WorldWideScience

Sample records for improve plant growth

  1. PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment

    Directory of Open Access Journals (Sweden)

    Mariam Zameer

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria are colonized bacterial species that has the capability to improve plant growth by certain direct and indirect means. Environmental factors including both biotic and abiotic stresses are among the major constraints to crop production. In the current study, the effectiveness of microbial inoculation (Bacillus megaterium for enhancing growth of tomato plants under salt stress conditions has been investigated. Significant improvement in shoot length, root length, leaf surface area, number of leaves, total weight of the shoot and root was observed in tomato plants inoculated with zm7 strain post 15 and 30 days of its application. Zm3, Zm4 and Zm6 strains improved the morphological parameters as compared to the control. Chlorophyll content a, chlorophyll content b, anthocyanin and carotenoid content was increased in tomato plants subjected to Zm7, Zm6 and Zm4 strains. Stress responsive genes; metallothionein and glutothion gene were found highly expressed in Zm7 treated tomato plants as compared to control, untreated plants. Significant correlation of anthocyanin was reported for carotenoids, chlorophyll-b, shoot weight and total weight of seedling while carotenoids were significantly correlated with leaf surface area, root length, chlorophyll-b and anthocyanin. Overall, Zm7 strain proved best for improvement in salt stressed plant’s morphological parameters and biochemical parameters as compared to control, untreated plants.

  2. Early Growth of Improved Acacia mangium at Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Arif Nirsatmanto

    2016-08-01

    Full Text Available Integrating tree improvement into silvicultural practices is essential in forest plantation. Concerning this fact, Acacia mangium spacing trial planted using genetically improved seed was established in West Java. This study was aimed to evaluate the impact of ages and planting density on early growth of improved seed A. mangium in the spacing trial. Improved seed from 2 seed orchards (SSO-5 and SSO-20 and a control of unimproved seed from seed stand (SS-7 were tested together in spacing 3 × 3 m and 2 × 2 m. Height, diameter, stem volume, and stand volume were observed at 3 ages. The results showed that improved seed consistently outperformed to unimproved seed. Ages were highly significant for all traits, but the significant difference varied among traits and seed sources for planting density and the interactions. High density performed better growth than low density at first year, and they were varied in subsequent ages depending on traits and seed sources. Improved seed from less intensity selection orchard was less tolerance to high density than that from high intensity selection orchard, but the tolerance was reversed in low density. Improved seed A. mangium from different level of genetic selection has responded differently in behavior to the changes of planting density.

  3. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  4. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  5. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  6. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit.

    Science.gov (United States)

    Rahman, Mosaddiqur; Sabir, Abdullah As; Mukta, Julakha Akter; Khan, Md Mohibul Alam; Mohi-Ud-Din, Mohammed; Miah, Md Giashuddin; Rahman, Mahfuzur; Islam, M Tofazzal

    2018-02-06

    Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.

  7. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2018-01-01

    Full Text Available Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation.

  8. Improvement of Salt Tolerance in Trigonella foenum-graecum L. var. PEB by Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Anjali Ratnakar

    2014-05-01

    Full Text Available The crop yield is reduced under saline conditions and this hampers agricultural productivity. The incorporation of plant growth regulators (PGRs during presoaking treatments in many crops has improved seed performance under saline conditions. In order to study the ameliorative effect of plant growth regulators, experiments were conducted to study the variation in organic constituents in the leaves of Trigonella foenum-graecum L. var.PEB, where the seeds were primed with different plant growth regulators and grown under NaCl salinity. After a pre-soaking treatment of six hours in 20 mg L-1 solutions of gibberllic acid (GA3, 6-furfuryladenine (Kinetin and benzyl adenine (BA, the seeds were allowed to germinate and grow for forty-five days under saline conditions. On the analysis of mature leaves, it was observed that chlorophyll a and b, total chlorophyll and protein showed an increase in PGR-treated plants compared to the untreated set. The accumulation of the stress metabolite such as proline and sugars, which increase under saline conditions, showed a significant decrease in the plants pretreated with PGRs.

  9. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  10. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    IAS Admin

    known to improve plant growth in many ways when compared to ... roles in agricultural productivity. ... Sustainable agriculture: Sustainable agriculture involves the successful management of agricultural re- ... For the first time Kloepper et al.

  11. Prospecting cyanobacterial formulations as plant-growth-promoting ...

    African Journals Online (AJOL)

    Cyanobacteria represent environment-friendly inputs that can lead to savings of nitrogenous fertilisers, in addition to improving plant growth and soil fertility. The present investigation aimed to evaluate the potential of cyanobacteria inoculants as nutrient-management and plant-growth-promoting options for maize hybrids, ...

  12. Use of Plant Growth Regulators to Improve Branching of Herbaceous Perennial Liners

    OpenAIRE

    Grossman, Mara Celeste

    2012-01-01

    The objective of this study is to evaluate the efficacy of PGRs to improve branching during production of herbaceous perennial liners and finished plants. The effects of benzyladenine (BA) on the branching and root and shoot growth of Agastache Clayt. Ex Gronov. 'Purple Hazeâ , Gaura lindheimeri Engelm. & A. Gray 'Siskiyou Pink', Lavandula à intermedia Emeric ex Loisel. 'Provence', Leucanthemum à superbum (Bergmans ex J.W. Ingram) Bergmans ex Kent. 'Snowcap', and Salvia à sylv...

  13. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    This paper analyses the effect of foreign acquisition on survival probability and employment growth of target plant using data on Swedish manufacturing plants during the period 1993-2002.  An improvement over previous studies is that we take into account firm level heterogeneity by separating...... the lifetime of the acquired plants only if the plant was an exporter.  The effect differs depending on whether the acquisition is horizontal or vertical.  We also find robust positive employment growth effects only for exporters, and only if the takeover is vertical, not horizontal....

  14. Do plant-based amendments improve soil physiochemical and microbiological properties and plant growth in dryland ecosystems?

    Science.gov (United States)

    Kneller, Tayla; Harris, Richard; Muñoz-Rojas, Miriam

    2017-04-01

    Background Land intensive practices including mining have contributed to the degradation of landscapes globally. Current challenges in post-mine restoration revolve around the use of substrates poor in organic materials (e.g. overburden and waste rock) and lack of original topsoil which may result in poor seedling recruitment and in later stages in soil nutrient deficiency, metal toxicity, decreased microbial activity and high salinity (Bateman et al., 2016; Muñoz-Rojas et al., 2016). Despite continuous efforts and advances we have not proportionally advanced our capability to successfully restore these landscapes following mining. Recent attempts to improve plant establishment in arid zone restoration programs have included the application of plant based amendments to soil profiles. This approach usually aims to accelerate soil reconstruction via improvement of soil aggregate stability and increase of soil organic carbon, and water holding capacity. Whilst a significant amount of recent research has focused on the application of such amendments, studies on the potential application of plant based materials to recover soil functionality and re-establish plant communities in post-mined landscapes in arid regions are limited. Here we will discuss our work investigating the application of a plant based amendment on soil substrates commonly used in post mining restoration in the Pilbara region, Western Australia. Methodology The study was conducted in a glasshouse facility where environmental conditions were continuously monitored. Using two growth materials (topsoil and waste rock) and a plant based amendment (dry biomass of the most common grass in the Pilbara, Triodia wiseana) five different treatments were tested. Treatments consisted of control soil treatments (topsoil, waste and a mixture of the former soil types (mixture)) and two amended soil treatments (waste amended and mixture amended). Additionally, three different vegetation communities were studies

  15. Plant Growth Modeling Using L-System Approach and Its Visualization

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2011-05-01

    Full Text Available The visualizationof plant growth modeling using computer simulation has rarely been conducted with Lindenmayer System (L-System approach. L-System generally has been used as framework for improving and designing realistic modeling on plant growth. It is one kind of tools for representing plant growth based on grammar sintax and mathematic formulation. This research aimed to design modeling and visualizing plant growth structure generated using L-System. The environment on modeling design used three dimension graphic on standart OpenGL format. The visualization on system design has been developed by some of L-System grammar, and the output graphic on three dimension reflected on plant growth as a virtual plant growth system. Using some of samples on grammar L-System rules for describing of the charaterictics of plant growth, the visualization of structure on plant growth has been resulted and demonstrated.

  16. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... Plant growth promoting rhizobacteria improve the plant growth by a variety of ways like ... preparing textile dye in the Far East, Central and. Northern Asia and ... The experiment was carried out in complete randomized design.

  19. Engineered nanomaterials for plant growth and development: A perspective analysis.

    Science.gov (United States)

    Verma, Sandeep Kumar; Das, Ashok Kumar; Patel, Manoj Kumar; Shah, Ashish; Kumar, Vinay; Gantait, Saikat

    2018-07-15

    With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post

  20. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review

    Directory of Open Access Journals (Sweden)

    Pravin Vejan

    2016-04-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  1. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    Science.gov (United States)

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  2. Plant growth improvement mediated by nitrate capture in co-composted biochar

    Science.gov (United States)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  3. Plant growth improvement mediated by nitrate capture in co-composted biochar

    Science.gov (United States)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-06-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  4. Improvement of the growth and yield of lettuce plants by elf sinusoidal non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Souzal, A. De; Gonzalez, L.M.; Sueirol, L.; Peralta, O.; Liceal, L.; Porras, E.; Gilart, F.

    2008-01-01

    Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT(rms) for 3 min, 160 mT(rms) for 1 min and to 160 mT (rms) for 5 min. Non-treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m2) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for seedling growth assessment and growth rate analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically-treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically-exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p<0.05) the plant height, the leaf area per plant, the final yield per area and the fresh mass per plant in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop

  5. The Use of Plant Growth Regulators to Improve the Traffic Tolerance and Repair of Overseeded Bermudagrass

    OpenAIRE

    Marshall, Christopher Scott

    2007-01-01

    An active football season during the fall acclimation period tests the traffic tolerance of bermudagrass. Exogenous applications of synthetic cytokinins or cytokinin-enhancing plant growth regulators (PGRs), such as trinexapac-ethyl, may improve the traffic tolerance of "Patriot" and "Tifsport" hybrid berudagrasses (Cynodon dactylon var. dactylon x Cynodon transvaalensis). This study was designed to mimic the agronomic practices and traffic stresses experienced at Virginia Tech's Worsham Fiel...

  6. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  7. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  8. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    Science.gov (United States)

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  9. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  10. Phytochrome, plant growth and flowering

    Energy Technology Data Exchange (ETDEWEB)

    King, R.W.; Bagnall, D.J. [CSIRO, Canberra (Australia)

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  11. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  12. Plant Growth Absorption Spectrum Mimicking Light Sources

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-08-01

    Full Text Available Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED, for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.

