GA ČR GA205/03/1047 Grant - others:EC(XE) EVG3-CT-2002-80006 ( MAGMA ) Institutional research plan: CEZ:AV0Z30120515 Keywords : broadband records * near earthquakes * seismic signal Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.772, year: 2005

  19. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Entry Threat and Entry Deterrence: The Timing of Broadband Rollout

    OpenAIRE

    Mo Xiao; Peter F. Orazem

    2007-01-01

    Past empirical literature provides strong evidence that competition increases when new firms enter a market. However, rarely have economists been able to examine how competition changes with the threat of entry. This paper uses the evolution of the zip code level market structure of facilities-based broadband providers from 1999 to 2004 to investigate how a firm adjusts its entry strategy when facing the threat of additional entrants. We identify the potential entrant into a local market as t...

  1. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  2. Patterning of graphite nanocones for broadband solar spectrum absorption

    Directory of Open Access Journals (Sweden)

    Yaoran Sun

    2015-06-01

    Full Text Available We experimentally demonstrate a broadband vis-NIR absorber consisting of 300-400 nm nanocone structures on highly oriented pyrolytic graphite. The nanocone structures are fabricated through simple nanoparticle lithography process and analyzed with three-dimensional finite-difference time-domain methods. The measured absorption reaches an average level of above 95% over almost the entire solar spectrum and agrees well with the simulation. Our simple process offers a promising material for solar-thermal devices.

  3. Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    OpenAIRE

    Dems, M.; Wnuk, P.; Wasylczyk, P.; Zinkiewicz, L.; Wojcik-Jedlinska, A.; Reginski, K.; Hejduk, K.; Jasik, A.

    2016-01-01

    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was ...

  4. Broadband seismic : case study modeling and data processing

    Science.gov (United States)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  5. Broadband illumination of superconducting pair breaking photon detectors

    International Nuclear Information System (INIS)

    Guruswamy, T; Goldie, D J; Withington, S

    2016-01-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)

  6. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    Science.gov (United States)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  7. Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud

    International Nuclear Information System (INIS)

    Kahnert, Michael; Sandvik, Anne Dagrun; Biryulina, Marina; Stamnes, Jakob J.; Stamnes, Knut

    2008-01-01

    We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility

  8. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    Science.gov (United States)

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  9. Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode.

    Science.gov (United States)

    Zou, Haiyang; Li, Xiaogan; Peng, Wenbo; Wu, Wenzhuo; Yu, Ruomeng; Wu, Changsheng; Ding, Wenbo; Hu, Fei; Liu, Ruiyuan; Zi, Yunlong; Wang, Zhong Lin

    2017-08-01

    Silicon underpins nearly all microelectronics today and will continue to do so for some decades to come. However, for silicon photonics, the indirect band gap of silicon and lack of adjustability severely limit its use in applications such as broadband photodiodes. Here, a high-performance p-Si/n-ZnO broadband photodiode working in a wide wavelength range from visible to near-infrared light with high sensitivity, fast response, and good stability is reported. The absorption of near-infrared wavelength light is significantly enhanced due to the nanostructured/textured top surface. The general performance of the broadband photodiodes can be further improved by the piezo-phototronic effect. The enhancement of responsivity can reach a maximum of 78% to 442 nm illumination, the linearity and saturation limit to 1060 nm light are also significantly increased by applying external strains. The photodiode is illuminated with different wavelength lights to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region, to investigate the piezo-phototronic effect on electron or hole transport separately for the first time. This is essential for studying the basic principles in order to develop a full understanding about piezotronics and it also enables the development of the better performance of optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Impact of Aerosols on Shortwave and Photosynthetically Active Radiation Balance over Sub-tropical Region in South Asia: Observational and Modeling Approach

    Science.gov (United States)

    Subba, T.; Pathak, B.

