WorldWideScience

Sample records for improved bake hardenability

  1. Conservation Research and Development/ New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. DeArdo; C. Isaac Garcia

    2003-12-15

    Conservation Research and Development/New Ultra-Low Carbon High Strength Steels with Improved Bake Hardenability for Enhanced Stretch Formability and Dent Resistance. The experimental work can be divided into four phases. In each phase, the materials were received or designed, processed and tested, to evaluate the BH increment or response, as a function of compositions and processing conditions. Microstructural characterization by various techniques was performed in order to gain insights into the mechanisms of flow stress increment by bake hardening.

  2. Bake hardening of nanograin AA7075 aluminum alloy

    International Nuclear Information System (INIS)

    Dehghani, Kamran

    2011-01-01

    Highlights: ► The bake hardening behavior of AA7075 was studied and compared with its coarse-grain counterpart. ► Nanograin AA7075 exhibited 88–100% increase in bake hardenability. ► Nanograin AA7075 exhibited 36–38% increase in final yield strength after baking. ► Maximum bake hardenability and final yield stress were about 185 MPa and 719 MPa. - Abstract: In the present work, the bake hardening of nanostructured AA7075 aluminum alloy was compared with that of its coarse-grain counterpart. Surface severe plastic deformation (SSPD) was used to produce nanograin layers on both surfaces of workpieces. The nanostructured layers were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The thickness of nanostructured layer, having the grains of 50–110 nm, was about 75 μm on each side of workpiece. The bake hardenability of nanograin and coarse-grain AA7075 was then compared by pre-straining to 2, 4 and 6% followed by baking at 100 °C and 200 °C for 20 min. Comparing to coarse-grain case, there was about 88–100% increase in bake hardenability and about 36–38% increase in yield strength after the bake hardening of present nanograin AA7075. Such an increase in bake hardenability and strength was achieved when the thickness of two nanograin layers was about only one-tenth of the whole thickness.

  3. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  4. Investigation on the effect of chemical composition on the texture and bake hardening I F steels

    International Nuclear Information System (INIS)

    Kariman, M.; Motaghi, A.; Raygan, Sh.; Habibi Parsa, M.; Nili Ahmadabadi, M.

    2008-01-01

    Interstitial free steels have good formability and also excellent deep draw ability. These features make them one of the applicable materials in automotive industry. Chemical composition and thermomechanical treatment used to process these steels have important role in final properties of them. In this study, the effect of chemical composition on texture, anisotropic properties and bake harden ability of these steels were investigated. The results showed that contribution of vanadium as a weak carbonitride former element with titanium as strong carbonitride former could change the texture of steels. Replacing titanium with vanadium caused harmful effect on mechanical properties. In this research deep drawing properties of five steels were compared based on I {111} / I{001} and I {111} / I{110} parameters. The results of bake harden ability test showed that there were critical limits for vanadium volume fractions above which bake harden properties was improved. It was shown that the bake harden properties of Nb-steels were better than that of Ti-steels. This was due to the better solution of Nb(C,N) compared to Ti(C,N). Addition of vanadium to Ti-steels may improve bake harden properties of I F steels

  5. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  6. Effect of strain rate on bake hardening response of BH220 steel

    Directory of Open Access Journals (Sweden)

    Das Anindya

    2015-01-01

    Full Text Available This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a as pre-strained state and (b after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  7. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  8. Relationship Between Bake Hardening, Snoek-Köster and Dislocation-Enhanced Snoek Peaks in Coarse Grained Low Carbon Steel

    Directory of Open Access Journals (Sweden)

    Li Weijuan

    2016-09-01

    Full Text Available In the present work, specimens prepared from coarse grained low carbon steel with different prestrains were baked and then, their bake hardening (BH property and internal friction were determined. TEM was used to characterize the dislocation structure in BH treated samples. The measurements of internal friction in prestrained samples and baked samples were carried out using a multifunctional internal friction apparatus. The results indicate that, in coarse grained low carbon steel, the bake hardening properties (BH values were negative, which were increased by increasing the prestrain from 2 to 5%, and then were decreased by increasing the prestrain from 5 to 10%. In the specimen with prestrain 5%, the BH value reached the maximum value and the height of Snoek-Köster peak was observed to be the maximum alike. With increasing the prestrain, both of the BH value and Snoek-Köster peak heights are similarly varied. It is concluded that Snoek-Köster and dislocation-enhanced Snoek peaks, caused by the interactions between interstitial solute carbon atoms and dislocations, can be used in further development of the bake hardening steels.

  9. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    Science.gov (United States)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  10. Implementation of biochemical screening to improve baking quality of barley

    DEFF Research Database (Denmark)

    Vincze, Éva; Dionisio, Giuseppe; Aaslo, Per

    2011-01-01

    Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact on the phys......Barley (Hordeum vulgare) has the potential to offer considerable human nutritional benefits, especially as supplement to wheat-based breads. Under current commercial baking conditions it is not possible to introduce more that 20% barley flour to the wheat bread without negative impact...... on the physical chemical properties of the bread products due to the poor baking properties of barley flour. As a consequence, the nutritional advantages of barley are not fully exploited. The inferior leavening and baking properties of barley can, in part, be attributed to the physical properties of the storage...... proteins. Changing the storage protein composition can lessen this problem. Our working hypothesis was that exploiting the substantial genetic variation within the gene pool for storage proteins could enable improving the baking qualities of barley flour. We characterised forty-nine barley cultivars...

  11. Pre-aging on early-age behavior and bake hardening response of an Al-0.90Mg-0.80Si-0.64Zn-0.23Cu alloy

    Directory of Open Access Journals (Sweden)

    Lizhen Yan

    2016-08-01

    Full Text Available Pre-aging on early-age behavior and bake hardening response of an Al-0.90Mg-0.80Si-0.64Zn alloy was investigated by differential scanning calorimetry (DSC, high resolution transmission electron microscopy (HRTEM, 3-dimensional atom probe (3DAP, Erichsen test and tensile test. The results indicated that pre-aged alloy exhibited excellent formability and bake-hardening response, while bake hardening response was poor in samples with natural aging. Clustering behavior during natural aging was inhibited by pre-aging. Numerous GP zones formed in pre-aged samples. GP zones were the nuclei of β′′ precipitates or directly transformed β′′ phases during paint baking process. A large number of β′′ phases were observed in pre-aged samples after paint bake treatment. There was no sign to indicate that β′′ phase precipitated in natural aged samples after bake hardening treatment.

  12. Improvement of baking quality traits through a diverse soft winter wheat population

    Science.gov (United States)

    Breeding baking quality improvements into soft winter wheat (SWW) entails crossing lines based on quality traits, assessing new lines, and repeating several times as little is known about the genetics of these traits. Previous research on SWW baking quality focused on quantitative trait locus and ge...

  13. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  14. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration

    Directory of Open Access Journals (Sweden)

    Cheng eXue

    2016-06-01

    Full Text Available The use of late nitrogen (N fertilization (N application at late growth stages of wheat, e.g. booting, heading or anthesis to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS, which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  15. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    Science.gov (United States)

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  16. Improving the baking quality of bread wheat by genomic selection in early generations.

    Science.gov (United States)

    Michel, Sebastian; Kummer, Christian; Gallee, Martin; Hellinger, Jakob; Ametz, Christian; Akgöl, Batuhan; Epure, Doru; Löschenberger, Franziska; Buerstmayr, Hermann

    2018-02-01

    Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis. The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009-2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38-0.63). Genomic selection can furthermore be applied 2-3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.

  17. Improvement in melting and baking properties of low-fat Mozzarella cheese.

    Science.gov (United States)

    Wadhwani, R; McManus, W R; McMahon, D J

    2011-04-01

    Low-fat cheeses dehydrate too quickly when baked in a forced air convection oven, preventing proper melting on a pizza. To overcome this problem, low-fat Mozzarella cheese was developed in which fat is released onto the cheese surface during baking to prevent excessive dehydration. Low-fat Mozzarella cheese curd was made with target fat contents of 15, 30, 45, and 60 g/kg using direct acidification of the milk to pH 5.9 before renneting. The 4 portions of cheese curd were comminuted and then mixed with sufficient glucono-δ-lactone and melted butter (45, 30, 15, or 0 g/kg, respectively), then pressed into blocks to produce low-fat Mozzarella cheese with about 6% fat and pH 5.2. The cheeses were analyzed after 15, 30, 60, and 120 d of storage at 5°C for melting characteristics, texture, free oil content, dehydration performance, and stretch when baked on a pizza at 250°C for 6 min in a convection oven. Cheeses made with added butter had higher stretchability compared with the control cheese. Melting characteristics also improved in contrast to the control cheese, which remained in the form of shreds during baking and lacked proper melting. The cheeses made with added butter had higher free oil content, which correlated (R2≥0.92) to the amount of butterfat added, and less hardness and gumminess compared with the control low fat cheese. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Improving the quality of ready-to-eat meals by gamma irrdiation, Baked de-boned chicken meat with potatoe slices or baked fish and cooked rice

    International Nuclear Information System (INIS)

    Badr, H.M.; Rady, A.H.; Abdel-Daiem, M.H.; Khalaf, H.

    2005-01-01

    The present investigation was carried out to study the possibility of using gamma irradiation for improving the quality of ready-to-eat meals. The prepared meals (included baked chicken meat with potato slices or baked fish and cooked rice) were subjected to gamma irradiation at doses of O, 1.5, 3 and 4.5 KGy followed by cold storage (4 C). The effects of irradiation and cold storage on the microbiological aspects, chemical and organoleptic properties of samples were studied. The results showed that irradiation of the prepared meals decreased the initial total bacterial count, total psychrophilic bacteria and total yeast and molds, proportionally to the applied dose, hence prolonged their refrigerated shelf-life. Moreover, irradiation at dose of 1.5 KGy reduced the counts of Enterobacteriaceae, Staphylococcus aureus and Enterococcus faecalis, while 3 KGy dose completely eliminated these bacteria in all samples. Salmonella was not detected in all irradiated and non-irradiated meals and Vibrio sp. were absent in irradiated and non-irradiated baked fish. On the other hand, gamma irradiation had no remarkable effects neither on the chemical composition of the main component of meals nor on their ph, while it increased the thiobarbituric acid (TEA) value for baked chicken and fish meat. However, cold storage gradually increased the values of TEA and gradually decreased the ph value for irradiated and non-irradiated samples. Finally, irradiation treatments had no effects on the sensory properties (appearance, odor and taste) of all meals and extended their time of sensory preference

  19. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties.

    Science.gov (United States)

    Ral, Jean-Philippe; Whan, Alex; Larroque, Oscar; Leyne, Emmett; Pritchard, Jeni; Dielen, Anne-Sophie; Howitt, Crispin A; Morell, Matthew K; Newberry, Marcus

    2016-01-01

    Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    International Nuclear Information System (INIS)

    Langelier, B.; Korinek, A.; Donnadieu, P.; Esmaeili, S.

    2016-01-01

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′ 1 rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′ 1 precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′ 1 rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′ 1 and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  1. Improving the bulk laser-damage resistance of KDP by baking and pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Rainer, F.

    1981-01-01

    Isolated bulk damage centers are produced when KDP crystals are irradiated by 1-ns 1064-nm pulses. We have tested about 100 samples and find the median threshold to be 7 J/cm 2 when the samples are irradiated only once at each test volume (1-on-1 tests). The median threshold increased to 11 J/cm 2 when the test volumes were first subjected to subthreshold laser irradiation (n-on-1 tests). We baked several crystals at temperatures from 110 to 165 0 C and remeasured their thresholds. Baking increased thresholds in some crystals, but did not change thresholds of others. The median threshold of baked crystals ranged from 8 to 10 J/cm 2 depending on the baking temperature. In crystals that had been baked, subthreshold irradiation produced a large change in the bulk damage threshold, and reduced the volume density of damage centers relative to the density observed in unbaked crystals. The data are summarized in the table

  2. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Fine and coarse bran particles of a hard red and a hard white wheat were used to study the influences of bran hydration and physical treatments such as autoclaving and freezing as well as their combinations on the dough properties and bread-baking quality of whole grain wheat flour (WWF). For both h...

  3. Par-baked Bread Technology: Formulation and Process Studies to Improve Quality.

    Science.gov (United States)

    Almeida, Eveline Lopes; Steel, Caroline Joy; Chang, Yoon Kil

    2016-01-01

    Extending the shelf-life of bakery products has been an important requirement resulting from the mechanization of this industry and the need to increase the distance for the distribution of final products, caused by the increase in production and consumer demand. Technologies based on the interruption of the breadmaking process represent an alternative to overcome product staling and microbiological deterioration. The production of par-baked breads is one of these technologies. It consists of baking the bread in two stages, and due to the possibility of retarding the second stage, it can be said that the bread can always be offered fresh to the consumer. The technology inserts logistics as part of the production process and creates the "hot point" concept, these being the locations where the bread is finalized, such as in the consumers' homes or sales locations. In this work, a review of the papers published on this subject was carried out, and aspects related to both the formulation and the process were considered. This technology still faces a few challenges, such as solving bread quality problems that appear due to process modifications, and these will also be considered. The market for these breads has grown rapidly and the bakery industry searches innovations related to par-baked bread technology.

  4. Pastry Baking.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on pastry baking is designed to provide a source of study materials on the preparation of pastry items within central pastry shops throughout the Marine Corps; it is adaptable for nonmilitary instruction. Introductory materials include specific…

  5. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  6. First results on fast baking

    Energy Technology Data Exchange (ETDEWEB)

    Visentin, B. [CEA-Saclay, DSM/DAPNIA/SACM - 91191 Gif/Yvette Cedex (France)]. E-mail: bvisentin@cea.fr; Gasser, Y. [CEA-Saclay, DSM/DAPNIA/SACM - 91191 Gif/Yvette Cedex (France); Charrier, J.P. [CEA-Saclay, DSM/DAPNIA/SACM - 91191 Gif/Yvette Cedex (France)

    2006-07-15

    High gradient performances of bulk niobium cavities go through a low-temperature baking during one or two days, the temperature parameter is adjusted in a narrow tuning range around 110 or 120deg, C. With such treatment, the intrinsic quality factor Q{sub 0} is improved at high fields. Assuming the oxygen diffusion is involved in this phenomenon, we have developed the 'fast baking' (145deg, C/3h) as an alternative method. Similar results have been achieved with this method compared to standard baking. Consequently, for the first time, a link between oxygen diffusion and high field Q-slope has been demonstrated. Furthermore, this method open the way to a simpler and better baking procedure for the large-scale cavity production due to:*time reduction and *possibility to combine baking and drying during cavity preparation.

  7. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Science.gov (United States)

    2012-01-01

    plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains. PMID:22462683

  8. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  9. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    role in baking-associated stress tolerance. In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  10. Baking method for thermonuclear reactor

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1986-01-01

    Purpose: To improve the heat transmission property to the reactor core structures thereby shortening the baking time for the reactor core in thermonuclear reactors. Constitution: High temperature airs are supplied from a baking system to cooling pipeways disposed within reactor core structures and helium gas is supplied from a helium gas supply system through the reactor core structures to the inside of the reactor core for scavenging. The scavenging operation may be combined with vacuum suction. Further, the inside of the reactor is scavenged while maintaining at such a negative pressure as within a range not degrading the heat conduction property. Since the helium gas is chemically inert and poor in the depositing property, it shows no adsorbability even for the material heated to high temperature. Further, since the diffusion and heat conduction properties are high, the heat conduction property to the materials upon baking can be improved to shorten the baking time. No disadvantages are caused by the introduction of the helium gas upon baking. (Kawakami, Y.)

  11. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.

    Science.gov (United States)

    Donalies, Ute E B; Nguyen, Huyen T T; Stahl, Ulf; Nevoigt, Elke

    2008-01-01

    Yeast was the first microorganism domesticated by mankind. Indeed, the production of bread and alcoholic beverages such as beer and wine dates from antiquity, even though the fact that the origin of alcoholic fermentation is a microorganism was not known until the nineteenth century. The use of starter cultures in yeast industries became a common practice after methods for the isolation of pure yeast strains were developed. Moreover, effort has been undertaken to improve these strains, first by classical genetic methods and later by genetic engineering. In general, yeast strain development has aimed at improving the velocity and efficiency of the respective production process and the quality of the final products. This review highlights the achievements in genetic engineering of Saccharomyces yeast strains applied in food and beverage industry.

  12. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  14. Improved technique to remove hardened sludge on top of Steam generator tube sheet

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartl, R.

    2015-07-01

    Since many years the top of Steam Generator tube sheet is cleaned by high pressure water jets. In the standard process a multi-nozzle head is manipulated remote controlled inside the No tube lane. The high pressure water jets are directed between the inter-tube aisles. Inner bundle lancing enhanced the efficiency to remove hardened sludge at low flow areas above the tube sheet to a certain extent. For that the nozzle head is fed between the inner tube aisles thus reducing the work distance to a minimum. AREVA GmbH realized a hydraulic driven toothed blade to considerably raise the removal rate of the hardened sludge. (Author)

  15. Baking Soda Science.

    Science.gov (United States)

    Science Activities, 1994

    1994-01-01

    Discusses the basic principles of baking soda chemistry including the chemical composition of baking soda, its acid-base properties, the reaction of bicarbonate solution with calcium ions, and a description of some general types of chemical reactions. Includes a science activity that involves removing calcium ions from water. (LZ)

  16. Selected Baking Formulas.

    Science.gov (United States)

    Bogdany, Melvin

    This manual is designed to help baking students learn to use formulas in the preparation of baking products. Tested and proven formulas are, for the most part, standard ones with only slight modifications. The recipes are taken mainly from bakery product manufacturers and are presented in quantities suitable for school-shop use. Each recipe…

  17. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  19. Baking in the Backwoods

    Science.gov (United States)

    Turner, Steve

    2008-01-01

    Baking in the woods can be a lot of fun and can help to make a good trip an amazing one. It does take some time, planning, and preparation, and chosen recipes should be tested in the oven at home before trying them out with friends on a 10-day trip. Outdoor baking requires a different set of rules and equipment than those one uses at home and a…

  20. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  1. Bread's oven and baking bread

    OpenAIRE

    Kastelic, Katja

    2011-01-01

    This thesis researches the connection between baker's oven and baking bread. Furthermore, it presents the history and development of the above issue in the Slovenian territory, its significance and preservation over time. The thesis deals with the building of bread’s over, its function and usability. Moreover, it focuses on baking bread in bread’s oven, presenting the entire baking process from ingredients to the baked loaf of bread and various tools and techniques, which can be used during t...

  2. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  3. Bread Baking Contest.

    Science.gov (United States)

    Blanchette, Amy; And Others

    1995-01-01

    Describes a classroom project in which elementary students bake homemade bread to learn about the settlement period in Canadian history and the early history of the students' community. Maintains that students learn to compare the lifestyle of the past with the present. (CFR)

  4. Commercial Baking. Final Report.

    Science.gov (United States)

    Booth, Nancy

    A project filmed three commercial baking videotapes for use by secondary and adult students in food service programs. The three topics were basic dinner rolls, bread making, and hard breads and rolls. Quick-rise dough recipes were developed, written down, and explained for use with the videotapes. A pretest, posttest, and student guide were…

  5. A New Type of Tea Baking Machine Based on Pro/E Design

    Science.gov (United States)

    Lin, Xin-Ying; Wang, Wei

    2017-11-01

    In this paper, the production process of wulong tea was discussed, mainly the effect of baking on the quality of tea. The suitable baking temperature of different tea was introduced. Based on Pro/E, a new type of baking machine suitable for wulong tea baking was designed. The working principle, mechanical structure and constant temperature timing intelligent control system of baking machine were expounded. Finally, the characteristics and innovation of new baking machine were discussed.The mechanical structure of this baking machine is more simple and reasonable, and can use the heat of the inlet and outlet, more energy saving and environmental protection. The temperature control part adopts fuzzy PID control, which can improve the accuracy and response speed of temperature control and reduce the dependence of baking operation on skilled experience.

  6. Efficacy of pandesal baked from wheat flour fortified with iron and vitamin a in improving the iron and anthropometric status of anemic schoolchildren in the Philippines.

    Science.gov (United States)

    Cabalda, Aegina B; Tengco, Lorena W; Solon, Juan Antonio A; Sarol, Jesus N; Rayco-Solon, Pura; Solon, Florentino S

    2009-10-01

    To determine the efficacy of pandesal baked from wheat flour fortified with iron, with or without vitamin A (VA), in improving anemic schoolchildren's iron and anthropometric status. Anemic 6- to 12-year-old Filipino children (n = 250) received two 60 g pandesal daily for 8 months. They were randomized into 1 of 4 groups: (1) iron-fortified (with hydrogen-reduced iron at 80 mg/kg, electrolytic iron at 80 mg/kg, or ferrous fumarate at 40 mg/kg), (2) iron and VA-fortified, (3) VA-fortified (at 490 RE/100 g), and (4) nonfortified flour. Hemoglobin (Hb) and zinc protoporphyrin (ZnPP) concentrations and weight and height were determined before and after intervention. Analyses of variance and chi-square and multiple regression analyses were performed. Mean Hb increased by 1.3 g/dL (p fortified groups had significantly different weight-for-age z-score, body mass index-for-age z-score, or height-for-age z-score compared with the nonfortified group after controls were applied for baseline z-scores, age, and gender. Our study shows that in a non-malaria-endemic area, iron fortification of flour significantly reduced the prevalence of iron deficiency among anemic schoolchildren, and double fortification with iron and VA significantly improved Hb status.

  7. Researches on bake effect on RF superconducting cavities

    International Nuclear Information System (INIS)

    Hao Jiankui; Zhao Kui; Zhu Feng

    2005-01-01

    The Q-slope at high gradient affects the performance of superconducting cavity greatly. Recent researches show that low temperature (100-150) degree C heat treatment (bake) has positive effects on the performance of superconducting cavities. A lot of cavity tests are analyzed based on bake treatment. The average gradient E acc,max and E acc at Q=1 x 10 10 are increased by more than 3.5 MV/m. Q at E acc,max is increased and the Q-slope is improved. Analysis on bake temperature shows that higher bake temperature leads to higher Q value. Comparison of BCP and EP cavities shows that at least 60-80 μm EP is needed for BCP surface. More than 10-15 μm removal of the surface by BCP will degrade the performance of an EP cavity. Oxygen diffusion model is used to illustrate bake effect. (authors)

  8. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    Directory of Open Access Journals (Sweden)

    Hanghang Liu

    2018-04-01

    Full Text Available The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and electron back-scattered diffraction (EBSD. The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT steel. In addition, the test steel after austempering-tempering (A-T demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17% compared with the samples after N-QT (14.5% treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels.

  9. Improvements of fatigue behaviour in 2014 Al alloy by solution heat treating and age-hardening

    International Nuclear Information System (INIS)

    Sadeler, R.; Totik, Y.; Gavgali, M.; Kaymaz, I.

    2004-01-01

    In order to understand the fundamental fatigue behaviour of 2014 Al alloy, rotating bending fatigue tests have been carried out using materials with an as-received and four different microstructure feature produced by solution heat treating at 410, 450, 480 and 510 deg. C for 2 h, then quenching in cold water (at 15 deg. C), followed by aging at 190 deg. C for 7 h. Scanning electron microscopy and X-ray diffraction were carried out to characterize the structure properties resulting from different heat treatments. The fatigue test results showed that the solution temperature have very strong influence on fatigue strength. The fatigue strength at 10 7 cycles of Al alloy made by aging after solution treating temperature of 510 deg. C was improved by approximately 43%, compared with as cast alloy. In addition, the fractured fatigue specimens were examined using a scanning electron microscopy in order to clarify fracture initiation points

  10. Antibacterial activity of baking soda.

    Science.gov (United States)

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  11. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  12. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  13. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  14. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.

    Science.gov (United States)

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Feng, Bing; Xiao, Dong-Guang

    2015-03-16

    During the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA. However, the function of the SNR84 gene in baker's yeast coping with baking-associated stresses remains unclear. In this study, we explored the effect of SNR84 overexpression on baker's yeast which was exposed to high-temperature, high-sucrose and freeze-thaw stresses. These results suggest that overexpression of the SNR84 gene conferred tolerance of baker's yeast cells to high-temperature, high-sucrose and freeze-thaw stresses and enhanced their leavening ability in high-sucrose and freeze-thaw dough. These findings could provide a valuable insight for breeding of novel stress-resistant baker's yeast strains that are useful for baking. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The use of a continuous-action centrifugal-screw mixer for improving the quality of flour baking mixes for functional purposes

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2018-01-01

    Full Text Available The influence of the number of screw turns of a centrifugal-screw mixer, the number of holes in the screw turns and the rotor speed on the quality of mixing of flour baking mixes of functional purpose enriched with amino acids was studied. Flour baking mix is composed of wheat flour, whole wheat flour, chickpeas flour, rye flour, buckwheat flour, oat bran, gluten, dry milk powder, sesame seeds, flax seed, dried onions, table salt and sugar. The homogeneity of the mixture reflects table salt because it has a minimal weight relative to other components of the mix. The coefficient of heterogeneity was calculated to assess the quality of mixing. The centrifugal-screw mixer optimal operation parameters were investigated for different flour baking mixes. For the mix № 1 and mix № 2 optimal parameters are rotor rotating speed of 900 rpm, the number of turns of the screw 4 and the number of holes on the threads of the screw 4. For the mix № 3 optimal parameters are rotor speed of 500 rpm, the number of turns of the screw 2 and the number of holes on the threads of the screw 8. The centrifugal–screw mixer allow to obtain enriched with amino acids flour baking mix of good quality. The coefficient of heterogeneity of mixes does not exceed 5%. For all samples of bread amino acid content is significantly higher compared to the control sample. Depending on the bread recipe contents of amino acids increased by 83–97% for arginine, 52–61% for tyrosine, 52–66% for phenylalanine, 72–74% for histidine, 91% for leucine+ isoleucine, 53–56% for methionine, 90–97% for valine, 64–72% for proline, 87–93% for threonine, 58–87% for serine and 74% for alanine. The greatest biological value is attributed to flour the baking mix № 1 and № 2. The economic effect of selling an enriched flour bakery mixture prepared on a centrifugal–screw mixer has been determined. It is established that the operating costs for the production of 1 kg of such

  16. Improving significantly the failure strain and work hardening response of LPSO-strengthened Mg-Y-Zn-Al alloy via hot extrusion speed control

    Science.gov (United States)

    Tan, Xinghe; Chee, Winston; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2017-07-01

    The effect of hot extrusion speed on the microstructure and mechanical properties of MgY1.06Zn0.76Al0.42 (at%) alloy strengthened by the novel long-period stacking ordered (LPSO) phase was systematically investigated. Increase in the speed of extrusion accelerated dynamic recrystallization of α-Mg via particle-stimulated nucleation and grain growth in the alloy. The intensive recrystallization and grain growth events weakened the conventional basal texture and Hall-Petch strengthening in the alloy which led to significant improvement in its failure strain from 4.9% to 19.6%. The critical strengthening contribution from LPSO phase known for attributing high strength to the alloy was observed to be greatly undermined by the parallel competition from texture weakening and the adverse Hall-Petch effect when the alloy was extruded at higher speed. Absence of work hardening interestingly observed in the alloy extruded at lower speed was discussed in terms of its ultra-fine grained microstructure which promoted the condition of steady-state defect density in the alloy; where dislocation annihilation balances out the generation of new dislocations during plastic deformation. One approach to improve work hardening response of the alloy to prevent unstable deformation and abrupt failure in service is to increase the grain diameter in the alloy by judiciously increasing the extrusion speed.

  17. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  18. Involvement of hydrogen-vacancy complexes in the baking effect of niobium cavities

    Directory of Open Access Journals (Sweden)

    B. Visentin

    2010-05-01

    Full Text Available Baking is necessary to improve high accelerating gradient performances of superconducting niobium cavities. Ten years after this discovery in 1998, the understanding of this effect still resists a lot of theoretical explanations. For the first time, positron annihilation spectroscopy performed on niobium samples reveals the increase after baking of positrons trapped under the Nb surface. Presence of hydrogen-vacancy complexes and their dissociation by baking could both explain rf losses observed at high fields (Q drop and its cure (baking effect.

  19. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion

    Directory of Open Access Journals (Sweden)

    Adrienne Hughes

    2016-09-01

    Full Text Available Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  20. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion.

    Science.gov (United States)

    Hughes, Adrienne; Brown, Alisha; Valento, Matthew

    2016-09-01

    Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  1. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  2. Collection Development: Hitting the Sweet Spot (Baking)

    Science.gov (United States)

    Charles, John

    2010-01-01

    Baking can be intimidating. Just ask all those contestants on "Top Chef" who would rather prepare Beef Wellington than bake a cake. But libraries can take the fear factor out of baking by putting together a solid collection of cookbooks that can help anyone master the sweeter side of the culinary arts or even serve as delicious armchair reading…

  3. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  4. The improvement of the technology and equipment for the utilization of solid industrial wastes by means of adding them to the cast of hardening filling mixtures

    Directory of Open Access Journals (Sweden)

    E. P. Volkov

    2017-12-01

    Full Text Available The article provides an assessment of mining operations in underground mines which apply backfill systems, as well as the volume of enrichment waste accumulated during the exploitation of ore deposits. The use of high-quality cement and expensive inert fillers by many mining companies significantly increases the cost of backfill, while the technologies for increasing the activity of the binder are only partially used. The adoption of low-quality binders (cement and milled granulated slags, the investigation of new economically advantageous technologies for producing filling mixtures, as well as the use of binders and fillers, which can be used as tails of enrichment waste, will promote the spreading of backfill systems. In the practice of mining, it is an urgent task, which should be solved. This solution will significantly expand the raw material base of many mining enterprises; it will also increase their efficiency and address environmental protection issues. The conditions and regularities of increasing the reaction properties of many dump products, changing their rheological properties in time, as well as ways to create, and maintain the activity of the filling mixture during its preparation and pipeline transportation, remain insufficiently studied. We also consider the concept of improving the systems of pipeline transportation of cast hardening of filling mixtures to ensure reliable and uninterrupted delivery of the obtained backfilling mixtures with the reduced water content. It is associated with the use of the special hydrodynamic actuators mounted on a backfilling pipeline. As the activating devices the original patented designs of activators providing high efficiency of restoration of rheological properties of stowage mixes at their transportation on the underground stowage pipeline are offered and described. Based on the theoretical justification of the proposed design solutions, we can conclude that the proposed trigger device

  5. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  6. Comparison of fried and baked fish Oreochromis niloticus cakes

    OpenAIRE

    Akinsiku, A.F.

    2008-01-01

    Oreochromis niloticus fish-in-cake were made to improve its food value as well as create new menu. Fried fish-in-cake was 66.2% appealing in its colour, taste, texture and odour to assessors than the 64% rating for baked fish-in-cake.

  7. The influence of baking time and temperature on characteristics of gluten free cookies enriched with blueberry pomace

    Directory of Open Access Journals (Sweden)

    Šarić Bojana M.

    2014-01-01

    Full Text Available Blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a new gluten-free cookies' formulation, with the aim of improving nutritional profile and antioxidant capacity. Since duration and temperature at which dough is thermally treated during baking highly influence the quality of a baked product, the objective of this work was to optimise the baking conditions in order to obtain the best technological quality of the cookies. Referring to the results obtained at 160 and 170 °C and different baking times, the following was found: the difference in baking conditions caused variation between cookies' diameters of less than 1%, more regular shape of the cookies was obtained when baking time was shorter, hardness of cookies is highly correlated with moisture content, water activity, baking loss and short/long diameter ratio values. The colour characteristics (L*, a* and b* of cookies' top and bottom surfaces indicated that the cookies were not overbaked under the chosen baking conditions. Baking time of 14 min at 170°C was found to be the optimal baking conditions for the blueberry pomace enriched gluten-free cookies.

  8. Numerical simulation and analysis for the baking out system of the HT-7U super-conducting tokamak device

    International Nuclear Information System (INIS)

    Song Yuntao

    2004-01-01

    It can provide an ultrahigh vacuum location for the plasma operation. In order to improve its vacuum degree and attain a high quality operation environment for plasma, it is very important to proceed 250 degree C baking out to clear the wall before the plasma operation. The paper firstly gives two kinds of structures for the baking of the vacuum vessel, in which one is the baking by electricity and another is baking by the nitrogen gas. Secondly based on the numerical simulation and analysis, some results have been attained such as the baking power, temperature field distribution and thermal stress for the vacuum vessel, which can provide some valuable theory basis for the engineering design and optimization of the baking system of the HT-7U vacuum vessel or other similar super-conducting tokamak devices

  9. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion

    OpenAIRE

    Hughes, Adrienne; Brown, Alisha; Valento, Matthew

    2016-01-01

    Baking soda is a readily available household product composed of sodium bicarbonate. It can be used asa home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to causea variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagicencephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers ofbaking soda misuse and the associated adverse effects. [West J Emerg Med. 2016;17(5)619...

  10. Challenges facing the food industry: Examples from the baked goods sector

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2013-01-01

    This paper investigates the challenges in the food industry, illustrated by a case study from the baked goods sector in Denmark. The paper proposes key elements this sector needs to address in order to limit waste, improve productivity and increase profitability.......This paper investigates the challenges in the food industry, illustrated by a case study from the baked goods sector in Denmark. The paper proposes key elements this sector needs to address in order to limit waste, improve productivity and increase profitability....

  11. Cold hardening and dehardening in Salix

    Energy Technology Data Exchange (ETDEWEB)

    Lennartsson, Mattias [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2003-07-01

    The variation in cold hardiness in Salix in the autumn was investigated using clones of different geographic origins. In late growing season, the variation was small and inversely related to a phenotypic variation in potential growth rate. When growth had stopped in response to the reduction in daylength, however, large differences in cold hardiness developed. Northern/continental clones started cold hardening up to two months earlier and showed up to three times higher inherent rates of cold hardening than the southern/maritime ones. The two components of cold hardening, the timing of onset and the inherent rate, seemed to be separately inherited traits, as judged from analyses of the prodigy of a crossing between an early-and-rapidly hardening clone and a late-and-slowly hardening one. This suggests that cold hardiness can be improved without adversely affecting growth by selecting for a late onset of cold hardening combined with a rapid rate. Also, in the early stages, cold hardening was more sensitive to low, non-freezing temperatures in the southern/maritime clones than in the northern/continental ones. Cold hardening of stems in the autumn could be monitored from the accumulation of sugars, most predominantly sucrose, raffinose and stachyose. The accumulation of sucrose started already with the cessation of growth, whilst the accumulation of raffinose and stachyose started later and was stimulated by cool temperatures. Multivariate models using sugar data could explain 76% of the variation in cold hardiness in the early stages of hardening. Changes in levels of sugars and other compounds during cold hardening could be assessed non-intrusively from the visible and infrared reflectance spectra of stems. Multivariate models using spectral data could predict up to 96% of the variation in cold hardiness. This technique is expected to greatly facilitate breeding for improved cold hardiness by allowing rapid screening of large populations. The variation in cold

  12. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  13. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj

    2015-01-01

    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  14. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  15. An Analysis of the Baking Occupation.

    Science.gov (United States)

    Boyadjid, Thomas A; Paoletti, Donald J.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the baking occupation. Such tasks as choosing ingredients and the actual baking process are logical primary concerns, but also explored are the safety and sanitation factors and management problems in a…

  16. Vacuum Baking To Remove Volatile Materials

    Science.gov (United States)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  17. Prevalence of using baking soda in different types of most commonly consumed breads by Iranian people

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2018-01-01

    Full Text Available Background: Nowadays, in most bakeries in order to accelerate bread production process and reduce work pressure on bakers, harmful chemicals like baking soda are in use. Therefore, the aim of the present study was to investigate the prevalence of using baking soda in different types of most commonly consumed breads by Iranian people. Materials and Methods: This cross-sectional descriptive study was carried out on 234 bakeries in Qom, Iran, during 2017. The proportional stratified sampling method was used to select bakeries and bakers in different districts of Qom. Age, bakery experience, education of bakers and bread's pH were collected by a questionnaire and an electrical pH meter. Results: The results showed that seventy bakeries (29.9% of Qom were using baking soda in bread. The highest frequent use of baking soda was observed in Taftoon (38.7% and Lavash bread (31.5%. There was a significant difference between the use of baking soda and demographic variables such as age and literacy level. The attitude and knowledge of bakery employees about the complications of the baking soda were not appropriate. Conclusions: To reduce the use of baking soda and improve their knowledge and attitude, there is a need of strict supervision and monitoring by responsible organisations, especially the Ministry of Health.