  13. A Review of Plant Growth Substances

    Directory of Open Access Journals (Sweden)

    D.A. Agboola

    2014-10-01

    Full Text Available Plant growth substances are compounds, either natural or synthetic that modifies or controls through physiological action, the growth and maturation of plants. If the compound is produced within the plant, it is called a plant hormone or phytohormone. In general, it is accepted that there are five major classes of plant hormones. They are Auxins (IAA, Cytokinins, Gibberellins, Ethylene and Abscisic Acid. However, there are still many plant growth substances that cannot be grouped under these classes, though they also perform similar functions, inhibiting or promoting plant growth. These substances include Brassinosteroids (Brassins, Salicylic Acid, Jasmonic Acid, Fusicoccin, Batasins, Strigolactones, Growth stimulants (e.g. Hymexazol and Pyripropanol, Defoliants (e.g. Calcium Cyanamide, Dimethipin. Researchers are still working on the biosynthetic pathways of some of these substances. Plant growth substances are very useful in agriculture in both low and high concentrations. They affect seed growth, time of flowering, the sex of flowers, senescence of leaves and fruits, leaf formation, stem growth, fruit development and ripening, plant longevity, and even plant death. Some synthetic regulators are also used as herbicides and pesticides. Therefore, attention should be paid to the production and synthesis of these substances so that they affect plants in a way that would favour yield.

  14. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    Science.gov (United States)

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  15. Effect of Plant Growth Regulators and Cold on Improvement of Morphological Characteristics of Cineraria (Pericallis × hybrida

    Directory of Open Access Journals (Sweden)

    Kazem Bashiri

    2017-12-01

    Full Text Available Introduction: The climate of every region does not let to have year-round production of crops. Use of plant growth regulators allows to produce the flowers out of season and improve their quality and yield. Gibberellin is one of the plant growth regulators which can substitute cold requirement of plants, while cytokinin is another plant growth regulator to stimulate floral initials. Paclobutrazol is a triazole compound that inhibits gibberellin synthesis. Cineraria (Pericallis × hybrida as a prominent flowering pot plant has a growing demand during the spring festivals especially Nowrouz, which needs further improvement of quality and yield. In this regard a study was designed to examine the morphological characteristics of cineraria using gibberellin, cytokinin, paclobutrazol and cold. Materials and Methods: Seeds of cineraria (Pericallis × hybrida cv. Satellite( were sown in plug trays at the research greenhouse of college of agriculture, Shiraz University. A study was carried out with a completely randomized design and five replications. Control plants were transferred to incubators at eight leaves stage to receive six weeks of cold. Spraying treatments consisted of control (water, 100 mg/L gibberellin at three times (before cold, middle of cold and after cold, combinations of cold and/or gibberellin (100, 200 mg/L with benzyl adenine (150, 300 mg/L and/or paclobutrazol (250, 500 mg/L. In order to better understand the effects of paclobutrazol, its treatments were applied two weeks after gibberellin treatments. Data analysis was done by SAS 9.1 software and means were compared by LSD at 5 percent probability level. Results and Discussions: Gibberellin can be used as a replacement for cold. The maximum acceleration of full flowering (32 days and the greatest delay of full bloom (14 days were observed in 100 mg/L gibberellin + 250 mg/L paclobutrazol and 200 mg/L gibberellin + 300 mg/L benzyl adenine, respectively. These results were

  16. [Review on application of plant growth retardants in medicinal plants cultivation].

    Science.gov (United States)

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  17. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?

    Science.gov (United States)

    Mary I. Williams; R. Kasten Dumroese; Deborah S. Page-Dumroese; Stuart P. Hardegree

    2016-01-01

    Direct seeding is a common large-scale restoration practice for revegetating arid and semi-arid lands, but success can be limited by moisture and temperature. Seed coating technologies that use biochar may have the potential to overcome moisture and temperature limitations on native plant germination and growth. Biochar is a popular agronomic tool for improving soil...

  18. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Guava production for 2008 in the state of Guanajuato was 177 ha in area planted and the same number of area harvested, production in 1,130.80 Ton. In traditional farming practices have made excessive use of mineral fertilizers, which, if it is true, ensure a good production are expensive and come to cause imbalances in agroecosystems by contamination of soil, water, and food. In this work we evaluated the effect of Bacillus subtilis strains as plant growth promoter rhizobacteria in guava plants under greenhouse conditions. We used three strains were inoculated potted plant with guava. We measured the height, number of branches and leaves. Guava orchards of 2 then display of soil were taken for the isolation andcharacterization of rhizobacteria. Selective medium was used with 1 - carboxylic acid, -1 - aminocyclopropane and selecting bacteria with ACC desaminase activity. For the isolates were determined antibiotic resistance, confrontation with fungal pathogens, plant growth tests in vitro and BIOLOG metabolic profiles. We found 30 isolates with ACC activities, 7 have the effect of biological control and 5 had effect on root development in vitro. The use of growth promotingrhizobacteria are an excellent alternative for improving the production of guavas, growing very little is known of themicroflora associated with the rhizosphere and the ecological role they have in the ground.

  19. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    Directory of Open Access Journals (Sweden)

    Yuyan An

    Full Text Available 5-aminolevulinic acid (ALA, a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn. plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC, and reduced leaf superoxide anion ([Formula: see text] production rate and malonaldehyde (MDA content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD and peroxidase (POD, root vigor, and activities of root alcohol dehydrogenase (ADH, and lactate dehydrogenase (LDH, indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  1. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.

    Science.gov (United States)

    Hamedi, Javad; Mohammadipanah, Fatemeh

    2015-02-01

    Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

  2. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Characterization of Effective Rhizobacteria Isolated from Velvet Bean (Mucuna Pruriens) to Enhance Plant Growth

    International Nuclear Information System (INIS)

    Saleem, A. R.; Mahmood, T.; Batool, A.; Khalid, A.

    2016-01-01

    Rhizobacteria with plant growth promoting ability exist in association with plant roots and ameliorate over all plant development and yield. Numerous species of rhizobacteria have been identified with plant growth promoting ability, which can be attributed to multiple microbial characteristics. In the current study rhizobacterial isolates with best plant growth promotion traits were subjected to screening for plant growth promotion under axenic condition. The results of lab assays revealed that out of five rhizobacterial isolates three of bacterial isolate were Gram -ve and two of them were Gram +ve bacterial group. All isolates found positive for the auxin production and ACC-demainase activity. The isolate HS9 showed highest ACC activity (331 ketobutyrate nmol mg-1 biomass hr-1) and auxin production (3.85 without L-TRP). PGPR increase plant growth by reducing the ethylene release and its inhibitory effects, the role of isolates to decrease ethylene effects was affirmed via classical triple response assay on velvet bean. Furthermore, isolate were assessed for resistance test, three efficient strains (G9, HS9 and H38) exhibited antibiotic resistance for streptomycin, kanamycin and rifampicin at 100 mg L-1in TSB medium. For the purpose of co-inoculation, all three isolates showed positive relation to grow together. The results concluded that rhizobacteria selected from rain fed areas were found effective to improve plant growth with their multiple growth enhancing traits. Therefore, PGPR with various characteristics could be a better option for inoculation and co-inoculation to improve plant growth in well watered and water stressed environment. (author)

  4. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    Science.gov (United States)

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.

  5. Assessing the suitability of paste as a medium for plant growth

    International Nuclear Information System (INIS)

    Feng Yongsheng; Sinclair, L.; Fung, Y.P.

    1999-01-01

    When a polymer is added to the tailings slurry in the extraction process in oil sands refining, it accelerates the release of water and forms a consolidated, dense material known as 'paste.' This material has a solids content of approximately 65% by weight, 30% of which is made up of fine particles. A study was initiated to explore the possibility of using paste as a plant growth medium in which the paste must hold water and nutrients for growth while allowing adequate water movement and aeration. To also attain a favorable soil structure, it was thought that amending the paste with an adequate amount of peat would improve its physical and chemical properties such as to render it a suitable soil environment for plant growth. The study was a growth chamber experiment in which the effects were assessed of peat amendments on seed germination, and a greenhouse experiment in which the growth of three selected plant species were determined, including highlander grass, jack pine, and trembling aspen. Paste has the potential to be modified into a suitable plant growth medium. Adding peat can greatly enhance seed germination, and seedling survival and growth. There seemed to be some improvement in plant performance as the amount of peat included increased from 5% to 10%. Increasing the amount of peat still further to 15% had at best marginal incremental effects. The optimum amount of peat amendment was around 10%. Of the three plant types tested, highlander grass performed the best on the paste material amended with peat, showing performance comparable to the control. Trembling aspen grew relatively well but the survival rate was low. If the seedlings survived the first few weeks, the potential for continued growth seemed good. Jack pine showed signs of stress such as needle damage, stunted growth and low survival rates and seemed unlikely to establish well even on the peat amended paste. 1 ref., 4 tabs., 2 figs

  6. Short Communication Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar-ul-Hye

    2013-05-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR containing ACC-deaminase in combination with rhizobia can improve the growth and nodulation in plants by suppressing the endogenous level of ethylene. In the present study, ten strains, each of PGPR and rhizobia from the previously screened cultures were tested for their effect as co-inoculants on growth and nodulation of lentil in growth pouches under axenic conditions. Results showed that most of the combinations improved the lentil growth as compared to the un-inoculated control. Maximum increase in shoot length (1.87 fold, root length (1.97 fold and total biomass (1.98 fold over the un-inoculated control was observed in the treatment where the lentil seedlings were inoculated with the combination Z24P10. Co-inoculation also improved the nodulation in lentil and the maximum number of nodules plant-1 (24 nodules were observed in the combination Z22P10. However, there was no nodulation in few combinations. It is concluded that the co-inoculation with rhizobia and PGPR containing ACC-deaminase has improved the growth and nodulation in lentil under axenic conditions and the selected combinations may be evaluated in pot and field trials

  7. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    2016-01-01

    Abstract Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant-available water capacity (AWC) and plant growth in diverse soil types still needs to be explored. A pot experiment......, the reduced water regime significantly affected plant growth and water consumption, whereas the effect was less pronounced in the coarse sand. Irrespective of the soil type, both GBs increased AWC by 17–42%, with the highest absolute effect in the coarse sand. The addition of SGB to coarse sand led...

  8. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    Science.gov (United States)

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  9. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  10. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  11. Effects of different plant growth regulators on blueberry fruit quality

    Science.gov (United States)

    Zhang, X. C.; Zhu, Y. Q.; Wang, Y. N.; Luo, C.; Wang, X.

    2017-08-01

    In order to understand the effects of different plant growth regulators (PGRs) on blueberry fruit growth, various concentrations of Abscisic acid (ABA), Methyl jasmonate (MJ), Brassinolide (BR), Melatonin (MT) were sprayed on blueberry cv. ‘Brigita’ fruits. The results showed that all the PGRs put into effect on improving the quality of blueberry fruit. Comparing with the control plants no PGR spraying,300 mg/L of MT treatment promoted effectively accumulation of the soluble sugar. ABA 20mg/L treatment in-creased effectively accumulation of anthocyanin, and significantly decreased titratable acid content. The treatment of MJ 10mg/L improved significantly the soluble solid content. The effect of the four PGRs treatments on appearance did not show obvious difference.

  12. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa.