    2016-12-01

    The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest

  11. Broadband THz pulse emission and transmission properties of nanostructured Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Mingzhe [Department of Physics and Electronics, Liupanshui Normal University, Liupanshui, Guizhou 553004 (China); College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China); Mu, Kaijun; Zhang, Cunlin [Department of Physics, Capital Normal University, Yuquan Road 100082, Beijing (China); Gu, Haoshuang, E-mail: guhs@hubu.edu.cn [Department of Electronic Sci& Tech, Hubei University, Xueyuan Road 430062, Wuhan, Hubei (China); Ding, Zhao [College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China)

    2015-10-01

    The THz transmission and emitting properties of a composite metallic nanostructure, composed of Ag nanowires electrodeposited in an anodic aluminum oxide (AAO) template and a Pt thin film, were investigated by using a femtosecond pulse laser irradiation. The microstructure of the above sub-wavelength nanostructure was investigated by XRD, SEM, AFM and TEM. The results indicated that the thickness of the Pt thin film was about 200 nm and the Ag nanowire array had a sparse and random distribution inside the AAO template, with a length distribution in the range of 10–25 μm. The THz radiation properties of above sub-wavelength nanostructure indicated that the generated THz fluence from the Pt film was a magnitude of μW scale with a broadband frequency range and its subsequent transmission could be significantly improved by the better impedance matching property of the Ag nanowire embedded AAO film compared with that of the empty AAO film.

  12. Combined centralised and distributed mechanism for utilisation of node association in broadband wireless network

    Science.gov (United States)

    Ulvan, A.; Ulvan, M.; Pranoto, H.

    2018-02-01

    Mobile broadband wireless access system has the stations that might be fixed, nomadic or mobile. Regarding the mobility, the node association procedure is critical for network entry as well as network re-entry during handover. The flexibility and utilisation of MAC protocols scheduling have an important role. The standard provides the Partition Scheme as the scheduling mechanism which separates the allocation of minislots for scheduling. However, minislots cannot be flexibly reserved for centralised and distributed scheduling. In this paper we analysed the scheduling mechanism to improve the utilisation of minislots allocation during the exchange of MAC massages. The centralised and distributed scheduling is implemented in some topology scenarios. The result shows the proposed mechanism has better performance for node association than partition scheme.

  13. 75 FR 35765 - Proposed Information Collection; Comment Request; BroadbandMatch Web Site Tool

    Science.gov (United States)

    2010-06-23

    ... infrastructure, public computer centers and sustainable broadband adoption projects. NTIA Administrator Larry E... the White House's Open Government Initiative that seeks to promote transparency, openness and...

  14. Security for Telecommuting and Broadband Communications: Recommendations of the National Institute of Standards and Technology

    National Research Council Canada - National Science Library

    Kuhn, D

    2002-01-01

    This document is intended to assist those responsible - users, system administrators, and management - for telecommuting security, by providing introductory information about broadband communication...

  15. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri

    2015-10-01

    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  16. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors

    International Nuclear Information System (INIS)

    Zimmermann, Lars; John, Joachim; Degroote, Stefan; Borghs, Gustaaf; Hoof, Chris van; Nemeth, Stefan

    2003-01-01

    We conducted an experimental study of back-side-illuminated InGaAs photodiodes grown on GaAs and sensitive in the short-wave infrared up to 2.4 μm. Standard metamorphic InGaAs or IR-transparent InAlAs buffers were grown by molecular-beam epitaxy. We studied dark current and photocurrent as a function of buffer thickness, buffer material, and temperature. A saturation of the dark current with buffer thickness was not observed. The maximum resistance area product was ∼10 Ω cm2 at 295 K. The dark current above 200 K was dominated by generation-recombination current. A pronounced dependence of the photocurrent on the buffer thickness was observed. The peak external quantum efficiency was 46% (at 1.6 μm) without antireflective coating

  17. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Wang, Yunming; Tang, Bingtao; Zhang, Shufen

    2014-01-01

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  18. The monterey bay broadband ocean bottom seismic observatory

    Directory of Open Access Journals (Sweden)

    R. Uhrhammer

    2006-06-01

    Full Text Available We report on the installation of a long-term buried ocean-floor broadband seismic station (MOBB in Monterey Bay, California (USA, 40km off-shore, at a water depth of 1000 m. The station was installed in April 2002 using a ship and ROV, in a collaborative effort between the Monterey Bay Aquarium Research Institute (MBARI and the Berkeley Seismological Laboratory (BSL. The station is located on the western side of the San Gregorio Fault, a major fault in the San Andreas plate boundary fault system. In addition to a 3-component CMG-1T seismometer package, the station comprises a current meter and Differential Pressure Gauge, both sampled at high-enough frequency (1 Hz to allow the study of relations between background noise on the seismometers and ocean waves and currents. The proximity of several land-based broadband seismic stations of the Berkeley Digital Seismic Network allows insightful comparisons of land/ocean background seismic noise at periods relevant to regional and teleseismic studies. The station is currently autonomous. Recording and battery packages are exchanged every 3 months during scheduled one day dives. Ultimately, this station will be linked to shore using continuous telemetry (cable and/or buoy and will contribute to the earthquake notification system in Northern California. We present examples of earthquake and noise data recorded during the first 6 months of operation of MOBB. Lessons learned from these and continued recordings will help understand the nature and character of background noise in regional off-shore environments and provide a reference for the installation of future off-shore temporary and permanent broadband seismic stations.