  18. Radiation-hardening coatings

    International Nuclear Information System (INIS)

    Sellmer, H.

    1989-01-01

    Lacquers and coating agents hardened by radiation have replaced conventional coating in some fields. By means of single developments (glass-fiber coating, photosensitive lacquers for films and printing plates, photoresists, additives and fillers) the latest tendencies are shown in a survey. (HP) [de

  19. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization.

    Science.gov (United States)

    Zörb, Christian; Steinfurth, Dorothee; Seling, Simone; Langenkämper, Georg; Koehler, Peter; Wieser, Herbert; Lindhauer, Meinolf G; Mühling, Karl H

    2009-05-13

    Increasing prices for wheat products and fertilizers, as well as reduced sulfur (S) contributions from the atmosphere, call for an improvement of product quality and agricultural management. To detect the impact of a time-dependent S fertilization, the quantitative protein composition and the baking quality of two different wheat cultivars, Batis and Turkis, were evaluated. The glutathione concentration in grains serves as a reliable marker of the need for added S fertilizer. The quantitation of gliadins and glutenin subunits by reversed-phase high-performance liquid chromatography confirmed that S-rich proteins significantly increased with S fertilization, whereas the S-poor proteins significantly decreased. Proteome analysis by means of high-resolution protein profiles detected 55 and 37 proteins from Batis and Turkis changed by late S fertilization. A microscale baking test using wholemeal flour was implemented for the evaluation of baking quality, and late S fertilization was found to improve the composition of gluten proteins and baking quality.

  20. Hardening fertilization and nutrient loading of conifer seedlings

    Science.gov (United States)

    R. Kasten Dumroese

    2003-01-01

    Continuing to fertilize bareroot and container seedlings during the hardening process (from cessation of height growth until lifting) can improve seedling viability. The process of fertilizing during hardening has many names, but in the last decade a new term, nutrient loading, has come into use. The process of nutrient loading seedlings leads to luxury consumption...

  1. Baking soda dentifrice and periodontal health: A review of the literature.

    Science.gov (United States)

    Sabharwal, Amarpreet; Scannapieco, Frank A

    2017-11-01

    Mechanical disruption of dental biofilm is critical to maintain periodontal health. Baking soda-containing dentifrices have shown to be potential aids for improving gingival health and maintaining dental biofilm control. Evidence from classic and contemporary literature is reviewed and summarized in this review. In vitro and in vivo (animal and human, respectively) studies and clinical trials have been analyzed. Some clinical studies demonstrated the benefits of baking soda dentifrices in plaque and gingivitis reduction. Clinical trials with longer follow-up would be useful to confirm the impact of baking soda on gingival health. Regular dental biofilm control and adjunctive use of baking soda dentifrices in an otherwise healthy and compliant patient may provide success in maintenance of gingival health. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. Baking soda: a potentially fatal home remedy.

    Science.gov (United States)

    Nichols, M H; Wason, S; Gonzalez del Rey, J; Benfield, M

    1995-04-01

    We present a case of a six-week-old infant who developed life-threatening complications after unintentional sodium bicarbonate intoxication. Baking soda was being used by the mother as a home remedy to "help the baby burp." A review of the literature regarding the use (or misuse) of baking soda follows. Our patient, along with the other noted case reports, emphasizes the need for warnings on baking soda products whose labels recommend its use as an antacid. Poisonings must be high in the differential diagnosis of any patient, regardless of age, who presents with altered mental status or status epilepticus.

  3. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  4. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  5. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  6. Influence of final baking technologies in partially baked frozen gluten-free bread quality.

    Science.gov (United States)

    Aguilar, Núria; Albanell, Elena; Miñarro, Begoña; Gallardo, Joan; Capellas, Marta

    2015-03-01

    The effect of final baking in convection oven (FBC), microwave oven (FBM), and microwave oven with susceptor packaging material (FBMS) on partially baked (PB) frozen gluten-free bread characteristics was investigated. Specific volume and crust color of loaves were measured at day 0. Bread moisture, water activity, and crumb and crust texture (at 15, 45, and 90 min after baking) were analyzed at day 0 and after 28 d of frozen storage (-18 °C). Volatile compounds from breads baked in convection oven or microwave oven with susceptor packaging material were also evaluated. Bread finally baked in convection oven or in microwave oven with susceptor packaging increased crust browning. Crumb and roll hardness increased with time after final baking (measured at 15, 45, 90 min) and after 28 d of frozen storage. Bread finally baked in microwave oven was the hardest, due to high water losses. At day 0, bread finally baked in convection oven had softer crumb than bread finally baked in microwave oven with susceptor packaging but, after 28 d of frozen storage, there were no differences between them. Moreover, FBC and FBMS rendered gluten-free breads that could not be distinguished in a triangular test and had the same volatile compounds profile. In conclusion, FBMS could be an alternative to FBC. © 2015 Institute of Food Technologists®

  7. Baking soda pica associated with rhabdomyolysis and cardiomyopathy in pregnancy.

    Science.gov (United States)

    Scolari Childress, Katherine M; Myles, Thomas

    2013-08-01

    Pica is a commonly underappreciated disorder in pregnancy that can lead to several complications, including severe metabolic derangements and other adverse outcomes. We report a case of baking soda pica in pregnancy associated with both rhabdomyolysis and cardiomyopathy. A multigravid woman at 37 weeks of gestation presented with weakness and severe hypokalemia. She subsequently had development of rhabdomyolysis and presumed peripartum cardiomyopathy. After delivery, it was discovered that the patient had a long history of consumption of large quantities of baking soda. Her condition improved with cessation of the pica. Clinicians must have a high index of suspicion for pica in pregnancy because it can lead to complex diagnostic challenges and pregnancy complications. The diagnosis should be considered in a patient with unexplained metabolic abnormalities.

  8. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  9. Optimized Baking of the DIII-D Vessel

    International Nuclear Information System (INIS)

    Anderson, P.M.; Kellman, A.G.

    1999-01-01

    The DIII-D tokamak vacuum vessel baking system is used to heat the vessel walls and internal hardware to an average temperature of 350 C to allow rapid conditioning of the vacuum surfaces. The system combines inductive heating and a circulating hot air system to provide rapid heating with temperature uniformity required by stress considerations. In recent years, the time to reach 350 C had increased from 9 hrs to 14 hrs. To understand and remedy this sluggish heating rate, an evaluation of the baking system was recently performed. The evaluation indicated that the mass of additional in-vessel hardware (50% increase in mass) was primarily responsible. This paper reports on this analysis and the results of the addition of an electric air heater and procedural changes that have been implemented. Preliminary results indicate that the time to 350 C has been decreased to 4.5 hours and the temperature uniformity has improved

  10. MedlinePlus: Baked Tilapia with Tomatoes

    Science.gov (United States)

    ... page: https://medlineplus.gov/recipe/bakedtilapiawithtomatoes.html Baked Tilapia with Tomatoes To use the sharing features on ... and economical. Ingredients Nonstick vegetable oil spray 4 tilapia fillets 4 medium tomatoes, peeled and chopped 2 ...

  11. Effect of low temperature baking on niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel; Ganapati Myneni; William Lanford; Gianluigi Ciovati

    2003-09-01

    A low temperature (100 C-150 C) ''in situ'' baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called ''Q-drop'' without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1] . Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA). The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.

  12. Preparates hardened by radiation

    International Nuclear Information System (INIS)

    Carder, C.H.; Osborn, C.L.; Hodakowski, L.E.

    1979-01-01

    Ink and coating masses hardened by radiation have proved themsleves as suitable preparates which have originated from the reaction of a poly (alcylene oxy) polyol or polyester polyol, on organic di-isocyanate and hydroxy alkyl acrylate. At temperatures between 45 and 60 0 C, 2.5 to 8.0 equivalents of the organic di-isocyanate and 1.5 to 6.0 equivalents of the hydroxy alkyl acrylate are converted for every hydroxy equivalent in polyol. 9 examples supplement the very extensive description of the fabrication possibilities. (UWI) [de

  13. Optimization of processing parameters in induction hardening using ...

    Indian Academy of Sciences (India)

    ; response surface methodology. 1. Introduction. Since 1980's the processes of surface strengthening (hardening) of steel with the use of high fre- quency induction (Miller & Lagoudas 1980) have found ever-increasing applications to improve.

  14. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    Science.gov (United States)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  15. IBL Thermal Mockup Bake-Out Tests

    CERN Document Server

    Nuiry, FX

    2014-01-01

    This note summarizes different bake-out tests that have been performed with the ATLAS Insertable B-Layer (IBL) mockup. Two beam pipe configurations have been tested: one with the aerogel insulation layer all along the pipe and one without insulation over 622 mm around Z0. These tests have been crucial for decisions about aerogel removal, choice of heaters for the LHC beam pipe bake-out, and choice of temperature setpoints for the cooling system during nominal IBL operation. They also revealed very useful information on integration issues and the thermo-mechanical behaviour of the IBL detector.

  16. Efficacy of baking soda-containing chewing gum in removing natural tooth stain.

    Science.gov (United States)

    Mankodi, S M; Conforti, N; Berkowitz, H

    2001-07-01

    A 14-week, double-blind, randomized clinical trial was conducted with 126 healthy volunteers to compare the efficacy of twice-daily use of 3 baking soda-containing chewing gums in removing natural tooth stain when used in conjunction with a program of regular oral hygiene. All 3 chewing gums significantly reduced extrinsic stain (P Baking Soda Gum (AHDC) reduced dental stain by 70.8%, compared to reductions of 71.9% and 65.3%, after use of 2 experimental gum formulations. Whitened appearance improved by 1.73 shade tabs using AHDC gum, and up to 2.49 shade tabs with the experimental formulations. These results suggest that the use of baking soda-containing gum after meals, in conjunction with good oral hygiene, can improve both extrinsic dental staining and the whitened appearance of teeth.

  17. Enhancement of gold grade through arsenic removal in the gold concentrate using sulfuric acid baking and hot water leaching

    Science.gov (United States)

    On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Kim, Hyun-soo; Park, Cheon-young

    2017-04-01

    In order to improve gold recovery, in general, the roasting process is carried out on gold concentrate. However in this process, Arsenic(As) is released from the gold concentrate and valuable elements such as Fe, Cu, Zn and Pb are converted into oxides. This causes air pollution through the release of As and loss of valuable elements by discarding the oxide minerals in the tailings. In order to prevent the release of As and the loss of valuable metals, an acid baking experiment was carried out on the gold concentrate with the addition of an H2SO4 solution. The baking effect, H2SO4 concentration effect and the effects of changing the baking time were examined using an electric furnace. In experimental results, soluble metal sulfates such as Rhomboclase and Mikasite were formed in the baked samples as seen through XRD analysis. In hot(70 degree Celsius) water leaching of the roast and baked samples, As the contents leached were 60 times more in the baked sample than the roast sample, and the Fe, Cu, Zn and Pb contents were 17, 10, 14, 13 times in the baked sample than in the roast sample, respectively. In the water leached solid-residues, the maximum gold grade was upgraded by 33% due to the acid baking effect. It is confirmed that acid baking with H2SO4 prevented As release into the air and the recovery of valuable metals through hot water leaching such as Fe, Cu, Zn and Pb which were formerly discarded in the tailings. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  18. The Effect of Emulsifier and Hydrocolloid on Baking Expansion and Texture of Bread from Modified Cassava

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Indonesia has a very abundant cassava that can be used instead of wheat. Bread made from cassava is safe for celiac sufferers, in which cannot tolerate a protein called gluten found in wheat flour. However, bread from cassava has the disadvantage that it cannot inflate perfectly. Our research goal is to study the effect of emulsifier and hydrocolloid concentration as modifying agents on baking expansion and bread texture (hardness. The test level hedonic preference for bread products results from modified tapioca is also necessary to know the level of customer satisfaction. This study were conducted by three main stages, modification of cassava, baking process, and analyses. Modification of cassava starch was applied using combination of lactic acid solution and ultra violet (UV irradiation. Emulsifier (DATEM and hydrocolloid (xanthan gum were used in baking process. The addition of emulsifier and hydrocolloid can improve baking expansion. The addition of 7% emulsifiers on modified cassava can increase the volume of bread, taste, and texture so it can give greater satisfaction to consumers. Hydrocolloid can replace the function of gluten so the bread can inflate perfectly. The optimal composition of modified cassava in bread making is 25% of modified cassava and 75% of wheat flour. The low value of texture (hardness on bread made from modified cassava indicated a better performance in comparison with native cassava. Baking expansion and texture of the bread is influenced by the modification process. Furthermore, the comprehensive and optimum studies of modification need to be investigated.

  19. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  20. [Study on baking processing technology of hui medicine Aconitum flavum].

    Science.gov (United States)

    Fu, Xue-yan; Zhang, Bai-tong; Li, Ting-ting; Dong, Lin; Hao, Wen-jing; Yu, Liang

    2013-12-01

    To screen and optimize the processing technology of Aconitum flavum. The acute-toxicity, anti-inflammatory and analgesic experiments were used as indexes. Four processing methods, including decoction, streaming, baking and processing with Chebulae Fructus decoction, were compared to screen the optimum processing method for Aconitum flavum. The baking time was also optimized. The optimal baked technology was that 1-2 mm decoction pieces was baked at 105 degrees C for 3 hours. The baking method is proved to be the optimal processing method of Aconitum flavum. It is shown that this method is simple and stable.

  1. Bake `95: turning up the heat [how to save energy in the bakery

    Energy Technology Data Exchange (ETDEWEB)

    Maris, P.I.W.; Wheeler, R.J.; Thacker, D.

    1995-09-01

    Heat flux measurements by means of a specially developed probe have provided the basis for improved baking oven control in the biscuit industry and led to a better understanding of the baking process. A set of linear equations relating air temperatures, air velocities, heat-flux and product characteristics have been derived from experiments designed for the purpose. The model provided by these equations offers an effective means of seeking fuel efficient operating conditions for the manufacture of high quality baked products. Validation exercises using a pilot-scale oven and then a full scale commercial multizone tunnel oven have been carried out. At high production rates it has been shown that fuel savings of 10-14% could be achieved. (UK)

  2. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  3. Novel circuits for radiation hardened memories

    International Nuclear Information System (INIS)

    Haraszti, T.P.; Mento, R.P.; Moyer, N.E.; Grant, W.M.

    1992-01-01

    This paper reports on implementation of large storage semiconductor memories which combine radiation hardness with high packing density, operational speed, and low power dissipation and require both hardened circuit and hardened process technologies. Novel circuits, including orthogonal shuffle type of write-read arrays, error correction by weighted bidirectional codes and associative iterative repair circuits, are proposed for significant improvements of SRAMs' immunity against the effects of total dose and cosmic particle impacts. The implementation of the proposed circuit resulted in fault-tolerant 40-Mbit and 10-Mbit monolithic memories featuring a data rate of 120 MHz and power dissipation of 880 mW. These experimental serial-parallel memories were fabricated with a nonhardened standard CMOS processing technology, yet provided a total dose hardness of 1 Mrad and a projected SEU rate of 1 x 10 - 12 error/bit/day. Using radiation hardened processing improvements by factors of 10 to 100 are predicted in both total dose hardness and SEU rate

  4. Surface hardening of AISI 4340 steel by electron beam treatment

    International Nuclear Information System (INIS)

    Wang Chienchun; Hwang Jiunren

    1994-01-01

    This paper investigates the effect of electron beam (EB) surface hardening on the abrasive wear property of AISI 4340 steel. The heat treatment conditions were varied so that the influence of microstructures on the wear resistance could be evaluated. A dry sand/rubber wheel abrasion test was selected to evaluate the high stress wear properties. The results show that the weight loss decreases with increasing hardness of surface layer or base material. The EB surface hardening can improve the abrasive wear resistance by about 10%. The best heat treatment process for AISI 4340 steel against abrasive wear is oil quenching from 840 C, tempering at 370 C, the EB surface hardening under heat input of 135-150 J mm -1 . The width and depth of the wear tracks are reduced after the EB surface hardening treatment. (orig.)

  5. Influence of baking method and baking temperature on the optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Ng, Zi-Neng; Chan, Kah-Yoong

    2015-01-01

    In this work, sol-gel spin coating technique was utilised to coat ZnO thin films on glass substrates. During the intermediate 3 minutes baking process, either hotplate or convection oven was employed to bake the samples. The temperature for the baking process was varied from 150°C to 300°C for both instruments. Avantes Optical Spectrophotometer was used to characterise the optical property. The optical transmittances of hotplate-baked and oven-baked samples showed different trends with increasing baking temperatures, ranging from below 50% transmittance to over 90% transmittance in the visible range of wavelength. The difference in baking mechanisms using hotplate and convection oven will be discussed in this paper

  6. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  7. Improved electron injection and transport by use of baking soda as a low-cost, air-stable, n-dopant for solution-processed phosphorescent organic light-emitting diodes

    Science.gov (United States)

    Earmme, Taeshik; Jenekhe, Samson A.

    2013-06-01

    Sodium bicarbonate (baking soda, NaHCO3) is found to be an efficient low-cost, air-stable, and environmentally friendly n-dopant for electron-transport layer (ETL) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). A 2.0-fold enhancement in power efficiency of blue PhOLEDs is observed by use of NaHCO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) ETL. The bulk conductivity of NaHCO3-doped BPhen film is increased by 5 orders of magnitude. Enhanced performance of PhOLEDs is similarly observed by use of NaHCO3-doped 1,3,5-tris(m-pyrid-3-yl-phenyl)benzene ETL. These results demonstrate that sodium bicarbonate is an effective n-dopant in organic electronics.

  8. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  9. Hardened technologies for hazardous environments

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.

    1987-01-01

    The complete radiation environment of neutrons, total dose, transient ionizing radiation, and energetic cosmic rays (SEU) can have various deleterious effects upon semiconductor electronic components. However, hardening techniques for these radiation effects have been developed for the various semiconduct technologies that will permit their use even in severe radiation environments. The process techniques are occasionally line dependent and may require modification to achieve the desired hardness goal. Similarly, hardening semiconductor components for elevated thermal operation can be achieved with process techniques which, unlike the radiation case, are readily transferable between process lines. Radiation effects and hardening technologies are discussed for Metal Oxide Semiconductor (MOS), Bipolar, Junction Field Effect Transistors (JFET), Metal Semiconductor Field Effect Transistor (MESFET), Diode, Electro-optic, and crystal technologies. 44 refs., 44 figs

  10. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis.

    Science.gov (United States)

    Zhan, Fei Xiang; Wang, Qin Hong; Jiang, Si Jing; Zhou, Yu Ling; Zhang, Gui Min; Ma, Yan He

    2014-12-16

    Xylanase can replace chemical additives to improve the volume and sensory properties of bread in the baking. Suitable baking xylanase with improved yield will promote the application of xylanase in baking industry. The xylanase XYNZG from the Plectosphaerella cucumerina has been previously characterized by heterologous expression in Pichia pastoris. However, P. pastoris is not a suitable host for xylanase to be used in the baking process since P. pastoris does not have GRAS (Generally Regarded As Safe) status and requires large methanol supplement during the fermentation in most conditions, which is not allowed to be used in the food industry. Kluyveromyces lactis, as another yeast expression host, has a GRAS status, which has been successfully used in food and feed applications. No previous work has been reported concerning the heterologous expression of xylanase gene xynZG in K. lactis with an aim for application in baking. The xylanase gene xynZG from the P. cucumerina was heterologously expressed in K. lactis. The recombinant protein XYNZG in K. lactis presented an approximately 19 kDa band on SDS-PAGE and zymograms analysis. Transformant with the highest halo on the plate containing the RBB-xylan (Remazol Brilliant Blue-xylan) was selected for the flask fermentation in different media. The results indicated that the highest activity of 115 U/ml at 72 h was obtained with the YLPU medium. The mass spectrometry analysis suggested that the hydrolytic products of xylan by XYNZG were mainly xylobiose and xylotriose. The results of baking trials indicated that the addition of XYNZG could reduce the kneading time of dough, increase the volume of bread, improve the texture, and have more positive effects on the sensory properties of bread. Xylanase XYNZG is successfully expressed in K. lactis, which exhibits the highest activity among the published reports of the xylanase expression in K. lactis. The recombinant XYNZG can be used to improve the volume and sensory

  11. Empirical beam hardening correction (EBHC) for CT

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, 91052 Erlangen (Germany)

    2010-10-15

    C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  12. Empirical beam hardening correction (EBHC) for CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-01-01

    C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  13. Influence of Barley Sourdough and Vacuum Cooling on Shelf Life Quality of Partially Baked Bread

    Science.gov (United States)

    2017-01-01

    Summary Driven by the bakery industry urge to satisfy consumer demand for fresh, diverse and high quality bakery products, we investigated the influence of barley sourdough and vacuum cooling on shelf life quality of partially baked bread stored in modified atmosphere packaging at ambient conditions. Barley sourdough was fermented with Lactobacillus reuteri (DSM 20016, F275). Partially baked bread with sourdough was microbiologically acceptable during 30 days of storage, while bread without sourdough had detectable mould on the 30th day. Stored bread samples were rebaked after 1, 8, 15, 22 and 30 days to determine moisture content, physical and sensorial properties. Moisture loss (5%) was detected on the 15th day, after which it remained stable until the end of investigated storage period. Nevertheless, textural quality of stored bread continuously declined due to crumb firming. Bread flavour did not change during mould-free storage time. The principal component analysis identified major differences in the flavour of sour and control bread, also in crumb firmness and moisture content of samples. This study indicates the positive role of barley sourdough fermented with L. reuteri in improving crumb texture for at least 15 days, and ensuring mould- and bacteria-free partially baked bread for 30 days. Vacuum cooling combined with sourdough improved bread shape, porosity, and reduced sour taste, crust colouring and crumbliness. Hence, it can successfully extend shelf life quality of partially baked bread in modified atmosphere packaging. PMID:29540981

  14. Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking.

    Science.gov (United States)

    Kajala, Ilkka; Shi, Qiao; Nyyssölä, Antti; Maina, Ndegwa Henry; Hou, Yaxi; Katina, Kati; Tenkanen, Maija; Juvonen, Riikka

    2015-01-01

    Wheat bran offers health benefits as a baking ingredient, but is detrimental to bread textural quality. Dextran production by microbial fermentation improves sourdough bread volume and freshness, but extensive acid production during fermentation may negate this effect. Enzymatic production of dextran in wheat bran was tested to determine if dextran-containing bran could be used in baking without disrupting bread texture. The Weissella confusa VTT E-90392 dextransucrase gene was sequenced and His-tagged dextransucrase Wc392-rDSR was produced in Lactococcus lactis. Purified enzyme was characterized using (14)C-sucrose radioisotope and reducing value-based assays, the former yielding K(m) and V(max) values of 14.7 mM and 8.2 μmol/(mg ∙ min), respectively, at the pH optimum of 5.4. The structure and size of in vitro dextran product was similar to dextran produced in vivo. Dextran (8.1% dry weight) was produced in wheat bran in 6 h using Wc392-rDSR. Bran with and without dextran was used in wheat baking at 20% supplementation level. Dextran presence improved bread softness and neutralized bran-induced volume loss, clearly demonstrating the potential of using dextransucrases in bran bioprocessing for use in baking.

  15. Induction Hardening of Ferromagnetic Bodies

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    č. 1 (2002), s. 28-29 ISSN 0340-3521 R&D Projects: GA ČR GA102/01/0184; GA MŠk ME 542 Grant - others:PSC(PL) 7T08603716 Keywords : Induction heating * induction hardening * ferromagnetic bodies Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Survival of Salmonella during baking of peanut butter cookies.

    Science.gov (United States)

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  17. Baking the first bread in space

    Science.gov (United States)

    1987-01-01

    This Getaway Special program is a joint venture between Spar, Monarch flour and Telesat, with Telesat being responsible for the design, manufacture and implementation of the equipment. The purpose of the experiment is to investigate the behavior of bread yeast in the absence of gravity and in the presence of normal atmospheric pressure. The proposed design mixes flour, water and yeast on-orbit, allows the mixture to prove and then bakes it. This paper outlines the development history of the experiment, the various test programs and some of the problems encountered, with their solutions.

  18. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  19. Studies on the Baking Properties of Several Proteins

    OpenAIRE

    筒井, 知己; 金井, 節子; ツツイ, トモミ; カナイ, セツコ; TOMOMI, TSUTSUI; SETSUKO, KANAI

    1993-01-01

    Functional properties and baking properties of several proteins were estimated. Casein and whey proteins indicated the highest emulsifying properties and the highest forming properties. ln baking, bread used these proteins also indicated the highest loaf volume. And the loaf volume increase of bread was negatively correlated to the hardness of the dough.

  20. Thermodynamics of bread baking: A two-state model

    Science.gov (United States)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  1. Bake-Out Mobile Controls for Large Vacuum Systems

    CERN Document Server

    Blanchard, S; Gomes, P; Pereira, H; Kopylov, L; Merker, S; Mikheev, M

    2014-01-01

    Large vacuum systems at CERN (Large Hadron Collider - LHC, Low Energy Ion Rings - LEIR...) require bake-out to achieve ultra-high vacuum specifications. The bake-out cycle is used to decrease the outgassing rate of the vacuum vessel and to activate the Non-Evaporable Getter (NEG) thin film. Bake-out control is a Proportional-Integral-Derivative (PID) regulation with complex recipes, interlocks and troubleshooting management and remote control. It is based on mobile Programmable Logic Controller (PLC) cabinets, fieldbus network and Supervisory Control and Data Acquisition (SCADA) application. The CERN vacuum installations include more than 7 km of baked vessels; using mobile cabinets reduces considerably the cost of the control system. The cabinets are installed close to the vacuum vessels during the time of the bake-out cycle. Mobile cabinets can be used in any of the CERN vacuum facilities. Remote control is provided through a fieldbus network and a SCADA application

  2. Kinetics of the crust thickness development of bread during baking.

    Science.gov (United States)

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh

    2014-11-01

    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  3. Impact of Scaled Technology on Radiation Testing and Hardening

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  4. Optimization of processing parameters in induction hardening using ...

    Indian Academy of Sciences (India)

    response surface methodology. 1. Introduction. Since 1980's the processes of surface strengthening (hardening) of steel with the use of high fre- quency induction (Miller & Lagoudas 1980) have found ever-increasing applications to improve the performance and life of parts used in aerospace and automobile engineering.

  5. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural char....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel.......This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural...

  6. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Science.gov (United States)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  7. Miniature bread baking as a timesaving research approach and mathematical modeling of browning kinetics

    NARCIS (Netherlands)

    Zhang, Lu; Putranto, Aditya; Zhou, Weibiao; Boom, Remko M.; Schutyser, Maarten A.I.; Chen, Xiao Dong

    2016-01-01

    Miniature bread baking is presented as an economical and timesaving laboratory approach to study the baking process in the present work. Results indicate that the miniature bread baking is essentially analogical to the baking process of regular-sized bread: quality-related properties of miniature

  8. Acute toxicity from baking soda ingestion.

    Science.gov (United States)

    Thomas, S H; Stone, C K

    1994-01-01

    Sodium bicarbonate is an extremely well-known agent that historically has been used for a variety of medical conditions. Despite the widespread use of oral bicarbonate, little documented toxicity has occurred, and the emergency medicine literature contains no reports of toxicity caused by the ingestion of baking soda. Risks of acute and chronic oral bicarbonate ingestion include metabolic alkalosis, hypernatremia, hypertension, gastric rupture, hyporeninemia, hypokalemia, hypochloremia, intravascular volume depletion, and urinary alkalinization. Abrupt cessation of chronic excessive bicarbonate ingestion may result in hyperkalemia, hypoaldosteronism, volume contraction, and disruption of calcium and phosphorus metabolism. The case of a patient with three hospital admissions in 4 months, all the result of excessive oral intake of bicarbonate for symptomatic relief of dyspepsia is reported. Evaluation and treatment of patients with acute bicarbonate ingestion is discussed.

  9. Transitional analysis of organic thin color filter layers in displays during baking process using multi-speckle diffusing wave spectroscopy

    Science.gov (United States)

    Park, Baek Sung; Hyung, Kyung Hee; Oh, Gwi Jeong; Jung, Hyun Wook

    2018-02-01

    The color filter (CF) is one of the key components for improving the performance of TV displays such as liquid crystal display (LCD) and white organic light emitting diodes (WOLED). The profile defects like undercut during the fine fabrication processes for CF layers are inevitably generated through the UV exposure and development processes, however, these can be controlled through the baking process. In order to resolve the profile defects of CF layers, in this study, the real-time dynamic changes of CF layers are monitored during the baking process by changing components such as polymeric binder and acrylate. The motion of pigment particles in CF layers during baking is quantitatively interpreted using multi-speckle diffusing wave spectroscopy (MSDWS), in terms of the autocorrelation function and the characteristic time of α-relaxation.

  10. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  11. Induction Hardening of External Gear

    Science.gov (United States)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  12. Optimization of resistively hardened latches

    International Nuclear Information System (INIS)

    Gagne, G.; Savaria, Y.

    1990-01-01

    The design of digital circuits tolerant to single-event upsets is considered. The results of a study are presented on which an analytical model was used to predict the behavior of a standard resistively hardened latch. It is shown that a worst case analysis for all possible single-event upset situations (on the latch or in the logic) can be derived from studying the effects of a transient disturbed write cycle. The existence of an intrinsic minimum write period to tolerate a transient of a given duration is also demonstrated

  13. Baking properties and biochemical composition of wheat flour with bran and shorts.

    Science.gov (United States)

    Kaprelyants, Leonid; Fedosov, Sergey; Zhygunov, Dmytro

    2013-11-01

    Bran, being a by-product of grain grinding, is characterised by a high biological value and is thus widely used in food production. In this study, different streams of bran and shorts from the wheat graded milling process were incorporated into wheat flour at levels of 5, 11, 17 and 23% (w/w) to investigate their influence on the nutritional and baking properties of flour. Bran and shorts streams improved the baking properties of flour blends. The best result in the case of graded flour blends with different bran products was obtained at the 95:5 ratio. The products containing peripheral parts of grain had higher proteolytic enzyme and superoxide dismutase activities and lower trypsin inhibitor content and β-amylase activity compared with graded flour. Streams of wheat milled fractions including peripheral parts of grain increase the content of bioactive substances and dietary fibre in blends with wheat graded flour. © 2013 Society of Chemical Industry.

  14. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    after the deposition of TiN hard coatings on steel substrates. Influences of both the coating properties and the substrate properties are discussed in dependence on the parameters of induction heating. Thereby the heating time, heating atmosphere and the power input into the specimen are changed......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD....... The effect of induction surface hardening on the properties of the coating-substrate-systems is mainly characterized using investigations of microstructure and chemical composition as well as measurements of hardness and residual stresses in dependence on the distance from the surface. Furthermore...

  15. Experimentally supported mathematical modeling of continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette

    and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing......The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... on mass transfer was examined through comparison of different modeling set-ups and experimental data. It was found that while the baking tray is likely to reduce the evaporation from the bottom surface, it is not correct to assume that no evaporation takes place at the covered surface. Parallel...

  16. Characteristic coloring curve for white bread during baking.

    Science.gov (United States)

    Onishi, Masanobu; Inoue, Michiko; Araki, Tetsuya; Iwabuchi, Hisakatsu; Sagara, Yasuyuki

    2011-01-01

    The effect of heating conditions on the crust color formation was investigated during the baking of white bread. The surface temperatures were monitored with thermocouples attached to the inside surface of the loaf pan cover. The trace of the surface color in the L(*)a(*)b(*) color coordinate system is defined as the characteristic coloring curve. The overall baking process was classified into the following four stages based on the characteristic coloring curve: i) pre-heating (surface temperature caramelization (150-200 °C), and iv) over-baking (surface temperature>200 °C). A linear relationship was observed between the L(*) decrease and the increase in weight loss of a sample at each oven air temperature. The L(*) value appeared to be suitable as an indicator to control the surface color by baking conditions.

  17. MedlinePlus: Baked Pork Chops With Apple Cranberry Sauce

    Science.gov (United States)

    ... gov/recipe/bakedporkchopswithapplecranberrysauce.html Baked Pork Chops With Apple Cranberry Sauce To use the sharing features on ... 4 cup low-sodium chicken broth 1 medium apple, peeled and grated (about 1 cup) (use a ...

  18. Development and Evaluation of Charcoal-Powered Bread Baking Oven

    Directory of Open Access Journals (Sweden)

    Alimasunya E

    2016-10-01

    Full Text Available Charcoal-powered bread baking oven was developed and evaluated with functional efficiencies of 91.2% and 92.1% for baking dough of mass 0.5kg and 1.5 kg to bread at BP of 27.7minutes, 35.9 minutes with the baking temperature (BT of 153.8 oC and 165.9 oC respectively. Baking temperature-heating interval of the oven as computed at 100 oC at 20 minutes at charcoal emitted heat of 861000 KJ. The oven has the capacity of generating 455.9 oC at 270 minutes time interval. The oven has bread baking capacities of 56, 36, 28, 22 and 18 pieces of bread per batch operation using dough mass of 0.5kg, 0.75kg, 1.00kg, 1.250kg and 1.500kg respectively. It is sensitive to the baking time and temperature in relation to dough mass with resolution value of 0.22. Charcoal-powered oven, is cheap and efficient and can be used both in the rural and urban settlement for domestic consumption and smallscale business.

  19. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental result of poloidal limiter baking of Aditya tokamak

    International Nuclear Information System (INIS)

    Jadeja, K.A.; Arambhadiya, B.G.; Bhatt, S.B.; Bora, D.

    2005-01-01

    In tokamak Aditya, Poloidal limiter function as the operational limiter and are subjected to very high particles load and heat flux during plasma discharge. In addition, Poloidal limiter is the first material surface to come in contact with the hot plasma. In plasma discharge, the impurity generations from limiter are mostly by adsorbed particles. The baking of limiter provides high degassing rate and thermal desorption of adsorbed particles of limiter to reduce impurities from the limiter tiles. The series of experiments are done with different conditions like, Baking of limiter SS ring by heating element with and without limiter tiles in atmosphere and vacuum. Than Poloidal limiter is structured with 14 numbers of graphite tiles and electrical isolated to the vessel and support structure. As a heating element and for electrical isolation, Nychrome wire and ceramic block with ceramic tubes are used. In addition, Thermo couple and two DC power supply (0-10 Ampere) are used for limiter baking. Mass analyzer gives partial pressures of different species to observe effect of limiter baking. For the period of Poloidal limiter baking in Aditya, the partial pressures of different species like hydrogen, water vapor, and oxygen are extremely increased with time duration. This paper presents series of experimental results of poloidal limiter baking. (author)

  1. Fibre-rich additives--the effect on staling and their function in free-standing and pan-baked bread.

    Science.gov (United States)

    Purhagen, Jeanette K; Sjöö, Malin E; Eliasson, Ann-Charlotte

    2012-04-01

    The use of dietary fibre in bread products is increasing because of consumer demand for healthier products. However, an increase in dietary fibre level changes the rheological properties of the dough and also the quality properties of the final bread product. In this study, effects on dough and bread staling were followed after replacing 3% of wheat flour by fibre-rich additives (fine durum, oat bran, rye bran and wheat bran). Free-standing and pan-baked loaves were baked to compare the influence of baking method and loaf shape. All additives increased dough stability, with oat bran giving the greatest stability and longest development time. Parameters measured during storage were distribution, migration and loss of water, cutability, crumbliness, firmness and springiness. Furthermore, amylopectin retrogradation and amylase-lipid complex formation were assessed. Oat bran provided similar or better results than the control for all staling parameters, while other additives gave no general improvements. Cutability reached a plateau when crumb firmness was ≥ 4 N. Small amounts of fibre-rich additives had a significant influence on staling. However, the baking method (free-standing or pan-baked bread) had a greater impact on staling than the additives, thus displaying the importance of the baking method. Cutability was found to be related to firmness. Copyright © 2011 Society of Chemical Industry.