    Science.gov (United States)

    Trinh, Cao Son; Lee, Hyeri; Lee, Won Je; Lee, Seok Jin; Chung, Namhyun; Han, Juhyeong; Kim, Jongyun; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    Pseudomonas nitroreducens: strain IHB B 13561 (PnIHB) enhances the growth of Arabidopsis thaliana and Lactuca sativa via the stimulation of cell development and nitrate absorption. Plant growth-promoting rhizobacteria (PGPR) enhance plant development through various mechanisms; they improve the uptake of soil resources by plants to greatly promote plant growth. Here, we used Arabidopsis thaliana seedlings and Lactuca sativa to screen the growth enhancement activities of a purified PGPR, Pseudomonas nitroreducens strain IHB B 13561 (PnIHB). When cocultivated with PnIHB, both species of plants exhibited notably improved growth, particularly in regard to biomass. Quantitative reverse transcription polymerase chain reaction analysis indicated high expression levels of the nitrate transporter genes, especially NRT2.1, which plays a major role in the high-affinity nitrate transport system in roots. Moreover, enhanced activity of the cyclin-B1 promoter was observed when wild-type 'Columbia-0' Arabidopsis seedlings were exposed to PnIHB, whereas upregulation of cyclin-B also occurred in the inoculated lettuce seedlings. Overall, these results suggest that PnIHB improves A. thaliana and L. sativa growth via specific pathways involved in the promotion of cell development and enhancement of nitrate uptake.

  13. Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth

    International Nuclear Information System (INIS)

    Nosheen, A.; Bano, A.

    2014-01-01

    The present investigation deals with the role of Plant Growth Promoting Rhizobacteria and chemical fertilizers alone or in combination on urease, invertase and phosphatase activities of rhizospheric soil and also on general impact on growth of safflower cvv. Thori and Saif-32. The PGPR (Azospirillum brasilense and Azotobacter vinelandii) were applied at 10/sup 6/ cells/mL as seed inoculation prior to sowing. Chemical fertilizers were applied at full (Urea 60 Kg ha/sup -1/ and Diammonium phosphate (DAP) 30 Kg ha/sup -1/), half (Urea 30 Kg ha/sup -1/ and DAP 15 Kg ha/sup -1/) and quarter doses (Urea 15 Kg ha-1 and DAP 7.5 Kg ha/sup -1/) during sowing. The chemical fertilizers and PGPR enhanced urease and invertase activities of soil. Presence of PGPR in combination with quarter and half doses of chemical fertilizers further augmented their effect on soil enzymes activities. The soil phosphatase activity was greater in Azospirillum and Azotobacter in combination with half dose of chemical fertilizers. Maximum increase in leaf melondialdehyde content was recorded in full dose of chemical fertilizers whereas coinoculation treatment exhibited significant reduction in cv. Thori. Half and quarter dose of chemical fertilizers increased the shoot length of safflower whereas maximum increase in leaf protein was recorded in Azotobacter in combination with full dose of chemical fertilizers. Root length was improved by Azospirillum and Azotobacter in combination with quarter dose of chemical fertilizers. Leaf area and chlorophyll contents were significantly improved by Azotobacter in combination with half dose of chemical fertilizers. It is inferred that PGPR can supplement 50 % chemical fertilizers for better plant growth and soil health. (author)

  14. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    Science.gov (United States)

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  15. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    2015-09-01

    Full Text Available Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  16. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    Science.gov (United States)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  17. Rhizosphere pseudomonads as probiotics improving plant health.

    Science.gov (United States)

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  18. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  19. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  20. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  1. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  2. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Science.gov (United States)

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  3. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    Directory of Open Access Journals (Sweden)

    Bunlong eYim

    2015-11-01

    Full Text Available Replant disease (RD severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after eight weeks was improved in the two RD soils either treated at 50 °C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE and 454-pyrosequencing revealed significant differences in the bacterial community composition even after eight weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e. potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  4. Intelligent Growth Automaton of Virtual Plant Based on Physiological Engine

    Science.gov (United States)

    Zhu, Qingsheng; Guo, Mingwei; Qu, Hongchun; Deng, Qingqing

    In this paper, a novel intelligent growth automaton of virtual plant is proposed. Initially, this intelligent growth automaton analyzes the branching pattern which is controlled by genes and then builds plant; moreover, it stores the information of plant growth, provides the interface between virtual plant and environment, and controls the growth and development of plant on the basis of environment and the function of plant organs. This intelligent growth automaton can simulate that the plant growth is controlled by genetic information system, and the information of environment and the function of plant organs. The experimental results show that the intelligent growth automaton can simulate the growth of plant conveniently and vividly.

  5. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    Science.gov (United States)

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  6. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-10-01

    Full Text Available Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR. Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  7. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Directory of Open Access Journals (Sweden)

    Khan Abdul

    2012-01-01

    fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.

  8. Error estimation in plant growth analysis

    Directory of Open Access Journals (Sweden)

    Andrzej Gregorczyk

    2014-01-01

    Full Text Available The scheme is presented for calculation of errors of dry matter values which occur during approximation of data with growth curves, determined by the analytical method (logistic function and by the numerical method (Richards function. Further formulae are shown, which describe absolute errors of growth characteristics: Growth rate (GR, Relative growth rate (RGR, Unit leaf rate (ULR and Leaf area ratio (LAR. Calculation examples concerning the growth course of oats and maize plants are given. The critical analysis of the estimation of obtained results has been done. The purposefulness of joint application of statistical methods and error calculus in plant growth analysis has been ascertained.

  9. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  10. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  11. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide.

    Science.gov (United States)

    Gamage, Dananjali; Thompson, Michael; Sutherland, Mark; Hirotsu, Naoki; Makino, Amane; Seneweera, Saman

    2018-04-02

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) significantly influences plant growth, development and biomass. Increased photosynthesis rate, together with lower stomatal conductance, have been identified as the key factors that stimulate plant growth at elevated [CO 2 ] (e[CO 2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO 2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO 2 ], despite the emerging evidence of e[CO 2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO 2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO 2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO 2 ] have been identified with the aim of improving crop productivity under a CO 2 rich atmosphere. This article is protected by copyright. All rights reserved.

  12. RESEARCH REGARDING THE POTENTIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS ON PLANTS GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OANA-IRINA PATRICIU

    2017-06-01

    Full Text Available It is well known that growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic compounds. Heterocyclic compounds such as chromanones and thiazoles derivatives, valuable because of their potential biological activities, have also been reported as pesticides, herbicides and plant-growth regulators. In the present study, different concentrations of chromanones and thiazoles derivatives were employed to evaluate their effects on plantlets growth of Ocimum basilicum L. and Echinacea purpurea L. The studied compounds were proved to be growth inhibitors at high concentrations. A growth stimulation effect was registered at low concentration.

  13. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  14. Use of Chitosan-PVA Hydrogels with Copper Nanoparticles to Improve the Growth of Grafted Watermelon.

    Science.gov (United States)

    González Gómez, Homero; Ramírez Godina, Francisca; Ortega Ortiz, Hortensia; Benavides Mendoza, Adalberto; Robledo Torres, Valentín; Cabrera De la Fuente, Marcelino

    2017-06-22

    Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu) on leaf morphology and plant growth when applied to grafted watermelon cultivar 'Jubilee' plants. Stomatal density (SD), stomatal index (SI), stoma length (SL), and width (SW) were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.

  15. Use of Chitosan-PVA Hydrogels with Copper Nanoparticles to Improve the Growth of Grafted Watermelon

    Directory of Open Access Journals (Sweden)

    Homero González Gómez

    2017-06-01

    Full Text Available Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu on leaf morphology and plant growth when applied to grafted watermelon cultivar ‘Jubilee’ plants. Stomatal density (SD, stomatal index (SI, stoma length (SL, and width (SW were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.

  16. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  17. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  18. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  19. Plant growth-promoting rhizobacteria (PGPR: their potential as antagonists and biocontrol agents

    Directory of Open Access Journals (Sweden)

    Anelise Beneduzi

    2012-01-01

    Full Text Available Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR. PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR in plants resembles pathogen-induced systemic acquired resistance (SAR under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  20. Possibilities for using plant extracts added to ruminant feed aimed at improving production results

    Directory of Open Access Journals (Sweden)

    Grdović Svetlana

    2010-01-01

    Full Text Available The use of plant extracts with the objective of improving production results and the quality of food articles of animal origin is an area which is acquiring increasing scientific importance. Numerous investigations carried out so far on ruminants and other species of domestic animals have been aimed at examining specific bioactive matter of plants. The results of these investigations have demonstrated a positive influence on the production results. A large number of data indicate that plant extracts added to animal feed contribute to increasing overall productivity. Furthermore, plant extracts as additives in animal feed have a positive effect also on the health condition of the animals. A large number of plants have characteristics which potentially improve consumption, digestibility and conversion of food, and also growth. Examinations have been performed of the effects of different plant extracts on food consumption, wool growth, growth and composition of the trunk, milk production, reproductive parameters, agents for wool shearing, preventing bloat, methane production, as well as the influence of plants on curbing nematode infestations of ruminants. This work presents a review of scientific investigations of different plant species and their effects on the production characteristics of ruminants. .

  1. Growth of fluoride treated Kalanchoe pinnata plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H N; Applegate, H G

    1962-01-01

    Kalanchoe pinnata plants can absorb fluoride through roots. The absorption is related to the amount of fluoride applied to the soil. There appeared to be a relationship between the amount of fluoride adsorbed and the subsequent growth of the plants. Plants which adsorbed the largest amounts of fluoride had the greatest increase in growth.

  2. Effects of rhizobia and plant growth promoting bacteria inoculation ...

    African Journals Online (AJOL)

    Plant growth promoting rhizobacteria (PGPR) stimulate plant growth by producing phytohormone which enhances the growth and physiological activities of the host plant. Recently, legume bacteria (Rhizobium spp.) have been considered as a PGPR for legume as well as non-legumes and have the potential for growth ...

  3. Exact analytic solutions for a global equation of plant cell growth.

    Science.gov (United States)

    Pietruszka, Mariusz

    2010-05-21

    A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Interaction Effects between Light Level and Plant Density on Plant Growth, Development and External Quality in Year-around Cut Chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Bakker, M.J.

    2009-01-01

    Aims of this study are to analyze growth pattern and development Of Cut chrysanthemum and test simple regression models in relation to light level and plant density. Cut chrysanthemum (Chrysanthemum morifolium), cv. Reagan Improved, was grown at four different plant densities of 16, 32, 64 or 80

  5. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  6. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  7. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... the characteristic low compressibility and high friction giving much better conditions for root penetration increasing yield potentials. Furthermore, risk of drought in dry periods, and nutrient losses in wet periods in coarser soil types is also reduced...

  8. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  9. Experiments on Growth and Variation of Spaceship Loaded Plant Seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. Y.; Lee, G. J.; Kim, D. S.; Kim, J. B.

    2008-08-15

    This educational experiment was designed (1)to obtain the basic information on the effects of the space environments on plant growth and mutagenesis, (2)to evaluate plant germination and seedling growth under the effect of microgravity and light conditions and (3)to improve a child's scientific mind through the real-time observations of a seedling growth for two plants conducted both in space and on earth. This project was implemented?as one of the missions in the Korean Astronaut Program. Seeds of eleven plant species (rice, soybean, rape, radish, hot pepper, perilla, arabidopsis, orchids, dandelion, hibiscus, cosmos) was vacuum-sealed in aluminium bags. Those seeds was loaded in the 'Progress' spaceship in Feb. 2008, traveled in the 'Progress', placed in the Russian Sector-International Space Station (RS-ISS), and then was brought by the Korean astronaut from the RS-ISS, and handed over to us at Korea Atomic Energy Research Institute(KAERI). The germination rate, plant growth and mutation type/frequency of the returned plants are under testing in the lab and field in KAERI now. The first Korean astronaut, Dr. So-Yeon Yi, who had returned to earth on April 19, 2008 after successfully completing her scientific mission for 12 days in Space, performed the experiment of plant germination and seedling growth in the International Space Station (ISS), and a similarly designed experiment kit was distributed to conduct the experiment by student and adult volunteers in Korea at the same time. The experiment was to observe the effects of microgravity and light on a seedling growth for soybean and radish. We designed a growth kit that was an all-in-one package consisting of seeds (12 seeds in each chamber) and rock wool as a growing medium filled in four polycarbonate growing chambers in a light proof textile bag or carton paper. The bottom of the chamber was filled with a tightly-fitted rock wool which can hold water and provide moisture during a

  10. Experiments on Growth and Variation of Spaceship Loaded Plant Seeds

    International Nuclear Information System (INIS)

    Kang, S. Y.; Lee, G. J.; Kim, D. S.; Kim, J. B.