  19. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  20. Generation of broadband electrostatic noise by electron acoustic solitons

    International Nuclear Information System (INIS)

    Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A.

    1991-01-01

    Broadband electrostatic noise (BEN) bursts whose amplitude sometimes reaches about 100 mV m -1 have been observed by the Viking satellite in the dayside auroral zone. These emissions have been shown to be greatly influenced by nonlinear effects and to occur simultaneously with the observation of particle distributions favouring the destabilization of the electron acoustic mode. It is shown that electron acoustic solitons passing by the satellite would generate spectra that can explain the high-frequency part of BEN, above the electron plasma frequency

  1. Compact U-Slotted Antenna for Broadband Radar Applications

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The original U-shaped patch antenna is properly modified in this work to provide a compact and broadband antenna configuration with reduced cross-polar effects, well suitable for modern radar applications. The proposed antenna layout is applied to design, realize, and test two different prototypes working at P-band and C-band, typically adopted for ground-penetrating radar. The experimental results successfully demonstrate a large operating bandwidth between 15% and 20%, a significant reduction of size (about half of the standard configuration, and a low cross-polarization level within the operating frequency range.

  2. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  3. Narrowband pulse-enhanced upconversion of chirped broadband pulses

    International Nuclear Information System (INIS)

    Zhao, Kun; Yuan, Peng; Zhong, Haizhe; Zhang, Dongfang; Zhu, Heyuan; Qian, Liejia; Chen, Liezun; Wen, Shuangchun

    2010-01-01

    We propose and demonstrate an efficient sum-frequency mixing scheme based on narrowband and chirped broadband pulses. It combines the advantages of wider spectral acceptance bandwidth and of alleviating the temporal walk-off, which are both beneficial to higher conversion efficiency. Chirped sum-frequency pulses at 455 nm with energy up to 360 µJ, corresponding to a conversion efficiency of ∼ 40%, are obtained and the pulses can be compressed to ∼ 110 fs. The sum-frequency mixing scheme may provide a promising route to the efficient generation of deep-ultraviolet femtosecond pulses

  4. Assessment of broadband SNR estimation for hearing aid applications

    DEFF Research Database (Denmark)

    May, Tobias; Kowalewski, Borys; Fereczkowski, Michal

    2017-01-01

    was systematically investigated. The most accurate approach utilized an estimation of the clean speech power spectral density (PSD) and the noisy speech power across a sliding window of 1280 ms and achieved an total SNR estimation error below 3 dB across a wide variety of background noises and input SNRs......An accurate estimation of the broadband input signal-to-noise ratio (SNR) is a prerequisite for many hearing-aid algorithms. An extensive comparison of three SNR estimation algorithms was performed. Moreover, the influence of the duration of the analysis window on the SNR estimation performance...

  5. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique......, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface...

  6. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  7. Broadband Control of Topological Nodes in Electromagnetic Fields

    Science.gov (United States)

    Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui

    2018-05-01

    We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.

  8. Feasibility study of broadband efficient ''water window'' source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  9. Ultra-broadband mid-wave-IR upconversion detection

    DEFF Research Database (Denmark)

    Barh, Ajanta; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2017-01-01

    In this Letter, we demonstrate efficient room temperature detection of ultra-broadband mid-wave-infrared (MWIR) light with an almost flat response over more than 1200 nm, exploiting an efficient nonlinear upconversion technique. Black-body radiation from a hot soldering iron rod is used as the IR...... test source. Placing a 20 mm long periodically poled lithium niobate crystal in a compact intra-cavity setup (> 20 WCW pump at 1064 nm), MWIR wavelengths ranging from 3.6 to 4.85 mu m are upconverted to near-infrared (NIR) wavelengths (820-870 nm). The NIR light is detected using a standard low...

  10. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previou...... makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes....