  2. Mechanisms and environmental signals triggering frost hardening ...

    Indian Academy of Sciences (India)

    2004-10-28

    Oct 28, 2004 ... Home; Journals; Journal of Biosciences; Volume 29; Issue 4. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening ... Keywords. Cold acclimation of plants; environmental signals; frost hardening; photoperiod; phytochrome; Scots pine ...

  3. Sourdough products for convenient use in baking.

    Science.gov (United States)

    Brandt, Markus J

    2007-04-01

    Sourdough fermentations require a specific knowledge on the effects of process parameters, raw materials and micro-organisms in order to obtain a specific, reproducible sourdough and bread quality. This knowledge is not necessarily available in bakeries. Sourdough starter cultures, either active sourdoughs (Reinzuchtsauerteig) or freeze-dried micro-organisms are used to start sourdough fermentation with the required micro-flora. As sourdough fermentation is a labour-intensive and a time-consuming process, a growing demand for convenient products arised early. First organic acids (lactic acid, acetic acid, citric acid) and mixtures thereof came in use. These agents were used directly without or in combination with a sourdough; however, flavour and taste of the resulting breads were unsatisfactory. Based on modified and optimized traditional sourdough processes, dried, pasty and liquid sourdoughs were developed. Companies which produce such ready-to-use products, claim for a convenient, direct production of baked goods in constant quality, in combination with all advantages of a biological sourdough fermentation, e.g. flavour and taste, fresh keeping and prolonged microbial shelf-life. Currently, a broad variety of sourdough products with different fermented cereals is available on the market. In order to obtain a stable product, it is a necessity to inactivate the sourdough micro-biota by e.g. pasteurization, drying or autosterilization.

  4. The motivational benefits of a dentifrice containing baking soda and hydrogen peroxide.

    Science.gov (United States)

    Fischman, S L; Kugel, G; Truelove, R B; Nelson, B J; Cancro, L P

    1992-01-01

    Twenty-two family practice dentists, in a large metropolitan area, were recruited to act as independent examiners in a study to evaluate the compliance of their patients to accept a good oral hygiene regimen with the use of a fluoride dentifrice, containing hydrogen peroxide and baking soda, dispensed from a dual dispensing package. To evaluate compliance, the dentists attended an orientation seminar and were trained to assess gingival health using the CPITN periodontal probe. Each dentist evaluated the gingival health status of five to seven of his own patients, initially and after one and three months of product use following hygiene instruction and product assignment. One-hundred and thirty-one patients successfully completed the study. After one month of using the hydrogen peroxide/baking soda toothpaste, the mean reduction in bleeding sites was 53%; at three months the reduction was 62%. The hydrogen peroxide/baking soda dentifrice was well accepted by dentist and patient, and a discernible improvement in oral health of the patients was achieved when the product was used in a conscientious oral hygiene program.

  5. Radiation hardening of smart electronics

    International Nuclear Information System (INIS)

    Mayo, C.W.; Cain, V.R.; Marks, K.A.; Millward, D.G.

    1991-02-01

    Microprocessor based ''smart'' pressure, level, and flow transmitters were tested to determine the radiation hardness of this class of electronic instrumentation for use in reactor building applications. Commercial grade Complementary Metal Oxide Semiconductor (CMOS) integrated circuits used in these transmitters were found to fail at total gamma dose levels between 2500 and 10,000 rad. This results in an unacceptably short lifetime in many reactor building radiation environments. Radiation hardened integrated circuits can, in general, provide satisfactory service life for normal reactor operations when not restricted to the extremely low power budget imposed by standard 4--20 mA two-wire instrument loops. The design of these circuits will require attention to vendor radiation hardness specifications, dose rates, process control with respect to radiation hardness factors, and non-volatile programmable memory technology. 3 refs., 2 figs

  6. Structural aspects of materials hardening

    International Nuclear Information System (INIS)

    Naberenkov, A.V.; Fabritsiev, S.A.

    1996-01-01

    Dispersion-strengthened (DS) and precipitation-hardened (PH) copper-based alloys are suggested to be used for energy-strained components in the ITER discharge chambers. But, the stability of their properties remains still uncertain. It is evident, that of critical importance here is the stability of the composition and the morphology of disperse particles under irradiation. Also of importance is the coherent or noncoherent character of the impurity particle bonding with the lattice. In this work the impact of the size and density of fine inclusions into the matrix on the material yield strength for the DS alloys Cu-Mo and MAGT-0.2 was analyzed. The particle density is shown to be crucial in strengthening. At the same time the bonding of particles with the matrix is of minor importance. (orig.)

  7. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  8. Evidence for biofilm acid neutralization by baking soda.

    Science.gov (United States)

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by

  9. Morphological Evaluation of Variously Intercalated Pre-baked Clay

    Directory of Open Access Journals (Sweden)

    Ullah Hameed

    2014-06-01

    Full Text Available The use of porous materials is enjoying tremendous popularity and attention of the advance scientific communities due to their excellent adsorptive and catalytic activities. Clays are one of the most important candidates in the porous community which shows the above mentioned activities after modifing with a different intercalating agent. The paper is focused on the infiuence of some inorganic intercalating agents (NaOH on the morphology of the variously intercalated clay samples. The alkali metal was used as the inorganic intercalating agent. The effect of intercalation temperature, intercalation agent concentration and intercalation time on the pre-baked clay morphology were also part of the study. Scanning electron microscopy (SEM study was performed to evaluate the morphological changes of the resultant intercalates. Different morphological properties were improved significantly in the case of the inorganically modified clay samples. Thus, such intercalations are suggested to be effective if the clays under study are to be used for different industrial process at elevated conditions.

  10. Effect of baking soda in dentifrices on plaque removal.

    Science.gov (United States)

    Myneni, Srinivas R

    2017-11-01

    The prevention of dental caries and periodontal diseases targets control of dental plaque biofilm. In this context, chemical agents could represent a valuable complement to mechanical plaque control by reducing and controlling biofilm formation. The literature on the effectiveness of different dentifrices has not, however, been carefully categorized. A lack of consensus exists among dental professionals on a recommendation for a universal dentifrice for plaque control. The authors reviewed the scientific data on the different properties of sodium bicarbonate (baking soda)-containing dentifrices and their effectiveness in plaque removal. The results of the literature search show that baking soda-containing dentifrices are ideal candidates to be considered as a universal dentifrice because baking soda is inexpensive, abundant in supply, highly biocompatible, exhibits specific antibacterial properties to oral microorganisms, has low abrasivity, and is effective in plaque biofilm removal. Although some patients may benefit from desensitizing or high fluoride-containing dentifrices, those with routine needs may find using dentifrices containing baking soda and fluoride effective. Baking soda and fluoride dentifrices, therefore, may perhaps be considered as a criterion standard for patients with routine oral hygiene needs. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  11. Baking system for vacuum components in INDUS-2

    International Nuclear Information System (INIS)

    Bhange, Nilesh J.; Bhatnagar, Prateek; Shukla, S.K.

    2005-01-01

    Optimized bake-out procedures are very important for the overall reliability of vacuum system. In this process the UHV components like Sputter ion pump (SIP), Titanium sublimation pump (TSP) are subjected to temperature rise for sufficiently long period of time. Baking is necessary for obtaining low out gassing rates. In order to provide controlled baking of UHV (Ultra High Vacuum) components for INDUS-II an intelligent ON/OFF control system was needed. For that purpose distributed control system was suitable. For fulfillment of this need modular baking system was developed. This system contains Temperature controller unit (TCU), Pressure Monitoring Unit (PMU), and Temperature control and pressure Monitoring Interface Software (TCPMIS). Each TCU is an eight channel temperature controlling unit. PMU is eight channel pressure monitoring unit to which analog data from gauges like Penning, BA Gauge controllers is given. TCPMIS is a user interface software developed for, controlling up to 5 TCU's. In this way 40 channel temperature control, data logging of 40 channel temperature and logging of eight channel pressures was realized. The present paper describes details about computer controlled baking system. (author)

  12. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  13. Development and optimization of operational parameters of a gas-fired baking oven

    Directory of Open Access Journals (Sweden)

    Afolabi Tunde MORAKINYO

    2017-12-01

    Full Text Available This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The physical properties of the baked breads were measured and analyzed using Duncan multiple range test of one way ANOVA at significant level of p<0.05. These properties were optimized to determine the optimum baking temperature using 3D surface response plot of Statistical Release 7. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 12.5 kg/hr, 87.8%, 12.5 g, 200-220oC, respectively. The physical properties of baked bread dough were found to correspond with the imported product (control sample. These results showed that, the developed gas-fired baking oven can be adopted for baking of bread at domestic and commercial levels.

  14. Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products.

    Science.gov (United States)

    Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2015-07-01

    The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  16. New baking system for the RFX vacuum vessel

    International Nuclear Information System (INIS)

    Collarin, P.; Luchetta, A.; Sonato, P.; Toigo, V.; Zaccaria, P.; Zollino, G.

    1996-01-01

    A heating system based on eddy currents has been developed for the vacuum vessel of the RFX Reversed Field Pinch device. After a testing phase, carried out at low power, the final power supply system has been designed and installed. It has been used during last year to bake out the vessel and the graphite first wall up to 320 degree C. Recently the heating system has been completed with a control system that allows for baking sessions with an automatic control of the vacuum vessel temperature and for pulse sessions with a heated first wall. After the description of the preliminary analyses and tests, and of the main characteristics of the power supply and control systems, the experimental results of the baking sessions performed during last year are presented. 6 refs., 7 figs

  17. New baking system for the RFX vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Luchetta, A.; Sonato, P.; Toigo, V.; Zaccaria, P.; Zollino, G. [Universita di Padova (Italy)

    1996-12-31

    A heating system based on eddy currents has been developed for the vacuum vessel of the RFX Reversed Field Pinch device. After a testing phase, carried out at low power, the final power supply system has been designed and installed. It has been used during last year to bake out the vessel and the graphite first wall up to 320{degree}C. Recently the heating system has been completed with a control system that allows for baking sessions with an automatic control of the vacuum vessel temperature and for pulse sessions with a heated first wall. After the description of the preliminary analyses and tests, and of the main characteristics of the power supply and control systems, the experimental results of the baking sessions performed during last year are presented. 6 refs., 7 figs.

  18. Glucoamylase: a current allergen in the baking industry.

    Science.gov (United States)

    Simonis, Bettina; Hölzel, Claus; Stark, Ulrike

    Over a 10 year period a decline in the rate of sensitizations to α-amylase (Aspergillus oryzae) was observed in bakers investigated for allergic obstructive airway disease. At the same time, glucoamylase (Aspergillus niger) was identified as the currently the most relevant allergen in sensitizations to enzymes in the baking industry. The aim of the present study was to investigate whether, over a period of 10 years and in the case of new-onset disease, there had been any change in sensitization and exposure rates to enzymes used in the baking industry. Total immunoglobulin-E (IgE) levels and specific IgE to baking enzymes were determined in 433 bakers investigated in the Baker's Asthma prevention program (Bäckerasthma Präventionsprogramm, BAP) of the German Social Accident Insurance Institution for the foodstuffs and catering industry (Berufsgenossenschaft Nahrungsmittel und Gastgewerbe, BGN). At the same time personal dust exposure, including assessment of the level of α-amylase exposure in the area of exposure, was recorded. Serological investigations revealed a significant decline in the rate of sensitization to α-amylase from 26 % to 13 %. At 28 %, the rate of sensitization to the baking enzyme glucoamylase was significantly higher than to cellulase (16 %) and α-amylase among subjects in 2010. Multiple sensitizations to all three baking agents are common. In total, 30 % of affected bakers are currently sensitized to at least one of the baking enzymes investigated. Data from individual dust measurements revealed a decline in α-amylase exposure while overall dust exposure remained almost unchanged. Today, 11 % fewer bakers are exposed to α-amylase compared with ten years previously and, at the same time, enzyme concentrations in exposed bakers have dropped significantly. The high sensitization rate to glucoamylase in affected bakers gives cause to investigate exposure levels in bakeries and to assess sensitizations in the context of occupational disease

  19. The influence of loading rates on hardening effects in elasto/viscoplastic strain-hardening materials

    Science.gov (United States)

    De Angelis, Fabio; Cancellara, Donato; Grassia, Luigi; D'Amore, Alberto

    2018-01-01

    In this paper the influence of increasing loading rates on hardening effects is analyzed for rate-dependent elastoplastic materials. The effects of different loading rates on hardening rules are discussed with regard to the constitutive behavior of strain-hardening materials in elasto/viscoplasticity. A suitable procedure for the numerical simulation of rate-sensitive material behavior is illustrated. A comparative analysis is presented on constitutive relations in strain-hardening plasticity without rate effects and with rate effects in order to show the different role played by hardening rules in the rate-sensitivity analysis of elasto/viscoplastic strain-hardening materials. By reporting suitable numerical simulations for the adopted constitutive relations it is shown that when the rate of application of the loading is increased the influence of hardening has a different effect in the mechanical behavior of structures. Computational results and applications are finally illustrated in order to show numerically the different role played by hardening on the plastic strains when the loading rates are incremented for elasto/viscoplastic strain-hardening materials and structures.

  20. Microstrain in dispersion-hardened steels

    International Nuclear Information System (INIS)

    Bokuchava, G.D.; Papushkin, I.V.; Sumin, V.V.; Aznabaev, D.; Mukhametuly, B.; Balagurov, A.M.; Sheptyakov, D.V.

    2013-01-01

    Using high-resolution neutron diffraction, microstrain was investigated in three series of samples of stainless austenitic dispersion-hardened steels, which are used as various structural reactor components. The effect of temperature and duration of heat treatment on the precipitation of dispersion-hardened phase particles, as well as on lattice parameter changes and microstrain, was studied. In all studied steels an increase in microstrain at coherence failure was observed

  1. Decline in Radiation Hardened Microcircuit Infrastructure

    Science.gov (United States)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  2. Microstrain in dispersion-hardened steels

    Science.gov (United States)

    Bokuchava, G. D.; Papushkin, I. V.; Sumin, V. V.; Aznabayev, D.; Mukhametuly, B.; Balagurov, A. M.; Sheptyakov, D. V.

    2013-03-01

    Using high-resolution neutron diffraction, microstrain was investigated in three series of samples of stainless austenitic dispersion-hardened steels, which are used as various structural reactor components. The effect of temperature and duration of heat treatment on the precipitation of dispersion-hardened phase particles, as well as on lattice parameter changes and microstrain, was studied. An increase in microstrain upon coherence failure was observed in all the steels.

  3. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  4. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  5. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  6. Hardening of cutting tool inserts by ion implantation

    International Nuclear Information System (INIS)

    Zlobin, V.N.; Bannikov, M.G.; Draper, P.H.; Zotov, A.V.

    2001-01-01

    Surface hardening has long been recognized as an important method of increasing the integrity and life of cutting tools. In this work we report preliminary investigations of hardening of conventional hard metal tools by ion implantation Three types of mixed carbide tool inserts were treated by bombardment with 40kV ions of Al, Ti, Zr or W in an ambient of Ar or N/sub 2/, with doses of up to 13*10/sup 17/ ions/cm/sup 2/. The samples were monitored by micro-hardness measurements. Complex behaviors as a function of the implantation dose/time have been observed, and are commented on in terms of the lattice disruption caused by the bombardment. Hardness increments of up to 22 % have been obtained using an ion implanter of industrial size, and cutting tests have shown an improvement, by a factor of three, in the life of these treated tools. (author)

  7. Effect of Hydrocolloids and Emulsifiers on Baking Quality of Composite Cassava-Maize-Wheat Breads

    Science.gov (United States)

    Eduardo, Maria; Ahrné, Lilia

    2014-01-01

    Cassava is widely available worldwide but bread quality is impaired when cassava is used in the bread formulation. To overcome this problem, different improvers were tested in the preparation of composite cassava-maize-wheat (CMW) breads. Emulsifiers, diacetyl tartic acid ester of monoglycerides (DATEM), sodium stearoyl-2-lactylate (SSL), and lecithin (LC); and hydrocolloids, carboxymethylcellulose (CMC) and high-methylated pectin (HM pectin) were added during dough preparation of the composite flours (cassava-maize-wheat, 40 : 10 : 50). Each emulsifier was tested in combination with the hydrocolloids at levels of 0.1, 0.3, and 0.5% while hydrocolloids were used at a level of 3%. Bread quality attributes such as specific loaf volume, crust colour, crumb moisture, and firmness were measured. The specific volume of the fresh breads significantly improved with the addition of hydrocolloids (7.5 and 13%) and in combination with emulsifiers (from 7.9 to 27%) compared with bread produced without improvers. A significant improvement of brownness index and firmness of the composite flours breads was achieved with the addition of hydrocolloids and emulsifiers. The results show that emulsifiers and hydrocolloids can significantly improve the baking quality of CMW breads and thereby enhance the potential for using locally produced flours in bread baking. PMID:26904634

  8. Effect of Hydrocolloids and Emulsifiers on Baking Quality of Composite Cassava-Maize-Wheat Breads

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2014-01-01

    Full Text Available Cassava is widely available worldwide but bread quality is impaired when cassava is used in the bread formulation. To overcome this problem, different improvers were tested in the preparation of composite cassava-maize-wheat (CMW breads. Emulsifiers, diacetyl tartic acid ester of monoglycerides (DATEM, sodium stearoyl-2-lactylate (SSL, and lecithin (LC; and hydrocolloids, carboxymethylcellulose (CMC and high-methylated pectin (HM pectin were added during dough preparation of the composite flours (cassava-maize-wheat, 40 : 10 : 50. Each emulsifier was tested in combination with the hydrocolloids at levels of 0.1, 0.3, and 0.5% while hydrocolloids were used at a level of 3%. Bread quality attributes such as specific loaf volume, crust colour, crumb moisture, and firmness were measured. The specific volume of the fresh breads significantly improved with the addition of hydrocolloids (7.5 and 13% and in combination with emulsifiers (from 7.9 to 27% compared with bread produced without improvers. A significant improvement of brownness index and firmness of the composite flours breads was achieved with the addition of hydrocolloids and emulsifiers. The results show that emulsifiers and hydrocolloids can significantly improve the baking quality of CMW breads and thereby enhance the potential for using locally produced flours in bread baking.

  9. Enhancement of plaque removal by baking soda toothpastes from less accessible areas in the dentition.

    Science.gov (United States)

    Thong, S; Hooper, W; Xu, Y; Ghassemi, A; Winston, A

    2011-01-01

    To determine if baking soda toothpastes are relatively more effective than non-baking soda toothpastes in promoting plaque removal from less accessible sites in the dentition. Several single-brushing comparisons of baking soda and non-baking soda toothpastes for their overall ability to remove plaque have been published. In this study, individual comparisons of these published data, comparing the plaque removal performance of baking soda and non-baking soda toothpastes at various sites in the dentition, were examined to see if there were any site-dependant performance trends. The site-specific single-brushing data were then combined and analyzed in two ways. Meta-analyses of the clinical studies were performed to compare baking soda's relative plaque removal advantage at various sites in the mouth using paired t-testing at p baking soda toothpastes were graphically compared with plaque index reductions due to brushing with non-baking soda dentifrices. The percent relative plaque removal advantage for baking soda toothpastes at various sites were plotted against the reduction in plaque index due to brushing with non-baking soda toothpastes. Individual comparisons showed that brushing with the toothpastes containing baking soda generally removed significantly more plaque from each site than brushing with toothpastes without baking soda. The relative efficacy advantage for baking soda toothpastes was consistently higher at sites where the non-baking soda toothpastes removed less plaque. Meta-analytical comparisons confirmed baking soda toothpastes to be relatively more effective in enhancing plaque removal from sites where less plaque was removed compared to brushing with non-baking soda toothpastes (p baking soda toothpastes' relative plaque removal advantage could be seen to increase hyperbolically with decreasing plaque removal by the non-baking soda toothpastes with which they were compared. We presuppose that the reason less plaque is removed by non-baking soda

  10. Cyber situational awareness and differential hardening

    Science.gov (United States)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  11. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  12. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  13. EFFECT OF PAINT-BAKE LIKE TREATMENT ON MECHANICAL ...

    African Journals Online (AJOL)

    HOD

    EFFECT OF PAINT-BAKE LIKE TREATMENT ON MECHANICAL PROPERTIES OF MG-ZN-CA ALLOY. F. Bakare, et al. Nigerian Journal of Technology,. Vol. 37, No. 1, January 2018 125 oxidation resistance [7-11]. ..... mechanical properties in Mg–6 mass %Zn alloys by combined addition of Ca and Ce," Materials. Science ...

  14. On Baking a Cake: The Phenomenological Method in Positive ...

    African Journals Online (AJOL)

    The field of positive psychology has burgeoned since its formal inception with Martin Seligman's 1998 APA presidential address. Aimed at better baking the positive half of the psychology “cake”, the gains in research and practice over the past decade and a half have been substantial. Among the chief reasons for the rapid ...

  15. Numerical and experimental characterization of a batch bread baking oven

    International Nuclear Information System (INIS)

    Ploteau, J.P.; Nicolas, V.; Glouannec, P.

    2012-01-01

    This study deals with the thermal characterization of an electrical static oven used for bread baking. The heating is provided by natural convection, infrared radiation and conduction with a cement slab. The paper describes a methodology to apprehend the heat flux which is applied to the products during baking. The oven was experimentally investigated and a finite element numerical model is established. The monitoring of temperatures at various points in the installation and of electrical power is carried out. Then, to characterize thermal exchanges around the bread during curing, thermal responses of a cylindrical sample is also measured. The numerical model made it possible to calculate the heat flux exchanges with the product, while separating the contributions of convection and radiation. The comparison of simulated responses with experimental data shows the relevance of the model. - Highlights: ► This study concerns the thermal characterization of an electric static oven used for bread baking. ► An original, experimental and numerical approach of thermal problem is proposed. ► Contributions by radiation and convection are separated. ► The goal is to provide boundary conditions for numerical models of bread baking. ► Results are encouraging to optimize energy consumption in industrial oven.

  16. Potassium bromate content of some baked breads sold in Kano ...

    African Journals Online (AJOL)

    Background: Potassium bromate is an additive used by some bakers to make the bread rise rapidly, create a good texture in the finished product and to give bulkiness to the dough. Objective: The main objective of this work was to assess the potassium bromate residues of some baked breads sold in some selected local ...

  17. Food Production, Management, and Services. Baking. Teacher Edition. Second Edition.

    Science.gov (United States)

    Gibson, LeRoy

    These instructional materials are intended for a course on food production, management, and services involved in baking. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; 13 references; and a…

  18. Thermal degradation of deoxynivalenol during maize bread baking.

    Science.gov (United States)

    Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H

    2012-01-01

    The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.

  19. Soft wheat quality characteristics required for making baking powder biscuits

    Science.gov (United States)

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  20. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  1. Arabinoxylan content and characterisation throughout the bread-baking process

    Science.gov (United States)

    End-use quality of wheat (Triticum aestivum L.) is influenced in a variety of ways by non-starch polysaccharides, especially arabinoxylans (AX). The assessment of AX content and structural properties is often performed on flour and extrapolated to predict the role that AX may play in baked products....

  2. Increasing productivity based on quality management: Baked goods sector example

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper investigates productivity and quality management challenges in the food industry, illustrated by a case study of an SME-sized company in the Danish baked goods sector. Companies in the food industry are faced with challenges related to short shelf-life and changing customer demands...

  3. Baking of SST-1 vacuum vessel modules and sectors

    International Nuclear Information System (INIS)

    Pathan, Firozkhan S; Khan, Ziauddin; Yuvakiran, Paravastu; George, Siju; Ramesh, Gattu; Manthena, Himabindu; Shah, Virendrakumar; Raval, Dilip C; Thankey, Prashant L; Dhanani, Kalpesh R; Pradhan, Subrata

    2012-01-01

    SST-1 Tokamak is a steady state super-conducting tokamak for plasma discharge of 1000 sec duration. The plasma discharge of such long time duration can be obtained by reducing the impurities level, which will be possible only when SST-1 vacuum chamber is pumped to ultra high vacuum. In order to achieve UHV inside the chamber, the baking of complete vacuum chamber has to be carried out during pumping. For this purpose the C-channels are welded inside the vacuum vessel. During baking of vacuum vessel, these welded channels should be helium leak tight. Further, these U-channels will be in accessible under operational condition of SST-1. So, it will not possible to repair if any leak is developed during experiment. To avoid such circumstances, a dedicated high vacuum chamber is used for baking of the individual vacuum modules and sectors before assembly so that any fault during welding of the channels will be obtained and repaired. This paper represents the baking of vacuum vessel modules and sectors and their temperature distribution along the entire surface before assembly.

  4. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II

    NARCIS (Netherlands)

    Nguyen, H.T.; Fels, van der Ine; Boekel, van Tiny

    2017-01-01

    This study investigated acrylamide and 5-hydroxymethylfurfural (HMF) formation during biscuit baking. Four types of wheat flour with different molar ratios of total fructose and glucose to asparagine were investigated. Nevertheless, the molar ratio in all four biscuit doughs exceeded one after

  5. Genetic diversity of gliadin pattern, morphological traits and baking ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... diversity of 102 double haploids of wheat (sent from. CIMMYT) through studying gliadin protein ... biomass, yield per plant, harvest index, number of grains per spike, spike density, spike length, plant ... per spike, also 6 baking quality traits, protein content, gluten index,. SDS sedimentation, sedimentation ...

  6. Some observations on time-hardening and strain-hardening rules for creep in Zircaloy-2

    International Nuclear Information System (INIS)

    Lucas, G.E.; Pelloux, R.M.N.

    1981-01-01

    The role of accurate creep prediction in zirconium alloys, and the Zircaloys in particular, has become increasingly important in light water reactor core component design and behavior analyses. A study was made of the applicability of time-hardening and strain-hardening rules to describe creep deformation in Zircaloy-2 under variable stress and temperature conditions. Variable stress and variable temperature creep data were compared to isotonic (iso-stress) and isothermal data in the stress regime 69 to 172 MPa and the temperature regime 325 to 400/degree/C. It was observed that creep deformation under these variable conditions does not follow a time-hardening rule. This paper formulates strain-hardening rule, which describes well the variable temperature creep deformation at temperatures up to 375/degree/C. At 400/degree/C, however, the strain-hardening rule broke down because of a nonnegligible recovery rate. 28 refs

  7. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, C., E-mail: csoriano@tekniker.es [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain); Leunda, J.; Lambarri, J.; Garcia Navas, V.; Sanz, C. [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain)

    2011-06-01

    A study of the laser surface hardening process of two austempered ductile iron grades, with different austempering treatments has been carried out. Hardening was performed with an infrared continuous wave Nd:YAG laser in cylindrical specimens. The microstructure of the laser hardened samples was investigated using an optical microscope, microhardness profiles were measured and surface and radial residual stresses were studied by an X-ray diffractometer. Similar results were achieved for both materials. A coarse martensite with retained austenite structure was found in the treated area, resulting in a wear resistant effective layer of 0.6 mm to 1 mm with a microhardness between 650 HV and 800 HV. Compressive residual stresses have been found at the hardened area being in agreement with the microhardness and microstructural variations observed. The achieved results point out that the laser surface hardening is a suitable method for improving the mechanical properties of austempered ductile irons.

  8. Computational fluid dynamics modeling of bun baking process under different oven load conditions.

    Science.gov (United States)

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C

    2014-09-01

    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.

  9. [Optimization of stir-baking with vinegar technology for Curcumae Radix by orthogonal test].

    Science.gov (United States)

    Shi, Dianhua; Su, Benzheng; Sun, Lili; Zhang, Jun; Qu, Yongsheng

    2011-05-01

    To optimize the stir-baking with vinegar technology for Curcumae Radix. The intrinsic quality (the content of Curcumin) and traditional outward appearance were chosen as indexes. The best technology was determined by orthogonal test L9 (3(4)). The factors of the moistening time, stir-baking temperature and stir-baking time were investigated. The optimal technology was as follows: the quantity of vinegar was 10%, the moistening time was 10 min, the stir-baking temperature was 130 degrees C and the stir-baking time was 10 min. The optimal stir-baking with vinegar technology for Curcumae Radix is reasonable, which can be used to guide the standardized production of Curcumae Radix stir-baked with vinegar.

  10. Dynamics of gas cell coalescence during baking expansion of leavened dough.

    Science.gov (United States)

    Miś, Antoni; Nawrocka, Agnieszka; Lamorski, Krzysztof; Dziki, Dariusz

    2018-01-01

    The investigation of the dynamics of gas cell coalescence, i.e. a phenomenon that deteriorates the homogeneity of the cellular structure of bread crumb, was carried out performing simultaneously measurements of the dough volume, pressure, and viscosity. It was demonstrated that, during the baking expansion of chemically leavened wheat flour dough, the maximum growth rate of the gas cell radius determined from the ratio of pressure exerted by the expanded dough to its viscosity was on average four-fold lower than that calculated from volume changes in the gas phase of the dough. Such a high discrepancy was interpreted as a result of the course of coalescence, and a formula for determination of its rate was developed. The coalescence rate in the initial baking expansion phase had negative values, indicating nucleation of newly formed gas cells, which increased the number of gas cells even by 8%. In the next baking expansion phase, the coalescence rate started to exhibit positive values, reflecting dominance of the coalescence phenomenon over nucleation. The maximum coalescence rates indicate that, during the period of the most intensive dough expansion, the number of gas cells decreased by 2-3% within one second. At the end of the formation of bread crumb, the number of the gas cells declined by 55-67% in comparison with the initial value. The correctness of the results was positively verified using X-ray micro-computed tomography. The developed method can be a useful tool for more profound exploration of the coalescence phenomenon at various stages of evolution of the cellular structure and its determinants, which may contribute to future development of more effective methods for improving the texture and sensory quality of bread crumb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Anisotropic Hardening Model for Springback Prediction

    International Nuclear Information System (INIS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-01-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test

  12. The Impact of Baked Egg and Baked Milk Diets on IgE- and Non-IgE-Mediated Allergy.

    Science.gov (United States)

    Upton, Julia; Nowak-Wegrzyn, Anna

    2018-03-08

    Baked milk (BM) and baked egg (BE) diets are increasingly used in the management of milk and egg allergy, rather than avoidance. Children with tolerance versus reactivity to BM and BE may have smaller skin prick test and lower specific IgE, and BM-tolerant children have less basophil reactivity and more peripheral T regulatory cells. However, most milk- and egg-allergic children tolerate BM and BE and an individual's reactivity is unpredictable. Non-reactivity is due to conformational changes in the allergens. Significant differences in the published advice about methods of introduction exist from graded introduction at home to a medically supervised full dose. These approaches carry different risks and may have different immunological effects. Reactivity to BM is a predictor of a severe milk allergy. Therefore, medical supervision for BM and BE introduction is prudent. The baked diet allows dietary liberation. Most, but not all, BM- and BE-tolerant children continue eating the baked foods. The prognosis of children who can eat BM and BE is favorable with likely resolution of their allergy over the next few years. Murine models of BE diets demonstrate that heated egg can impart clinical protection against anaphylaxis and cause immune changes. Most observational human studies of BM and BE diets demonstrate clinical resolution of allergy and favorable immune changes versus regular care controls. However, the one randomized controlled trial for the BE diet in BE-tolerant children did not support an immune-modifying effect of the BE diet. Another study of BE immunotherapy is expected to be completed in 2018. There is currently no evidence for prevention of allergy with the baked diets. There may be a future role for BM and BE in liberating the diets of individuals with non-IgE-mediated allergy given recent studies that a subset of these patients can consume BM without a clinical reaction.

  13. Hardening by annealing: insights from different alloys

    International Nuclear Information System (INIS)

    Renk, O; Pippan, R; Hohenwarter, A; Schuh, B; Li, J H

    2015-01-01

    In contrast to the general notion about the annealing behavior of coarse grained materials, hardening phenomena in nanocrystalline materials can occur. Although the phenomena have already been recognized several years ago, the mechanisms behind are still controversially discussed. For example, the influence of solutes segregated to grain boundaries on the strengthening mechanism is unclear. We present a combination of atom probe tomography and mechanical data to reveal the role of segregations to the strengthening. The results show that despite large modifications of the boundary chemistry the mechanical behavior remains widely unaffected. Additionally, it will be shown that hardening upon annealing can only occur below a material-specific grain size threshold value. (paper)

  14. Evaluation of rheological, bioactives and baking characteristics of mango ginger (curcuma amada) enriched soup sticks.

    Science.gov (United States)

    Crassina, K; Sudha, M L

    2015-09-01

    Wheat flour was replaced with mango ginger powder (MGP) at 0, 5, 10 and 15 %. Influence of MGP on rheological and baking characteristics was studied. Farinograph was used to study the mixing profile of wheat flour-MGP blend. Pasting profile of the blends namely gelatinization and retrogradation were carried out using micro-visco-amylograph. Test baking was done to obtain the optimum level of replacement and processing conditions. Sensory attributes consisting texture, taste, overall quality and breaking strength were assessed. Nutritional characterization of the soup sticks in terms of protein and starch in vitro digestibility, dietary fiber, minerals, polyphenols and antioxidant activity were determined using standard methods. With the increasing levels of MGP from 0 to 15 %, the farinograph water absorption increased from 60 to 66.7 %. A marginal increase in the gelatinization temperature from 65.4 to 66.2 °C was observed. Retrogradation of gelatinized starch granules decreased with the addition of MGP. The results indicated that the soup stick with 10 % MG had acceptable sensory attributes. The soup stick showed further improvement in terms of texture and breaking strength with the addition of gluten powder, potassium bromate and glycerol monostearate. The total dietary fiber and antioxidant activity of the soup sticks having 10 % MGP increased from 3.31 to 8.64 % and 26.83 to 48.06 % respectively as compared to the control soup sticks. MGP in soup sticks improved the nutritional profile.

  15. Effect of dentifrice containing fluoride and/or baking soda on enamel demineralization/remineralization: an in situ study.

    Science.gov (United States)

    Cury, J A; Hashizume, L N; Del Bel Cury, A A; Tabchoury, C P

    2001-01-01

    The additive effect of baking soda on the anticariogenic effect of fluoride dentifrice is not well established. To evaluate it, a crossover in situ study was done in three phases of 28 days. Volunteers, using acrylic palatal appliances containing four human enamel blocks, two sound (to evaluate demineralization) and two with artificial caries lesions (to evaluate remineralization), took part in this study. During each phase, 10% sucrose solution was dripped (3 times a day) only onto the sound blocks. After 10 min, a slurry of placebo, fluoride (F) or fluoride and baking soda (F+NaHCO(3)) dentifrice was dripped onto all enamel blocks. The results showed a higher F concentration in dental plaque formed during treatment with F+NaHCO(3) than placebo (pbaking soda neither improves nor impairs the effect of F dentifrice on reduction of demineralization and enhancement of remineralization of enamel.

  16. Waffle production: influence of batter ingredients on sticking of fresh egg waffles at baking plates-Part I: effect of starch and sugar components.