    2008-08-01

    This educational experiment was designed (1)to obtain the basic information on the effects of the space environments on plant growth and mutagenesis, (2)to evaluate plant germination and seedling growth under the effect of microgravity and light conditions and (3)to improve a child's scientific mind through the real-time observations of a seedling growth for two plants conducted both in space and on earth. This project was implemented?as one of the missions in the Korean Astronaut Program. Seeds of eleven plant species (rice, soybean, rape, radish, hot pepper, perilla, arabidopsis, orchids, dandelion, hibiscus, cosmos) was vacuum-sealed in aluminium bags. Those seeds was loaded in the 'Progress' spaceship in Feb. 2008, traveled in the 'Progress', placed in the Russian Sector-International Space Station (RS-ISS), and then was brought by the Korean astronaut from the RS-ISS, and handed over to us at Korea Atomic Energy Research Institute(KAERI). The germination rate, plant growth and mutation type/frequency of the returned plants are under testing in the lab and field in KAERI now. The first Korean astronaut, Dr. So-Yeon Yi, who had returned to earth on April 19, 2008 after successfully completing her scientific mission for 12 days in Space, performed the experiment of plant germination and seedling growth in the International Space Station (ISS), and a similarly designed experiment kit was distributed to conduct the experiment by student and adult volunteers in Korea at the same time. The experiment was to observe the effects of microgravity and light on a seedling growth for soybean and radish. We designed a growth kit that was an all-in-one package consisting of seeds (12 seeds in each chamber) and rock wool as a growing medium filled in four polycarbonate growing chambers in a light proof textile bag or carton paper. The bottom of the chamber was filled with a tightly-fitted rock wool which can hold water and provide moisture during a seedling growth. The

  11. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  12. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  13. Impact of plant growth promoting bacillus subtilis on growth and physiological parameters of bassia indica (indian bassia) grown udder salt stress

    International Nuclear Information System (INIS)

    Abeer, H.; Asma, A. H.; Allah, A.; Qarawi, A.; Shalawi, A.; Dilfuza, E.

    2015-01-01

    In this study, the role of a salt-tolerant plant growth-promoting bacterium (PGPR), Bacillus subtilis, in the alleviation of salinity stress during the growth of Indian bassia (Bassia indica (Wight) A.J. Scott), was studied under ccontrolled growth chamber conditions following seed inoculation. Physiological parameters such as neutral and phospholipids, fatty acid composition as well as photosynthetic pigments, were investigated. Salinity inhibited shoot and root length by 16 and 42 percentage, dry weight by 37 and 23 percentage respectively and negatively affected physiological parameters. Inoculation of unstressed and salt-stressed Indian bassia with B. subtilis significantly improved root and shoot growth, total lipid content, the phospholipid fraction, photosynthetic pigments (chlorophyll a and b and carotenoid contents) and also increased oleic (C 18:1 ), linoleic (C 18:2 ) and linolenic (C 18:3 ) acids in plant leaves compared to uninoculated plants. The salt-tolerant PGPR, B. subtilis could act synergistically to promote the growth and fitness of Indian bassia plants under salt stress by providing an additional supply of an auxin (IAA) and induce salt stress resistance by reducing stress ethylene levels. (author)

  14. Plant improvements through the use of benchmarking analysis

    International Nuclear Information System (INIS)

    Messmer, J.R.

    1993-01-01

    As utilities approach the turn of the century, customer and shareholder satisfaction is threatened by rising costs. Environmental compliance expenditures, coupled with low load growth and aging plant assets are forcing utilities to operate existing resources in a more efficient and productive manner. PSI Energy set out in the spring of 1992 on a benchmarking mission to compare four major coal fired plants against others of similar size and makeup, with the goal of finding the best operations in the country. Following extensive analysis of the 'Best in Class' operation, detailed goals and objectives were established for each plant in seven critical areas. Three critical processes requiring rework were identified and required an integrated effort from all plants. The Plant Improvement process has already resulted in higher operation productivity, increased emphasis on planning, and lower costs due to effective material management. While every company seeks improvement, goals are often set in an ambiguous manner. Benchmarking aids in setting realistic goals based on others' actual accomplishments. This paper describes how the utility's short term goals will move them toward being a lower cost producer

  15. Transient negative biochar effects on plant growth are strongest after microbial species loss

    NARCIS (Netherlands)

    Hol, (Gera) W.H.G.; Vestergård, M.; Ten Hooven, F.C.; Duyts, H.; Van de Voorde, T.F.J.; Bezemer, T. Martijn

    2017-01-01

    Biochar has been explored as an organic amendment to improve soil quality and benefit plant growth. The overall positive effects of biochar on crop yields are generally attributed to abiotic changes, while the alternative causal pathway via changes in soil biota is unexplored. We compared plant

  16. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2018-01-09

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  18. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  19. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  20. Analysing growth and development of plants jointly using developmental growth stages.

    Science.gov (United States)

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  2. Plant growth promotion and Penicillium citrinum

    Directory of Open Access Journals (Sweden)

    Choo Yeon-Sik

    2008-12-01

    Full Text Available Abstract Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L. A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900 through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting

  3. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus.

    Science.gov (United States)

    Immanuel, G; Uma, R P; Iyapparaj, P; Citarasu, T; Peter, S M Punitha; Babu, M Michael; Palavesam, A

    2009-05-01

    The effects of supplementing diets with acetone extract (1% w/w) from four medicinal plants (Bermuda grass Cynodon dactylon, H(1), beal Aegle marmelos, H(2), winter cherry Withania somnifera, H(3) and ginger Zingiber officinale, H(4)) on growth, the non-specific immune response and ability to resist pathogen infection in tilapia Oreochromis mossambicus were assessed. In addition, the antimicrobial properties of the extract were assessed against Vibrio alginolyticus, Vibrioparahaemolyticus, Vibrio mimicus, Vibrio campbelli, Vibrio vulnificus, Vibrio harveyi and Photobacterium damselae. Oreochromis mossambicus were fed 5% of their body mass per day for 45 days, and those fed the experimental diets showed a greater increase in mass (111-139%) over the 45 days compared to those that received the control diet (98%). The specific growth rate of O. mossambicus fed the four diets was also significantly greater (1.66-1.93%) than control (1.52%) diet-fed fish. The blood plasma chemistry analysis revealed that protein, albumin, globulin, cholesterol, glucose and triglyceride levels of experimental fish were significantly higher than that of control fish. Packed cell volume of the blood samples of experimental diet-fed fish was also significantly higher (34.16-37.95%) than control fish (33.0%). Leucocrit value, phagocytic index and lysozyme activity were enhanced in fish fed the plant extract-supplemented diets. The acetone extract of the plants inhibited growth of Vibrio spp. and P. damselae with extracts from W. somnifera showing maximum growth inhibition. A challenge test with V. vulnificus showed 100% mortality in O. mossambicus fed the control diet by day 15, whereas the fish fed the experimental diets registered only 63-80% mortality at the end of challenge experiment (30 days). The cumulative mortality index for the control group was 12,000, which was equated to 1.0% mortality, and accordingly, the lowest mortality of 0.35% was registered in H(4)-diet-fed group.

  4. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  5. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    International Nuclear Information System (INIS)

    Orlowska, Elzbieta; Przybylowicz, Wojciech; Orlowski, Dariusz; Turnau, Katarzyna; Mesjasz-Przybylowicz, Jolanta

    2011-01-01

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: → The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. → Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. → Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. → Mycorrhizal colonization affected concentration and uptake of other elements. → Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  6. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.

    Science.gov (United States)

    Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed

    2018-04-01

    Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  9. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    Science.gov (United States)

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  10. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  11. Plant growth and gas balance in a plant and mushroom cultivation system

    Science.gov (United States)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  12. Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?

    Science.gov (United States)

    Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna

    2018-04-01

    Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.

  13. by recycled subirrigational supply of plant growth retardants

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... an ebb and flow system on the growth and flowering of kalanchoe cultivar 'Gold Strike' was examined. Plants potted in 10 cm .... photoperiod during the first six weeks after pinching. .... stage and adverse influences on overall growth of the plants. ..... retardants on the growth and flowering in poinsettia. RDA.

  14. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens.

    Science.gov (United States)

    Hol, W H Gera; Bezemer, T Martijn; Biere, Arjen

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defense. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defense when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal), bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defense traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defenses are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens-plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production and defense.

  15. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    Science.gov (United States)

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  16. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  17. Effect of Media Culture on Growth and Sucker Pandanus Plant

    Directory of Open Access Journals (Sweden)

    ali salehi sardoei

    2017-02-01

    Full Text Available Introduction: One factor that is of great importance to the cultivation of flowers and ornamental plants, is the media. Planting plants in containers as an important component of the nursery technology has grown. Compared with farm volume, growth media used for each plant greatly reduce plant growth that largely influence by the physical and chemical properties of growth media used. Therefore, good management of potted plants bed will cause the plants have good quality. A good growth media with optimal physical and biological properties, relatively inexpensive, stable and style enough to work should be available. The Burgers showed that composted green waste can be used as substrates for soilless cultivation and improve the water-holding capacity of soil. The garden has a range of materials including hardwood and softwood bark, leaves, soil, waste, sewage sludge and coconut (cocopeat that has been used as a seed bed. According to the economic issues and increasing moisture storage, palm peat substrates are primary material that can be prepared as a good growth medium for the producing's presented level Country. Peat moss is not applicable to all plants because of high cost and poor absorption characteristics like low pH and low water holding capacity . This study was conducted to investigate the possibility of replacing peat moss palm waste and the effect of it on growth characteristics were studied. Materials and Methods: The experimental design was completely randomized design with four replications of eight treatments. The compressed unit (block was supplied and commercial cocopeat was used because of reducing the cost of transportation. Before applying this material, the amount of water was added for opening up and voluminous and become it completely uniform.. In treatments containing sand + perlite, these four types volume ratio of 1:1 and mixed with sand + perlite were used. First, wooden cuttings of pandanus in a bed of sand rooted in the

  18. Plant growth strategies are remodeled by spaceflight

    Directory of Open Access Journals (Sweden)

    Paul Anna-Lisa

    2012-12-01

    Full Text Available Abstract Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting

  19. Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L. by improving morphological, physiological and biochemical activity

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2018-03-01

    Full Text Available The experimental work presented in this study was carried out with the hypothesis that plant derived smoke enhanced the morphological, physiological and biochemical attributes of a cereal crop, wheat (Triticum aestivum L.. Furthermore, this study supported the hypothesis that plant derived smoke acts as vegetative growth promoter, inexpensive, rapid and most appropriate eco-friendly bio-fertilizer for sustainable agriculture. Plant derived smoke was generated by burning of plant material (leaf, straws etc in a specially designed furnace, and seeds were treated with this smoke for different time duration. Four level of plant derived smoke (1 h, 2 h, 3 h and 4 h along with control were tested on four wheat cultivars in CRD repeated pot experiment. The smoke-related treatments modified number of morphological, physiological and biochemical features of wheat. Compared with the control, aerosol smoke treatment of the seeds significantly improved root length (2.6%, shoot length (7.7%, RFW (0.04%, SFW (0.7%, SDW (0.1% and leaf area (63.9%. All the smoke-related treatments significantly promoted RWC (17.3%, water potential (1.5%, osmotic potential (1.4% and MSI (14.6% whereas a pronounced increase in chlorophyll a (24.9%, chlorophyll b (21.7% and total chlorophyll contents (15.5% were recorded in response to aerosol-smoke treatments. Plant derived smoke exposure applied for short time i.e. 1 h & 2 h induced significant results as compared to prolonged PDS exposure (3 h and 4 h. The best results were observed in Pak-13 and Glaxy-13 wheat cultivars. These findings indicated that the plant-derived smoke treatment has a great potential to improve morphological, physiological and biochemical features of wheat crop.