  11. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  12. Fiber-based broadband black-light source

    OpenAIRE

    Sylvestre , Thibaut; Lee , Min Won; Ragueh , A. R.; Stiller , Birgit; Fanjoux , Gil; Barviau , B.; Mussot , A.; Kudlinski , A.

    2012-01-01

    International audience; Black-Light or Wood's lamp refers to sources that emit long-wavelength ultraviolet radiation (UV-A) from 315 nm and little visible light till 410 nm (blue). In this paper, we present a new fibre-based source of "black light", a source that emits broadband ultraviolet radiation but only small amounts of visible light and no infrared light. We made this source by pumping a specially designed silica photonic crystal fibre (PCF) with 355 nm light pulses from a Q-switched f...

  13. Theoretical and experimental study on broadband terahertz atmospheric transmission characteristics

    International Nuclear Information System (INIS)

    Guo Shi-Bei; Zhong Kai; Wang Mao-Rong; Liu Chu; Xu De-Gang; Yao Jian-Quan; Xiao Yong; Wang Wen-Peng

    2017-01-01

    Broadband terahertz (THz) atmospheric transmission characteristics from 0 to 8 THz are theoretically simulated based on a standard Van Vleck–Weisskopf line shape, considering 1696 water absorption lines and 298 oxygen absorption lines. The influences of humidity, temperature, and pressure on the THz atmospheric absorption are analyzed and experimentally verified with a Fourier transform infrared spectrometer (FTIR) system, showing good consistency. The investigation and evaluation on high-frequency atmospheric windows are good supplements to existing data in the low-frequency range and lay the foundation for aircraft-based high-altitude applications of THz communication and radar. (paper)

  14. A broadband electromagnetic energy harvester with a coupled bistable structure

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupled bistable energy harvester can achieve bistable operation with lower excitation amplitude and generate more output power than both conventional bistable and linear energy harvesters under white noise excitation

  15. Application of Planar Broadband Slow-Wave Systems

    Directory of Open Access Journals (Sweden)

    Edvardas Metlevskis

    2012-04-01

    Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian

  16. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  17. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications

    International Nuclear Information System (INIS)

    Huang, Ningfeng; Lin, Chenxi; Povinelli, Michelle L

    2012-01-01

    We use electromagnetic simulations to carry out a systematic study of broadband absorption in vertically-aligned semiconductor nanowire arrays for photovoltaic applications. We study six semiconductor materials that are commonly used for solar cells. We optimize the structural parameters of each nanowire array to maximize the ultimate efficiency. We plot the maximal ultimate efficiency as a function of height to determine how it approaches the perfect-absorption limit. We further show that the ultimate efficiencies of optimized nanowire arrays exceed those of equal-height thin films for all six materials and over a wide range of heights from 100 nm to 100 µm

  18. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  19. The Effect Of Customer Demand And Supplier Performance In Competitive Strategy And Business Performance Case Of Fixed Broadband In Indonesia

    Directory of Open Access Journals (Sweden)

    Rina D. Pasaribu

    2015-08-01

    Full Text Available Broadband telecommunication is significantly important to support and improve countrys competitiveness level. However Indonesia performance especially in Fixed Broadband is poor as the penetration rate is very low and far behind from other ASEAN countries. The industry is served by multi operators with one dominant operator. This dominant operator will be studied representing the industry in this study. A qualitative study Pasaribu et al. 2015 related to this paper has found that poor fulfillment of Customer Demand and poor Supplier Performance are two dominant external factors that cause the low performance. A model is proposed to frame the work it consists of four variables Customer Demand Supplier Performance Competitive Strategy and Business Performance. This study aims is use that Pasaribu et al. model directly to business units level to identify and analyze the relationships within the model and significance level of each relationship accordingly. By understanding the priority levels the improvement program could be more effectively planned and implemented. This study is expected to contribute on Fixed Broadband research wich is still very rare especially in Indonesia The research methodology is quantitative methods using survey technique. The respondents are management and customers of the dominant operator business units. Clustering by province regions gave 32 samples from the population of 58 business units. Partial Least Square modelling was used to analise the datas. The main result of this study is that the most significant relationship in the model is Supplier Performance to Competitive Strategy. Furthermore from indicators of Supplier Performance it was found that Quality Relationship has a very high effect among other indicators. By prioritizing these significant constructs it could be expected the related improvement program could be more effective.

  20. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    Science.gov (United States)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.