    Science.gov (United States)

    Huber, Regina; Schoenlechner, Regine

    2017-05-01

    Fresh egg waffles are a sweet convenience product typically baked from eggs, water, sugar, flour, fat, leavening agents, emulsifiers, preservatives, and flavors. In industrial production, waffles are baked continuously in high amounts of up to 200 kg raw material per hour. Therefore, it is important that the waffles do not stick onto the baking plates, which can cause significant product loss and increased costs due to interruption of the baking process, required cleaning procedures, and restarting of the energy-consuming start-up phase. Sticking of waffles is greatly influenced not only by baking plate material, release agent, baking temperature, and time, but also by the batter ingredients. In this study, effects of different starches and sugar components were investigated. Within the selected starches, potato starch demonstrated the highest effects on increasing waffle stability and releasing properties compared to wheat and lupine flour (less than 7% sticking waffles). Rice flour performed worst, with almost 50% of sticking waffles. Most of these waffles were broken during take-off, due to their crumbly texture. Within the sugar components, glycerine was better suitable than sorbitol and crystal sugar was superior compared to powdered sugar. They required less take-off force. It could be demonstrated that waffles with increased stability and texture were those that showed the least number of sticking waffles, thus the main aim of batter ingredients was to improve waffle quality. Waffle quality was influenced by batter parameters, significant correlations could be found, for example, a positive correlation between pH- and L-value, negative correlations between pH- and a-value, or density and aw-value. This resulted in significant correlations with take-off-force, which was correlated with L*- and b*-value (negative) and positive to a*-value. Sticking behavior was strongly associated with b*-value (positive) and to a*-value (negative).

  17. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  18. A case hardened component of titanium

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a case hardened component of a titanium alloy, the component having a diffusion zone of a thickness of at least 50 μιτι, as calculated from the surface of the component, the diffusion zone comprising oxygen and carbon in solid solution and having a distinct phase...

  19. Mesoscopic model for ferromagnets with isotropic hardening

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Kružík, Martin

    2005-01-01

    Roč. 56, č. 1 (2005), s. 107-135 ISSN 0044-2275 R&D Projects: GA AV ČR IAA1075005 Institutional research plan: CEZ:AV0Z10750506 Keywords : variational inequalities * ferromagnetism * hysteresis, hardening Subject RIV: BA - General Mathematics Impact factor: 0.455, year: 2005

  20. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    Science.gov (United States)

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  1. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...

  2. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  3. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  4. Homespun remedy, homespun toxicity: baking soda ingestion for dyspepsia.

    Science.gov (United States)

    Ajbani, Keyur; Chansky, Michael E; Baumann, Brigitte M

    2011-04-01

    A 68-year-old man presented to the Emergency Department with a severe metabolic alkalosis after ingesting large quantities of baking soda to treat his dyspepsia. His underlying pulmonary disease and a progressively worsening mental status necessitated intubation for respiratory failure. Laboratory studies revealed a hyponatremic, hypochloremic, hypokalemic metabolic alkalosis. The patient was successfully treated after cessation of the oral bicarbonate, initiation of intravenous hydration, and correction of electrolyte abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Diffusion of oxygen in niobium during bake-out

    International Nuclear Information System (INIS)

    Benvenuti, C.; Calatroni, S.; Ruzinov, V.

    2003-01-01

    Bake-outs at temperatures between 100 degC and 150 degC for duration up to two days have become customary for optimising the performance of bulk niobium cavities. This treatment results in the diffusion of oxygen, originating from the surface oxide, into the niobium. The theoretical oxygen profile has been simulated using the diffusion equations, and compared with some experimental results. (author)

  6. Effect of a baking soda-peroxide dentifrice on post-surgical wound healing.

    Science.gov (United States)

    Dentino, A R; Ciancio, S G; Bessinger, M; Mather, M A; Cancro, L; Fischman, S

    1995-06-01

    To investigate the effect of a baking soda-hydrogen peroxide (0.75%) dentifrice on wound healing, plaque formation, gingival inflammation, patient comfort, probing depth, and clinical attachment level following gingival flap surgery. A randomized, double-blind crossover study involving 25 patients requiring bilateral maxillary gingival flap surgery was completed. The effects of twice daily brushing with a baking soda-hydrogen peroxide dentifrice (Mentadent) or a placebo dentifrice (Crest) were observed over a 28-day post-surgical period. Gingival Index (GI), plaque index (PI), probing depth (PD), clinical attachment level (CAL) and gingival bleeding index (BI) were recorded pre-surgically and at day 28 for each surgical sextant. At days 7 and 14, soft tissue appearance/wound healing (STA) was assessed based on color and edema, PIs were determined and patient comfort was ascertained by report. Post-surgical wound healing was statistically significantly improved at day 7 with the trend continuing to day 14 when Mentadent dentifrice was used as compared to Crest dentifrice. However, there was no statistical difference in the PI values between the test and control dentifrice throughout the study. Use of Mentadent may be an effective aid in the early phase of healing following gingival flap surgery.

  7. Effect of fructo-oligosaccharide and isomalto-oligosaccharide addition on baking quality of frozen dough.

    Science.gov (United States)

    Park, Eun Young; Jang, Sung-Bum; Lim, Seung-Taik

    2016-12-15

    The baking quality of frozen doughs containing different levels of fructo-oligosaccharides (FO) or isomalto-oligosaccharides (IMO) (3-9%, w/w flour), and stored for 0-8weeks at -18°C, was examined. The addition of FO or IMO increased the proof volume of the dough and the loaf volume of bread prepared from frozen dough. A 6% addition of FO or IMO was optimum, giving the highest proof volume and bread loaf volume, but a higher concentration than 6% induced low baking quality including lower proof volume and bread loaf volume. The bread crumb was moister and softer after the addition of FO or IMO before, and even after, frozen storage. Darker crumb colour was observed in the bread after the addition of FO or IMO. The oligosaccharides added to the frozen dough were effective in improving the quality of bread made from frozen dough, except for resulting in a darker bread crumb. Copyright © 2016. Published by Elsevier Ltd.

  8. INFLUENCE OF LONG LASTING FREEZING TO BAKING QUALITY

    Directory of Open Access Journals (Sweden)

    Jana Šmitalová

    2013-12-01

    Full Text Available Foodstuff adapted by freezing is able to use for final setting immediately and its important contribution is sparing of working action and time connected to their next setting in our households or in catering corporations. In frame of this topic some baking experiment were realized with application of the main component – smooth wheat flour T 650 and the raw yeasting. It was monitored the baking quality of loafs made of fresh dough and loafs made of dough which was frozen one, two, three, four, five, six and nine months in -18°C. The biggest decline of the quality of bread made from frozen dough was monitored right after the first month. Decline of its size was 19.0%. Strong decline of size was monitored after five months (18.1% and after six months of storage in freezer (23.8%. Decline of baking quality during storage was mainly caused by declining activity of yeasts and by the loss of their yeasty ability. These conditions cased gradual decline of the solidity of the dough.

  9. Characterization of sponge cake baking in an instrumented pilot oven

    Directory of Open Access Journals (Sweden)

    Alain Sommier

    2012-10-01

    Full Text Available The quality of baked products is the complex, multidimensional result of a recipe, and a controlled heating process to produce the desired final properties such as taste, colour, shape, structure and density. The process of baking a sponge cake in a convective oven at different air temperatures (160-180-220 °C leading to the same loss of mass was considered in this study. A special mould was used which allowed unidirectional heat transfer in the batter. Instrumentation was developed specifically for online measurement of weight loss, height variation and transient temperature profile and pressure in the product. This method was based on measuring heat fluxes (commercial sensors to account for differences in product expansion and colour. In addition, measurement of height with a camera was coupled to the product mass to calculate changes in density over time. Finally, combining this information with more traditional measurements gave a better understanding of heat and mass transfer phenomena occurring during baking.

  10. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  11. Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219

    Science.gov (United States)

    Thomas, Shijo; Umasankar, V.

    2018-01-01

    Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improvement of 82% in hardness by solutionizing and aging compared to that achieved by sintering.

  12. The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread.

    Science.gov (United States)

    Nivelle, Mieke A; Bosmans, Geertrui M; Delcour, Jan A

    2017-11-22

    The impact of parbaking on the quality and shelf life of large tin bread baked from 270 g of wheat flour was investigated using a proton nuclear magnetic resonance method combined with techniques that measure at different length scales. With increasing partial baking time, the resilience of fresh partially baked crumb increased because of its more extended amylose and gluten networks. During subsequent storage, the crumb became more firm due to an increased extent of amylopectin retrogradation and moisture redistribution. Although only amylopectin retrogradation was reversed during final baking, a fresh fully baked (FB) bread with reversed crumb softness was obtained. Furthermore, the rate of crumb firming during final storage of FB bread was not higher than that of conventionally baked bread. This was attributed to the high crumb to crust ratio of large tin bread which caused the crumb moisture content to remain sufficiently high despite nonreversible moisture redistribution during intermediate storage.

  13. Super heated water generator for baking of vacuum chambers of INDUS-2

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Yadav, D.P.; Sindal, B.K.; Sharma, H.K.; Shukla, S.K.

    2005-01-01

    It is proposed to use superheated water bake out system for in-situ baking of aluminum alloy dipole and straight section chambers of INDUS-2. Heat load calculations have shown that power requirements for an in-situ bake out at 150 degC is 0.64 kW mt - 1 and 3.2 kWmt -l for straight section and dipole chamber respectively (for one baking segment 60 kW. Baking of vacuum chambers by Nichrome flexible heating tapes at 150 degC has lot of practical problems such as non uniform temperature, non accessibility of heaters to inside parts etc. This paper presents various design objectives, mechanical, electrical and instrumentation design parameters including the safety devices in the system in order to achieve a fail safe baking operation ranging almost for 72 hrs. (author)

  14. Consideration of a non-baked start-up of a synchrotron light source

    International Nuclear Information System (INIS)

    Hori, Y.; Kobayashi, M.

    1996-01-01

    Vacuum baking of large complex uhv devices, such as synchrotron light sources, requires both careful design and consideration of potential problems regarding the operation and maintenance of the device. Intense synchrotron irradiation can be utilized for degassing; it is indeed necessary to achieve the required operating pressure in most light sources. To examine a non-baked start-up, the outgassing of non-baked chambers by SR irradiation was measured. Also, a non-baked start-up was carried out at the Photon Factory ring. Both results demonstrate the feasibility of a non-baked start-up of a light source. The experiments and results are described, together with several other problems which must be solved for a non-baked start-up. (Author)

  15. Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP

    International Nuclear Information System (INIS)

    Wu, Andy; Jin, Song; Rimmer, Robert; Lu, Xiang Yang; Zhao, K.; MacIntyre, Laura; Ike, Robert

    2010-01-01

    Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature baking at 120 C for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flat samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.

  16. Study on out-gassing by baking and glow discharge during wall conditioning of vacuum chamber

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; Zhao Yuanqing; He Yanhe; Liao Yikui

    2007-01-01

    The model of out-gassing by baking and glow discharge cleaning (GDC) is set up. The properties of them are studied. Out-gassing by baking is from bulk and it obeys the diffusion equation. Out-gassing of glow discharge cleaning is mainly on surface, it is inducement out-gassing by sputtering. Thus the properties of out-gassing for baking and GDC on the HL-1M tokamak are analyzed. Some empirical formulas are given. (authors)

  17. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  18. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    electronics will be exposed. Another important element of the camera is the optical system that transports the image from the scene to the image sensor. This arrangement of glass-based lenses is affected by radiations through two mechanisms: the radiation induced absorption and the radiation induced refractive index changes. The first one will limit the signal to noise ratio of the image whereas the second one will directly affect the resolution of the camera. We'll present at the conference a coupled simulation/experiment study of these effects for various commercial glasses and present vulnerability study of typical optical systems to radiations at MGy doses. The last very important part of the camera is the illumination system that can be based on various technologies of emitting devices like LED, SLED or lasers. The most promising solutions for high radiation doses will be presented at the conference. In addition to this hardening-by-component approach, the global radiation tolerance of the camera can be drastically improve by working at the system level, combining innovative approaches eg. for the optical and illumination systems. We'll present at the conference the developed approach allowing to extend the camera lifetime up to the MGy dose range. (authors)

  19. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    electronics will be exposed. Another important element of the camera is the optical system that transports the image from the scene to the image sensor. This arrangement of glass-based lenses is affected by radiations through two mechanisms: the radiation induced absorption and the radiation induced refractive index changes. The first one will limit the signal to noise ratio of the image whereas the second one will directly affect the resolution of the camera. We'll present at the conference a coupled simulation/experiment study of these effects for various commercial glasses and present vulnerability study of typical optical systems to radiations at MGy doses. The last very important part of the camera is the illumination system that can be based on various technologies of emitting devices like LED, SLED or lasers. The most promising solutions for high radiation doses will be presented at the conference. In addition to this hardening-by-component approach, the global radiation tolerance of the camera can be drastically improve by working at the system level, combining innovative approaches eg. for the optical and illumination systems. We'll present at the conference the developed approach allowing to extend the camera lifetime up to the MGy dose range. (authors)

  20. Cyclic hardening in bundled actin networks.

    Science.gov (United States)

    Schmoller, K M; Fernández, P; Arevalo, R C; Blair, D L; Bausch, A R

    2010-01-01

    Nonlinear deformations can irreversibly alter the mechanical properties of materials. Most soft materials, such as rubber and living tissues, display pronounced softening when cyclically deformed. Here we show that, in contrast, reconstituted networks of crosslinked, bundled actin filaments harden when subject to cyclical shear. As a consequence, they exhibit a mechano-memory where a significant stress barrier is generated at the maximum of the cyclic shear strain. This unique response is crucially determined by the network architecture: at lower crosslinker concentrations networks do not harden, but soften showing the classic Mullins effect known from rubber-like materials. By simultaneously performing macrorheology and confocal microscopy, we show that cyclic shearing results in structural reorganization of the network constituents such that the maximum applied strain is encoded into the network architecture.

  1. Finite Element Model of Gear Induction Hardening

    OpenAIRE

    Hodek, J; Zemko, M; Shykula, P

    2015-01-01

    International audience; This paper presents a finite element model of a gear induction hardening process. The gear was surface-heated by an induction coil and quickly cooled by spraying water. The finite element model was developed as a three-dimensional model. The electromagnetic field, temperature field, stress distribution and microstructure distribution were examined. Temperature and microstructural characteristics were measured and used. The gear material data was obtained in part by mea...

  2. Metallurgical Examination of Face Hardened Armor Plate

    Science.gov (United States)

    1944-02-29

    2 SAMPLE 4 FIBRE TEST STEEL QUALITY TESI FRACTURES OF FACE HAqDENED ARMIOR 25 JAN 1944 W’sN.710-2268 FIGURE *rfMO Reproduced FromBest Available Clop’ý...5 6 7 8910 12 14 16182024 40 DISTANCE FROM WATER COOLED END OF STANDARiW2 HARDENABILITY BAR - SIXTEENTHS PLATE HEAT OUENCH NO. NO. C N1SI 1 P NIOR 4

  3. Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening.

    Science.gov (United States)

    Vorselaars, Bart; Lyulin, Alexey V; Michels, M A J

    2009-02-21

    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling.

  4. The effect of baking soda/hydrogen peroxide dentifrice (Mentadent) and a 0.12 percent chlorhexidine gluconate mouthrinse (Peridex) in reducing gingival bleeding.

    Science.gov (United States)

    Taller, S H

    1993-01-01

    The purpose of this study was to determine the effectiveness of a baking soda/hydrogen peroxide dentifrice, Mentadent, and a 0.12 percent chlorhexidine gluconate mouthrinse, Peridex, in reducing gingival bleeding. Forty subjects were divided into three groups; the baking soda group, the chlorhexidine group and the control group. All groups received oral hygiene instruction and brushed and flossed three times per day. Bleeding point scores were evaluated at baseline and at five weeks. The baking soda/hydrogen peroxide group used the supplied dentifrice as their sole toothpaste. The 0.12 percent chlorhexidine group used the mouthrinse twice per day. The control group performed oral hygiene as instructed. At five weeks, the 0.12 percent chlorhexidine mouthrinse significantly reduced gingival bleeding. The dentifrice and control groups revealed no statistically significant reductions. The results indicate that the 0.12 percent chlorhexidine mouthrinse is useful in improving oral health, whereas the baking soda/hydrogen peroxide dentifrice offered no advantages to conventional oral hygiene.

  5. Treatment of bran containing bread by baking enzymes; effect on the growth of probiotic bacteria on soluble dietary fiber extract in vitro.

    Science.gov (United States)

    Saarinen, Markku T; Lahtinen, Sampo J; Sørensen, Jens F; Tiihonen, Kirsti; Ouwehand, Arthur C; Rautonen, Nina; Morgan, Andrew

    2012-01-01

    Different ways of treating bran by baking enzymes prior to dough making and the baking process were used to increase the amount of water-soluble dietary fiber (DF) in wheat bread with added bran. Soluble DF was extracted from the bread with water and separated from the digestible material with gastrointestinal tract enzymes and by solvent precipitation. The baking enzyme mixtures tested (xylanase and glucanase/cellulase, with and without lipase) increased the amounts of soluble arabinoxylan and protein resistant to digestion. The isolated fiber was used as a growth substrate for 11 probiotic and intestinal Bifidobacterium strains, for commensal strains of Bacteroides fragilis and Escherichia coli, and for potential intestinal pathogenic strains of E. coli O157:H7, Salmonella typhimurium, and Clostridium perfringens. Fermentation analyses indicated that the tested strains had varying capacity to grow in the presence of the extracted fiber. Of the tested probiotic strains B. longum species generally showed the highest ability to utilize the fiber extracts, although the potential pathogens tested also showed an ability to grow on these fiber extracts. In sum, the enzymes used to improve the baking process for high-fiber bread can also be used to produce in situ soluble fiber material, which in turn can exert prebiotic effects on certain potentially beneficial microbes.

  6. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    Science.gov (United States)

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  7. Radiation-hardened I2L 8*8 multiplier circuit

    International Nuclear Information System (INIS)

    Doyle, B.R.; Kreps, S.A.; Van Vonno, N.W.; Lake, G.W.

    1979-01-01

    Development of improved Substrate Fed I 2 L (SFL) processing has been combined with geometry and fanout constraints to design a radiation hardened LSI 8.8 Multiplier. This study describes details of the process and circuit design and gives resultant electrical and radiation test performance

  8. Baking soda induced severe metabolic alkalosis in a haemodialysis patient.

    Science.gov (United States)

    Solak, Yalcin; Turkmen, Kultigin; Atalay, Huseyin; Turk, Suleyman

    2009-08-01

    Metabolic alkalosis is a rare occurence in hemodialysis population compared to metabolic acidosis unless some precipitating factors such as nasogastric suction, vomiting and alkali ingestion or infusion are present. When metabolic alkalosis develops, it may cause serious clinical consequences among them are sleep apnea, resistent hypertension, dysrhythmia and seizures. Here, we present a 54-year-old female hemodialysis patient who developed a severe metabolic alkalosis due to baking soda ingestion to relieve dyspepsia. She had sleep apnea, volume overload and uncontrolled hypertension due to metabolic alkalosis. Metabolic alkalosis was corrected and the patient's clinical condition was relieved with negative-bicarbonate hemodialysis.

  9. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  10. Hypernatremia and metabolic alkalosis as a consequence of the therapeutic misuse of baking soda.

    Science.gov (United States)

    Fuchs, S; Listernick, R

    1987-12-01

    When used appropriately, baking soda (sodium bicarbonate, USP) is a nontoxic, readily available, multipurpose product found in many households. We report an infant who presented with hypernatremia and metabolic alkalosis due to the addition of baking soda to her water. This case represents the possible dangerous use of a common household product in infants owing to the lack of proper warning labels.

  11. On the relationship between large-deformation properties of wheat flour dough and baking quality

    NARCIS (Netherlands)

    Sliwinski, E.L.; Kolster, P.; Vliet, van T.

    2004-01-01

    Baking performance for bread and puff pastry was tested for Six European and two Canadian wheat cultivars and related to the rheological and fracture properties in uniaxial extension of optimally mixed flour-water doughs and doughs to which a mix of bakery additives was added. Extensive baking tests

  12. Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread

    NARCIS (Netherlands)

    Zhang, Lu; Taal, Marieke A.; Boom, Remko M.; Chen, Xiao Dong; Schutyser, Maarten A.I.

    2018-01-01

    Bread is an interesting non-dairy-based vehicle for probiotics delivery given its daily consumption worldwide. The incorporation of probiotics in bread is challenging due to the high baking temperatures. In this study the influence of various baking conditions and subsequent storage on survival of a

  13. Navy bean flour particle size and protein content affect cake baking and batter quality

    Science.gov (United States)

    There is a great demand for wheat alternatives in foods, particularly baked goods, as gluten sensitivity increases. Baked goods such as cakes have wheat flour as a major ingredient, which is rich in gluten protein. Bean proteins do not have gluten, and are a good source of soluble fiber, B-vitamins,...

  14. Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics

    DEFF Research Database (Denmark)

    Pedersen, L.; Kaack, K.; Bergsøe, M.N.

    2004-01-01

    Rheological properties of semi-sweet biscuit doughs from eight wheat cultivars were studied, and related to the dimensional changes of biscuits after cutting and baking. The tested cultivars were selected in order to represent a wide diversity in biscuit baking performance, and were grown with low...

  15. Identification of milling and baking quality QTL in multiple soft wheat mapping populations.

    Science.gov (United States)

    Cabrera, Antonio; Guttieri, Mary; Smith, Nathan; Souza, Edward; Sturbaum, Anne; Hua, Duc; Griffey, Carl; Barnett, Marla; Murphy, Paul; Ohm, Herb; Uphaus, Jim; Sorrells, Mark; Heffner, Elliot; Brown-Guedira, Gina; Van Sanford, David; Sneller, Clay

    2015-11-01

    Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.

  16. Degradation of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking.

    Science.gov (United States)

    Siegel, David; Feist, Michael; Proske, Matthias; Koch, Matthias; Nehls, Irene

    2010-09-08

    The stability of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking was investigated by model experiments using a spiked wholemeal wheat flour matrix. For alternariol and alternariol monomethyl ether, but not for altenuene, degradation products, formed through a sequence of hydrolysis and decarboxylation, could be identified in pilot studies. The simultaneous quantification of alternariol, alternariol monomethyl ether, altenuene, and the degradation products was achieved by a newly developed high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) multimethod. The obtained quantitative data indicate that the Alternaria mycotoxins are barely degraded during wet baking, while significant degradation occurs upon dry baking, with the stability decreasing in the order alternariol monomethyl ether>alternariol>altenuene. The novel degradation products could be detected after the wet baking of flour spiked with alternariol and in a sample survey of 24 commercial cereal based baking products.

  17. Design Feature and Result of PFCs Baking System for the KSTAR

    International Nuclear Information System (INIS)

    Bang, Eun Nam; Kim, Kyung Min; Kim, Hong Tack; Kim, Hak Kun; Lee, Kun Su; Kim, Sang Tae; Yang, Hyung Lyeol; Kwon, Myeun

    2010-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is being majorly updated for 2010's operation which mainly aims to achieve the plasma shaping and diverted plasmas. The Plasma Facing Components (PFCs) such as inboard and outboard limiters, divertors, and passive stabilizers have been finally installed in the vacuum vessel (VV) by middle of June 2010. The baking and cooling (B and C) pipe system for all the PFCs were installed inside of the vacuum vessel to fulfill baking and active cooling of each PFC components. The PFCs are to be baked by circulating hot nitrogen gas through internal tubes of back-plates of the PFCs. While VV is baked-out, the PFCs temperature was raised from room temperature to 120 .deg. C, and the baking temperature was raised again to 200 .deg. C in spite of the VV being maintained at room temperature

  18. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  19. Method for baking a liner in thermonuclear device

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi.

    1978-01-01

    Purpose: To attain effective baking for liners in a tokamak device by connecting the narrow portions and the wide portions of the liners with dielectric materials and supplying a constant current to these portions. Method: Split type liners disposed in the vacuum vessel of a thermonuclear device are connected with dielectric materials at their wide portions and narrow portions and they are baked by supplying a constant current at a same density to the wide and narrow portions to rise their temperature uniformly. The wide portions are formed in such a way that the sum of their cross sectional areas is equal to the sum of the cross sectional areas of the narrow portions, and they form a parallel circuit. The parallel circuit consisting of the wide portions and the parallel circuit consisting of the narrow portions are connected in series to each other and connected to the constant current supply circuit, by which a constant current is supplied to the wide and the narrow portions. (Moriyama, K.)

  20. Estimation of trace metal contents in locally-baked breads

    International Nuclear Information System (INIS)

    Khalid, N.; Rehman, S.

    2013-01-01

    In order to establish base line levels, estimation of some essential trace metals (Cu, Fe, Mn and Zn) has been conducted in four brands of fifteen locally baked breads of Rawalpindi /Islamabad area employing Atomic Absorption Spectrophotometry (AAS). The samples were digested in a mixture of nitric acid and perchloric acid and the analysis was done with air-acetylene flame. The reliability of the procedure employed was verify by analyzing Standard Reference Material, i.e., wheat flour (NBS-SRM-1567) for its Cu, Fe, Mn and Zn contents which were in good agreement with the certified values. The results revealed that brown breads contained higher amount of Fe 177.3 micro g g/sup -1/and Zn 19.27 micro g g/sup -1/while levels of Cu 21.90 micro g g/-sup 1/was found higher in the samples of plain bread. The determined metal concentrations in the bread samples were compared with the reported values for other countries. The effect of kneading/baking/slicing processes on the concentration levels of these metals was also studied. The daily intake of these metals through this source was calculated and compared with the recommended dietary allowance. (author)

  1. Energy optimization of bread baking process undergoing quality constraints

    International Nuclear Information System (INIS)

    Papasidero, Davide; Pierucci, Sauro; Manenti, Flavio

    2016-01-01

    International home energy rating regulations are forcing to use efficient cooking equipment and processes towards energy saving and sustainability. For this reason gas ovens are replaced by the electric ones, to get the highest energy rating. Due to this fact, the study of the technologies related to the energy efficiency in cooking is increasingly developing. Indeed, big industries are working to the energy optimization of their processes since decades, while there is still a lot of room in energy optimization of single household appliances. The achievement of a higher efficiency can have a big impact on the society only if the use of modern equipment gets widespread. The combination of several energy sources (e.g. forced convection, irradiation, microwave, etc.) and their optimization is an emerging target for oven manufacturers towards optimal oven design. In this work, an energy consumption analysis and optimization is applied to the case of bread baking. Each source of energy gets the due importance and the process conditions are compared. A basic quality standard is guaranteed by taking into account some quality markers, which are relevant based on a consumer viewpoint. - Highlights: • Energy optimization is based on a validated finite-element model for bread baking. • Quality parameters for the product acceptability are introduced as constraints. • Dynamic optimization leads to 20% energy saving compared to non-optimized case. • The approach is applicable to many products, quality parameters, thermal processes. • Other heating processes can be easily integrated in the presented model.

  2. Normative data for distal line bisection and baking tray task.

    Science.gov (United States)

    Facchin, Alessio; Beschin, Nicoletta; Pisano, Alessia; Reverberi, Cristina

    2016-09-01

    Line bisection is one of the tests used to diagnose unilateral spatial neglect (USN). Despite its wide application, no procedure or norms were available for the distal variant when the task was performed at distance with a laser pointer. Furthermore, the baking tray task was an ecological test aimed at diagnosing USN in a more natural context. The aim of this study was to collect normative values for these two tests in an Italian population. We recruited a sample of 191 healthy subjects with ages ranging from 20 to 89 years. They performed line bisection with a laser pointer on three different line lengths (1, 1.5, and 2 m) at a distance of 3 m. After this task, the subjects performed the baking tray task and a second repetition of line bisection to test the reliability of measurement. Multiple regression analysis revealed no significant effects of demographic variables on the performance of both tests. Normative cut-off values for the two tests were developed using non-parametric tolerance intervals. The results formed the basis for clinical use of these two tools for assessing lateralized performance of patients with brain injury and for diagnosing USN.

  3. Suppressed Acrylamide Formation during Baking in Yeast-Leavened Bread Based on added Asparaginase, Baking Time and Temperature Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mashaer Matouri

    2018-01-01

    Full Text Available  Background and Objective: Acrylamide as a toxic substance for human beings is produced by Maillard reaction at high temperatures. In this research, this reaction can be inhibited based on using aspariganse enzyme, controlling the cooking time and temperature during baking in yeast-leavened bread.Material and Methods: In this study, a response surface methodology 5-level-3-factor central composite design was applied to study the effects of asparaginase (300-900 U Kg-1 of flour, baking temperature (230-280°C and baking time (13-16 min on acrylamide formation in yeast-leavened wheat bread.Results and Conclusion: Added asparaginase showed a reducing effect on acrylamide formation (p≤0.0001. Baking temperature significantly increased the acrylamide content in bread (p≤0.0001. A strong correlation was found between the baking temperature and acrylamide formation. Baking time and its interaction with asparaginase had a low but significant reducing effect on acrylamide content in bread (p≤0.0001. Three parameters of the cooking temperature and time as well as enzyme concentration have been optimized using response surface methodology, their values obtained 245.71°C, 14.55 min and 752.15 U Kg-1, respectively. Enzymatic process could be suggested as a safe and convenient method for preventing acrylamide formation in bread making.Conflict of interest: The authors declare no conflict of interest. 

  4. 77 FR 67862 - Public Notice for Waiver of Aeronautical Land-Use Assurance; J. Douglas Bake Memorial Airport...

    Science.gov (United States)

    2012-11-14

    ... Aeronautical Land-Use Assurance; J. Douglas Bake Memorial Airport (OCQ) Oconto, WI AGENCY: Federal Aviation... No. 18) at the J. Douglas Bake Memorial Airport, Oconto, WI. Parcel No. 18 is located outside of the... property to be released at the J. Douglas Bake Memorial Airport in Oconto, Wisconsin: Part of Government...

  5. Ovomucoid Is Not Superior to Egg White Testing in Predicting Tolerance to Baked Egg

    Science.gov (United States)

    Bartnikas, Lisa M.; Sheehan, William J.; Larabee, Katherine S.; Petty, Carter; Schneider, Lynda C.; Phipatanakul, Wanda

    2013-01-01

    BACKGROUND Children with egg allergy may tolerate baked egg products. Ovomucoid specific IgE (sIgE) antibody levels have been suggested to predict outcomes of baked egg challenges. OBJECTIVE We determined the relationship of ovomucoid and egg white sIgE levels and egg white skin prick test (SPT) wheal size with baked egg challenge outcome. METHODS Retrospective review of 1186 patients who underwent ovomucoid sIgE blood testing. Subset analysis was of 169 patients who underwent baked egg food challenges. RESULTS Egg white sIgE, ovomucoid sIgE, and egg white SPT were different among those eating regular egg, eating baked egg only, or avoiding all egg (P egg challenges. We were able to establish >90% predictive values for passing baked egg challenge for egg white sIgE, ovomucoid sIgE, and egg white SPT. No patient with egg white SPT wheal egg challenge. Receiver operating characteristic curve analysis of egg white sIgE, ovomucoid sIgE, and egg white SPT showed areas under the curve of 0.721, 0.645, and 0.624, respectively. No significant difference was observed among these immunologic parameters in their abilities to predict baked egg challenge outcome (P = .301). CONCLUSION Most children with egg allergy in this study passed baked egg challenges. Ovomucoid sIgE, although a useful clinical predictor of baked egg tolerance, was not superior to egg white SPT or sIgE in predicting outcome of baked egg challenge. PMID:24013255

  6. Effect of steam baking on acrylamide formation and browning kinetics of cookies.

    Science.gov (United States)

    Isleroglu, Hilal; Kemerli, Tansel; Sakin-Yilmazer, Melike; Guven, Gonul; Ozdestan, Ozgul; Uren, Ali; Kaymak-Ertekin, Figen

    2012-10-01

    Effects of baking method and temperature on surface browning and acrylamide concentration of cookies were investigated. Cookies were baked in natural and forced convection and steam-assisted hybrid ovens at 165, 180, and 195 °C and at different times. For all oven types, the acrlyamide concentration and surface color of cookies increased with increasing baking temperature. Significant correlation was observed between acrylamide formation and browning index, BI, which was calculated from Hunter L, a, and b color values, and it showed that the BI may be considered as a reliable indicator of acrylamide concentration in cookies. Acrylamide formation and browning index in cookies were considered as the first-order reaction kinetics and the reaction rate constants, k, were in the range of 0.023 to 0.077 (min(-1) ) and 0.019 to 0.063 (min(-1) ), respectively. The effect of baking temperature on surface color and acrylamide concentration followed the Arrhenius type of equation, with activation energies for acrylamide concentration as 6.87 to 27.84 kJ/mol; for BI value as 19.54 to 35.36 kJ/mol, for all oven types. Steam-assisted baking resulted in lower acrylamide concentration at 165 °C baking temperature and lower surface color for all temperatures. Steam-assisted baking is recommended as a healthy way of cooking providing the reduction of harmful compounds such as acrylamide for bakery goods, at a minimal level, while keeping the physical quality. The kinetics of acrylamide formation and browning of cookies will possibly allow definition of optimum baking temperatures and times at convectional and steam-assisted baking ovens. The kinetic model can be used by developing baking programs that can automatically control especially a new home-scale steam-assisted hybrid oven producing healthy products, for the use of domestic consumers. © 2012 Institute of Food Technologists®

  7. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  8. Investigation of srawberry hardening in low temperatures in vitro

    OpenAIRE

    Lukoševičiūtė, Vanda; Rugienius, Rytis; Kavaliauskaitė, Danguolė

    2007-01-01

    Cold resistance of different strawberry varieties in vitro and ability to retain hardening after defrosting and repeated hardening. Phytohormons – gibberellin and abscisic acid added in the growing medium were investigated in Horticulture plant genetic and biotechnology department of LIH. We tried to model common conditions in temperate zone when freeze-thaw cycles often occur during wintertime. For investigation in vitro strawberries for the first time hardened in light at the temperature of...

  9. A Radiation Hardened Spacecraft Mass Memory System

    Science.gov (United States)

    Dennehy, W. J.; Lawton, B.; Stufflebeam, J.

    The functional design of a Radiation Hardened Spacecraft Mass Memory System (RH/SMMS) is described. This system is configured around a 1 megabit memory device and incorporates various system and circuit design features to achieve radiation hardness. The system is modular and storage capacities of 16 to 32 megabits are achievable within modest size, weight, and power constraints. Estimates of physical characteristics (size, weight, and power) are presented for a 16 Mbit system. The RH/SMMS is organized in a disk-like architecture and offers the spacecraft designer several unique benefits such as: reduced software cost, increased autonomy and survivability, increased functionality and increased fault tolerance.

  10. Radiation-hardened nonvolatile MNOS RAM

    International Nuclear Information System (INIS)

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s

  11. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  12. Thermomechanical and Heat Hardening of Building Steels

    Science.gov (United States)

    Odesskii, P. D.; Rudchenko, A. V.; Shabalov, I. P.

    2005-03-01

    Hardening treatment of steels used in welded metal structures like steelwork of industrial and civil buildings, towers, poles, reservoirs, railway bridge girders, cranes, construction machines, truck bodies, etc. is considered. The structures mentioned are produced from rolled stock supplied by metallurgy in an annual amount of tens of million of tons. In the first turn these are plates, shapes, rolled bars and sections, and pipes with different wall thickness and cross section. A classification of steels for metallic structures with respect to chemical composition and microstructure is presented.

  13. Configurable Radiation Hardened High Speed Isolated Interface ASIC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NVE Corporation will design and build an innovative, low cost, flexible, configurable, radiation hardened, galvanically isolated, interface ASIC chip set that will...

  14. Configurable Radiation Hardened High Speed Isolated Interface ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NVE Corporation will design and build an innovative, low cost, flexible, configurable, radiation hardened, galvanically isolated, interface ASIC chip set that will...