  20. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Science.gov (United States)

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  1. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  2. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Science.gov (United States)

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  3. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    Science.gov (United States)

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  4. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  5. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  6. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    2010-01-01

    This paper analyzes the effect of foreign acquisition on survival and employment growth of targets using data on Swedish manufacturing plants.We separate targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms. The results, controlling for possible...... acquisitions. We find robust positive employment growth effects only for exporters and only if the takeover is vertical....

  7. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    Science.gov (United States)

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  8. Portraying mechanics of plant growth promoting rhizobacteria (PGPR: A review

    Directory of Open Access Journals (Sweden)

    Dweipayan Goswami

    2016-12-01

    Full Text Available Population growth and increase in food requirement is the global problem. It is inevitable to introduce new practices that help to increase agricultural productivity. Use of plant growth promoting rhizobacteria (PGPR has shown potentials to be a promising technique in the practice of sustainable agriculture. A group of natural soil microbial flora acquire dwelling in the rhizosphere and on the surface of the plant roots which impose beneficial effect on the overall well-being of the plant are categorized as PGPR. Researchers are actively involved in understanding plant growth promoting mechanics employed by PGPR. Broadly, these are divided into direct and indirect mechanics. Any mechanism that directly enhances plant growth either by providing nutrients or by producing growth regulators are portrayed as direct mechanics. Whereas, any mechanisms that protects plant from acquiring infections (biotic stress or helps plant to grow healthily under environmental stresses (abiotic stress are considered indirect mechanics. This review is focused to describe cogent mechanics employed by PGPR that assists plant to sustain healthy growth. Also, we emphasized on the PGPR-based products which have been commercially developed exploiting these mechanics of PGPR.

  9. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Directory of Open Access Journals (Sweden)

    Lia R. Valeeva

    2018-02-01

    Full Text Available Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate, which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases and 168phyA (BPP family under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate

  10. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    Science.gov (United States)

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  11. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Science.gov (United States)

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  12. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    Directory of Open Access Journals (Sweden)

    Pedro Beschoren da Costa

    Full Text Available Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.

  13. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5.

    Science.gov (United States)

    Koo, So-Yeon; Cho, Kyung-Suk

    2009-11-01

    The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

  14. Plant growth promoter effect of radiation degraded Kappa-carrageenan on mungbean (Vigna radiate [L.] R. Wilczek) and peanut (Arachis Hypogaea L.) plants

    International Nuclear Information System (INIS)

    Abad, L.V.; Magsino, G.; Aurigue, F.B.; Montefalcon, D.V.; Lopez, G.E.P.; Dela Cruz, R.M.M.

    2015-01-01

    Kappa Carrageenan are hydrophilic polymers that comprise the main structural polysaccharides of numerous species of seaweed Eucheuma. They are composed of D-galactose units linked alternately with α(1,3) D-galactose-4-sulfated and β(1-4)-3,6-anhydro-D-galactose. Earlier studies indicate that irradiated κ-carrageenan enchances the growth of some plants such as rice bokchoi, and mustard. This study aims to determine the effects of radiation modified κ-carrageenan solution on mungbean and peanut plants and to identify its effective molecular weight range as plants growth promoter. Oligomers from radiation modified κ-carrageenan solution on mungbean and peanut plants. Results on plants sprayed with PGP revealed improvement of the agronomic traits of mungbean and peanut plants. Best PGP effects were manisfested in oligo-carrageenan sprayed plants treated with inoculants + fertilizer with an increase in yield of 200% and 154% for mungbean and peanuts, respectively. Likewise, spraying with oligo-carrageenan alone increased yield by 127% and 140%. Recent studies conducted on the effect of radiation modified κ-carrageenan on rice plants indicated an average of 30% increase in yield of rice in three (3) multi-location sites (Laguna, Nueva Ecija and Bulacan). Plants indicated resistance against Tungro virus. It also showed improved stem strength, enhancing its lodging resistance. The radiation modified κ-carrageenan solution which had an Mw of 6.9 kDa was fractionated into different molecular weight cut-offs of 5 kDa, 3 kDa and 1 kDa. Analysis by gel permeation chromatography of these samples indicated Mw of 5.2 kDa, 4.0 kDa, and 3.8 kDa, respectively. Treatment of pechay by foliar spraying of these solution indicated that plant growth promoter effect increased in the order of 1kDa > 3kDa > 5kDa. (author)

  15. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    Science.gov (United States)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and

  16. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content

    International Nuclear Information System (INIS)

    Asgharipour, M.R.; Heidari, M.

    2011-01-01

    Nowadays, the main limiting natural resource is widely considered to be water. Therefore, research into crop management practices that enhance drought resistance and plant growth when water supply is limited has become increasingly essential. This study was conducted to evaluate the effect of potassium (K) nutritional status on the drought resistance of grain sorghum during 2009. Drought stress by reducing the yield components, especially the number of panicle per plant and one-hundred grain weight reduced grain yield and greatest yield (3499 kg ha/sup -1/) obtained at full irrigation. Potassium sulfate increased grain and biological yield by 28% and 22%, respectively compared to control through improving growth conditions. Drought stress increased the N content, while reduced water availability decreased the K and Na in plant. No K fertilized plants had the lowest leaf K and N and highest Na concentrations. Chlorophyll content increased significantly with increase in K supply and increased frequency of irrigation. Interaction effect of drought stress and potassium sulfate on all studied traits except chlorophyll content was significant and optimum soil K levels protects plants from drought. These observations indicate that adequate K nutrition can improve drought resistance of sorghum. (author)

  17. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    Directory of Open Access Journals (Sweden)

    Neyser De La Torre-Ruiz

    Full Text Available ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA, solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05 on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  18. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. Here, we have isolated and ...

  19. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant.

    Science.gov (United States)

    Tripti; Kumar, Adarsh; Usmani, Zeba; Kumar, Vipin; Anshumali

    2017-04-01

    Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (10 7  cfu g -1 ) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the

  20. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  1. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  2. Paradigm shift in plant growth control.

    Science.gov (United States)

    Körner, Christian

    2015-06-01

    For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit. Copyright © 2015. Published by Elsevier Ltd.

  3. PLANT GROWTH-PROMOTING MICROBIAL INOCULANT FOR Schizolobium parahyba pv. parahyba

    Directory of Open Access Journals (Sweden)

    Priscila Jane Romano de Oliveira Gonçalves

    2015-08-01

    Full Text Available ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke Barneby (paricá occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800. Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05. Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.

  4. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  5. Diversity and Plant Growth Promoting Proerties of Rhizobacteria ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate and assess the plant growth promoting characteristics and diversity of major tef rhizosphere isolates from central Ethiopia. A total of 162 bacteria were isolated from rhizosphere of tef [Eragrostis tef (Zucc.) Trotter] and characterized. While screening using some plant growth ...

  6. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries.

  8. Mechanisms of action of plant growth promoting bacteria.

    Science.gov (United States)

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  9. Long term growth of crop plants on experimental plots created among slag heaps.

    Science.gov (United States)

    Halecki, Wiktor; Klatka, Sławomir

    2018-01-01

    Suppression of plant growth is a common problem in post-mining reclaimed areas, as coarse texture of soils may increase nitrate leaching. Assessing feasibility of using solid waste (precipitated solid matter) produced by water and sewage treatment processes in field conditions is very important in mine soil reclamation. Our work investigated the possibility of plant growth in a degraded site covered with sewage-derived sludge material. A test area (21m × 18m) was established on a mine soil heap. Experimental plant species included Camelina sativa, Helianthus annuus, Festuca rubra, Miscanthus giganteus, Amaranthus cruentus, Brassica napus, Melilotus albus, Beta vulgaris, and Zea mays. ANOVA showed sufficient water content and acceptable physical properties of the soil in each year and layer in a multi-year period, indicating that these species were suitable for phytoremediation purposes. Results of trace elements assays indicated low degree of contamination caused by Carbocrash waste material and low potential ecological risk for all plant species. Detrended correspondence analysis revealed that total porosity and capillary porosity were the most important variables for the biosolids among all water content related properties. Overall, crop plants were found useful on heavily degraded land and the soil benefited from their presence. An addition of Carbocrash substrate to mine soil improved the initial stage of soil reclamation and accelerated plant growth. The use of this substrate in phytoremediation helped to balance the content of nutrients, promoted plant growth, and increased plant tolerance to salinity. Sewage sludge-amended biosolids may be applied directly to agricultural soil, not only in experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress

    Science.gov (United States)

    Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying

    2018-01-01

    Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.

  11. Design and construction of an inexpensive homemade plant growth chamber.

    Science.gov (United States)

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  12. Design and construction of an inexpensive homemade plant growth chamber.

    Directory of Open Access Journals (Sweden)

    Fumiaki Katagiri

    Full Text Available Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W x 1.8 m (D x 2 m (H, providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant

  13. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  14. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  15. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  16. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  17. Rhizosphere of rice plants harbor bacteria with multiple plant growth ...

    African Journals Online (AJOL)

    Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features. ... 45 (39.46%) isolates were capable of producing siderophore, the range of production being 4.50 to 223.26 μg mg-1 protein. Analysis of molecular diversity was made by amplified ribosomal DNA restriction analysis (ARDRA) and ...

  18. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  19. How Will Global Environmental Changes Affect the Growth of Alien Plants?

    Directory of Open Access Journals (Sweden)

    Jujie Jia

    2016-11-01

    Full Text Available Global environmental changes can create novel habitats, promoting the growth of alien plants that often exhibit broad environmental tolerance and high phenotypic plasticity. However, the mechanisms underlying these growth promotory effects are unknown at present. Here, we conducted a phylogenetically controlled meta-analysis using data from 111 published studies encompassing the responses of 129 alien plants to global warming, increased precipitation, N deposition, and CO2 enrichment. We compared the differences in the responses of alien plants to the four global environmental change factors across six categories of functional traits between woody and non-woody life forms as well as C3 and C4 photosynthetic pathways. Our results showed that all four global change factors promote alien plant growth. Warming had a more positive effect on C4 than C3 plants. Although the effects of the four factors on the functional traits of alien plants were variable, plant growth was mainly promoted via an increase in growth rate and size. Our data suggest that potential future global environmental changes could further facilitate alien plant growth.