  15. Influence of post exposure bake time on EUV photoresist RLS trade-off

    Science.gov (United States)

    Vesters, Yannick; De Simone, Danilo; De Gendt, Stefan

    2017-03-01

    To achieve high volume manufacturing, EUV photoresists need to push back the "RLS trade-off" by simultaneously improving Resolution, Line-Width Roughness and Sensitivity (exposure dose). Acid diffusion in chemically amplified resist is known to impact these performances. This work studies the diffusion of acid in chemically amplified resist by varying the post exposure bake duration while monitoring the evolution of CD and LWR for 6 chemically amplified EUV photoresists (CAR). We observed a first regime where both CD and LWR quickly decrease during the first 30s of post exposure bake (PEB). This can be related to the deprotection reaction taking place in the exposed part of the resist. After 60s the decrease in CD and LWR slows down significantly, likely related to a regime of acid diffusion from exposed to unexposed region, and acid-quencher neutralization at the interface of these two regions. We tested two resists with different protecting group and the one having lower activation energy shows a faster CD change in the second regime, resulting in a worsening of LWR for longer PEB time. On the contrary, a resist with a high quencher loading shows reduced net diffusion of acid towards the unexposed region and controls the resist edge profile. In other words longer PEB does not degrade LWR, but as it reduces the line CD, sensitivity is impacted. With an appropriate ratio selection of quencher to PAG, an EUV dose reduction of up to 12% can be achieved with a change from a standard 60 second to a 240 second PEB time, while keeping LWR and resolution constant and therefore pushing the RLS performances. Finally, we confirmed that the observations on positive tone development (PTD) resist could be applied to negative tone development (NTD) resist: with a high quencher NTD resist we observed a dose reduction of 8% for longer PEB time, keeping LWR and resolution constant.

  16. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    Science.gov (United States)

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Hardness variability in commercial and hardened technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  18. Hardened Client Platforms for Secure Internet Banking

    Science.gov (United States)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  19. Waffle Production: Influence of Baking Plate Material on Sticking of Waffles.

    Science.gov (United States)

    Huber, Regina; Kalss, Georg; Schoenlechner, Regine

    2017-01-01

    Background of this study was to understand the factors that contribute to sticking of fresh egg waffles on baking plates. The aim of this study was to investigate the sticking (adhesion) behavior of waffles on 4 different baking plate materials (ductile iron, grey iron, low alloyed steel, and steel with titanium nitrite coating) at different baking parameters (temperature and time) and application of 3 different release agents (different fat compositions). Baking plates from ductile and grey iron showed lower release properties of waffles than the 2 steel baking plates. Baking parameters had to be high enough to allow rapid product crust formation but prevent burning, which again increases sticking behavior. Release agents based on short-chain fatty acids with higher degree of saturation provided better release behavior of waffles than those based on long-chain fatty acids or on emulsifier-acid combinations. Baking plates with increased hardness, good heat storage capacity, and smooth surface seemed to be best suitable. Further research on appropriate coating material might be promising for future. © 2016 Institute of Food Technologists®.

  20. Influence of electrical and hybrid heating on bread quality during baking.

    Science.gov (United States)

    Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C

    2015-07-01

    Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.

  1. Rising dough and baking bread at the Australian synchrotron

    Science.gov (United States)

    Mayo, S. C.; McCann, T.; Day, L.; Favaro, J.; Tuhumury, H.; Thompson, D.; Maksimenko, A.

    2016-01-01

    Wheat protein quality and the amount of common salt added in dough formulation can have a significant effect on the microstructure and loaf volume of bread. High-speed synchrotron micro-CT provides an ideal tool for observing the three dimensional structure of bread dough in situ during proving (rising) and baking. In this work, the synchrotron micro-CT technique was used to observe the structure and time evolution of doughs made from high and low protein flour and three different salt additives. These experiments showed that, as expected, high protein flour produces a higher volume loaf compared to low protein flour regardless of salt additives. Furthermore the results show that KCl in particular has a very negative effect on dough properties resulting in much reduced porosity. The hundreds of datasets produced and analysed during this experiment also provided a valuable test case for handling large quantities of data using tools on the Australian Synchrotron's MASSIVE cluster.

  2. The gel forming characteristics and the palatability of pasteurized and radiation processed egg magma in baked custard - a class project

    International Nuclear Information System (INIS)

    Van Wyk, S.; Verhoef, L.

    1991-01-01

    In a research project conducted by third-year students, baked custard was made from six different samples of frozen egg magma subjected to various treatments. The treatments were pasteurization and various radiation doses. A sample made from untreated fresh egg magma was added as a control sample. Various objective measurements were executed: penetrometer testing with the skin of the baked custard left intact, penetrometer testing with the skin of the baked custards removed, syneresis testing, and determination of the percentage sag of the baked custard. Sensory evaluation included comparing the color of the baked custards with a predetermined color sample, evaluating the texture by means of visual as well as oral evaluation methods, evaluating the consistency of the baked custards, and the general acceptability of the baked custards to a trained sensory panel. Objective evaluation detected little difference between the egg magma samples. Sensory evaluation also detected little difference between the samples. 11 refs., 4 tabs., 1 fig

  3. Study on the Strain Hardening Behaviors of TWIP/TRIP Steels

    Science.gov (United States)

    Huang, T. T.; Dan, W. J.; Zhang, W. G.

    2017-10-01

    Due to the complex coupling of twinning-induced plasticity (TWIP), transformation-induced plasticity (TRIP), and dislocation glide in TWIP/TRIP steels, it is difficult as well as essential to build a comprehensive strain hardening model to describe the interactions between different deformation mechanisms ( i.e., deformation twinning, martensitic transformation, and dislocation glide) and the resulted strain hardening behaviors. To address this issue, a micromechanical model is established in this paper to predict the deformation process of TWIP/TRIP steels considering both TWIP and TRIP effects. In the proposed model, the generation of deformation twinning and martensitic transformation is controlled by the stacking fault energy (SFE) of the material. In the thermodynamic calculation of SFE, deformation temperature, chemical compositions, microstrain, and temperature rise during deformation are taken into account. Varied by experimental results, the developed model can predict the stress-strain response and strain hardening behaviors of TWIP/TRIP steels precisely. In addition, the improved strength and enhanced strain hardening in Fe-Mn-C TWIP/TRIP steels due to the increased carbon content is also analyzed, which consists with literature.

  4. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  5. Temperature Development during Hardening of Large Concrete Cubes

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Burcharth, Hans Falk

    The purpose ofthe project is to verify ifthermal cracking will occur in large unreinforced concrete cubes due to large temperature differences during hardening o f the concrete. The first part o f the project is to numerically simulate the temperature development during hardening, evaluate the risk...

  6. Analysis of the work-hardening process in spheroidized steels

    International Nuclear Information System (INIS)

    Pacheco, J.L.

    1981-07-01

    An elementary model for the work-hardening process in duplex-structures steels (ferrite - spheroidite) is proposed and tested on low, medium and high carbon content, which seems to give good results concerning the influence of the volume fraction and particle size of the second phase on the work-hardening behaviour. (Author) [pt

  7. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  8. Optimization of Laser Beam Transformation Hardening by One Single Parameter

    NARCIS (Netherlands)

    Meijer, J.; van Sprang, I.

    1991-01-01

    The process of laser beam transformation hardening is principally controlled by two independent parameters, the absorbed laser power on a given area and the interaction time. These parameters can be transformed into two functional parameters: the maximum surface temperature and the hardening depth.

  9. The effects of alloying elements on strength, hardenability, and ...

    African Journals Online (AJOL)

    Tensile and hardenability tests were carried out. Results showed that alloying elements in steel increased strength in the dual phase steels by amounts ranging from 150 Mpa for Nb-V steel to 226 MPa for Nb steel. Strain hardening exponent, n, was also increased from ~0.22 for annealed to 0.35 in the dual phase steels.

  10. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  11. system hardening architecture for safer access to critical business

    African Journals Online (AJOL)

    eobe

    cation, operating system, user, and the physical layers. This architecture is proposed on the premise that the premise that organisations implementing system hardening security approaches experience safer access to rganisations implementing system hardening security approaches experience safer access to data, as well.

  12. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.K., E-mail: ckchan@nsrrc.org.tw; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-04-11

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  13. Numerical simulation on bake-out of the ITER diagnostic upper port plug

    International Nuclear Information System (INIS)

    Pak, S.; Pitcher, C.S.; Kalish, M.R.; Cheon, M.S.; Seon, C.R.; Lee, H.G.

    2010-01-01

    The diagnostic upper port plug in ITER is fixed to the upper port of the vacuum vessel as a cantilevered beam with bolts and forms a primary vacuum boundary. It needs to be baked out for outgassing before normal operation. This study calculated the required bake-out time and the transient thermal stress during baking for the diagnostic upper port plug. The calculation was done through numerical simulation. The analysis took into consideration the gradual temperature increase of working fluid. In order to look into the effect of radiation heat transfer from the upper port plug to the vacuum vessel port, the upper vacuum vessel port was included in this analysis.

  14. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation comprise as binding agents a mixture of A. at least 1 unsaturated olefin compound containing urethane groups, and B. at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound A. containing the urethane groups in a reaction product of (a) a compound of the general formula (CHR 1 = CR 2 COOCH 2 CH(OH)CH 2 O CO-)/sub n/R where n is 1 or 2, where R stands for a straight chain or branched alkyl group of valence n, where R 1 is hydrogen, methyl; or the group -COOCH 2 CH(OH)CH 2 OCOR 3 - where R 3 is a monovalent alkyl residue and where R 2 is hydrogen or methyl, and (b) a compound containing at least 1 isocyanate group where the mixture of (A) and (B) may contain conventional additives of the lacquer industry. 6 claims

  15. Novel SEU hardened PD SOI SRAM cell

    Science.gov (United States)

    Chengmin, Xie; Zhongfang, Wang; Xihu, Wang; Longsheng, Wu; Youbao, Liu

    2011-11-01

    A novel SEU hardened 10T PD SOI SRAM cell is proposed. By dividing each pull-up and pull-down transistor in the cross-coupled inverters into two cascaded transistors, this cell suppresses the parasitic BJT and source-drain penetration charge collection effect in PD SOI transistor which causes the SEU in PD SOI SRAM. Mixed-mode simulation shows that this novel cell completely solves the SEU, where the ion affects the single transistor. Through analysis of the upset mechanism of this novel cell, SEU performance is roughly equal to the multiple-cell upset performance of a normal 6T SOI SRAM and it is thought that the SEU performance is 17 times greater than traditional 6T SRAM in 45nm PD SOI technology node based on the tested data of the references. To achieve this, the new cell adds four transistors and has a 43.4% area overhead and performance penalty.

  16. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... oven, with a butter cookie as the test product. The investigated quality parameters for the butter cookies were mass loss and surface browning, where the uniformity of browning was evaluated subjectively against a scale of standards and objectively by L* value measurements. Good reproducibility...

  17. Modelling heat and mass transfer in bread baking with mechanical deformation

    International Nuclear Information System (INIS)

    Nicolas, V; Glouannec, P; Ploteau, J-P; Salagnac, P; Jury, V; Boillereaux, L

    2012-01-01

    In this paper, the thermo-hydric behaviour of bread during baking is studied. A numerical model has been developed with Comsol Multiphysics© software. The model takes into account the heat and mass transfers in the bread and the phenomenon of swelling. This model predicts the evolution of temperature, moisture, gas pressure and deformation in French 'baguette' during baking. Local deformation is included in equations using solid phase conservation and, global deformation is calculated using a viscous mechanic model. Boundary conditions are specified with the sole temperature model and vapour pressure estimation of the oven during baking. The model results are compared with experimental data for a classic baking. Then, the model is analysed according to physical properties of bread and solicitations for a better understanding of the interactions between different mechanisms within the porous matrix.

  18. Effect of baking on reduction of free and hidden fumonisins in gluten-free bread.

    Science.gov (United States)

    Bryła, Marcin; Roszko, Marek; Szymczyk, Krystyna; Jędrzejczak, Renata; Słowik, Elżbieta; Obiedziński, Mieczysław W

    2014-10-22

    The aim of the present work was to assess the influence of the baking process on the fumonisin content in gluten-free bread. The dough was made using two methods: without sourdough and with sourdough. Fumonisins were determined using high-performance liquid chromatography with ion-trap mass spectrometry. This study showed that the bread baking process caused a statistically significant drop in the mean concentration of free fumonisins: the reduction levels were 30 and 32% for the direct and sourdough-based methods, respectively. The lower reduction after baking was observed for hidden fumonisins: 19 and 10%, respectively. The presence of some compounds (such as proteins or starch) capable of stabilizing fumonisins during the baking process might be responsible for the observed increase in the hidden-to-free ratio from an initial 0.72 in flour to 0.83 in bread made from sourdough and to 0.95 in sourdough-free bread.

  19. The impact of baking time and bread storage temperature on bread crumb properties.

    Science.gov (United States)

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-12-15

    Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Moisture distribution during conventional or electrical resistance oven baking of bread dough and subsequent storage.

    Science.gov (United States)

    Derde, Liesbeth J; Gomand, Sara V; Courtin, Christophe M; Delcour, Jan A

    2014-07-09

    Electrical resistance oven (ERO) baking processes bread dough with little temperature gradient in the baking dough. Heating of the dough by means of an ERO is based on the principles of Joule's first law and Ohm's law. This study compared the changes in moisture distribution and physical changes in starch of breads conventionally baked or using an ERO. The moisture contents in fresh ERO breads are generally lower than those in conventional breads. During storage of conventionally baked breads, water migrates from the crumb to the crust and moisture contents decrease throughout the bread crumb. Evidently, less moisture redistribution occurs in ERO breads. Also, the protons of ERO bread constituents were less mobile than their counterparts in conventional bread. Starch retrogradation occurs to similar extents in conventional and ERO bread. As a result, the changes in proton mobility cannot be attributed to differences in levels of retrograded starch and seem to be primarily determined by the overall lower moisture content.

  1. Gluten-Free Bread: Influence of Sourdough and Compressed Yeast on Proofing and Baking Properties

    Directory of Open Access Journals (Sweden)

    Carola Cappa

    2016-10-01

    Full Text Available The use of sourdough is the oldest biotechnological process to leaven baked goods, and it represents a suitable technology to improve traditional bread texture, aroma, and shelf life. A limited number of studies concerning the use of sourdough in gluten-free (GF breadmaking have been published in comparison to those on traditional bread. The aim of this study was to compare the properties of GF breads obtained by using a previously in-lab developed GF-sourdough (SD, compressed yeast (CY; Saccharomyces cerevisiae or their mixture (SDCY as leavening agents; more specifically, it aims to confirm the findings of a previous studies and to further improve (both in terms of recipe and process the features of the resulting GF breads. Dough pH and rheological properties were measured. Fresh and stored breads were characterized for weight, height, specific volume, crust and crumb color, moisture, water activity, crumb hardness, and porosity. The combination SDCY was effective in improving bread volume and softness when compared to SD only. Furthermore, SD- and SDCY-crumbs exhibited a less crumbly behavior during storage (69 h, 25 °C, 60% of relative humidity in comparison to CY-breads. This study confirms the positive effect of SD in GF breadmaking, in particular when used in combination with CY.

  2. Metabolic alkalosis secondary to baking soda treatment of a diaper rash.

    Science.gov (United States)

    Gonzalez, J; Hogg, R J

    1981-06-01

    A 4-month-old infant was seen with hypokalemic metabolic alkalosis that was associated with prior application of liberal amounts of sodium bicarbonate (baking soda) to a diaper rash. After exclusion of other etiologies of the infant's acid-base disturbance, a complete resolution occurred following discontinuation of the baking soda applications. This case report provides a reminder of the significant side effects that may result from the excessive use of a seemingly harmless household substance.

  3. Stain removal and whitening by baking soda dentifrice: A review of literature.

    Science.gov (United States)

    Li, Yiming

    2017-11-01

    Tooth discoloration may be caused by intrinsic or extrinsic stains or a combination of both. There are 2 major approaches to removing the stains, including the chemical mechanism using peroxides for tooth bleaching and the mechanical mechanism using abrasives in prophylactic pastes and dentifrices to remove stains, resulting in a whitening effect. Attempts have also been made to add a low concentration of peroxides to dentifrices to enhance their abrasive cleaning to remove tooth stains. This article provides a review of both in vitro and clinical studies on stain removal and whitening effect of dentifrices containing sodium bicarbonate (baking soda). In recent years, whitening dentifrices have become popular because of little additional effort for use, ease of availability, low cost, and accumulated evidence of clinical efficacy and safety in the literature. Advances in research and technology have led to innovative formulations of dentifrices using baking soda as the sole abrasive or a component of an abrasive system. Baking soda is biologically compatible with acid-buffering capacities, antibacterial at high concentrations, and has a relatively lower abrasivity. The evidence available in the literature indicates that baking soda-based dentifrices are effective and safe for tooth stain removal and consequently whitening. A number of clinical studies have also shown that baking soda-based dentifrices are more effective in stain removal and whitening than some non-baking soda-containing dentifrices with a higher abrasivity. So far, research efforts have mainly focused on stain removal and tooth-whitening efficacy and clinical safety of baking soda dentifrices used with manual toothbrushes, with only a few studies investigating their effects using powered toothbrushes, for which further research is encouraged. As part of a daily oral hygiene practice, baking soda-based dentifrice is a desirable, alternative or additional measure for tooth stain removal and whitening

  4. Prevalence of using baking soda in different types of most commonly consumed breads by Iranian people

    OpenAIRE

    Abolfazl Mohammadbeigi; Ali Salehi; Hassan Izanloo; Zahra Ghorbani; Vahid Vanaki; Reza Ramazani; Mahdi Asadi-Ghalhari

    2018-01-01

    Background: Nowadays, in most bakeries in order to accelerate bread production process and reduce work pressure on bakers, harmful chemicals like baking soda are in use. Therefore, the aim of the present study was to investigate the prevalence of using baking soda in different types of most commonly consumed breads by Iranian people. Materials and Methods: This cross-sectional descriptive study was carried out on 234 bakeries in Qom, Iran, during 2017. The proportional stratified sampling met...

  5. Hardened plungers and piston rods for high-pressure compressors

    Energy Technology Data Exchange (ETDEWEB)

    1942-07-07

    This report was a summary of information on dimensions, materials, and operating conditions, as well as experience in the use of piston rods and plungers at Gelsenkirchen. The surface hardening of these parts and their resulting life and wear were of prime importance. Nitriding hardening was one of the best processes for the production of wearproof surfaces. Case hardening and autogeneous hardening had been found satisfactory. Heat hardening had been found to be a cheap process in many applications. Surfaces could be obtained by hard chrome plating which would have the same or higher wear resistance as nitriding and excel in the depth of hardness. However, the heat hardening alone produced hard layers which had sufficiently good properties for plungers and piston rods of the booster compressors, gas-circulation pumps, paste presses, compressors and possibly pressure-release machines. This plant possessed a hardening installation which offered the advantage of production of most of the required equipment right at the works. This was particularly important if a grinding machine was available. This arrangement had to be supplemented with a shaft furnace in which parts could be heated to remove stresses before and after machining. 5 tables.

  6. A comparison of UV cross-linking and vacuum baking for nucleic acid immobilization and retention

    International Nuclear Information System (INIS)

    Nierzwicki-Bauer, S.A.; Gebhardt, J.S.; Linkkila, L.; Walsh, K.

    1990-01-01

    The effectiveness of UV cross-linking and in vacuo baking for the immobilization and retention of DNA to various solid supports was investigated. Optimal immobilization treatments for supported and unsupported nitrocellulose and nylon membranes were: UV cross-linking at 254 nm with an exposure of 120 milliJoules/cm 2 , or baking in vacuo for two hours at 80 degrees C. UV-immobilized nitrocellulose-based membranes showed no increase in sensitivity when compared to baked membranes. An increase in sensitivity was observed for UV-immobilized nylon membranes as compared with baked nylon membranes in some instances, although this varied within lots of the membranes tested. Repeated strippings and heterologous reprobings resulted in loss of target DNA from UV-immobilized nylon membranes as compared to baked nylon membranes. Loss of target DNA from UV-immobilized nitrocellulose-based membranes due to repeated strippings and reprobings was even more pronounced. In vacuo baking of supported and unsupported nitrocellulose and nylon membranes was more effective for immobilization, and more importantly, for retention of target DNA through many reprobings of the same blot

  7. Continuous monitoring of dough fermentation and bread baking by magnetic resonance microscopy.

    Science.gov (United States)

    Bajd, Franci; Serša, Igor

    2011-04-01

    The consumer quality of baked products is closely related with dough structure properties. These are developed during dough fermentation and finalized during its baking. In this study, magnetic resonance microscopy (MRM) was employed in a study of dough fermentation and baking. A small hot air oven was installed inside a 2.35-T horizontal bore superconducting magnet. Four different samples of commercial bread mixes for home baking were used to prepare small samples of dough that were inserted in the oven and allowed to rise at 33 °C for 112 min; this was followed by baking at 180 °C for 49 min. The entire process was followed by dynamic T(1)-weighted 3D magnetic resonance imaging with 7 min of temporal resolution and 0.23×0.23×1.5 mm(3) of spatial resolution. Acquired images were analyzed to determine time courses of dough pore distribution, dough volume and bread crust thickness. Image analysis showed that both the number of dough pores and the normalized dough volume increased in a sigmoid-like fashion during fermentation and decreased during baking due to the bread crust formation. The presented magnetic resonance method was found to be efficient in analysis of dough structure properties and in discrimination between different dough types. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effect of cooking method (baking compared with frying) on acrylamide level of potato chips.

    Science.gov (United States)

    Palazoğlu, T Koray; Savran, Derya; Gökmen, Vural

    2010-01-01

    The effect of cooking method (baking compared with frying) on acrylamide level of potato chips was investigated in this study. Baking and frying experiments were conducted at 170, 180, and 190 degrees C using potato slices with a thickness of 1.4 mm. Raw potatoes were analyzed for reducing sugars and asparagine. Surface and internal temperatures of potato slices were monitored during the experiments to better explain the results. Fried and baked chips were analyzed for acrylamide content using an LC-MS method. The results showed that acrylamide level of potato chips prepared by frying increased with frying temperature (19.6 ng/g at 170 degrees C, 39 ng/g at 180 degrees C, and 95 ng/g at 190 degrees C). In baking, however, the highest acrylamide level was observed in potato chips prepared at 170 degrees C (47.8 ng/g at 170 degrees C, 19.3 ng/g at 180 degrees C, and 29.7 ng/g at 190 degrees C). The results showed that baking at 170 degrees C more than doubled the acrylamide amount that formed upon frying at the same temperature, whereas at 180 and 190 degrees C, the acrylamide levels of chips prepared by baking were lower than their fried counterparts.

  9. SEU testing of a novel hardened register implemented using standard CMOS technology

    International Nuclear Information System (INIS)

    Monnier, T.; Roche, F.M.; Cosculluela, J.; Velazco, R.

    1999-01-01

    A novel memory structure, designed to tolerate SEU perturbations, has been implemented in registers and tested. The design was completed using a standard submicron nonradiation hardened CMOS technology. This paper presents the results of heavy ions tests which evidence the noticeable improvement of the SEU-robustness with an increased LET threshold and reduced cross-section, without significant impact to die real estate, write time, or power consumption

  10. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread.

    Science.gov (United States)

    Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J

    2016-06-15

    The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied.

  11. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  12. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    Science.gov (United States)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  13. Technologies Enabling Custom Radiation-Hardened Component Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Two primary paths are available for the creation of a Rad-Hard ASIC. The first approach is to use a radiation hardened process such as existing Rad-Hard foundries....

  14. Technologies Enabling Custom Radiation-Hardened Component Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two primary paths are available for the creation of a Rad-Hard ASIC. The first approach is to use a radiation hardened process such as existing Rad-Hard foundries....

  15. Radiation hardening of power MOSFETs using electrical stress

    International Nuclear Information System (INIS)

    Picard, C.; Brisset, C.; Quittard, O.; Joffre, F.; Picard, C.; Hoffmann, A.; Charles, J.P.

    1999-01-01

    Application of high voltage electrical stresses to NVDMOSFET-type COTS transistors was explored as an original hardening option. Such pre irradiation treatment enhances transistor response to total dose, with a resulting gain of up to one decade. (authors)

  16. Radiation Hardened Ethernet PHY and Switch Fabric, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innoflight will develop a new family of radiation hardened (up to 3 Mrad(Si)), fault-tolerant, high data-rate (up to 8 Gbps), low power Gigabit Ethernet PHY and...

  17. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  18. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  19. A Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — This projects seeks to continue the development of the Radiation Hardened Housekeeping Slave Node (RH-HKSN) ASIC. The effort has taken parallel paths by implementing...

  20. PERBEDAAN PH SALIVA ANTARA PENGGUNA PASTA GIGI YANG MENGANDUNG BAKING SODA DAN PENGGUNA PASTA GIGI YANG MENGANDUNG FLUOR

    OpenAIRE

    LINARDI, ALICIA NADIA

    2014-01-01

    2014 Latar belakang : Baking soda dan fluor merupakan bahan yang biasa ditambahkan dalam pasta gigi. Baking soda dan fluor mempunyai kemampuan untuk meningkatkan sekresi saliva dan pH saliva. Tujuan penelitian ini adalah untuk mengetahui perbedaan pH saliva antara pengguna pasta gigi yang mengandung baking soda dan pengguna pasta gigi yang mengandun fluor. Bahan dan metode : Jenis penelitian ini adalah eksperimental dengan desai...

  1. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  2. Effect of surface work hardening on wear behavior of Hadfield steel

    International Nuclear Information System (INIS)

    Yan Weilin; Fang Liang; Sun Kun; Xu Yunhua

    2007-01-01

    Shot peening has become an effective method to strengthen alloy. In this investigation, it has been used to work-harden Hadfield steel. It has been regarded that the surface hardness of Hadfield steel has been increased greatly after shot peening. Using electron scanning microscope (SEM), high resolution transmission electron microscope (HRTEM) and X-ray diffraction (XRD) analysis, the microstructure of shot penned surface layer was examined. It has been observed that a nanocrystalline surface layer is formed. The grain sizes of surface were decreased to 11.1-17.4 nm and the maximum hardened layer can reach to 100 μm after the treatment. Surface hardness was also increased with increasing shot peening period. Two-body and three-body abrasive wear experiments were carried out for work hardening and original specimens, separately. The results showed that the three-body wear resistance of the nanocrystallized Hadfield steel has distinctly been improved using soft abrasive particles. For harder abrasive particles like emery paper, the increased hardness and grain refinement by shot peening cannot improve two-body abrasive wear resistance

  3. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  4. Cookie- versus cracker-baking--what's the difference? Flour functionality requirements explored by SRC and alveography.

    Science.gov (United States)

    Kweon, Meera; Slade, Louise; Levine, Harry; Gannon, Diane

    2014-01-01

    The many differences between cookie- and cracker-baking are discussed and described in terms of the functionality, and functional requirements, of the major biscuit ingredients--flour and sugar. Both types of products are similar in their major ingredients, but different in their formulas and processes. One of the most important and consequential differences between traditional cracker and cookie formulas is sugar (i.e., sucrose) concentration: usually lower than 30% in a typical cracker formula and higher than 30% in a typical cookie formula. Gluten development is facilitated in lower-sugar cracker doughs during mixing and sheeting; this is a critical factor linked to baked-cracker quality. Therefore, soft wheat flours with greater gluten quality and strength are typically preferred for cracker production. In contrast, the concentrated aqueous sugar solutions existing in high-sugar cookie doughs generally act as an antiplasticizer, compared with water alone, so gluten development during dough mixing and starch gelatinization/pasting during baking are delayed or prevented in most cookie systems. Traditional cookies and crackers are low-moisture baked goods, which are desirably made from flours with low water absorption [low water-holding capacity (WHC)], and low levels of damaged starch and water-soluble pentosans (i.e., water-accessible arabinoxylans). Rheological (e.g., alveography) and baking tests are often used to evaluate flour quality for baked-goods applications, but the solvent retention capacity (SRC) method (AACC 56-11) is a better diagnostic tool for predicting the functional contribution of each individual flour functional component, as well as the overall functionality of flours for cookie- and/or cracker-baking.

  5. Enhancement of plaque removal efficacy by tooth brushing with baking soda dentifrices: results of five clinical studies.

    Science.gov (United States)

    Putt, Mark S; Milleman, Kimberly R; Ghassemi, Annahita; Vorwerk, Linda M; Hooper, William J; Soparkar, Pramod M; Winston, Anthony E; Proskin, Howard M

    2008-01-01

    An earlier clinical study demonstrated that brushing with a commercial Arm & Hammer dentifrice containing baking soda physically removed significantly more plaque than brushing with either of two commercial dentifrices which did not contain baking soda. However, little has been done to confirm these results and to compare baking soda-containing dentifrices with more recently commercialized non-baking soda dentifrice formulations. The objective of this study was to compare commercial dentifrices containing 20% to 65% baking soda and commercial dentifrices without baking soda in enhancing plaque removal efficacy of tooth brushing. Five randomized, controlled, blinded, crossover clinical studies were performed among healthy adult volunteers who provided informed consent. After approximately 24 hours without oral hygiene, subjects with sufficient plaque were enrolled in the study phase. Plaque was scored before and after supervised brushing for one minute using the Turesky, et al. modification of the Quigley-Hein Plaque Index at six sites per tooth according to Soparkar's modification as described by Lobene, et al. In each study, wash-out periods with a regular dentifrice not evaluated in the study separated each product treatment. In all studies, every dentifrice exhibited a significant (p baking soda dentifrices resulted in statistically greater (p baking soda. Results on other tooth surfaces, such as facial, lingual, proximal, and gingival surfaces also demonstrated statistically greater (p baking soda-containing dentifrices as compared to the baking soda-free dentifrices. In three of the studies comparing different levels of baking soda, brushing with dentifrices with higher concentrations of baking soda consistently removed numerically more plaque than those containing lower levels. In one of these three studies, the difference in plaque removal between the baking soda dentifrices reached statistical significance. The results suggest a positive relationship

  6. Baking reduces prostaglandin, resolvin, and hydroxy-fatty acid content of farm-raised Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Raatz, Susan K; Golovko, Mikhail Y; Brose, Stephen A; Rosenberger, Thad A; Burr, Gary S; Wolters, William R; Picklo, Matthew J

    2011-10-26

    The consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (22:6n-3) have known protective effects in the vasculature. It is not known whether the consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo salar) increases the level of n-3 and n-6 PUFA oxidation products over raw salmon. We measured the contents of several monohydroxy-fatty acids (MHFA), prostanoids, and resolvins. Our data demonstrate that baking did not change the overall total levels of MHFA. However, baking resulted in selective regioisomeric loss of hydroxy fatty acids from arachidonic acid (20:4n-6) and EPA, while significantly increasing hydroxyl-linoleic acid levels. The contents of prostanoids and resolvins were reduced several-fold with baking. The inclusion of a coating on the salmon prior to baking reduced the loss of some MHFA but had no effect on prostanoid losses incurred by baking. Baking did not decrease n-3 PUFA contents, indicating that baking of salmon is an acceptable means of preparation that does not alter the potential health benefits of high n-3 seafood consumption. The extent to which the levels of MHFA, prostanoids, and resolvins in the raw or baked fish have physiologic consequence for humans needs to be determined.

  7. Radiation-hardened bulk Si-gate CMOS microprocessor family

    International Nuclear Information System (INIS)

    Stricker, R.E.; Dingwall, A.G.F.; Cohen, S.; Adams, J.R.; Slemmer, W.C.

    1979-01-01

    RCA and Sandia Laboratories jointly developed a radiation-hardened bulk Si-gate CMOS technology which is used to fabricate the CDP-1800 series microprocessor family. Total dose hardness of 1 x 10 6 rads (Si) and transient upset hardness of 5 x 10 8 rads (Si)/sec with no latch up at any transient level was achieved. Radiation-hardened parts manufactured to date include the CDP-1802 microprocessor, the CDP-1834 ROM, the CDP-1852 8-bit I/O port, the CDP-1856 N-bit 1 of 8 decoder, and the TCC-244 256 x 4 Static RAM. The paper is divided into three parts. In the first section, the basic fundamentals of the non-hardened C 2 L technology used for the CDP-1800 series microprocessor parts is discussed along with the primary reasons for hardening this technology. The second section discusses the major changes in the fabrication sequence that are required to produce radiation-hardened devices. The final section details the electrical performance characteristics of the hardened devices as well as the effects of radiation on device performance. Also included in this section is a discussion of the TCC-244 256 x 4 Static RAM designed jointly by RCA and Sandia Laboratories for this application

  8. Press-Hardening Simulation - the next Level of Maturity

    Science.gov (United States)

    Schönbach, T.; Messner, M.; Gmainer, C.

    2017-09-01

    Press hardening has been fully established in the automotive industry during the last years. Forming simulation is an important tool to make the whole potential of press hardening available in both, the mass production and further developments. One of the usual simulation packages is AutoForm. It has been known as a reliable software tool for the sheet metal forming application area as well as for the press hardening for years. AutoForm-Thermo Solverplus supports direct and indirect hot forming, which are followed by quenching and cooling processes. It takes into account phase transformation during quenching and thermal distortion after cooling. The recent version AutoFormplus R7 brings further advances in process modeling for hot forming as this release allows users to take into account cooling channels. Based on this, the heat conduction in tools can be calculated. Cooling channel modelling affects press hardening simulation in two ways: it can be used to optimize the cooling channel design in the press hardening tools and it increases the accuracy level of the simulation in general. The resulting benefits coming from these new features will be presented in this paper; based on a B-pillar which was produced with direct press-hardening process.

  9. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation

    Science.gov (United States)

    Cockeram, B. V.; Smith, R. W.; Hashimoto, N.; Snead, L. L.

    2011-11-01

    TEM examinations and swelling measurements were performed on commercially available wrought Low Carbon Arc Cast (LCAC), La-oxide Oxide Dispersion Strengthened (ODS), and TZM molybdenum alloys following irradiation in the High Flux Isotope Reactor (HFIR) at 300 °C, 600 °C, and 900 °C to neutron fluences between 1.05 and 24.7 × 10 25 n/m 2 ( E > 0.1 MeV), or 0.6-13.1 dpa. The defect structure, hardening, and swelling were shown to be strongly dependent on irradiation temperature and starting microstructure. Irradiation at 300 °C results in the formation of a high number density of fine loops and voids (˜1 nm) that produce significant hardening and low swelling that is comparable for all alloys. Irradiation at 600 °C-784 °C produces a high number density of larger voids (5-6 nm) that results in significant hardening with the highest swelling. A low number density of the largest void sizes (8-30 nm) are formed for the 900 °C irradiation that result in low hardening and less swelling than observed for the 600 °C irradiation. The fine grain size of ODS Mo results in a higher concentration of denuded zones along grain boundaries and improved ductile-laminate toughening that results in improved resistance to irradiation embrittlement for the 600 °C irradiations. Irradiation-induced formation of precipitates rich in transmutation products is observed at the highest dose, and it is likely that these features exert an influence on subsequent void growth.

  10. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH

    International Nuclear Information System (INIS)

    Wang Zhou; Luan Weizhi; Huang Junjie; Jiang Chuanhai

    2011-01-01

    Highlights: → We analyzed the microstructure of shot peened component. → We estimated the domain size, the microstrain and dislocation density of specimen via XRD profile method. → The domain size increased and microstrain as well as dislocation density decreased with depth increasing. → The surface domain size decreased to nano-scale after shot peening treatment. → The surface dislocation density increased about one order magnitude after shot peening treatment. - Abstract: The influence of shot peening on microstructure of laser hardened 17-4PH was investigated by using X-ray diffraction profiles. The domain size, microstrain and dislocation in different depths were calculated via Voigt method and dislocation density calculation method according to Williamson's work. Two typical materials in laser hardened 17-4PH (matrix material and laser hardened material) and three families of crystalline planes ({1 1 0}, {2 0 0}, {2 1 1}) were chosen as research objects. Microstructural results from XRD investigation quantified the shot peening influence on microstrain, domain size and dislocation density in microstructure changed layer in these three plane diffraction directions. Results showed that shot peening was an efficient cold working method to alter microstructure in near surface region and microstructure strengthening mechanism of shot peening played an important role on improving the surface mechanical properties. In microstructure changed layer, the domain size increased and microstrain as well as dislocation density decreased with depth increasing, which led to the mechanical properties decrease with depth increasing. With increasing peening intensity from 0.2 mmA + 0.1 mmA to 0.5 mmA + 0.1 mmA, the depth of microstructure changed layer increased but the surface microstructure did not change, no matter in matrix material or laser hardened material. As laser hardened material had a stronger resistance against shot peening influence on microstructure, the

  11. Substituting normal and waxy-type whole wheat flour on dough and baking properties.

    Science.gov (United States)

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-09-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture.