  20. GENETIC RELATIONSHIP BETWEEN PLANT GROWTH, SHOOT ...

    African Journals Online (AJOL)

    AISA

    2Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA. ABSTRACT. Maize (Zea mays L.) ear vascular tissue transports nutrients that contribute to grain yield. To assess kernel heritabilities that govern ear development and plant growth, field studies were conducted to determine the combining ...

  1. Influence of establishment timing and planting stock on early rotational growth of loblolly pine plantations in Texas

    Science.gov (United States)

    M. A. Blazier; E. L. Taylor; A. G. Holley

    2010-01-01

    Planting container seedlings, which have relatively fully formed root systems encased in a soil-filled plug, may improve loblolly pine plantation productivity by increasing early survival and growth relative to that of conventionally planted bareroot seedlings. Planting seedlings in fall may also confer productivity increases to loblolly pine plantations by giving...

  2. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  3. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  4. Improving “color rendering” of LED lighting for the growth of lettuce

    Science.gov (United States)

    Han, Tao; Vaganov, Vitaliy; Cao, Shixiu; Li, Qiang; Ling, Lili; Cheng, Xiaoyao; Peng, Lingling; Zhang, Congzhi; Yakovlev, Alexey N.; Zhong, Yang; Tu, Mingjing

    2017-04-01

    Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m-2·s-1 for a 16 hd-1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2-3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth.

  5. PLANT GROWTH IN MICROGRAVITY FOR BLSS: GENERAL ISSUES AND THE ITALIAN CONTRIBUTION

    Directory of Open Access Journals (Sweden)

    Veronica De Micco

    2012-06-01

    Full Text Available Plants are among key organisms in Bioregenerative Life Support Systems (BLSSs in Space because they have a role in the regeneration of resources and in the psychological support of the crew. The design of efficient BLSSs cannot be irrespective of the deep knowledge of the functioning of the vegetal systems under the effect of Space factors. Under an evolutionary perspective, reduced gravity can be considered one of the factors driving the evolution of plants in Space. In this paper, we outline the need for plant-based BLSSs to sustain exploratory-class manned missions in Space. After some evolutionary considerations about future plant development in Space, we also report a synthesis of the results of case studies performed by Italian research groups aiming to understand the effect of simulated or real microgravity on various aspects of plant growth and reproduction. We conclude emphasising how plant research in Space should be addressed to both improvement of the knowledge of basic biological processes and development of new agro-technologies. Efforts to have multidisciplinary approach to understand the effect of Space factors on plant growth are needed considering that such factors affect the biological systems contemporarily at molecular, biochemical, morphostructural and physiological levels.

  6. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    Science.gov (United States)

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Isolation, Characterization, Screening, Formulation and Evaluation of Plant Growth Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Puja Kumari

    2017-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are bioresources which may be viewed as a novel and potential tool for providing substantial benefits to the agriculture. Soil is the dynamic living matrix and the major source of food security providing various resources of plant growth and maintaining life processes. PGPR are originally defined as root- colonizing bacteria that cause either plant growth promotion or biological control of plant diseases. Chemical fertilizers are used for killing pathogens, increase crop yield but long term use of chemical fertilizers lead to adverse effect to the soil profile and is the reason for decrease in soil productivity, on the other hand PGPR promote plant growth directly by either facilitating resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. PGPR is the indispensable part of rhizosphere biota that when grown in association with the host plants can stimulate the growth of the host. PGPR seemed as successful rhizobacteria in getting established in soil ecosystem due to their high adaptability in a wide variety of environments, faster growth rate and biochemical versatility to metabolize a wide range of natural and xenobiotic compounds. Isolated PGPRs from selective crop rizosphere soil were used for further growth promotion and biocontrol studies in the green house and field. Different studies have been carrying out to develop some new bioformulations and evaluate their efficacy in promoting crop seedlings growth characteristics. Field trials were performed to evaluate selective crops with formulations of several plants PGPR in a production system. The present review highlights the Plant growth promoting rhizobacteria as an alternative of chemical fertilizer for sustainable, environment friendly agriculture.

  8. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica.

    Science.gov (United States)

    Oñate, Marta; Munné-Bosch, Sergi

    2009-10-01

    Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, alpha-tocopherol and F(v)/F(m) ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of alpha-tocopherol (up to 2.7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.

  9. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    Science.gov (United States)

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  10. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  11. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  12. Perspectives on plant vulnerabilities ampersand other plant and containment improvements

    International Nuclear Information System (INIS)

    LaChance, J.; Kolaczkowski, A.; Kahn, J.

    1996-01-01

    The primary goal of the Individual Plant Examination (IPE) Program was for licensees to identify plant-unique vulnerabilities and actions to address these vulnerabilities. A review of these vulnerabilities and plant improvements that were identified in the IPEs was performed as part of the IPE Insights Program sponsored by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this effort was to characterize the identified vulnerabilities and the impact of suggested plant improvements. No specific definition for open-quotes vulnerabilityclose quotes was provided in NRC Generic Letter 88-20 or in the subsequent NRC IPE submittal guidance documented in NUREG-1335. Thus licensees were left to use their own definitions. Only 20% of the plants explicitly stated that they had vulnerabilities. However, most licensees identified other plant improvements to address issues not explicitly classified as vulnerabilities, but pertaining to areas in which overall plant safety could potentially be increased. The various definitions of open-quotes vulnerabilityclose quotes used by the licensees, explicitly identified vulnerabilities, proposed plant improvements to address these vulnerabilities, and other plant improvements are summarized and discussed

  13. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  14. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  15. The influence of growth retardants and cytokinins on flowering of ornamental plants

    Directory of Open Access Journals (Sweden)

    Anna Pobudkiewicz

    2012-12-01

    Full Text Available Growth retardants are applied in order to obtain short and well compact plants. They usually inhibit stem elongation, but also can influence the flowering of plants. The aim of cytokinin application is to obtain well branched plants without removing the apical meristem. Cytokinins usually increase the number of axillary shoots but also can influence flowering. Growth retardants and cytokinins can affect flower size, pedicel length, number of flowers, flower longevity, abortion of flower buds and number of days from potting plants to the first open flower. Flowering of growth retardant and cytokinin treated plants might depend on the method of growth regulator used (foliar spray or soil drench, plant species or even a plant cultivar, but in the highest degree it depends on the growth regulator rate used. These growth regulators, when are applied at rates appropriate for height and habit control, very seldom influence flowering of ornamental plants, but applied at high rates can delay flowering, diminish flower diameter or flower pedicel length and also can decrease the number of flowers per plant. In cultivation of bulb plants, growth retardants, used at very high rates, also cause abortion of flower buds.

  16. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    Science.gov (United States)

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Optimization of source pencil deployment based on plant growth simulation algorithm

    International Nuclear Information System (INIS)

    Yang Lei; Liu Yibao; Liu Yujuan

    2009-01-01

    A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)

  19. Improved core monitoring for improved plant operations

    International Nuclear Information System (INIS)

    Mueller, N.P.

    1987-01-01

    Westinghouse has recently installed a core on-line surveillance, monitoring and operations systems (COSMOS), which uses only currently available core and plant data to accurately reconstruct the core average axial and radial power distributions. This information is provided to the operator in an immediately usable, human-engineered format and is accumulated for use in application programs that provide improved core performance predictive tools and a data base for improved fuel management. Dynamic on-line real-time axial and radial core monitoring supports a variety of plant operations to provide a favorable cost/benefit ratio for such a system. Benefits include: (1) relaxation or elimination of certain technical specifications to reduce surveillance and reporting requirements and allow higher availability factors, (2) improved information displays, predictive tools, and control strategies to support more efficient core control and reduce effluent production, and (3) expanded burnup data base for improved fuel management. Such systems can be backfit into operating plants without changing the existing instrumentation and control system and can frequently be implemented on existing plant computer capacity

  20. Effect of gamma radiation on plant growth, nodulation, nutritional status and yield of soybean

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Hefni, E.H.; Maghraby, G.M.

    1988-01-01

    Field experiment was conducted under the conditions of a sandy clay-loam soil. Soybean seeds were exposed to gamma rays (0,5,10,20,40,80 and 160 Gry) before planting. Low-medium range of gamma rays (5-40 Gry), particularly at 20 Gry, considerably stimulated plant growth, nodules formation and development as well as the total uptake of N and Mn by plants. Significant increase in seed yield was obtained as a result of gamma rays ranged from 10 to 40 Gry, but the dose of 160 Gry, reduced it. The total contents of protein and oil in seeds were highly related to the produced yield, however their concentrations did not affect by the tested range of gamma rays. Generally, seed yield of soybean seemed to be positively related to the rate of plant growth, nodulation and nutritional status. Therefore, irradiation of seeds before planting with low gamma doses could be recommended to improve the productivity of soybean

  1. Productivity growth patterns in US dairy products manufacturing plants

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2011-01-01

    We analyse the productivity growth patterns in the US dairy products industry using the Census Bureau's plant-level data set. We decompose Total Factor Productivity (TFP) growth into the scale and technical change components and analyse variability of plants' productivity by constructing transition

  2. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Hamzyun, M.; Sohn, Eun-Young; Khan, A.L.; Lee, In-Jung

    2010-01-01

    Agricultural industry is subjected to enormous environmental constraints, particularly due to salinity and drought. We evaluated the role of silicon (Si) in alleviating salinity and drought induced physio-hormonal changes in soybean grown in perlite. The plant growth attributes i.e., shoot length, plant fresh weight and dry weight parameters of soybean improved with elevated Si nutrition, while they decreased with NaCl and polyethylene glycol (PEG) application. The adverse effects of NaCl and PEG on plant growth were alleviated by adding 100 mg L/sup -1/ and 200 mg L/sup -1/ Si to salt and drought stressed treatments. It was observed that Si effectively mitigated the adverse effects of NaCl on soybean than that of PEG. The chlorophyll contents were found to be least affected as an insignificant increase was observed with Si application. Bioactive GA1 and GA4 contents of soybean leaves increased, when Si was added to control or stressed plants. Jasmonic acid (JA) contents sharply increased under salinity and drought stress but declined when the plants were supplemented with Si. Similarly, free salicylic acid (SA) level also increased with NaCl and PEG application. However, free SA level further increased with the addition of Si to salt treated plants, but decreased when Si was given to PEG treated plants. It was concluded that Si improves physio-hormonal attributes of soybean and mitigate adverse effects of salt and drought stress. (author)

  3. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  4. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  5. Auxin-BR Interaction Regulates Plant Growth and Development

    Science.gov (United States)

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  6. Effects of microgravity on growth hormone concentration and distribution in plants

    Science.gov (United States)

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  7. Programs to improve plant performance

    International Nuclear Information System (INIS)

    Felmus, N.L.

    1987-01-01

    Looking toward the 1990's, we see a period in which our industry will face the challenge of improving the performance of the nuclear plants which are built and operating. The skills and technology are at hand to make good plant performance a reality and we believe the time has come to use them to achieve that end. As reserve margins decline, utilities and their regulators will increasingly seek to tap the unexploited capacity tied up in plants operating below their optimum availability. This paper describes a number of the programs, plant improvements and operations improvements which can yield a significant increase in nuclear plant availability and capacity factor now and into the 1990's. (author)

  8. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  9. Improvements around nuclear power plants for effective implementation of emergency countermeasures

    International Nuclear Information System (INIS)

    Srivasista, K.; Ravi, K.; Gupta, S.K.

    2011-01-01

    The 5 km sterilized zone (SZ) and 16 km emergency planning zone (EPZ) were set up for Indian nuclear power plants in 1960s. There is also a requirement that the growth of population in SZ shall be controlled. In the current scenario where population growth in SZ at some of the sites is much above the natural growth, the distinction between the two zones may disappear. It is clear that emergency preparedness plans shall be in place for these zones. In today's context if these numbers have to be revised, there is a need to give a fresh look to the basis and growth of population in these zones. In view of this, the issue of size and requirement of SZ and EPZ in Indian context are revisited. Technological advances and emerging improvements in some of the elements of emergency response were reviewed to determine their potential effects on decisions of emergency protective actions. Some such elements which affect implementation of emergency countermeasures effectively in SZ and EPZ around Indian nuclear power plants are discussed in this paper. (author)

  10. Ethylene production throughout growth and development of plants

    Science.gov (United States)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  11. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  12. Study on growth-promotion of paddy plants treated with oligo chitosan

    International Nuclear Information System (INIS)

    Norhashidah Talip; Maznah Mahmud; Norzita Yacob; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2010-01-01

    Chitosan has been degraded to produced oligo chitosan with different molecular weight using gamma ray irradiation from a Co-60 source in solid state (powder form) and liquid state (aqueous solution). Study on growth promotion of paddy plants was done using oligo chitosan and conventional plant growth promoter as a comparison. Oligo chitosan was used with different molecular weight and different concentrations. Smaller molecular weight of oligo chitosan with smaller concentration showed better result than bigger molecular weight of oligo chitosan as a plant growth promoter. This study also showed that conventional growth promoter can be replaced with oligo chitosan as it is more effective as plant growth promoter as well as more environmental friendly. (author)

  13. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...... that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using...

  14. Minimal approaches to genetic improvement of growth rates in white spruce

    Science.gov (United States)

    D.T. Lester

    1973-01-01

    Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...

  15. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    Science.gov (United States)

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  16. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  17. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    Science.gov (United States)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Veggie growth system. The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, Daikon radishes were grown in the system to test the capability and success of the system through a full growth cycle.

  18. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    Science.gov (United States)

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  19. Effect of Different Organic Wastes on Soil Propertie s and Plant Growth and Yield: a Review

    Directory of Open Access Journals (Sweden)

    Hossain M. Z.

    2017-12-01

    Full Text Available The use of organic wastes in agriculture plays a great role in recycling essential plant nutrients, sustaining soil security as well as protecting the environment from unwanted hazards. This review article deals with the effect of different kinds of organic wastes on soil properties and plant growth and yield. Municipal solid waste is mainly used as a source of nitrogen and organic matter, improving soil properties and microbial activity that are closely related to soil fertility. Biowaste and food waste increase pH, nitrogen content, cation exchange capacity, water holding capacity, and microbial biomass in soil. Sewage sludge contains various amounts of organic matter and huge amounts of plant nutrients. Manure is a common waste which improves soil properties by adding nutrients and increases microbial and enzyme activity in soil. It also reduces toxicity of some heavy metals. These organic wastes have a great positive impact on soil physical, chemical, and biological properties as well as stimulate plant growth and thus increase the yield of crops.

  20. Peat soil composition as indicator of plants growth environment

    Science.gov (United States)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  1. Increasing plant growth by modulating omega-amidase expression in plants

    Science.gov (United States)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  2. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil.

    Science.gov (United States)

    El-Sayed, Wael S; Akhkha, Abdellah; El-Naggar, Moustafa Y; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils.

  3. In vitro Antagonistic Activity, Plant Growth Promoting Traits and Phylogenetic Affiliation of Rhizobacteria Associated with Wild Plants Grown in Arid Soil

    Directory of Open Access Journals (Sweden)

    Wael Samir El-Sayed

    2014-12-01

    Full Text Available The role of plant growth-promoting rhizobacteria (PGPR in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with eleven wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA, siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the ten genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant

  4. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  5. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  6. Usage and control of solid-state lighting for plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, P.

    2008-07-01

    The work begins with an introductory part in which the basic aspects related to the photosynthetic radiation, the photobiology of plants and the technology of light-emitting diodes (Leads) are overviewed. It is followed by a review of related research works that have been conducted during the last two decades, and by the main design issues of Led lumin aires for plant growth. The following part of the work reports the experimental growth tests performed. The effects of the radiation emitted by spectrally tailored Led lumin aires on plant growth have been investigated. A total of four growth tests using lettuce and radish cultivars were performed. Two basic approaches were used to investigate the effects and the future possibilities of the usage of solid-state lighting (SSL) in plant growth. The first approach evaluates the growth development of lettuce plants in real greenhouse conditions using LEDs as supplementary light sources to natural daylight. In the second approach the evaluation was carried out with a total absence of natural daylight by growing lettuce and radish plants in phytotron-chamber conditions. The effects of SSL treatments on the growth development and quality of crops were compared with reference lighting systems composed of conventional and well-established light-source technologies, such as fluorescent and high-pressure sodium lamps. During the process of the investigation, the need to coherently quantify and evaluate the spectral quality of the radiation in terms of its photosynthetic appetence arose. Different metrics are still been used indiscriminately to quantify radiation used by plants to perform photosynthesis. Therefore, the existing metrics are discussed and a new proposal for coherent systematization is presented. The proposed system is referred to phyllophotometric and it is developed using the average photosynthetic spectral quantum yield response curve of plants. The results of the growth tests showed that the usage of SSL in

  7. Effect of Gamma Rays and Salinity on Growth and Chemical Composition of Ambrosia maritima L. Plant

    International Nuclear Information System (INIS)

    Moemen, A.M.E.

    2012-01-01

    This work achieved to study the effects of, mixture of salt 2:2:1 (Na Cl-CaCl 2 and Mg SO 4 ), concentration of (0, 2000, 4000 and 6000 ppm). on growth characters, some chemical components and some active ingredients in shoots of Ambrosia maritima plants, at different stages of growth, during two seasons. Pots 30 cm in diameter were filled of sand-loamy soils in appropriate concentration, all pots were irrigated with tap water. The exposed damsisa seeds to gamma rays, doses (0, 20, 40, and 80 Gy) before sowing together with control non irradiated seeds were sown in saline soils (0, 2000, 4000 and 6000 ppm). Soil salinity treatments caused a decrease in plant height, number of leaves, content of damsin, and an increase in fresh weigh, dry weight, total sugars, total chlorophyll, amino acids and ambrosine content. Also, Gamma rays caused an increase in most of growth parameters and most of chemical composition. It was observed that 40 or 80 Gy was more effective. We investigated the combined effect of levels of salinity and doses of radiation used, this interference improve growth parameters and chemical composition in ambrosia maritima plants and caused ascertain the role of gamma irradiation in plants tolerance to soil salinity and alleviation their harmful effect on plants.

  8. Laboratory study on influence of plant growth promoting ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-03-06

    Mar 6, 2015 ... promoting rhizobacteria (PGPR) on growth response and tolerance of Zea ... inoculating maize seeds with plant growth promoting rhizobacterial strains in a crude oil impacted medium. ..... Botany and Environmental Health.

  9. Evaluating the growth parameters of soybean in response to plant growth promoting fungi under Mazandaran climate conditions

    Directory of Open Access Journals (Sweden)

    mohammad yazdani

    2016-05-01

    Full Text Available Abstract In low-input cropping systems, the natural roles of microorganisms in maintaining soil fertility may be more important than conventional system. In order to investigate the effects of plant growth promoting fungi on improvement of growth and development in soybean (cv: JK an experiment was conducted at the research farm of Sari Agricultural Sciences and Natural Resources University during the 2011-2012 growing seasons. Treatments were arranged in a factorial experiment based a completely randomized block design with three replications. The first factor was six levels of fungi: inoculation T. harzianum and AMF genus Glumus: G. mosseae, G. intraradices, and co-inoculation of T. harzianum + G. mosseae, T. harzianum + G. intraradices and non-inoculation (control. The second factor was three levels of phosphorus (0, 70 and 140 kg.ha-1 from superphosphate trip. Results showed that inoculation of T. harzianum and G. mosseae significantly had maximum chlorophyll content up to 17% and 16% at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage as compared to the control respectively. The greatest effect was recorded at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage significant increase in terms of chlorophyll content. In addition, the dry weights and chlorophyll content of soybean plants in reduced phosphorous dosage (70 kg.ha-1 and co-inoculated with T. harzianum + G. mosseae as well as conventional phosphorous dosage were significantly higher than the non-inoculated plants. In this experiment, at reduce phosphate fertilizer (P0%: 0 treatment, not affected of plant growth promoting fungi compared to control. But, reduced phosphorous dosage (70 kg.ha-1 was more affected.

  10. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  11. Improvement of plant reliability in PT. Badak LNG plant

    International Nuclear Information System (INIS)

    Achmad, S.; Somantri, A.

    1997-01-01

    PT. Badak's LNG sales commitment has been steadily increasing, therefore, there has been more emphasis to improve and maintain the LNG plant reliability. From plant operation historical records, Badak LNG plant experienced a high number of LNG process train trips and down time for 1977 through 1988. The highest annual number of LNG plant trips (50 times) occurred in 1983 and the longest LNG process train down time (1259 train-hours) occurred in 1988. Since 1989, PT. Badak has been able to reduce the number of LNG process train trips and down time significantly. In 1994 the number of LNG process train trips and was 18 times and the longest LNG process train down time was 377 train-hours. This plant reliability improvement was achieved by implementing plant reliability improvement programs beginning with the design of the new facilities and continuing with the maintenance and modification of the existing facilities. To improve reliability of the existing facilities, PT. Badak has been implementing comprehensive maintenance programs, to reduce the frequency and down time of the plant, such as Preventive and Predictive Maintenance as well as procurement material improvement since PT. Badak location is in a remote area. By implementing the comprehensive reliability maintenance, PT. Badak has been able to reduce the LNG process train trips to 18 and down time to 337 train hours in 1994 with the subsequent maintenance cost reduction. The average PT. Badak plant availability from 1985 to 1995 is 94.59%. New facilities were designed according to the established PT. Badak design philosophy, master plan and specification. Design of new facilities was modified to avoid certain problems from past experience. (au)

  12. Getting the ecology into the interactions between plants and the plant-growth promoting bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Hol, W.H.G.; Bezemer, T.M.; Biere, A.