  12. PENGARUH PENAMBAHAN MAGNESIUM STEARAT DAN JENIS PROTEIN PADA PEMBUATAN BIODEGRADABLE FOAM DENGAN METODE BAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Nanik hendrawati

    2015-12-01

    Full Text Available Biodegradable foam with cassava starch, protein and chitosan as the basic ingredients can be produced by using baking process method. Variation on magnesium stearate amount and protein types gave different effect on the biodegradable foam quality. The amount of magnesium stearate was varied as 1; 1.6; 2.2; 2.8; 3.4 and 4 % w/w and the sources of protein used in this research were taken from soy bean, peanut and egg white. The foam produced in this research was then tested for its mechanical properties, water resistance and biodegradability. It was found that addition of magnesium stearate as much as 4% w/w reduced water adsorption and biodegradability of foam. Magnesium stearate affected the ability of absorption of water and foam degradation, but did not influence on tensile strength. Different types of protein also gave influence on water absorption, biodegradability and tensile strength. The best improvement of tensile strenght among the compounds tested was shown by soy bean based foam.

  13. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    Science.gov (United States)

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour decreased pasting viscosity, showing all RVA parameters were the lowest in SMC40 composite flour. Water absorption was slightly higher with 40% whole wheat flour regardless of whether the wheat was normal or waxy. An increased mixing time was observed when higher levels of KK flour were substituted, but the opposite reaction occurred when SMC flour was substituted at the same levels. Bread loaf volume was lower in breads containing a whole wheat flour substitution compared to bread containing only white wheat flour. No significant difference in bread loaf volume was observed between normal and waxy whole flour, but the bread crumb firmness was significantly lower in breads containing waxy flour. The results of these studies indicate that up to 40% whole wheat flour substitution could be considered a practical option with respect to functional qualities. Also, replacing waxy whole flour has a positive effect on bread formulation over normal whole wheat flour in terms of improving softness and glutinous texture. PMID:24471084

  14. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  15. NINJA: a noninvasive framework for internal computer security hardening

    Science.gov (United States)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  16. High-Performance, Radiation-Hardened Electronics for Space Environments

    Science.gov (United States)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  17. COST-EFFECTIVENESS OF INNOVATIVE TECHNOLOGIES BAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    I. P. Bogomolova

    2014-01-01

    Full Text Available Summary.Research priorities is the development of food therapeutic and prophylactic purposes, innovative methods of complex processing of raw materials with maximum preservation of the original chemical composition and on the basis of a new product release in generation functionality. This article explores the many reasons for the lag of the Patriotic-owned enterprises in terms of technological development, analyzes the features of innovation in the bakery production of Russia, proposed the current directions for the innovative development of grain-processing industry. The observation revealed that during the years of market transformations in the bakeries have been significant changes, especially in the volume of products sold. Based on the results of statistical studies, it was found that at least 75% of the population consume daily baked goods and this makes them appropriate nutrient enrichment. The current state and bakeries, bakeries and revealed a high degree of wear of the process equipment. Over the past 14 years, marked by a decline in production, which led to a decline in production output and profitability constraints. It was found that in bakeries and bakeries deterioration index technique is approximately 67%. With respect to raw materials for bread production, noted that the creation of a civilized grain market in Russia requires the solution of a number of key issues. It is established that is currently happening aggression from industrialized countries to seize the Russian food market, leading to a narrowing of the domestic demand for domestic products, and this causes the drop in the economic growth of the food industry. The analysis revealed that there is considerable potential for the development of the industry.

  18. Critical issues in radiation hardening of fusion diagnostic systems

    International Nuclear Information System (INIS)

    Baur, J.F.; Barker, R.A.; Engholm, B.A.; Miller, P.H.

    1983-01-01

    In the most recent phase of the DOE funded program in Radiation Hardening of Fusion Reactor Diagnostics, a study and listing have been completed of the critical issues. With this information a long range program plan-including system studies, data surveys and a sponsored experimental program-is being developed for integration into the DOE Fusion Engineering Development Plan. More than twenty critical issues were identified, ranked in terms of three parameters (priority, urgency and impact) and described in terms of the remaining research needed. In addition to the critical issues list, three studies that were completed to assess the impact of some of the critical issues are described here briefly. A Survey was conducted of detectors and transducers expected to be impaired by doserate effects in the fusion environment. A set of Monte Carlo computer calculations of the streaming of neutrons through small, diagnostic-sized penetrations in a blanket-shield structure showed that simple analytic expressions for such streaming are inadequate for even preliminary designs of radiationsensitive diagnostic systems. Tests on radiation-darkened window blanks of quartz and sapphire showed that transmission in the ultraviolet region was improved by annealing at 300 0 C, indicating that it may be feasible to include windows in a well-designed viewing system in a reactor

  19. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  20. Effect of Age and Environment on Strength of Old Baked Clay Bricks of Indus Valley Civilization

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2016-07-01

    Full Text Available This paper presents results of experimental investigations conducted on old baked clay bricks of Indus Valley civilization of tenth century. The object of this study is to evaluate the effect of age and environmental conditions on the strength of the baked clay bricks which are about 1000 years old. The brick samples were collected from six different archeological sites at the banks of old route of River Indus in district Sanghar, Sindh, Pakistan. These specimens were tested for apparent density, compressive strength, tensile strength, modulus of rupture and the weathering effects on them during the course of time. ASTM (American Society for Testing and Materials standard for baked clay bricks, based on compressive strength, suggests that the bricks of four sites can withstand severe weathering while the bricks of two sites are resistant to moderate weathering. These results were compared to the values of the corresponding data of bricks, of same period, obtained from the historical monuments of the world as reported in the literature. The comparison showed that the values of physical properties of old baked clay bricks of Indus valley civilization of tenth century are in agreement with that of old baked clay bricks of contemporary era. The results of this study could also be helpful for preservation of old archeological sites of Indus valley civilization.

  1. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures and t...

  2. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  3. Process design of press hardening with gradient material property influence

    Science.gov (United States)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  4. Porosity and mechanically optimized PLGA based in situ hardening systems.

    Science.gov (United States)

    Schloegl, W; Marschall, V; Witting, M Y; Volkmer, E; Drosse, I; Leicht, U; Schieker, M; Wiggenhorn, M; Schaubhut, F; Zahler, S; Friess, W

    2012-11-01

    Goal of the present study was to develop and to characterize in situ-hardening, porous PLGA-based systems for their future application as bone grafting materials. Therefore, we investigated the precipitation behavior of formulations containing PLGA and a water-miscible solvent, DMSO, PEG 400, and NMP. To increase porosity, a pore forming agent (NaCMC) was added and to enhance mechanical properties of the system, an inorganic filler (α-TCP) was incorporated. The behavior upon contact with water and the influence of the prior addition of aqueous media on the morphology of the corresponding hardened implants were investigated. We proved cell-compatibility by live/dead assays for the hardened porous polymer/ceramic-composite scaffolds. The IsHS formulations can therefore be used to manufacture hardened scaffolds ex vivo by using molds with the desired shape and size. Cells were further successfully incorporated into the IsHS by precultivating the cells on the α-TCP-powder prior to their admixing to the formulation. However, cell viability could not be maintained due to toxicity of the tested solvents. But, the results demonstrate that in vivo cells should well penetrate, adhere, and proliferate in the hardened scaffolds. Consequently, we consider the in situ hardening system being an excellent candidate as a filling material for non-weight-bearing orthopedic indications, as the resulting properties of the hardened implant fulfill indication-specific needs like mechanical stability, elasticity, and porosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  6. Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6

    International Nuclear Information System (INIS)

    Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.

    2017-01-01

    The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT) within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.

  7. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  8. The Use of Xylanases from Different Microbial Origin in Bread Baking and Their Effects on Bread Qualities

    Science.gov (United States)

    Al-Widyan, Omar; Khataibeh, Moayad H.; Abu-Alruz, Khaled

    Effects of xylanases on bread quality were examined. Enzymes used were endo-xylanase (EC 3.2.1.8) from different sources of microorganisms. Baked loaves were assessed for Loaves volume, colour and staling rate. Xylanases produced from rumen microorganisms M6 had clearly positive effects on loaf volume of bread as well as anti-firming potential. M3 (produced from Trichoderma longibrachiatum) improved crumb softness. The use of xylanase for breadmaking lowered firmness of bread crumb effectively compared with control loaf. It can be summarized that xylanases had significant positive effects on bread characteristics. In particular, they had advantage in retarding the staling rate of bread. It is recommended that the optimum dosage of enzymes, method of application in industrial scale especially with xylanase should be studied further in order to gain the great advantages of enzyme addition in breadmaking.

  9. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    Science.gov (United States)

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  10. Baking loss of bread with special emphasis on increasing water holding capacity.

    Science.gov (United States)

    Kotoki, D; Deka, S C

    2010-01-01

    Potato flour (PF), hydroxypropyl methylcellulose (HPMC) and honey were used as baking agents and their effects on baking loss and sensory quality were studied. PF at 1, 2 and 4% levels decreased baking loss followed by HPMC and honey. Water absorption was substantially high with the HPMC (70.8-80.8%) and PF (61.7-71.7%) compared to honey and normal standard bread. PF incorporation increased shelf-life (6-7 days) as compared to HPMC and honey. HPMC incorporated bread had higher moisture content (36.8-38.0%) followed by PF (34.5-35.8%) and honey (34.7%). The ash content was in the order of PF (1%) > honey (4%) > PF (2%) > normal bread > HPMC (0.5 g) > PF (4%) > HPMC (1 g) > HPMC (1.5 g). PF incorporated bread had sensorily highest acceptance followed by HPMC and honey.

  11. Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry.

    Science.gov (United States)

    Rodriguez-Mateos, Ana; Cifuentes-Gomez, Tania; George, Trevor W; Spencer, Jeremy P E

    2014-05-07

    Accumulating evidence suggests that diets rich in (poly)phenols may have positive effects on human health. Currently there is limited information regarding the effects of processing on the (poly)phenolic content of berries, in particular in processes related to the baking industry. This study investigated the impact of cooking, proving, and baking on the anthocyanin, procyanidin, flavonol, and phenolic acid contents of wild blueberry using HPLC with UV and fluorescence detection. Anthocyanin levels decreased during cooking, proving, and baking, whereas no significant changes were observed for total procyanidins. However, lower molecular weight procyanidins increased and high molecular weight oligomers decreased during the process. Quercetin and ferulic and caffeic acid levels remained constant, whereas increases were found for chlorogenic acid. Due to their possible health benefits, a better understanding of the impact of processing is important to maximize the retention of these phytochemicals in berry-containing products.

  12. Modelling of coupled heat and mass transfer during a contact baking process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Gernaey, Krist; Ashokkumar, Saranya

    2011-01-01

    A mathematical model of coupled heat and mass transfer of a contact baking process is developed. In the current model formulation, a local evaporation of water is described with a reaction–diffusion approach, where a simultaneous diffusion and evaporation of water takes place. The resulting coupled...... model equations (unsteady state heat transfer, liquid water and water vapour) were solved using the Finite Element Method (COMSOL Multi-physics® version 3.5). During the baking process, local temperatures and overall moisture loss were measured continuously. The model – predicting temperature, liquid...... water content in the product and water in the vapour phase – was calibrated and partially validated using data obtained during baking of a representative food model (a pancake batter) under controlled conditions on a specially designed experimental rig. The unknown parameters in the model equations were...

  13. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  14. [Historical evolution and change of differentiation on dried ginger, fresh ginger and baked ginger].

    Science.gov (United States)

    Fang, Wen-Tao; Zhan, Zhi-Lai; Peng, Hua-Sheng; Huang, Lu-Qi

    2017-05-01

    Ginger is commonly used as dietetic Chinese herbs, medicinal ginger mainly divided into dried ginger, fresh ginger and baked ginger. In this article, by sorting and studying literature of Chinese materia medica, textual criticism the historical evolution and change of differentiation on dried ginger, fresh ginger and baked ginger. Results indicate that, as the changes of the dynasty, dried ginger, fresh ginger and baked ginger gradually differentiation in producing area and processing method. Dried ginger beginning in Shennong Bencao Jing(Shennong's Classic of Materia Medica), Mingyi Bielu(Records of Famous Physicians) respectively included fresh ginger and dried ginger for the first time. Dried ginger and fresh ginger differentiation in producing area. Between the period of Shennong Bencao Jing(Shennong's Classic of Materia Medica)and Bencao Gangmu(Compendium of Materia Medica), dried ginger was made from fresh ginger by water, peeled and sunlight; After Bencao Gangmu(Compendium of Materia Medica), most herbalists support the view of Li Shizhen, thought that dried ginger was made by mother ginger. Baked ginger appeared in Han Dynasty. Depei Bencao(De Pei Materia Medica) in Qing Dynasty listed the baked ginger separately as a herb medicine ingredient, thought that baked ginger was made by dried ginger. As the changes of the dynasty, genuine producing areas of ginger were changed, but mainly concentrated in Yangtze river basin. Sichuan Qianwei is the main authentic region of modern medicinal ginger, in accordance with all previous dynasties materia medica. Since the Ming Dynasty, a lot of herbalists thought that good quality of dried ginger is meat thick full, color white and texture solid. Copyright© by the Chinese Pharmaceutical Association.

  15. Baking soda misuse as a home remedy: case experience of the California Poison Control System.

    Science.gov (United States)

    Al-Abri, S A; Kearney, T

    2014-02-01

    Baking soda is a common household product promoted by the manufacturer as an antacid. It contains sodium bicarbonate and has the potential for significant toxicity when ingested in excessive amounts. Characterizing the patterns and outcomes from the misuse of baking soda as a home remedy can guide the clinical assessment and preventative counselling of patients at risk for use of this product. We conducted a retrospective review of all symptomatic cases involving ingestion and misuse of a baking soda powder product that were reported to the California Poison Control System between the years 2000 and 2012. Of the 192 cases we identified, 55·8% were female, ages ranged 2 months to 79 years, and the most common reasons for misuse included antacid (60·4%), 'beat a urine drug test' (11·5%) and treat a UTI (4·7%). Most cases (55·2%) had significant symptoms warranting a medical evaluation, whereas 12 patients required hospital admission developed either electrolyte imbalances, metabolic alkalosis or respiratory depression. Misuse of baking soda can result in serious electrolyte and acid/base imbalances. Patients at highest risk of toxicity may include those who chronically use an antacid, those who use the method to 'beat' urine drug screens, pregnant women and young children. Self-treatment with baking soda as a home remedy may also mask or delay medical care thereby complicating or exacerbating an existing medical problem. We suggest that healthcare providers counsel high-risk patients about the potential complications of misuse of baking soda as a home remedy. © 2013 John Wiley & Sons Ltd.

  16. Saliva secretion difference before and after rinsing with baking soda on menopause women

    Directory of Open Access Journals (Sweden)

    Dewi Anggraeni

    2007-03-01

    Full Text Available Menopause women can experience a decrease in saliva secretion (decrease. To understand the clear picture about saliva secretion, the volume, flow rate, pH and viscosity were then measured. The aim of this research was to obtain a picture about the difference of saliva secretion before and after rinsing with baking soda on menopause women. The type of the research used was a laboratory quasi-experiment with comparative descriptive form. The technique used in this research is the survey method, and samples were taken using the multistage cluster random sampling method, and t-student statistical analysis. This research was conducted with the saliva collected with spitting method on 45 menopause women. The results show that the average volume, flow rate, pH and viscosity before rinsing with baking soda was 1.79 ml, 0.18 ml/minute, 7.40 and 0.81 mm2/second. The average volume, flow rate, pH and viscosity after rinsing with baking soda were 2.66 ml; 0.27 ml/minute; 8.67 and 0.78 mm2/second. Statistical analysis t-student on α = 0.05 shows volume changes, flow rate, pH and saliva viscosity before and after rinsing with baking soda was 0.873; 0.086; 1.273 and 0.037 respectively. The conclusion shows a significant difference between saliva secretion before and after rinsing with baking soda, and saliva secretion after rinsing with baking soda on menopause women.

  17. Validation of the baking process as a kill-step for controlling Salmonella in muffins.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Michael, Minto; Acuff, Jennifer C; Phebus, Randall K; Thippareddi, Harshavardhan; Olewnik, Maureen; Milliken, George

    2017-06-05

    This research investigates the potential risk of Salmonella in muffins when contamination is introduced via flour, the main ingredient. Flour was inoculated with a 3-strain cocktail of Salmonella serovars (Newport, Typhimurium, and Senftenberg) and re-dried to achieve a target concentration of ~8logCFU/g. The inoculated flour was then used to prepare muffin batter following a standard commercial recipe. The survival of Salmonella during and after baking at 190.6°C for 21min was analyzed by plating samples on selective and injury-recovery media at regular intervals. The thermal inactivation parameters (D and z values) of the 3-strain Salmonella cocktail were determined. A ≥5logCFU/g reduction in Salmonella population was demonstrated by 17min of baking, and a 6.1logCFU/g reduction in Salmonella population by 21min of baking. The D-values of Salmonella serovar cocktail in muffin batter were 62.2±3.0, 40.1±0.9 and 16.5±1.7min at 55, 58 and 61°C, respectively; and the z-value was 10.4±0.6°C. The water activity (a w ) of the muffin crumb (0.928) after baking and 30min of cooling was similar to that of pre-baked muffin batter, whereas the a w of the muffin crust decreased to (0.700). This study validates a typical commercial muffin baking process utilizing an oven temperature of 190.6°C for at least 17min as an effective kill-step in reducing a Salmonella serovar population by ≥5logCFU/g. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature-time profile effects and kinetics

    NARCIS (Netherlands)

    Fels, van der H.J.; Capuano, E.; Nguyen, H.T.; Mogol, B.A.; Kocadagli, T.; Goncuoglu Tas, N.; Hamzalioglu, A.; Boekel, van M.A.J.S.; Gokmen, V.

    2014-01-01

    The present study aimed to investigate the effect of recipe and temperature–time on the formation of acrylamide and 5-hydroxymethylfurfural (HMF) during biscuit baking. Baking experiments were performed with biscuits of two different recipes, with and without NaCl, at 180 °C, 190 °C and 200 °C.

  19. The effect of oxygen on the release of tritium during baking of TFTR D-T tiles

    International Nuclear Information System (INIS)

    Shu, W.M.; Gentile, C.A.; Skinner, C.H.; Langish, S.; Nishi, M.F.

    2002-01-01

    A series of tests involving 10 h baking under the current ITER design conditions (240 deg. C with 933 Pa O 2 ) was performed using a cube of a carbon fiber composite tile that had been used in Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium burning operation. The removal rate of the codeposits was about 3 μm/h near the surface and 0.9 μm/h in the deeper region. Total amount of tritium released from the cube during 10 h baking was 202 MBq, while remaining tritium in the cube after baking was 403 MBq. Thus 10 h baking at 240 deg. C with 933 Pa O 2 removed 1/3 of tritium from the cube. After 10 h baking, the tritium concentration on the cube surface also dropped by about 1/3. In addition, some tritium was released from another cube of the tile during baking at 240 deg. C in pure Ar, and a rapid increase of tritium release was observed when the purging gas was shifted from pure Ar to Ar-1%O 2 . When a whole TFTR tile was baked in air at 350 deg. C for 1 h and then at 500 deg. C for 1 h, the ratios of tritium released were 53 and 47%, respectively. Oxygen reacted with carbon to produce carbon monoxide during baking in air

  20. Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Gernaey, Krist; Adler-Nissen, Jens

    2012-01-01

    transfer model of a contact baking process. The Monte Carlo procedure was applied for propagating uncertainty in the input parameters to uncertainty in the model predictions. Monte Carlo simulations and the least squares method were used in the sensitivity analysis: for each model output, a linear...... be used to prioritize future experimental efforts, as discussed for the contact baking process....

  1. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas

    Directory of Open Access Journals (Sweden)

    Miki Mei-Chi Wang

    2018-04-01

    Full Text Available Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations. Keywords: 5-Galloylquinic acid, Aging, Baking, Gallic acid, Oolong tea

  2. Formation of heterocyclic amines in salami and ham pizza toppings during baking of frozen pizza.

    Science.gov (United States)

    Gibis, Monika; Weiss, Jochen

    2013-06-01

    Heterocyclic amines (HAs) are formed as Maillard reaction products in the crust of meat products during heating processes. Two typical pizza toppings--salami and cooked ham--were analyzed for the presence of HAs after baking frozen pizzas at top and bottom temperatures of 250 and 230 °C, respectively. After baking pizza slices for 12 min, MeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline; 0.2 ng/g), 4,8-DiMeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline; 0.5 ng/g), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; 0.2 ng/g), norharman (4.5 ng/g), and harman (2.5 ng/g) were found in the ham toppings, whereas only the comutagenic norharman (107.4 ng/g) and harman (11.4 ng/g) were found in the salami toppings. The content of MeIQx and 4,8-DiMeIQx in ham increased from 0.3 to 1.8 ng/g and 0.8 to 1.6 ng/g, respectively, when the recommended baking time was increased from 15 min (manufacturer's specification) to 18 min at 230 °C. MeIQx was formed in salami when the heating time was extended to 18 min. Moreover, higher concentrations of PhIP in salami or ham slices were found when baking temperatures were 250 °C rather than 230 °C (baking time of 12 min). However, sensory tests showed that panelists preferred longer-baked pizzas due to an increased crispiness. Thus, results show that a substantial formation of HAs may occur in pizza toppings such as ham and salami, with ham being particularly susceptible when compared to salami. Formation of HAs increases with increasing baking time and temperature. The occurrence of the cupping of ham or salami slices during baking may also increase the formation of HAs. © 2013 Institute of Food Technologists®

  3. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  4. Effects of a Baking Soda Gum on extrinsic dental stain: results of a longitudinal 4-week assessment.

    Science.gov (United States)

    Soparkar, P; Newman, M B

    2001-07-01

    An evaluation of the effects of ARM & HAMMER DENTAL CARE The Baking Soda Gum (AHDC) on extrinsic dental stain was made in 48 subjects presenting with measurable extrinsic stain. The subjects were randomized to use either the baking soda gum or a non-baking soda placebo gum for 20 minutes twice daily after lunch and dinner while brushing once daily. The procedure of limited brushing was chosen to simulate the level of hygiene normally practiced by participants entering a clinical study. After 4 weeks, the reduction in measurable extrinsic stain in the baking soda gum group was statistically significant (P = .0044) relative to baseline. Statistical analysis of the placebo gum group revealed no significant change in extrinsic stain from baseline. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 29.7% at 4 weeks.

  5. Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits.

    Science.gov (United States)

    Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat

    2018-02-01

    Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.

  6. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  7. Branching structure and strain hardening of branched metallocene polyethylenes

    International Nuclear Information System (INIS)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M.

    2015-01-01

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers

  8. Branching structure and strain hardening of branched metallocene polyethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Enrique; Li, Si-Wan; Costeux, Stéphane; Dealy, John M., E-mail: john.dealy@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C4 (Canada)

    2015-09-15

    There have been a number of studies of a series of branched metallocene polyethylenes (BMPs) made in a solution, continuous stirred tank reactor (CSTR) polymerization. The materials studied vary in branching level in a systematic way, and the most highly branched members of the series exhibit mild strain hardening. An outstanding question is which types of branched molecules are responsible for strain hardening in extension. This question is explored here by use of polymerization and rheological models along with new data on the extensional flow behavior of the most highly branched members of the set. After reviewing all that is known about the effects of various branching structures in homogeneous polymers and comparing this with the structures predicted to be present in BMPs, it is concluded that in spite of their very low concentration, treelike molecules with branch-on-branch structure provide a large number of deeply buried inner segments that are essential for strain hardening in these polymers.

  9. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  10. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  11. Effect of preheating on fatigue resistance of gears in spin induction coil hardening process

    Science.gov (United States)

    Kumar, Pawan; Aggarwal, M. L.

    2018-02-01

    Spin hardening inductors are typically used for fine-sized teeth gear geometry. With the proper selection of several design parameters, only the gear teeth can be case surface hardened without affecting the other surface of gear. Preheating may be done to reach an adapted high austenitizing temperature in the root circle to avoid overheating of the tooth tip during final heating. The effect of preheating of gear on control of compressive residual stresses and case hardening has been experimentally discussed in this paper. Present work is about analysing single frequency mode, preheat hardening treatment and compressive residual stresses field for hardening process of spur gear using spin hardening inductors.

  12. INFLUENCE OF MICROALLOYING BY BORON ON HARDENABILITY OF STEEL

    Directory of Open Access Journals (Sweden)

    E. P. Baradyntseva

    2016-01-01

    Full Text Available The research conducted in laboratory of metallurgical science by which the factors exerting impact on hardenability of steel microalloyed by boron were analysed. The research was made because the implementation of this process in mass production is connected with the certain difficulties. The conducted researches have allowed to draw a conclusion that changing content of various chemical elements, such as nitrogen, boron, the titan and aluminum in steel containing boron, produced by JSC «BSW – Management Company of Holding «BMC» at the stage of preparation of chart flowsheet make it possible to predict terms of hardenability of the final product.

  13. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  14. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  15. Why semiconductors must be hardened when used in space

    International Nuclear Information System (INIS)

    Winokur, P.S.

    2000-01-01

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest

  16. Work hardening and plastic equation of state of tantalum

    International Nuclear Information System (INIS)

    Gypen, L.A.; Aernoudt, E.; Deruyttere, A.

    1983-01-01

    The influence of cold deformation on the thermal and athermal components of the flow stress of tantalum was investigated. Up to high deformation levels the strain hardening is due only to the development of internal stress fields; the effective stress remains almost constant. The athermal strain hardening of tantalum is parabolic at low deformation levels (epsilon < 0.5) and linear at high deformation levels, as for other bcc metals. Hart's plastic equation of state is shown to be valid for tantalum at room temperature in the whole deformation range investigated (from epsilon = 0.005 to epsilon = 2.8). (author)

  17. Non-conventional laser surface hardening for axisymmetric components

    Science.gov (United States)

    Liverani, Erica; Battiato, Nadine; Ascari, Alessandro; Fortunato, Alessandro

    2014-02-01

    A new process, based on ring spot geometry, is presented for laser surface hardening of large cylindrical com-ponents. The proposed technique leads to a very hard, deep and uniform treated area along the entire work piece surface without introducing a tempered zone, making the process very attractive compared to conventional induction hardening that exhibits both low energy efficiency and poor flexibility. A complete physical model is presented for the process, together with a study of the influence of process parameters on the final outcome. The results of an extensive validation campaign, carried out following the AISI1040 standard, are also reported.

  18. Changes in hardness of magnesium alloys due to precipitation hardening

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2018-04-01

    Full Text Available This paper deals with the evaluation of changes in hardness of magnesium alloys during precipitation hardening that are nowadays widely used in different fields of industry. It focuses exactly on AZ31, AZ61 and AZ91 alloys. Observing material hardness changes serves as an effective tool for determining precipitation hardening parameters, such as temperature and time. Brinell hardness measurement was chosen based on experimental needs. There was also necessary to make chemical composition analysis and to observe the microstructures of tested materials. The obtained results are presented and discussed in this paper.

  19. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Science.gov (United States)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  20. Numerical simulations of progressive hardening by using ABAQUS FEA software

    Directory of Open Access Journals (Sweden)

    Domański Tomasz

    2018-01-01

    Full Text Available The paper concerns numerical simulations of progressive hardening include phase transformations in solid state of steel. Abaqus FEA software is used for numerical analysis of temperature field and phase transformations. Numerical subroutines, written in fortran programming language are used in computer simulations where models of the distribution of movable heat source, kinetics of phase transformations in solid state as well as thermal and structural strain are implemented. Model for evaluation of fractions of phases and their kinetics is based on continuous heating diagram and continuous cooling diagram. The numerical analysis of thermal fields, phase fractions and strain associated progressive hardening of elements made of steel were done.

  1. Aspect-oriented security hardening of UML design models

    CERN Document Server

    Mouheb, Djedjiga; Pourzandi, Makan; Wang, Lingyu; Nouh, Mariam; Ziarati, Raha; Alhadidi, Dima; Talhi, Chamseddine; Lima, Vitor

    2015-01-01

    This book comprehensively presents a novel approach to the systematic security hardening of software design models expressed in the standard UML language. It combines model-driven engineering and the aspect-oriented paradigm to integrate security practices into the early phases of the software development process. To this end, a UML profile has been developed for the specification of security hardening aspects on UML diagrams. In addition, a weaving framework, with the underlying theoretical foundations, has been designed for the systematic injection of security aspects into UML models. The

  2. On the hardenability of Nb-modified metastable beta Ti-5553 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Campo, K.N.; Andrade, D.R.; Opini, V.C.; Mello, M.G.; Lopes, E.S.N.; Caram, R., E-mail: caram@fem.unicamp.br

    2016-05-15

    Among the commercially available titanium alloys, the metastable β Ti-5553 alloy (Ti–5Al–5V–5Mo–3Cr–0.5Fe wt.%) is an object of great interest because it is employed in aerospace structural applications, primarily in the replacement of steel components. One of the primary advantages of this alloy is its high hardenability, which allows it to retain the β phase at room temperature, even at low cooling rates, thereby allowing the thermoprocessing of thick parts. The aim of this investigation was to evaluate the effect of the replacement of V with Nb on the hardenability of Ti-5553. Based on the molybdenum equivalent criterion, the Nb-modified Ti-5553 alloy was designed to present 12 wt.% of Nb instead of 5 wt.% of V. Samples of both alloys were prepared by melting them in an arc furnace under an inert atmosphere, heat-treated at high temperatures for 12 h and plastic deformed using swage forging. Finally, these samples were solution heat-treated at temperatures above the β-transus followed by cooling at different rates using water quenching, furnace cooling and a modified Jominy end quench test. Characterization was performed by measuring Vickers hardness, X-ray diffraction, and light optical, scanning electron and transmission electron microscopy. The results obtained indicate that metastable β phase can be retained when the cooling rate is higher than 21 °C/s for both alloys. At lower cooling rates, α phase precipitation was observed, but it appeared to be less evident in the Nb-modified Ti-5553, suggesting that the replacement of V with Nb increased the hardenability of the alloy. - Highlights: • Hardenability of Ti alloys are assessed using a modified Jominy end quench test. • Ti-5553 and Nb-modified Ti-5553 are subjected to continuous cooling experiments. • β phase decomposition kinetics is reduced by replacing V with Nb in Ti-5553. • Nb-modified Ti-5553 features improved hardenability. • Replacement of V with Nb causes the

  3. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  4. Modeling of multi-phase microstructures in press hardened components: plastic deformation and fracture in different stress states

    Science.gov (United States)

    Golling, S.; Östlund, R.; Oldenburg, M.

    2017-09-01

    Hot stamping or press hardening is an industrialized technique with the aim of improving material properties by heat treatment and forming of a component in a single production stage. Within the field of press hardening the method of tailored material properties evolved. Components with tailored material properties possess different mechanical properties in designated areas. This paper presents an approach for modeling the mechanical response of mixed microstructures under different stress states. A homogenization method is used to predict the hardening of the material; the strain decomposition provides the possibility of applying a fracture criterion per phase. To validate the modeling approach for different stress states a set of samples with different notch and hole geometries as well as microstructural composition are produced. The combination of a homogenization method and a fracture criterion show good agreement with experimental results. The homogenization method is suitable to predict the hardening of the material with good accuracy. Fracture for different microstructural compositions is well predicted over a range of stress triaxialities relevant for sheet metal applications. It is concluded that the use of a homogenization method combined with a fracture model can be used to predict the mechanical response of mixed microstructures for a range of different stress states.

  5. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  6. Effect of the addition of hydrocolloids on the rheological and baking properties of the products with added spelt flour (Triticum spelta L.

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2016-01-01

    Full Text Available The paper presents the results of the evaluation of the effect of additives on the rheological properties of composite flour made of wheat flour in the amount of 70% and spelt flour at 30%. As additives guar gum (0.5% by weight of flour and xanthan gum (0.16% by weight of flour were used. Properties of produced control dough and doughs with hydrocolloids were evaluated by means of rheological appliances by Farinograph, Extenzograph, Amylograph and Rheofermentometer. Based on the observed results it can be concluded that the addition of xanthan gum has a positive effect on increasing of farinographic water absorption capacity, extension of dough development time and dough stability and generally positively affected farinographic properties. The addition of guar gum has improved especially extensographic properties as extensographic energy and extensographic resistance. Based on amylographic evaluation of control doughs and doughs with additives it can be stated that in the dough with guar gum the amylographic maximum has slightly increased. Hydrocolloid guar gum contributed to an increased retention capacity of dough observed. Based on our measurements we can indicate that addition of guar and xanthan gum contributed to an increased rheological quality of doughs prepared with addition of flour from spelt wheat. With reference to the baking experiment it was found that the use of hydrocolloids has a positive effect on the improvement of the baking properties, in particular larger volume, specific volume, and the volume yield of the dough with the addition of guar and xanthan gum compared to the control. Our results showed that aditives significantly influenced rheological qualities of dough and a baking quality of products. These findings thus allow optimizing the recipe in order to increase the technological quality of leavened bakery products.

  7. Organoleptic characteristics and nutritive value estimation of baked food products from Manonjaya variety salacca flour

    Science.gov (United States)

    Sumarto; Aprianty, D.; Bachtiar, R. A.; Kristiana, L.

    2018-01-01

    Manonjaya salacca (snake fruit) is one of the original varieties of Indonesia which is currently declining due to the quality of taste less favoured than the snake fruit on the market. This variety in the future is feared to be lost, so it is necessary to revitalize the utilization of this snake fruit by diversifying processed products, one of them is baked food products from Manonjaya salacca flour. The purpose of this research was to know the acceptance level of baked food products from Manonjaya salacca flour organoleptically and the nutritional value estimation. This research method was observational with a descriptive explanation. Panellists in this study were consumers with a total of 61 people. Organoleptically, respondents tend to value cake, muffin, cookies, and flakes in every color, flavor, taste, and texture parameters. Nutritional value per 100 g of baked food products from Salacca flour (cake, muffin, cookies, flakes) were energy 287.5-479.0 kcal, water 0.8-3.8 g, protein 6.0-6.7 g, fat 0.8-31.0 g, carbohydrates 45.0-98.8 g, and fiber 1.1-4.6 g. Panellists were accepted the organoleptic characteristics and the estimated nutritional values on baked food products from Manonjaya variety salacca flour were varied.

  8. Risk assessment of dietary exposure to phytosterol oxidation products from baked food in China.

    Science.gov (United States)

    Hu, Yinzhou; Wang, Mengmeng; Huang, Weisu; Yang, Guoliang; Lou, Tiantian; Lai, Shiyun; Lu, Baiyi; Zheng, Lufei

    2018-02-01

    Phytosterols are nutritional phytochemicals that may undergo oxidation and be transformed into phytosterol oxidation products (POPs), thus inducing pathological and toxic effects. This work investigated four main phytosterols and 28 POPs in 104 kinds of commercial baked food by using GC-MS. The dietary exposure and hazard index values (HI) associated with POPs from baked food consumption in China were estimated by using Monte Carlo simulation. Concentrations of the total phytosterols were between 3.39 and 209.80 μg/g. The total concentrations of POPs, including 5α,6α/5β,6β-epoxysterols, 7-ketosterol, 7α/7β-hydroxysterols, 6-hydroxysterols, and triols, ranged from 0.37 to 27.81 μg/g. The median dietary exposure of POP contents in baked food for four age groups in China were 10.91 (children), 6.20 (adolescents), 3.63 (adults), and 3.40 (seniors) mg/(kg×day). Risk assessment of median HI with respect to POPs indicated no risk (HI <1) for people in adolescents, adults, and seniors in the country area of China, while a risk (1 < HI < 10) would refer to the baked food consumption of people in urban area and children in country area of China. Sensitivity and uncertainty analysis showed that the most significant variables for each age group in China were POP concentration, body weight, and ingestion rate.

  9. Estimation of thermal conductivity of short pastry biscuit at different baking stages

    Directory of Open Access Journals (Sweden)

    Chiara Cevoli

    2014-10-01

    Full Text Available Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min, measured by a line heat source thermal conductivity probe and estimated through the use of thermo-physical models. The measures were carried out on whole biscuits and on powdered biscuits compressed into cylindrical cases. Thermal conductivity of the compacted material, at different baking times (and, consequently at different moisture content, was then used to feed parallel, series, Krischer and Maxwell-Eucken models. The results showed that the application of the hot wire method for the determination of thermal conductivity is not fully feasible if applied directly to whole materials due to mechanical changes applied to the structure and the high presence of fats. The method works best if applied to the biscuit component phases separately. The best model is the Krischer one for its adaptability. In this case the value of biscuit thermal conductivity, for high baking time, varies from 0.15 to 0.19 Wm–1 K–1, while the minimum, for low baking time, varies from 0.11 to 0.12 Wm–1 K–1. These values are close to that reported in literature for similar products.

  10. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    Science.gov (United States)

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  11. Bran characteristics and bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  12. Cooking Can Be Profitable; Commercial Cooking and Baking 1:9193.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is prepared as a guide for the 10th grade student in Commercial Cooking and Baking or Food Management Production and Service. The course introduces the student to effective production of high quality foods and develops an understanding of high standards in quality food service. Totaling 90 hours of instruction, nine blocks of…

  13. Effect of grilling and baking on physicochemical and textural properties of tilapia (Oreochromis niloticus) fish burger.

    Science.gov (United States)

    Bainy, Eduarda Molardi; Bertan, Larissa Canhadas; Corazza, Marcos Lucio; Lenzi, Marcelo Kaminski

    2015-08-01

    The influence of two common cooking methods, grilling and baking, on chemical composition, water retention, fat retention, cooking yield, diameter reduction, expressible water, color and mechanical texture of tilapia (Oreochromis niloticus) fish burgers was investigated. Texture analyses were performed using a Warner-Bratzler test. The fish burger had a softer texture with a lower shear force than other meat products reported in the literature. There were no significant differences in proximate composition, diameter reduction, fat retention and expressible water between the grilled and oven-baked fish burgers. Cooking methods did not affect the cooking times and cooking rates. Warner-Bratzler parameters and color were significantly influenced by the cooking method. Grilling contributed to a shear force and work of shearing increase due to the lower cooking yield and water retention. Raw burgers had the highest L* (69.13 ± 0.96) and lowest b* (17.50 ± 0.75) values. Results indicated that baking yielded a product with better cooking characteristics, such as a desired softer texture with lower shear values (4.01 ± 0.54) and increased water retention (95.82 ± 0.77). Additionally, the baked fish burgers were lighter (higher L*) and less red (lower a*) than the grilled ones.

  14. Awaken to the World of Food Service; Commercial Cooking and Baking--Basic: 9193.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This course outline has been prepared as a guide for the tenth grade student in commercial cooking and baking or food management, production, and services. It provides basic experiences in the field of commercial food service, the hotel and restaurant industry and types of food service establishments. The course consists of 90 clock hours, covered…

  15. Baking enables McLeod gauge to measure in ultrahigh vacuum range

    Science.gov (United States)

    Kreisman, W. S.

    1965-01-01

    Accurate measurements in the ultrahigh vacuum range by a conventional McLeod gage requires degassing of the gage's glass walls. A closed system, in which mercury is forced into the gage by gravity alone, and in which the gage components are baked out for long periods, is used to achieve this degassing.

  16. Effect of baking and storage on the fatty acid composition of cookies with chia seed meal

    Science.gov (United States)

    Chia (Salvia hispanica L.) seed is an ancient crop of the Aztecs that has recently gained interest as a functional food. Chia seeds are a good source of polyphenolic compounds with antioxidant activity. However, the effect of baking and storage on the antioxidant properties of chia seed meal is not ...

  17. The Development of an Energy Efficient Electric Mitad for Baking Injeras in Ethiopia

    NARCIS (Netherlands)

    Jones, Robin; Diehl, J.C.; Simons, Leon; Verwaal, M.

    2017-01-01

    Preparation of Injera, the cultural staple bread food
    item in Ethiopia, is known for its intensive energy consuming
    cooking. Baking this food item in the traditional three stone stoves,
    with an efficiency of 5-15%, consumes huge amounts of firewood
    and causes consequent problems like

  18. Formation of monochloropropane-1,2-diol and its esters in biscuits during baking.

    Science.gov (United States)

    Mogol, Burçe Ataç; Pye, Céline; Anderson, Warwick; Crews, Colin; Gökmen, Vural

    2014-07-23

    The formation of free monochloropropane-1,2-diol (3-MCPD and 2-MCPD) and its esters (bound-MCPD) was investigated in biscuits baked with various time and temperature combinations. The effect of salt as a source of chloride on the formation of these processing contaminants was also determined. Kinetic examination of the data indicated that an increasing baking temperature led to an increase in the reaction rate constants for 3-MCPD, 2-MCPD, and bound-MCPD. The activation energies of formation of 3-MCPD and 2-MCPD were found to be 29 kJ mol(-1). Eliminating salt from the recipe decreased 3-MCPD and 2-MCPD formation rate constants in biscuits by 57.5 and 85.4%, respectively. In addition, there was no formation of bound-MCPD in biscuits during baking without salt. Therefore, lowering the thermal load or limiting the chloride concentration should be considered a means of reducing or eliminating the formation of these contaminants in biscuits. Different refined oils were also used in the recipe to test their effect on the occurrence of free MCPD and its esters in biscuits. Besides the baking process, the results also confirmed the role of refined oil in the final concentration of these contaminants in biscuits.

  19. Registration of 'Bolles' spring wheat with high grain protein content and superior baking quality

    Science.gov (United States)

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  20. Nutritious Meal Planning; Commercial Cooking and Baking I: 9193.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This 90 clock hour course has been prepared as a guide for the tenth grade student in commercial cooking and baking or food management, production and services. It has been divided into six blocks of instruction (menu planning, recipes, condiments and their uses, introduction to cooking, food cost and accounting), and a Quinmester post-test. As a…

  1. Greening in sunflower butter cookies as a function of egg replacers and baking temperature.

    Science.gov (United States)

    Rogers, Amanda; Hahn, Lan; Pham, Vu; Were, Lilian

    2018-04-01

    Chlorogenic acid (CGA) binding to proteins in alkaline conditions results in the production of green trihydroxy benzacradine (TBA) derivatives. The formation of TBA derivatives could decrease product quality due to the potential losses in soluble protein and antioxidants and the production of an undesirable green color. To determine how cookie formulation affected the formation of TBA derivatives in sunflower butter cookies, two egg replacers (chia and banana) and two baking temperatures (162.8 and 190.6 °C) were used. Moisture, greening intensity, CGA content and antioxidant capacity were measured. Cookies made with egg and baked at 162.8 °C had the highest moisture, internal greening intensity, and TBA derivative formation, in addition to lower CGA content and antioxidant capacity. Cookies made with banana baked at 190.6 °C produced the opposite outcome with 35, 4, and 23% less internal greening, moisture, and TBA derivatives, respectively, and 90 and 76% higher CGA and antioxidant capacity. Internal greening was positively correlated with moisture and adduct concentration, and negatively correlated with spread factor and CGA content. Moisture had a significant impact on greening, which indicates that baking temperature and cookie dough formulation can be modified to produce a less green cookie with more unreacted antioxidants and protein.

  2. Effects of medium-chain triacylglycerols on Maillard reaction in bread baking.

    Science.gov (United States)

    Toyosaki, Toshiyuki

    2017-12-11

    To investigate the relationship between the fatty acid composition of medium-chain triacylglycerols (MCTs) and the Maillard reaction induced during bread baking, a comparison with various fatty acids was conducted. Saturated fatty acids had a remarkable inhibitory effect on the amount of advanced glycation end products (AGEs) generated from the Maillard reaction in bread baking compared to unsaturated fatty acids. The amount of AGEs produced by each fatty acid (mg kg -1 ) was as follows: C18:0, 18.7; C12:0, 35.2; C16:0, 21.4; C18:0, 38.2; C18:1, 68.7; C18:2, 80.1; C20:4, 80.8; C22:4, 89.8. Saturated fatty acids were possibly involved in the Maillard reaction and, as a result, acted to inhibit it. In the case of unsaturated fatty acids, amounts of AGEs during the Maillard reaction in baking tended to increase as the degree of unsaturation increased. In other words, there was a positive correlation between the degree of unsaturation and the amount of AGEs. It was also confirmed that the air pore distribution in baked bread was closely related to AGEs. These results led us to conclude that the fatty acid composition of the added lipids also influences properties that determine the tastiness of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. The paint-bake response of three Al-Mg-Zn alloys

    International Nuclear Information System (INIS)

    Balderach, Dustin C.; Hamilton, Jennifer A.; Leung, Emma; Cristina Tejeda, M.; Qiao Jun; Taleff, Eric M.

    2003-01-01

    The aging behaviors of three Al-Mg-Zn alloys have been investigated under conditions similar to the paint-bake cycle currently used in automotive manufacturing. The three alloys contain Mg in atomic concentrations from one to two times those of Zn. Natural aging at 25 deg. C after solutionizing is found to produce a linear increase in hardness with logarithmic time for times of up to 1 year. Hardnesses in naturally and artificially aged conditions are found to increase with Mg content. Artificial aging at 175 deg. C for 30 min, which simulates the automotive paint-bake cycle, produces increases in hardness of 15-36% over the solution-treated conditions. Peak hardness from artificial aging at 175 deg. C is produced in all alloys after approximately 8 h. Natural aging for 10 days prior to artificial aging at 175 deg. C does not produce significant changes in hardness compared with artificial aging alone. Natural aging for 1 year after simulated paint-bake aging increases hardnesses by 41-78% over those after simulated paint-bake aging alone. The precipitation strengthening mechanism in these alloys is consistent with η' formation. Increases in hardness and strength with increasing Mg content are consistent with increased solid-solution strengthening, which is retained even after artificial aging

  4. Baking-powder driven centripetal pumping controlled by event-triggering of functional liquids

    DEFF Research Database (Denmark)

    Kinahan, David J.; Burger, Robert; Vembadi, Abhishek

    2015-01-01

    This paper reports radially inbound pumping by the event-triggered addition of water to on-board stored baking powder in combination with valving by an immiscible, high-specific weight liquid on a centrifugal microfluidic platform. This technology allows making efficient use of precious real estate...

  5. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10 –8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m 2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H 2 O) vapor by 95% and oxygen (O 2 ) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10 −8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  6. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type

    NARCIS (Netherlands)

    Nguyen, T.T.H.; Fels, van der H.J.; Peters, R.J.B.; Boekel, van T.

    2016-01-01

    This study aimed to investigate the effects of sugar type on the reaction mechanism for formation of acrylamide and 5-hydroxymethylfurfural (HMF) during the baking of biscuits at 200 °C using multiresponse modelling. Four types of biscuits were prepared: (1) with sucrose, (2) with glucose and

  7. Analyses and tests for the baking system of the RFX vacuum vessel by eddy currents

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P. [Gruppo di Padova per Ricerche sulla Fusione, Univ. di Padova (Italy); Sonato, P. [Gruppo di Padova per Ricerche sulla Fusione, Univ. di Padova (Italy); Zaccaria, P. [Gruppo di Padova per Ricerche sulla Fusione, Univ. di Padova (Italy); Zollino, G. [Gruppo di Padova per Ricerche sulla Fusione, Univ. di Padova (Italy)

    1995-12-31

    The electrical, thermal and mechanical analyses carried out for the design of a new baking system for RFX by eddy currents are presented. The results of an experimental test on RFX with low heating power are reported as well. They gave confidence in the numerical analyses so as the working conditions with the nominal heating power were computed. (orig.).

  8. Analyses and tests for the baking system of the RFX vacuum vessel by eddy currents

    International Nuclear Information System (INIS)

    Collarin, P.; Sonato, P.; Zaccaria, P.; Zollino, G.

    1995-01-01

    The electrical, thermal and mechanical analyses carried out for the design of a new baking system for RFX by eddy currents are presented. The results of an experimental test on RFX with low heating power are reported as well. They gave confidence in the numerical analyses so as the working conditions with the nominal heating power were computed. (orig.)

  9. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  10. On residual gas analysis during high temperature baking of graphite tiles

    Science.gov (United States)

    Prakash, A. A.; Chaudhuri, P.; Khirwadkar, S.; Chauhan, N.; Raole, P. M.; Reddy, D. Chenna; Saxena, Y. C.

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  11. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  12. Paving asphalts : reduction of oxidative hardening of asphalts by treatment with hydrated lime : a mechanistic study

    Science.gov (United States)

    1977-04-01

    This study showed that lime treatment removes polar, viscosity-building components and reduces the susceptibility of the asphalt to laboratory oxidative hardening. The beneficial effects of lime treatment in reducing asphalt oxidative hardening were ...

  13. Effect of hardening methods of moulding sands with water glass on structure of bonding bridges

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2010-07-01

    Full Text Available Research on influence of hardening methods on structure of bonding bridges in moulding sands with sodium water glass is presented.Moulding sands with addition of 2.5 % of binder with molar module 2.0 were hardened with CO2 and dried in traditional way or hardenedwith microwaves. It was proved that the hardening method affects structure of bonding bridges, correlating with properties of the hardened moulding sands. It was found that strength of the moulding sands hardened with microwaves for 4 min is very close to that measured after traditional drying at 110 °C for 120 min. So, application of microwave hardening ensures significant shortening of the process time to the value comparable with CO2 hardening but guaranteeing over 10-fold increase of mechanical properties. Analysis of SEM images of hardened moulding sands permitted explaining differences in quality parameters of moulding sands by connecting them with structure of the created bonding bridges.

  14. Characterization of Steels Using a Revised Kinematic Hardening Model Incorporating Bauschinger Effect

    National Research Council Canada - National Science Library

    Parker, Anthony

    2002-01-01

    A new variant of the nonlinear kinematic hardening model is proposed that accommodates both nonlinear and linear strain hardening during initial tensile loading and reduced elastic modulus during initial load reversal...

  15. Influence of impact energy on work hardening ability of austenitic manganese steel and its mechanism

    Directory of Open Access Journals (Sweden)

    Li Xiaoyun

    2012-08-01

    Full Text Available To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.

  16. Differential hardening in IF steel - Experimental results and a crystal plasticity based model

    NARCIS (Netherlands)

    Mulder, J.; Eyckens, P.; van den Boogaard, Antonius H.; Hora, P.

    2015-01-01

    Work hardening in metals is commonly described by isotropic hardening, especially for monotonically increasing proportional loading. The relation between different stress states in this case is determined by equivalent stress and strain definitions, based on equal plastic dissipation. However,

  17. The effects of alloying elements on strength, hardenability, and ...

    African Journals Online (AJOL)

    They were then air cooled before being cold rolled to ~0.9mm and annealed. Dual phase heat treatment was carried out at 755oC followed by quenching in water. Tensile and hardenability tests were carried out. Results showed that alloying elements in steel increased strength in the dual phase steels by amounts ranging ...

  18. Surface modification on PMMA: PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    The influence of chemical environment on polymers include the surface alteration as well as other deep modifications in surface layers. The surface hardening, as an effect of organic liquids on poly(methyl methacrylate): poly(vinylidene fluoride) (PMMA: PVDF), which is one of the few known miscible blends, has been ...

  19. Coefficient of work-hardening in stage-IV

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1994-04-15

    Full Text Available The theory of work hardening in stage IV depends on the relation between the relative misorientation Psi of neighbouring subgrains and the plastic strain gamma (Psi = B gamma exp). The value of the constant B is suggested to be better related...

  20. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    Science.gov (United States)

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Radiogram enhancement and linearization using the beam hardening correction method

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, J.

    2009-01-01

    Roč. 607, - (2009), s. 212-214 ISSN 0168-9002. [International Workshop on Radiation Imaging Detectors. Helsinky, 29.06.2008-03.07.2008] Institutional research plan: CEZ:AV0Z20710524 Keywords : beam hardening correction * flat-field correction * digital radiography Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.317, year: 2009

  2. Influence of degree of deformation in rolling on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    The hardness, strength and electrical conductivity were measured and X-ray and DSC analyses performed. Anneal hardening effect was observed in the alloy in the temperature range 180–300°C, followed by an increase in the electrical conductivity. The amount of strengthening increases with increasing degree of prior.

  3. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...

  4. Role of work hardening characteristics of matrix alloys in the ...

    Indian Academy of Sciences (India)

    The strengthening of particulate reinforced metal–matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of ...

  5. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions...

  6. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  7. Influence of degree of deformation in rolling on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy. SVETLANA NESTOROVIC*, DESIMIR MARKOVIC and LJUBICA IVANIC. Technical Faculty Bor, University of Belgrade, Belgrade, Yugoslavia. MS received 15 May 2003. Abstract. This paper reports results of investigations carried ...

  8. Surface Induction Hardening of Axi-Symmetric Bodies

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2001-01-01

    Roč. 1, č. 1 (2001), s. 11-16 ISSN 1335-8243 R&D Projects: GA ČR GA102/01/0184 Grant - others:-(PL) 7T08603716 Keywords : induction heating * induction hardening * numerical solution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. Vacancy-induced hardening in Fe-Al alloys

    Czech Academy of Sciences Publication Activity Database

    Lukáč, F.; Čížek, J.; Procházka, I.; Jirásková, Yvonna; Janičkovič, D.; Anwand, W.; Brauer, G.

    2013-01-01

    Roč. 443, č. 1 (2013), 012025 ISSN 1742-6588. [International Conference on Positron Annihilation /16./. Bristol, 19.08.2012-24.08.2012] R&D Projects: GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : Vacancy * Hardening * Fe-Al alloy Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Biological hardening and genetic fidelity testing of micro-cloned ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-04-17

    Apr 17, 2008 ... vitro conditions as the cultured plants have non functional stomata, weak root system and poorly developed ... propagation techniques in C. borivilianum have so far met with limited success because of high ..... Biological hardening of tissue culture raised tea plants through rhizosphere bacteria. Biotechnol.

  11. Mechanical Properties Of Quench-Hardened, Martempered And ...

    African Journals Online (AJOL)

    Some cast ASTM A grade B-4 steel samples were quench-hardened, martempered and tempered. The as-cast and heat-treated samples were thereafter tested for tensile strength, yield strength, impact strength, ductility and hardness. Some of the samples were also prepared for metallographic examination and their ...

  12. System Hardening Architecture for Safer Access to Critical Business ...

    African Journals Online (AJOL)

    System hardening is a defence strategy, where several different security measures are applied at various layers, all of which must be defeated before a module can be compromised. The protective mechanisms in this architecture are applied to the host, application, operating system, user, and the physical layers.

  13. Fatigue Hardening and Nucleation of Persistent Slip Bands in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Winter, A. T.

    1982-01-01

    that there is a large volume fraction of obstacles to plastic flow which are essentially non-deformable and give rise to inclusion stresses of considerable magnitude. The much lower hardening rates in cycles after saturation when persistent slip bands have formed suggest a lower volume fraction of obstacles...

  14. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Dodd, P.E.; Draper, B.L.; Schwank, J.R.; Shaneyfelt, M.R.

    1999-01-01

    A partially-depleted SOI transistor structure has been designed that does not require the use of specially-processed hardened buried oxides for total-dose hardness and maintains the intrinsic SEU and dose rate hardness advantages of SOI technology

  15. Self hardening property of Botswana fly ash | Sahu | Botswana ...

    African Journals Online (AJOL)

    In Botswana, it is being produced at the rate of more than 300 t per day at Morupule Power Station. Almost 70% of this production is disposed off as a waste and only 30% is being used in making cement. Few limited studies suggest that a fly ash containing low unburnt carbon (LOI) may exhibit self hardening property even ...

  16. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  17. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules

    Czech Academy of Sciences Publication Activity Database

    Feigenbaum, H. P.; Dugdale, J.; Dafalias, Y.F.; Kourousis, K. I.; Plešek, Jiří

    2012-01-01

    Roč. 49, č. 22 (2012), s. 3063-3076 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) ME10024 Institutional research plan: CEZ:AV0Z20760514 Keywords : plasticity * directional distortional hardening * thermodynamics Subject RIV: JJ - Other Materials Impact factor: 1.871, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020768312002612

  18. Continual Induction Hardening of Axi-Symmetric Bodies

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Barglik, J.; Ulrych, B.

    2005-01-01

    Roč. 161, - (2005), s. 269-275 ISSN 0924-0136 R&D Projects: GA MŠk(CZ) LN00B084 Institutional research plan: CEZ:AV0Z20570509 Keywords : continual induction hardening * induction heating * electromagnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.592, year: 2005

  19. Precipitation Hardening of Castable Iron-Nickel Invars

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2015-07-01

    Hardening of castable iron-nickel invars due to alloying with carbide-forming elements and carbon and subsequent heat treatment is investigated. It is shown that the strength of the invar alloys can be increased without raising the low values of the temperature coefficient of linear expansion.

  20. Evaluation of Local Vegetable Oils as Quenchants for Hardening ...

    African Journals Online (AJOL)

    However, the wear resistance of the quenched grey cast iron developed in this group of local vegetable oils was superior to that of SAE40 engine oil. The potentials of these oils as quenching media for grey cast iron hardening process ranked in descending order as soya bean, shea butter, groundnut, and palm kernel, with ...

  1. Decorative application of strain-hardening cementitious composites

    NARCIS (Netherlands)

    Ibrovic, V.; Lukovic, M.; Schlangen, E.

    2014-01-01

    Strain hardening cementitious composites (SHCC) have been used in variety of structural applications. Apart from this, they are also suitable for non-structural applications. In this work, the application of SHCC for producing cover plates for light switches and power sockets is presented. For

  2. Effect of radio frequency postdrying of partially baked cookies on acrylamide content, texture, and color of the final product.

    Science.gov (United States)

    Koray Palazoğlu, T; Coşkun, Yunus; Kocadağlı, Tolga; Gökmen, Vural

    2012-05-01

    Effect of radio frequency (RF) postdrying of partially baked cookies on acrylamide content, texture, and color of the final product was investigated in this study. Control cookies were prepared by baking in a conventional oven at 205 °C for 11 min. Cookies partially baked for 8 and 9 min were postdried in a 27.12 MHz RF tunnel oven until attainment of the moisture content of control cookies. Internal temperature of cookies was monitored during the experiments to better explain the results. Cookies were analyzed for acrylamide content using a liquid chromatography-mass spectrometry (LC-MS) method. Texture measurements were performed using a Texture Analyzer, while digital image analysis was used for color measurement. The results showed that RF postdrying of partially baked cookies resulted in lower acrylamide levels (107.3 ng/g for control cookies, 74.6 ng/g upon RF postdrying of cookies partially baked for 9 min, 51.1 ng/g upon RF postdrying of cookies partially baked for 8 min). Instrumental texture analysis showed no significant difference among the texture of cookies, whereas RF postdried samples had a lower degree of browning. According to sensory evaluation results, control had a more crumbly texture, and RF postdried sample that was conventionally baked for 8 min had a slightly uncooked flavor. © 2012 Institute of Food Technologists®

  3. EFFECTS OF TEMPERATURE AND AIRFLOW ON VOLUME DEVELOPMENT DURING BAKING AND ITS INFLUENCE ON QUALITY OF CAKE

    Directory of Open Access Journals (Sweden)

    NURUL ATIQAH SANI

    2014-06-01

    Full Text Available Volume and texture of cake are among the important parameters in measuring the quality of cake. The processing conditions play important roles in producing cakes of good quality. Recent studies focused more on the formulation and the manipulation of baking temperature, humidity and time instead of airflow condition. The objective of this study was to evaluate the effects of baking temperature and airflow on the volume development of cake and final cake quality such as volume development, firmness, springiness and moisture content. The cake was baked at three different temperatures (160oC, 170oC, and 180oC, and two different airflow conditions. Baking time, height changes of batter, texture and moisture content of cake were compared to identify the differences or similarities on the final product as the process conditions varied. Results showed that, airflow has more significant effects towards the product quality compared to baking temperature especially on baking time which was 25.58 - 45.16%, and the rate of height changes which was 0.7 mm/min. However, different baking temperatures had more significant effects towards volume expansion which was 2.86 – 8.37% and the springiness of cake which was 3.44% compared to airflow conditions.

  4. Relative content of gallic acid over 5-galloylquinic acid as an index for the baking intensity of oolong teas.

    Science.gov (United States)

    Wang, Miki Mei-Chi; Yeh, Yun; Shih, Yu-En; Tzen, Jason Tze-Cheng

    2018-04-01

    Phenolic compounds in a series of old oolong teas prepared by baking annually were monitored and compared. The results showed that the relative content of gallic acid over 5-galloylquinic acid was subsequently elevated during this preparatory process. To reveal the effect was mainly resulted from baking or aging, two sets of oolong teas were collected and examined; one set was generated from fresh oolong tea via continually daily baking and the other set was composed of aged oolong teas with no or light baking in the storage period. The relative content of gallic acid over 5-galloylquinic acid was observed to be subsequently elevated when oolong tea was continually baked at 90, 100, 110, and 120 °C for 8 h day after day. In contrast, the relative contents of gallic acid over 5-galloylquinic acid in aged oolong teas with no or light baking were found to be similar to or slightly higher than that in fresh oolong tea. The results suggest that the relative content of gallic acid over 5-galloylquinic acid seems to be a suitable index for the baking intensity of oolong tea in different preparations. Copyright © 2017. Published by Elsevier B.V.

  5. Scintillation-Hardened GPS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) experiment is proposed to improve the performance of GPS during geomagnetic storms....

  6. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, Rachid

    2008-07-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of {proportional_to}9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to {proportional_to}5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data

  7. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling

    NARCIS (Netherlands)

    Eyckens, P.; Mulder, J.; Gawad, J.; Vegter, H.; Roose, D.; van den Boogaard, Antonius H.; Van Bael, A.; Van Houtte, P.

    2015-01-01

    An essential aspect of materials modelling in the field of metal plasticity is hardening. The classical assumption of isotropic hardening in metal plasticity models is often too simplified to describe actual material behaviour. This paper focuses on the non-isotropic hardening termed differential

  8. OCCUPATIONAL ASTHMA CAUSED BY A HARDENER CONTAINING AN ALIPHATIC AND A CYCLOALIPHATIC DIAMINE

    NARCIS (Netherlands)

    ALEVA, RM; AALBERS, R; KOETER, GH; DEMONCHY, JGR

    An otherwise healthy 44-yr-old man experienced a serious attack of bronchial obstruction after working with resins and hardeners, releasing fumes of a mixture of an aliphatic and a cycloaliphatic diamine hardener. Eight hours after deliberate challenge with the hardener a large increase of airway

  9. Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

    Science.gov (United States)

    Niu, Li-Bin; Ishitake, Hisamitsu; Izumi, Sakae; Shiokawa, Kunio; Yamashita, Mitsuo; Sakai, Yoshihiro

    2018-03-01

    Stress corrosion cracking (SCC) behavior of the hardening-treated materials of 13Cr stainless steel was examined with SSRT tests and constant load tests. In the simulated geothermal water and even in the test water without addition of impurities, the hardening-treated materials showed a brittle intergranular fracture due to the sensitization, which was caused by the present hardening-treatments.

  10. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...

  11. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Holbert, Keith E. [Arizona State Univ., Tempe, AZ (United States); Clark, Lawrence T. [Arizona State Univ., Tempe, AZ (United States)

    2016-02-19

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance to megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration

  12. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  13. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    Science.gov (United States)

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2017-11-04

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  14. Polydimethylsiloxane extraction from silicone rubber into baked goods detected by direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Gross, Jürgen H

    2015-01-01

    Flexible baking molds and other household utensils are made of polydimethylsiloxane (PDMS), also known as silicone rubber. PDMS is prone to release oligomers upon elongated contact with fats, e.g., in the process of baking dough. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) provides an efficient tool for the analysis of PDMS up to m/z 3000. Here, DART ionization is employed in combination with Fourier transform ion cyclotron resonance MS to detect PDMS released into muffins when baked in silicone rubber baking molds. Intensive signals caused by PDMS do occur in the m/z 700-1500 range of DART mass spectra obtained from the crusty surface of muffins after the use of such silicone rubber molds. In addition, triacylglyceroles (TAGs) present as natural ingredients of the analyzed muffins were detected as [TAG+NH(4)](+) ions.

  15. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine.

    Science.gov (United States)

    Nguyen, Ha T; van der Fels-Klerx, H J Ine; van Boekel, M A J S

    2017-09-01

    This study investigated acrylamide and 5-hydroxymethylfurfural (HMF) formation during biscuit baking. Four types of wheat flour with different molar ratios of total fructose and glucose to asparagine were investigated. Nevertheless, the molar ratio in all four biscuit doughs exceeded one after proofing due to enzyme action. Data obtained after baking were used to develop a mechanistic model, based on the asparagine-related pathway, for acrylamide and HMF formation in the four baked biscuit types. Asparagine reacted with fructose to form a Schiff base before decarboxylation to produce acrylamide without Amadori rearrangement product and sugar fragmentation. Fructose contributed considerably to acrylamide formation and to HMF formation via caramelization in all four biscuit types. No clear correlation was found between acrylamide and HMF in baked biscuits, nor between asparagine and the sum of glucose and fructose concentrations in the wheat flour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianghuai; Putatunda, Susil K

    2004-09-25

    An investigation was carried out to examine the influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Strain-hardening exponent (n value) of specimens austempered by conventional single-step austempering process as well as the novel two-step process were determined over the entire plastic deformation regions of the stress-strain curves. Optical microscopy and X-ray diffraction analysis were performed to examine mechanisms of strain-hardening behavior in ADI under monotonic (tensile) loading. Test results show that this novel two-step process has resulted in improved microstructural variables in the ADI matrix, and higher hardness, yield strength and tensile strengths, but lower ductility and strain-hardening exponent values compared to the conventional single-step austempering process. Test results also indicate that strain-hardening exponent of ADI is a function of amount and morphology of microstructural constituents and interaction intensities between carbon atoms and dislocations in the matrix.

  17. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  18. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    Science.gov (United States)

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects.

  19. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  20. Perspective of surface active agents in baking industry: an overview.

    Science.gov (United States)

    Ahmad, Asif; Arshad, Nazish; Ahmed, Zaheer; Bhatti, Muhammad Shahbaz; Zahoor, Tahir; Anjum, Nomana; Ahmad, Hajra; Afreen, Asma

    2014-01-01

    Different researchers have previously used surfactants for improving bread qualities and revealed that these compounds result in improving the quality of dough and bread by influencing dough strength, tolerance, uniform crumb cell size, and improve slicing characteristics and gas retention. The objective of this review is to highlight the areas where surfactants are most widely used particularly in the bread industries, their role and mechanism of interaction and their contribution to the quality characteristics of the dough and bread. This review reveals some aspects of surface-active agents regarding its role physiochemical properties of dough that in turn affect the bread characteristics by improving its sensory quality and storage stability.

  1. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  2. An energy-based beam hardening model in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E [Vision Lab, Physics Departement, University of Antwerp (RUCA) (Belgium)

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography ({mu}CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  3. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    The implementation of replication techniques for mass production of micro components relies on the availability of tooling technologies for manufacturing of tools and moulds. Micromilling is a suitable technique for manufacturing of microstructures characterized by high aspect ratios and complex...... geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  4. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid......-ideally plastic material, and secondly, to extend the solution by the influence of material strain hardening. This corresponds to adding a new variable and, therefore, a new axis to the general friction model. The resulting model is presented in a combined function suitable for e.g. finite element modeling...

  5. 3-D Temperature and Stress Simulations of Hardening Concrete

    DEFF Research Database (Denmark)

    Jensen, Poul; Buhr, Birit; Thorborg, Jesper

    2003-01-01

    When concrete is cast, heat develops. When the concrete cools down there is a risk that thermal gradients induce cracks in the structure. In the Middle East this is especially important as extensive heat builds up due to the high ambient temperatures. Possible formed cracks will have a detrimental...... effect on the overall durability of the structure, especially when placed in or close to a marine environment, and especially if placed in a hot and aggressive environment. In order to minimize the risk of inducing thermal cracks, temperature and stress requirements during the hardening period must...... for the thermo-mechanical conditions during hydration of early age concrete. Material properties as a function of maturity and environmental conditions form the basis of the model. This paper presents temperature and stress calculation results using MAGMAconcrete, and proposed hardening precautions for two...

  6. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  7. On use of radial evanescence remain term in kinematic hardening

    International Nuclear Information System (INIS)

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  8. work hardening, recovery and recrystallization of alloys containing dispersed precipitates

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1989-01-01

    This paper reviews the work hardening, recovery and recrystallization mechanisms in alloys containing dispersed precipitates. In the section on work hardening, the influence od spacing, particle size and shape on the density and distribution of dislocations have been discussed. They represent a large part of the energy stored in the material following drformation, which in turn is driving force for recrystallization. Next, the role of precipitates on recovery, on the formation and the growth of recrystallized regions has been discussed in detail. The competition between recovery and recrystallization and recrystallization of supersaturated solid solutions have also been mentioned. Finally, the technological relevance of the aspects treated in this paper has been discussed. (author) [pt

  9. Study of radiation hardening in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nogiwa, Kimihiro; Nishimura, Akihiko

    2008-01-01

    In order to investigate the dependence of hardening on copper precipitate diameter and density, in-situ transmission electron microscopy (TEM) observations during tensile tests of dislocation gliding through copper rich-precipitates in thermally aged and neutron irradiated Fe-Cu alloys were performed. The obstacle strength has been estimated from the critical bow-out angle, φ, of dislocations. The obstacle distance on the dislocation line measured from in-situ TEM observations were compared with number density and diameter measured by 3D-AP (three dimensional atom probe) and TEM observation. A comparison is made between hardening estimation based on the critical bowing angles and those obtained from conventional tensile tests. (author)

  10. Irradiation hardening of pure tungsten exposed to neutron irradiation

    Science.gov (United States)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-11-01

    Pure tungsten samples have been neutron irradiated in HFIR at 90-850 °C to 0.03-2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (0.6 dpa). The precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  11. Grocery store baking soda. A source of sodium bicarbonate in the management of chronic metabolic acidosis.

    Science.gov (United States)

    Booth, B E; Gates, J; Morris, R C

    1984-02-01

    Oral sodium bicarbonate is used to treat metabolic acidosis in patients with renal tubular acidosis. Since infants and young children are unable to swallow tablets, those affected must ingest sodium bicarbonate in a powder or liquid form. Pharmacy-weighed sodium bicarbonate is expensive and inconvenient to obtain; some pharmacists are reluctant to provide it. We determined that the sodium bicarbonate contained in 8-oz boxes of Arm and Hammer Baking Soda was sufficiently constant in weight that, dissolved in water to a given volume, it yielded a quantitatively acceptable therapeutic solution of sodium bicarbonate at a cost of approximately 3 percent of that of pharmacy-weighed sodium bicarbonate. Grocery store baking soda can be a safe, economical, and convenient source of sodium bicarbonate for the treatment of chronic metabolic acidosis in infants and young children.

  12. Baking soda pica: a case of hypokalemic metabolic alkalosis and rhabdomyolysis in pregnancy.

    Science.gov (United States)

    Grotegut, Chad A; Dandolu, Vani; Katari, Sunita; Whiteman, Valerie E; Geifman-Holtzman, Ossie; Teitelman, Melissa

    2006-02-01

    We report a case of baking soda pica in a woman at 31 weeks of pregnancy causing severe hypokalemic metabolic alkalosis and rhabdomyolysis. A multigravida at 31 weeks of gestation presented with weakness and muscle pain. She was found to have severe hypokalemic metabolic alkalosis and rhabdomyolysis, with elevation in serum transaminases and hypertension. We initially thought the patient had an atypical presentation of preeclampsia until it was realized that she was ingesting 1 full box of baking soda (454 g sodium bicarbonate) per day. Symptoms and abnormal laboratory findings resolved with discontinuation of the patient's pica practices. Pica is a common but often overlooked practice that can potentially lead to life-threatening disorders. A thorough evaluation of a patient's dietary intake is extremely important, especially in the setting of atypical presentations of disease in pregnancy.

  13. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality

    Directory of Open Access Journals (Sweden)

    Nina G. Heredia-Sandoval

    2016-08-01

    Full Text Available Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  14. Influence of baking conditions on the quality attributes of sponge cake.

    Science.gov (United States)

    Ureta, M Micaela; Olivera, Daniela F; Salvadori, Viviana O

    2017-03-01

    Sponge cake is a sweet bakery product characterized by its aerated and soft crumb and by its thin-coloured crust. The aim of this work is to analyse the influence of baking conditions (natural or forced convection, steam injection, oven temperature from 140 ℃ to 180 ℃) on sponge cake quality. Both crust and crumb regions were characterized by means of colour development, water content, crust/crumb relation, crust thickness and crumb structure (in terms of porosity, crumb density and texture). Colour measurements allowed obtaining an accurate model for browning kinetics. Crumb water content remains almost constant, while considerable dehydration occurs in the crust. In general, no significant differences due to baking conditions were found in the instrumental quality analysis.

  15. Rheological properties of biscuit dough from different cultivars, and relationship to baking characteristics

    DEFF Research Database (Denmark)

    Pedersen, L.; Kaack, K.; Bergsøe, M.N.

    2004-01-01

    Rheological properties of semi-sweet biscuit doughs from eight wheat cultivars were studied, and related to the dimensional changes of biscuits after cutting and baking. The tested cultivars were selected in order to represent a wide diversity in biscuit baking performance, and were grown with low...... use of N-fertiliser in three successive years. A standard recipe for semi-sweet biscuit dough was used, and the amount of water added was adjusted to the water absorption capacity. The theological properties of the dough were characterised by creep recovery and oscillation. The fundamental methods...... recovery parameters. Sedimentation value was the only physiochernical flour characteristic with considerable influence on the model. Validation of the partial least squares-model including all samples from the 3 years gave only a weak correlation (r = 0.58), whereas when each single year was evaluated...

  16. The occurrence of friabilins in triticale and their relationship with grain hardness and baking quality.

    Science.gov (United States)

    Ramírez, Aldana; Pérez, Gabriela T; Ribotta, Pablo D; León, Alberto E

    2003-11-19

    Grain hardness is a quality parameter in wheat and other cereals. In wheat, a group of M(r) 15 000 proteins called friabilins have been shown to be related to grain hardness. The objective of this study was to determine the presence of friabilins on starch granules of different triticale lines and their relationship with grain texture and baking quality. The triticale lines studied have a wide range of hardness, which presented correlation with baking quality parameters such as damaged starch and solvent retention capacity. All of the triticale lines contained friabilins on the starch granules. However, the correlation between hardness and friabilin content was not observed, suggesting that these proteins would not be directly involved in grain texture determination of triticale. Consequently, friabilin content did not have any relation with cookie quality in triticale flours, but it could be related to breadmaking quality because it has a positive correlation with the sodium dodecyl sulfate sedimentation index.

  17. PENGARUH FOTOOKSIDASI UV-C TERHADAP SIFAT FISIKOKIMIA DAN BAKING EXPANSION PATI SAGU (Metroxylon sago

    Directory of Open Access Journals (Sweden)

    Eduard Fransisco Tethool

    2017-09-01

    Full Text Available Native Sago starch is difficult to used in industry because of the limitations of its phisycochemical properties. The aim of this research was to studied effect of UV-C photo-oxidation on  physicochemical properties and baking expansion of sago starch. Five slurries ratio (starch : water ratio: 1:2; 1:4; 1:6; 1:8; and 1:10 were oxidized with UV-C irradiation for 20 minutes, and then compared with native sago starch. The results showed that UV-C photo-oxidation increasing amylose content and paste viscosity, but decreasing swelling power and solubility, and carbonyl and carboxyl content. Used of UV-C as a photooxidator effective to increasing baking expansion characteristic, and the best slurry ratio was 1:6, which has 6.97 ml/g specific volume or 33.7% increased from native sago starch (5.22 ml/g

  18. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality.

    Science.gov (United States)

    Heredia-Sandoval, Nina G; Valencia-Tapia, Maribel Y; Calderón de la Barca, Ana M; Islas-Rubio, Alma R

    2016-08-30

    Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  19. Fiber-Reinforced Concrete For Hardened Shelter Construction

    Science.gov (United States)

    1993-02-01

    centuries. Mud bricks reinforced with straw and mortar reinforced with horse hair are but two examples. Engineering properties of natural fibers are...used to reinforce concrete. c. Coir Fibers Coir fibers come from coconut husks. They are easily extracted using water to decompose the soft material...DATES COVERED SFebruary 1993 Final I Oct 91 - 30 Nov 92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Fiber -Reinforced Concrete for Hardened Shelter

  20. Numerical implementation of a model with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Marek, René; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír; Feigenbaum, H. P.; Dafalias, Y.F.

    2015-01-01

    Roč. 141, č. 12 (2015), 04015048-04015048 ISSN 0733-9399 R&D Projects: GA MŠk LH14018; GA ČR(CZ) GA15-20666S Institutional support: RVO:61388998 Keywords : plasticity * directional distortional hardening * finite-element procedures Subject RIV: JG - Metallurgy Impact factor: 1.346, year: 2015 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000954

  1. Concrete hardened characterization using table scanner and microtomography computed

    International Nuclear Information System (INIS)

    Wilson, R.E.; Pessoa, J.R.; Assis, J.T. de; Dominguez, D.S.; Dias, L.A.; Santana, M. R.

    2016-01-01

    This paper proposes the use of image processing technologies to analyze hardened concrete samples obtained from table scanner and micro tomography. Techniques will be used to obtain numerical data on the distribution and geometry of aggregates and pores of the concrete, as well as their relative position. It is expected that the data obtained can produce information on the research of concrete pathologies such as AAR, and the freeze / thaw process. (author)

  2. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  3. Coherent light absorbing by concrete during its hardening

    Science.gov (United States)

    Gorsky, Mykhaylo P.; Maksimyak, Peter P.

    2018-01-01

    In this work changes of concrete reflection coefficient during its hydration were investigated theoretically and experimentally. Diffuse approximation method for concrete light-scattering description during hydration was used and its results were compared with received experimental data. Calculation of scattered and absorption sections for set of particles is described in details. Introduced optical diagnostics method allows performing earlier hydration stages diagnostics of concrete hardening process in comparison with other methods and predicting mechanical properties of produced concrete.

  4. Strain Hardening Cement Composites Structural Design and Performance State-of-the-Art Report of the RILEM Technical Committee 208-HFC, SC3

    CERN Document Server

    Kanda, Tetsushi

    2013-01-01

    Strain Hardening Cement Composites, SHCC hereafter, demonstrate excellent mechanical behavior showing tensile strain hardening and multiple fine cracks. This strain hardening behavior improves the durability of concrete structures employing SHCC and the multiple fine cracks enhance structural performance. Reliable tensile performance of SHCC enables us to design structures explicitly accounting for SHCC’s tensile properties. Reinforced SHCC elements (R/SHCC) indicate large energy absorbing performance under large seismic excitation. Against various types of loads, R/SHCC elements can be designed by superimposing re-bar performance and SHCC’s tensile performance.  This report focuses on flexural design, shear design, FE modeling and anti-seismic design of R/SHCC elements as well as application examples.  Establishing design methods for new materials usually leads to exploring application areas and this trend should be demonstrated by collecting actual application examples of SHCC in structures.

  5. Description of full-range strain hardening behavior of steels.

    Science.gov (United States)

    Li, Tao; Zheng, Jinyang; Chen, Zhiwei

    2016-01-01

    Mathematical expression describing plastic behavior of steels allows the execution of parametric studies for many purposes. Various formulas have been developed to characterize stress strain curves of steels. However, most of those formulas failed to describe accurately the strain hardening behavior of steels in the full range which shows various distinct stages. For this purpose, a new formula is developed based on the well-known Ramberg-Osgood formula to describe the full range strain hardening behavior of steels. Test results of all the six types of steels show a three-stage strain hardening behavior. The proposed formula can describe such behavior accurately in the full range using a single expression. The parameters of the formula can be obtained directly and easily through linear regression analysis. Excellent agreements with the test data are observed for all the steels tested. Furthermore, other formulas such as Ludwigson formula, Gardner formula, UGent formula are also applied for comparison. Finally, the proposed formula is considered to have wide suitability and high accuracy for all the steels tested.

  6. Hardening and welding with high-power diode lasers

    Science.gov (United States)

    Ehlers, Bodo; Herfurth, Hans-Joachim; Heinemann, Stefan

    2000-03-01

    Commercially available high power diode lasers (HPDLs) with output powers of up to 6 kW have been recognized as an interesting tool for industrial applications. In certain fields of application they offer many advantages over Nd:YAG and CO2 lasers because of their low maintenance, compact design and low capital costs. Examples of successful industrial implementation of HPDLs include plastic welding, surface hardening and heat conduction welding of stainless steel and aluminum. The joining of plastics with an HPDL offers the advantages of producing a weld seam with high strength, high consistency and superior appearance. One example is the keyless entry system introduced with the Mercedes E-class where the microelectronic circuits are embedded in a plastic housing. Other applications include instrument panels, cell phones, headlights and tail lights. Applications in the field of surface treatment of metals profit from the HPDL's inherent line-shaped focus and the homogeneous intensity distribution across this focus. An HPDL system is used within the industry to harden rails for coordinate measurement machines. This system contains a customized zoom optic to focus the laser light onto the rails. With the addition of a temperature control, even complex shapes can be hardened with a constant depth and minimum distortion.

  7. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  8. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  9. Recent developments in turning hardened steels - A review

    Science.gov (United States)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  10. Importance of calcium and magnesium in water - water hardening

    Science.gov (United States)

    Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.

    2017-10-01

    Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower ( 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.

  11. Significance of rate of work hardening in tempered martensite embrittlement

    International Nuclear Information System (INIS)

    Pietikainen, J.

    1995-01-01

    The main explanations for tempered martensite embrittlement are based on the effects of impurities and cementite precipitation on the prior austenite grain boundaries. There are some studies where the rate of work hardening is proposed as a potential reason for the brittleness. One steel was studied by means of a specially developed precision torsional testing device. The test steel had a high Si and Ni content so ε carbide and Fe 3 C appear in quite different tempering temperature ranges. The M S temperature is low enough so that self tempering does not occur. With the testing device it was possible to obtain the true stress - true strain curves to very high deformations. The minimum toughness was always associated with the minimum of rate of work hardening. The change of deformed steel volume before the loss of mechanical stability is proposed as at least one reason for tempered martensite embrittlement. The reasons for the minimum of the rate of work hardening are considered. (orig.)

  12. Substituting Normal and Waxy-Type Whole Wheat Flour on Dough and Baking Properties

    OpenAIRE

    Choi, Induck; Kang, Chun-Sik; Cheong, Young-Keun; Hyun, Jong-Nae; Kim, Kee-Jong

    2012-01-01

    Normal (cv. Keumkang, KK) and waxy-type (cv. Shinmichal, SMC) whole wheat flour was substituted at 20 and 40% for white wheat flour (WF) during bread dough formulation. The flour blends were subjected to dough and baking property measurement in terms of particle size distribution, dough mixing, bread loaf volume and crumb firmness. The particle size of white wheat flour was the finest, with increasing coarseness as the level of whole wheat flour increased. Substitution of whole wheat flour de...

  13. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  14. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  15. Estimation of thermal conductivity of short pastry biscuit at different baking stages

    OpenAIRE

    Cevoli, C.; Fabbri, A.; Marai, S.V.; Ferrari, E.; Guarnieri, A.

    2014-01-01

    Thermal conductivity of a food material is an essential physical property in mathematical modelling and computer simulation of thermal processing. Effective thermal conductivity of non-homogeneous materials, such as food matrices, can be determined experimentally or mathematically. The aim of the following research was to compare the thermal conductivity of short pastry biscuits, at different baking stages (60-160 min), measured by a line heat source thermal conductivity probe and estimated t...

  16. Microbiological stability of rice tart stored at ambient temperature after baking

    OpenAIRE

    N'guessan, Elise; Cissé, Mohamed; Niyonzima, Eugene; Sindic, Marianne

    2017-01-01

    Very popular in Belgium, rice tart is a hot pastry sold in bakeries. It is then consumed at home, for dessert or snack. This study is conducted to investigate the microbiological stability of this foodstuff, from the end of baking to end user by consumers. In this purpose, 108 rice tart samples were collected from each of seven bakeries in five Belgium provinces. Physico-chimical analysis in addition to microbiological analysis were carried out in accordance with the European Regulation EC 20...

  17. The effect of baking soda when applied to bleached enamel prior to restorative treatment.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Mondelli, Rafael Francisco Lia; Lima-Arsati, Ynara Bosco de Oliveira; Rodrigues, Jose Augusto; Costa, Leonardo Cesar

    2013-08-01

    This in vitro study evaluated the effect of 10% baking soda solution and sodium bicarbonate powder (applied with jets) when applied to bleached enamel prior to restorative treatment. The surfaces of 40 bovine incisors were flattened and divided into 5 groups (n = 8): Group B (bleached and restored, negative control), Group W (bleached, stored in distilled water for 7 days, and restored), Group BSJ (bleached, abraded with baking soda jet for 1 min, and restored), Group BSS (bleached, application of 10% baking soda solution for 5 min, and restored), and Group R (restored, without bleaching, positive control). The samples were bleached in 1 session with 3 applications of 35% HP-based gel and activated with a LED appliance for 9 min each. Resin composite cylinders (2 mm height and 0.8 mm diameter) were made on the enamel surface after the acid etching and a conventional 1-step single vial adhesive application was performed. After storage in distilled water (37 ± 1°C, 24 hr), the microshear bond test was performed (1 mm/min). ANOVA and Tukey tests were applied to compare the results. The mean results of these tests showed that Groups W, BBS, and R were not statistically different. These groups also indicated a higher bond strength when compared with Groups B and BSJ. The application of 10% baking soda solution for 5 min may be an alternative pre-restorative treatment for bleached enamel, but further studies are needed to consider whether or not this treatment may be effectively used in clinical practice.

  18. A comparison of the mechanical and sensory properties of baked and extruded confectionery products

    Science.gov (United States)

    Butt, Saba; Charalambides, Maria; Mohammed, Idris K.; Powell, Hugh

    2017-10-01

    Traditional baking is the most common way of producing confectionery wafers, however over the past few decades, the extrusion process has become an increasingly important food manufacturing method and is commonly used in the manufacturing of breakfast cereals and filled snack products. This study aims to characterise products made via each of these manufacturing processes in order to understand the important parameters involved in the resulting texture of confectionery products such as wafers. Both of the named processes result in brittle, cellular foams comprising of cell walls and cell pores which may contain some of the confectionery filling. The mechanical response of the cell wall material and the geometry of the products influence the consumer perception and preference. X-Ray micro tomography (XRT) was used to generate geometry of the microstructure which was then fed to Finite Element (FE) for numerical analysis on both products. The FE models were used to determine properties such as solid modulus of the cell walls, Young's modulus of the entire foam and to investigate and compare the microstructural damage of baked wafers and extruded products. A sensory analysis study was performed on both products by a qualified sensory panel. The results of this study were then used to draw links between the mechanical behaviour and sensory perception of a consumer. The extruded product was found to be made up of a stiffer solid material and had a higher compressive modulus and fracture stress when compared to the baked wafer. The sensory panel observed textural differences between the baked and extruded products which were also found in the differences of the mechanical properties of the two products.

  19. A numerical model of the shortbread baking process in a forced convection oven

    International Nuclear Information System (INIS)

    Kokolj, Uroš; Škerget, Leopold; Ravnik, Jure

    2017-01-01

    Highlights: • The evaporation of water had a significant effect on the temperature field. • The numerical model associated the grade of browning with the temperature field. • The results of the numerical and experimental grade of browning are comparable. • The difference between the measured and simulated temperature at the oven was 2.8 K. - Abstract: The objective of all manufacturers and users of ovens is to achieve uniform browning of various baked foods. In recent years, manufacturers have found it difficult to achieve this, due to the rapid appearance of new trends and due to progressively shorter development times. In this paper, we present the development and validation of a time-dependent 3D computational fluid dynamics model, which enables the numerical prediction of the baking performance and grade of browning of a forced convection oven. Flow and heat transfer of hot air in an oven, where a round heating element and a fan are both operating, are simulated. Radiative and convective heat transfer is taken into account. We found, that it is necessary to include water evaporation in the model. The numerical model was validated by performing experimental measurements of temperature and by performing baking tests of shortbread. After baking, the grade of browning was measured for the shortbread. To determine the grade of browning, the method of identification of colour contrasts was used, based on the colour space CIE L ∗ a ∗ b. Based on the results, we proposed a linear model, which enabled the prediction of the grade of browning based on the results of the fluid dynamics simulation.

  20. Combinatorial process optimization for negative photo-imageable spin-on dielectrics and investigation of post-apply bake and post-exposure bake interactions

    Science.gov (United States)

    Kim, Jihoon; Zhang, Ruzhi M.; Wolfer, Elizabeth; Patel, Bharatkumar K.; Toukhy, Medhat; Bogusz, Zachary; Nagahara, Tatsuro

    2012-03-01

    Patternable dielectric materials were developed and introduced to reduce semiconductor manufacturing complexity and cost of ownership (CoO). However, the bestowed dual functionalities of photo-imageable spin-on dielectrics (PSOD) put great challenges on the material design and development. In this work, we investigated the combinatorial process optimization for the negative-tone PSOD lithography by employing the Temperature Gradient Plate (TGP) technique which significantly reduced the numbers of wafers processed and minimized the developmental time. We demonstrated that this TGP combinatorial is very efficient at evaluating the effects and interactions of several independent variables such as post-apply bake (PAB) and post-exposure bake (PEB). Unlike most of the conventional photoresists, PAB turned out to have a great effect on the PSOD pattern profiles. Based on our extensive investigation, we observed great correlation between PAB and PEB processes. In this paper, we will discuss the variation of pattern profiles as a matrix of PAB and PEB and propose two possible cross-linking mechanisms for the PSOD materials to explain the unusual experimental results.

  1. A study and development of technology for surface induction hardening of railroad rails from low-alloy steel

    Science.gov (United States)

    Degtyarev, S. I.; Skoblo, T. S.; Sapozhnikov, V. E.

    1998-12-01

    A technology of heat treatment of railroad rails using induction heating has been developed and installed in the Azovstal' metallurgical works. It provides the requisite combination of properties in the metal of rail heads. However, the metal of the web and the bottom of the rails remains in the initial (unhardened) state. Under severe operational conditions (small-radius curves, high axial loads, and composite configuration of the road) the wear resistance of the head and the structural strength of the web and the bottom not hardened in the plant have to be increased. The properties of the rail steel can be improved by alloying it using the most effective and available elements. Currently, in Ukraine this is manganese. The present paper is devoted to the effect of manganese additives on the phase transformations in induction hardening and the specific features of the formed structure and properties of the rail steel. Optimum parameters for heat treatment of rails are recommended.

  2. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application.

    Science.gov (United States)

    Chen, Xiao Yan; Levy, Clemens; Gänzle, Michael G

    2016-12-19

    Exopolysaccharides from lactic acid bacteria may improve texture and shelf life of bread. The effect of exopolysaccharides on bread quality, however, depends on properties of the EPS and the EPS producing strain. This study investigated structure-function relationships of EPS in baking application. The dextransucrase DsrM and the reuteransucrase GtfA were cloned from Weissella cibaria 10M and Lactobacillus reuteri TMW1.656, respectively, and heterologously expressed in Escherichia coli. Site-directed mutagenesis of GtfA was generates reuterans with different glycosidic bonds. NMR spectrum indicated reuteranPI, reuteranNS and reuteranPINS produced by GtfA-V1024P:V1027I, GtfA-S1135N:A1137S and GtfA-V1024P:V1027I:S1135N:A1137S, respectively, had a higher proportion of α-(1→4) linkages when compared to reuteran. ReuteranNS has the lowest molecular weight as measured by asymmetric flow-field-flow fractionation. The reuteransucrase negative mutant L. reuteri TMW1.656ΔgtfA was generated as EPS-negative derivative of L. reuteri TMW1.656. Cell counts, pH, and organic acid levels of sourdough fermented with L. reuteri TMW1.656 and TMW1.656ΔgtfA were comparable. Reuteran produced by L. reuteri TMW1.656 during growth in sourdough and reuteran produced ex situ by GtfA-ΔN had comparable effects on bread volume and crumb hardness. Enzymatically produced dextran improved volume and texture of wheat bread, and of bread containing 20% rye flour. ReuteranNS but not reuteranPI or reuteran was as efficient as dextran in enhancing wheat bread volume and texture. Overall, reuteran linkage type and molecular weight are determinants of EPS effects on bread quality. This study established a valuable method to elucidate structure-function relationships of glucans in baking applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of modes of heat transfer in baking Indian rice pan cake (Dosa,) a breakfast food.

    Science.gov (United States)

    Venkateshmurthy, K; Raghavarao, K S M S

    2015-08-01

    Heat transfer by individual modes is estimated during baking of rice (Oryza sativa) pan cake (Dosa), a traditional food. The mathematical expressions proposed could be used to modify the baking oven for controlling the individual modes of heat transfer to obtain the desired product texture, colour and flavour. Conduction from the rotating hot plate is found to be the most prominent mode of heat transfer and is critical for obtaining the desired product characteristics such as texture and flavour. Temperature profiles along the thickness of Dosa are obtained and compared with those obtained experimentally. Heat transfer parameters such as thermal conductivity and emissivity of Dosa are determined (0.42 W/m K and 0.31, respectively). The effect of material of construction of the hot plate such as alloy steel, teflon coated aluminum, cast iron and stainless steel on product texture was studied and stainless steel was found to give good surface finish to the product, which was confirmed by scanning electron microscope. Sensory evaluation was carried out to evaluate the product acceptability. The thermal efficiency of the baking oven was 51.5%.

  4. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Qamaruz-Zaman, N., E-mail: cenastaein@usm.my; Kun, Y.; Rosli, R.-N.

    2015-01-15

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.

  5. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    International Nuclear Information System (INIS)

    Qamaruz-Zaman, N.; Kun, Y.; Rosli, R.-N.

    2015-01-01

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue

  6. [Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].

    Science.gov (United States)

    Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai

    2014-12-01

    To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.

  7. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.

    2001-01-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper

  8. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyosun, E-mail: paku08@zaiko.kyushu-u.ac.jp [Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Nishiyama, Masato, E-mail: nishiyama11@zaiko.kyushu-u.ac.jp [Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo, E-mail: nakada@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Takaki, Setsuo, E-mail: takaki@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2014-05-01

    In order to clarify the effects of the martensite distribution on the mechanical properties of low-carbon dual-phase steel, four types of dual-phase steel with different ferrite grain sizes and martensite distributions were prepared using a thermomechanical treatment. The tensile properties of these steels were investigated; in particular, the strain hardening and the ductile fracture behaviors were discussed in terms of the strain partitioning between the ferrite and martensite and the formation and growth of micro-voids, respectively. When the martensite grains surround the ferrite grains and form a chain-like networked structure, the strain hardenability is greatly improved without a significant loss of elongation, while the necking deformability is considerably reduced. A digital-image correlation analysis revealed that the tensile strain in the martensite region in the chain-like networked dual-phase structure is markedly increased during tensile deformation, which leads to an improvement in the strain hardenability. On the other hand, the joint part of the martensite grains in the structure acts as a preferential formation site for micro-voids. The number density of the micro-voids rapidly increases with increasing tensile strain, which would cause the lower necking deformability.

  9. CHEMICAL-THERMAL PROCESSING OF TRACTOR PARTS IN VACUUM AT APPLICATION OF TECHNOLOGY OF HARDENING IN THE MEDIUM OF INERT GASES

    Directory of Open Access Journals (Sweden)

    статья Редакционная

    2011-01-01

    Full Text Available Advantages of technology of hardening by inert gases are considered. It is shown that use of unit ModulTherm7/1 at RUP «MTZ» allows to improve quality of chemical thermal processing of details and to provide decrease of expenses for manufacture.

  10. Attempts to improve the fatigue characteristics of the austenitic steel X5CrNi18-10 in the temperature range of 25-600 C by mechanical boundary layer hardening; Zur Verbesserung des Ermuedungsverhaltens des austenitischen Stahls X5CrNi18-10 im Temperaturbereich 25-600 C durch mechanische Randschichtverfestigungsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Ivan

    2007-01-31

    Pieces of the austenitic steel X5CrNi18-10 whose boundary layers had been hardened by different methods were investigated with a view to their fatigue deformation characteristics in the temperature range of 25-600 degC. Parallel to this, microstructural and X-ray analyses provided deeper understanding of fatigue deformation. The microstructure was characterized, among others, by TEM. Boundary layers were solidified by rolling, by a combination of mechanical and thermal processes, by high-temperature rolling, and by laser shock solidification. The analyses focused on microstructural processes and on the intrinsic stress stability and provided important information on the fabrication of structural components with optimised life. (orig.)

  11. Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel

    Directory of Open Access Journals (Sweden)

    Junfeng Yuan

    2016-04-01

    Full Text Available In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand wear performance and the formation of beneficial tribofilms, this study presents an assessment of uncoated mixed alumina ceramic tools (Al2O3+TiC in the turning of two grades of steel, AISI T1 and AISI D2. Both workpiece materials were hardened to 59 HRC then machined under identical cutting conditions. Comprehensive characterization of the resulting wear patterns and the tribofilms formed at the tool/workpiece interface were made using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy. Metallographic studies on the workpiece material were performed before the machining process and the surface integrity of the machined part was investigated after machining. Tool life was 23% higher when turning D2 than T1. This improvement in cutting tool life and wear behaviour was attributed to a difference in: (1 tribofilm generation on the friction surface and (2 the amount and distribution of carbide phases in the workpiece materials. The results show that wear performance depends both on properties of the workpiece material and characteristics of the tribofilms formed on the friction surface.

  12. Prediction of fresh and hardened properties of self-consolidating concrete using neurofuzzy approach

    Energy Technology Data Exchange (ETDEWEB)

    Sonebi, M.; Cevik, A. [Queens University of Belfast, Belfast (United Kingdom). School for Planning Architecture & Civil Engineering

    2009-11-15

    Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m{sup 3}, dosage of PFA ranging from 29 to 261 kg/m{sup 3}, and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.

  13. The effect of neutron irradiation on the mechanical properties of precipitation hardened copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.

    1997-01-01

    The effects of neutron irradiation on strength and ductility properties of precipitation hardened (PH) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH alloys irradiated in the mixed spectrum reactor SM-2 to fluences of 3.7-5.5 x 10 25 n/m 2 (E>0.1 MeV), corresponding to NRT displacement dose levels of 2.6-3.8 dpa. At irradiation temperatures of 100-285 C the processes of radiation hardening and reduction in the uniform elongation are the major effects. Irradiation at temperatures higher than 300 C causes a dramatic softening and improvement in uniform elongation of the Cu-Cr-Zr and Cu-Cr-Zr-Mg alloys. The threshold softening temperature for the PH alloys is shown to be about 300 C at a dose of 4.5 x 10 25 n/m 2 (E>0.1 MeV). The effect of the irradiation dose and temperature on the shift of the threshold temperature of PH copper-alloys softening is also considered. (orig.)

  14. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA, silica fume (SF, ground granulated blast furnace slag (GGBS, metakaolin (MK, and rice husk ash (RHA are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  15. Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys

    Directory of Open Access Journals (Sweden)

    Satoshi Semboshi

    2015-06-01

    Full Text Available The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.% alloys are investigated. In the quenched Cu–4Ti–0.03B (at.% alloy, elemental B (boron is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventional age-hardenable Cu–Ti alloys. In the early stage of aging at 450 °C, metastable β′-Cu4Ti with fine needle-shaped precipitates continuously form in the matrix phase. Cellular discontinuous precipitates composed of the stable β-Cu4Ti and solid-solution laminates are then formed and grown at the grain boundaries. However, the volume fraction of the discontinuous precipitates is lower in the Cu–4Ti–0.03B alloy than the Cu–4Ti alloy, particularly in the over-aging period of 72–120 h. The suppression of the formation of discontinuous precipitates eventually results in improvement of the hardness and tensile strength. It should be noted that minor B doping of Cu–Ti alloys also effectively enhances the elongation to fracture, which should be attributed to segregation of B at the grain boundaries.

  16. Investigation of variations in the acrylamide and N(ε) -(carboxymethyl) lysine contents in cookies during baking.

    Science.gov (United States)

    Cheng, Lu; Jin, Cheng; Zhang, Ying

    2014-05-01

    Baking processing is indispensable to determine special sensory prosperities of cookies and induces the formation of some beneficial components such as antioxidants. However, the formation of some Maillard reaction-derived chemical hazards, such as acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML) in cookies is also a significant consequence of baking processing from a food safety standpoint. This study investigated the effects of baking conditions on the formation of AA and CML, as well as the antioxidant activity (AOA) of cookies. Cookies were baked at various baking temperatures (155 to 230 °C) and times (1.5 to 31 min). AA and CML contents were determined by ultra-performance liquid chromatography-tandem mass spectrometry, respectively. The highest level of AA was obtained in the cookies baked at 155 °C/21 min and 205 °C/11 min (328.93 ± 3.10 μg/kg and 329.29 ± 5.29 μg/kg), while the highest level of CML was obtained in the cookies baked at 230 °C/1.5 min (118.05 ± 0.21 mg/kg). AA was prone to form at relatively low temperature range (155 to 205 °C), however, CML at relatively high temperature range (205 to 230 °C). The CML content was much higher than the AA content in the same set of cookies, by about 2 to 3 orders of magnitude. The AOA of cookies increased at more severe baking conditions. According to the AA and CML content, AOA and sensory properties of cookies, the temperature-time regime of 180 °C/16 min might be a compromised selection. However, only optimizing the baking condition was not enough for manufacture of high-quality cookies. Cookies, a kind of widely consumed bakery products in the world, contain some potentially harmful compounds, like acrylamide (AA) and N(ε) -(carboxymethyl) lysine (CML). AA in cookies has led to public health concern and several research efforts. But CML, another Maillard reaction-derived chemical hazard, has been neglected so far, even though its content is much higher than that of AA in cookies. The

  17. The maraging steel corrosion properties with hardening of different kinds after double aging

    Directory of Open Access Journals (Sweden)

    L. V. Tarasenko

    2014-01-01

    Full Text Available The paper proposes to use high-strength corrosion-resistant maraging steels, which were developed for aircraft industry instead of carbon steel with coating to improve operation properties of the forcemeasuring resilient member in electronic strain-gauge balance.It examines the possibility to apply the martensitic-aging steels of Fe-Cr-Ni-Mo-Ti (ЭП678 and Fe-Cr-Ni-Mo-Cu-Nb (ЭП817 alloying systems. It was shown, that a traditional heat strain-hardening treatment including hardening and overageing of this steels provides combination of durability viscosity and corrosion- resistance, but at the same time it increases nonelastic effects and lowers the limit of elasticity because of reversing austenite formation. In this connection, it was proposed to use hardening with double aging i.e. main and low-temperature aging with no austenite formation as heat strainhardening treatment of steels for force-measuring resilient member. The goal of this work was to study the influence of double aging on the structure and properties of ЭП678 (06Х14Н6Д2МБТ and ЭП817 (03Х111Н10М2Т steels.The modes of double aging for ЭП817 steel were conformed to 4500С + 400 0С and 475 0С+ 400 0С, for ЭП678 steel – 530 0С + 500 0С. The structure and properties of hardened steels after main and double aging were compared.Metallographic analysis of samples after electrolytic etching was conducted with Leitz Metallovert microscope while the CamScan 4DV raster electronic microscope was used for Microroentgen-spectral analysis. The quantity of austenite was controlled with computerized setting DRON-4, the hardness was measured with ТК-2М instrument, corrosion-resistance was estimated with polarized curves, which were taken using a П-5848 potentiostat.The conducted research has shown, that double aging causes the additional hardening of steels due to disintegration of martensite and formation of dispersed Cu – corpuscles in ЭП817 steel and of Ni3Ti

  18. Impact of local hydrothermal treatment during bread baking on soluble amylose, firmness, amylopectin retrogradation and water mobility during bread staling.

    Science.gov (United States)

    Besbes, Emna; Le Bail, Alain; Seetharaman, Koushik

    2016-01-01

    The impact of hydrothermal processing undergone by bread dough during baking on the degree of starch granule disruption, on leaching of soluble amylose, on water mobility, on firmness and on amylopectin retrogradation during staling has been investigated. Two heating rates during baking have been considered (4.67 and 6.31 °C/min) corresponding respectively to baking temperature of 220 and 240 °C. An increase in firmness and in the amount of retrogradated amylopectin accompanied by a decrease in freezable water has been observed during staling. Although a lower heating rate yielded in larger amount of retrogradated amylopectin retrogradation, it resulted in a lower firmness. Additionally, the amount of soluble amylose and the relaxation times of water measured by Nuclear Magnetic Resonance NMR (T20, T21 and T22) decreased during staling. It was demonstrated that the amount of soluble amylose was higher for bread crumb baked at lower heating rate, indicating that an increasing amount of amylose is leached outside the starch granules. This was corresponding to a greater amount of retrograded amylopectin during staling. Moreover, it was found that the degree of gelatinization differs locally in a same bread slice between the top, the centre and the bottom locations in the crumb. This was attributed to the differences in kinetics of heating, the availability of water during baking and the degree of starch granule disruption during baking. Based on first order kinetic model, it was found that staling kinetics were faster for samples baked at higher heating rate.

  19. Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2015-01-01

    Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.

  20. Solution and precipitation hardening of two-phase gamma titanium alloy; Mischkristall- und Ausscheidungshaertung zweiphasiger Gamma-Titanaluminidlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Christoph, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1997-12-31

    The present study on solution and precipitation hardening of two-phase gamma titanium aluminides was directed towards improved creep resistance. Alloys were systematically doped with carbon up to 0.37 atomic percent. Solid solutions and precipitates of carbon were formed by different thermal treatments. The hardening obtained as a result of the different precipitate conditions was measured by deformation experiments between 293 and 973 K. An increase of yield stress of up to 300 MPa was observed for finely distributed perovskite precipitates. This increase of yield stress was maintained up to 973 K and was shown to be dominantly athermal in character from activation parameter measurements. Electron microscopic investigations confirmed the athermal nature of the perovskite precipitates to dislocation motion. The precipitates thus act as barriers to dislocation glide over a wide temperature range and can therefore increase the creep resistance at the anticipated operation temperature of 973 K. In addition to studying the mechanism of precipitation hardening, the pinning of dislocations by the formation of impurity atmospheres has also been investigated. This phenomenon is effective at intermediate temperatures of around 550 K and is thought to be caused by very mobile elements such as iron and boron. These elements are present in all alloys of technical relevance. (orig.) 158 refs.