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas

  13. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  14. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  15. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  16. Effect of differently pelletized digestate on the plant growth of spring wheat

    Science.gov (United States)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    In Germany, biowaste is used in more than 100 biogas plants and has increasing potential as a fermentation substrate. To optimise waste cycle management organic digestates should be redistributed and innovative products for soil amendment of agricultural areas could be developed. The BMBF-funded VeNGA project seeks to find answers on how to improve the properties of soil amendments produced from fermentation residues. Here, we report findings from our study that focuses on plant growth and soil development. Within a three-month rhizotron experiment, the influence of differently prepared fermentation residues on the root development of summer wheat was investigated. The four variants of the prepared digestate (rolled pellet, pressed pellet, shredded, loose) were tested under constant conditions in the greenhouse on two soils with different textures (sandy and loamy-sand). All fermentation residues originated from the same batch and were composted before the preparation to ensure adequate hygienisation. Depending on preparation type and soil substrate significant differences in root growth and root development have been observed. Plant growth was most intense in the rhizotron experiment with the loose digestate, indicating high nutrient availability due to the large surface area of the organic matter. Plant growth in the substrate with the rolled and pressed pellets was less pronounced, indicating a more persistent stability of the pellets. In rhizotrons applied with rolled and pressed pellets root growth into the mineral fabric was significantly lower in sandy substrate than in the loamy-sand. However, in the sandy substrate root growth within the rolled pellets was more intense than in the substrate with the pressed pellets. Obviously, the different production techniques of the pellets seem to have an influence on the rooting of the pellets and facilitate the long term stability of soil organic carbon. Furthermore, the comparison of the two different textures

  17. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    Science.gov (United States)

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  18. The role of endomembrane-localized VHA-c in plant growth.

    Science.gov (United States)

    Zhou, Aimin; Takano, Tetsuo; Liu, Shenkui

    2018-01-02

    In plant cells, the vacuolar-type H + -ATPase (V-ATPase), a large multis`ubunit endomembrane proton pump, plays an important role in acidification of subcellular organelles, pH and ion homeostasis, and endocytic and secretory trafficking. V-ATPase subunit c (VHA-c) is essential for V-ATPase assembly, and is directly responsible for binding and transmembrane transport of protons. In previous studies, we identified a PutVHA-c gene from Puccinellia tenuiflora, and investigated its function in plant growth. Subcellular localization revealed that PutVHA-c is mainly localized in endosomal compartments. Overexpression of PutVHA-c enhanced V-ATPase activity and promoted plant growth in transgenic Arabidopsis. Furthermore, the activity of V-ATPase affected intracellular transport of the Golgi-derived endosomes. Our results showed that endomembrane localized-VHA-c contributes to plant growth by influencing V-ATPase-dependent endosomal trafficking. Here, we discuss these recent findings and speculate on the VHA-c mediated molecular mechanisms involved in plant growth, providing a better understanding of the functions of VHA-c and V-ATPase.

  19. Improving growth and yield of cowpea by foliar application of ...

    African Journals Online (AJOL)

    Water stress impaired cowpea plant growth and decreased ion percentage and chlorophyll and carbohydrate concentration in the shoot as well as yield and its quality. Foliar-applied chitosan, in particular 250 mg/l, increased plant growth, yield and its quality as well as physiological constituents in plant shoot under stressed ...

  20. The vascular plants: open system of growth.

    Science.gov (United States)

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs

  1. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    Science.gov (United States)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  2. Improved Growth and Metabolite Accumulation in Codonopsis pilosula (Franch.) Nannf. by Inoculation of Bacillus amyloliquefaciens GB03.

    Science.gov (United States)

    Zhao, Qi; Wu, Yong-Na; Fan, Qin; Han, Qing-Qing; Paré, Paul W; Xu, Rui; Wang, Yin-Quan; Wang, Suo-Min; Zhang, Jin-Lin

    2016-11-02

    Codonopsis pilosula (Franch.) Nannf. is a traditional Chinese herbal medicinal plant and a low-cost succedaneum for Panax ginseng and contains various bioactivity components. In this work, we first evaluated the effects of the inoculation of the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens strain GB03 on growth and metabolite accumulation of C. pilosula. The results demonstrated that application of B. amyloliquefaciens GB03 significantly improved the growth of C. pilosula compared to DH5α, Luria broth medium, and water treatment, respectively. On the other hand, we observed that the content of lobetyolin, one of the most important secondary metabolites in C. pilosula, was obviously improved by inoculation of GB03 and almost reached twice that compared to the other three treatments. In addition, some amino acids of roots were elevated by GB03, although not significantly. In conclusion, B. amyloliquefaciens GB03 could induce positive effects on the growth and further stimulate accumulation of secondary metabolites in C. pilosula.

  3. Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs

    Directory of Open Access Journals (Sweden)

    C. Emond

    2016-07-01

    Full Text Available Coastal bogs that are used for peat extraction are prone to contamination by seawater during storm events. Once contaminated, they remain mostly bare because of the combination of high salinity, low pH, high water table and low nutrient availability. The goal of this research was to investigate how plant colonisation at salt-contaminated bogs can be accelerated, in order to prevent erosion and fluvial export of the peat. At two seawater-contaminated bogs, we tested the application of rock phosphate and dolomitic lime in combination with five plant introduction treatments: transplantation of Carex paleacea; transplantation of Spartina pectinata; transfer of salt marsh diaspores in July; transfer of salt marsh diaspores in August; and no treatment (control. The effects of different doses of lime on the growth of C. paleacea and S. pectinata were also investigated in a greenhouse experiment. In the field, phosphorus fertilisation improved plant growth. Transplantation of C. paleacea resulted in the highest plant colonisation, whereas salt marsh diaspore transfer led to the highest species diversity. Lime applications did not improve plant establishment in either the field or the greenhouse. To promote revegetation of seawater-contaminated cutover bogs, adding P is an asset, Carex paleacea is a good species to transplant, and the transfer of salt marsh diaspores improves plant diversity.

  4. Characterization of Minnesota lunar simulant for plant growth

    Science.gov (United States)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  5. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  6. Plant growth promoters and methods of using them

    KAUST Repository

    Al-Babili, Salim

    2017-01-01

    New plant growth regulators, including compounds and compositions, and methods of use including for promoting root growth. The compounds are carotenoid oxidation products, and a preferred example is 3-OH--β-apo-13-Carotenone. A method comprising

  7. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  8. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    Science.gov (United States)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  9. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants.

    Science.gov (United States)

    Kudo, Madoka; Kidokoro, Satoshi; Yoshida, Takuya; Mizoi, Junya; Todaka, Daisuke; Fernie, Alisdair R; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-04-01

    Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology

  10. Sugar signals and the control of plant growth and development

    NARCIS (Netherlands)

    Lastdrager, Jeroen|info:eu-repo/dai/nl/357520076; Hanson, Johannes|info:eu-repo/dai/nl/304822299; Smeekens, Sjef|info:eu-repo/dai/nl/072489995

    2014-01-01

    Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory

  11. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  12. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  13. Improvement of date palm plant lets during rooting stage by silver ion

    International Nuclear Information System (INIS)

    Sharaf, M.M.; Khamis, M.A.; El Bana, A.; Abd El Galeil, L.M.; Zaid, Z.E.

    2012-01-01

    This study aim to promote growth plant lets of date palm cv. Zaghlool by decreasing ethylene production inside the containers during rooting stage. Data obtained declared that three silver thiosulphate (STS) levels added to one half strength MS rooting medium improved significantly three rooting measurements (rooting percentage; number and length of developed root lets). However, the lightest STS level (0.25 ml/L of 4 mM STS solution) was the superior, while highest one (1.0 ml/L) was the inferior from statistical point of view. Data obtained displayed that providing MS rooting medium with silver nitrate improved 3 rooting measurements (rooting %; number of root lets and their length) for Zaghloul date palm shoot lets proliferated from somatic embryos. However, the 0.50 mg/L AgNO 3 provided MS medium was the most preferable in this concern. Plant lets were transferred to capped tubes contained 1/4 liquid MS medium through 3 weeks in the growth chamber (under aseptic condition). Ventilation was allowed gradually by punching holes in aluminum foil caps during first five days of 2 nd week. After then, the plant lets were transplanted in acclimatization green house on mixture from (peat moss + perlite + vermiculite at 1:1:1) and survival percentage was 75% after three months.

  14. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  15. Effect of plant-growth-promoting rhizobacteria inoculation on plant ...

    African Journals Online (AJOL)

    A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and productivity of Basmati rice (cv. 'Pusa Basmati 1401') in a randomized block with twelve treatments. We evaluated one bacterial (Providencia sp. PW5) and one ...

  16. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  17. The effect of plant growth regulators, explants and cultivars on ...

    African Journals Online (AJOL)

    To achieve the best explants and media for spinach tissue culture, the effects of two different plant growth regulators, two explants and cultivars on adventitious shoot regeneration were tested. The Analysis of Variance (ANOVA) showed that the effects of plant growth regulators on spinach tissue culture were significant; ...

  18. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    Science.gov (United States)

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  19. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  20. Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus

    Science.gov (United States)

    Palmqvist, N. G. Martin; Seisenbaeva, Gulaim A.; Svedlindh, Peter; Kessler, Vadim G.

    2017-12-01

    Yttrium doping-stabilized γ-Fe2O3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe2O3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil. Hydrogen peroxide was reduced from 151 to 83 μM g-1 compared to control, and the malondialdehyde formation was reduced from 36 to 26 mM g-1. Growth rate of leaves was enhanced from 33 to 50% growth compared to fully fertilized plants and SPAD-measurements of chlorophyll increased from 47 to 52 suggesting improved agronomic properties by use of γ-Fe2O3 nanoparticles as fertilizer as compared to chelated iron.

  1. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  2. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  3. Improvement of pulse crops through induced mutations: Reconstruction of plant type

    International Nuclear Information System (INIS)

    Rao, C.H.; Tickoo, J.L.; Ram, H.; Jain, H.K.

    1975-01-01

    Many species of grain legumes, because of their cultivation under marginal conditions for centuries, have retained a number of semi-wild characteristics, such as a bushy and spreading growth, which contribute to their adaptability but reduce their yields. The observations presented here indicate that induced mutations may prove effective in generating new plant-types in these crops, which are marked by an improvement in the harvest index and which will show a response to increased plant densities. The present report describes observations on the M 2 progenies of pigeon pea and mung bean on which work has been initiated. (author)

  4. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  5. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  6. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  7. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    Science.gov (United States)

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  9. Solid-support substrates for plant growth at a lunar base

    Science.gov (United States)

    Ming, D. W.; Galindo, C.; Henninger, D. L.

    1990-01-01

    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  10. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, Paul C A; Bakker, Peter A H M; Pieterse, Corné M J

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  11. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  12. Population Growth Parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on Tomato Plant Using Organic Substrate and Biofertilizers.

    Science.gov (United States)

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-01-01

    The tomato leafminer, Tuta absoluta (Meyrick) is a devastating pest associated with tomato. In this study, effects of tomato plants treated with vermicompost (20, 40, and 60%), humic fertilizer (2, 4 and 6 g/kg soil) and plant growth promoting rhizobacteria (Pseudomonas fluorescens and Bacillus subtilis) were investigated on the life table parameters of T. absoluta in a growth chamber at 25 ± 2 °C, 65 ± 5% RH, and 16:8 (L:D) h. Significant differences were found for the total developmental time, fecundity, and oviposition period of T. absoluta on the treatments tested. The net reproductive rate (R0), intrinsic rate of natural increase (rm), finite rate of increase (λ), mean generation time (T), and doubling time (DT) of T. absoluta were significantly different among treatments tested. We found that in all vermicompost, humic fertilizer and plant growth promoting rhizobacteria treatments, values of R0, rm, and λ were lower than control treatment. However, the lowest values of these parameters were obtained on 2 g/kg humic fertilizer and 40% vermicompost. Furthermore, T. absoluta had longest T and DT values on 2 g/kg humic fertilizer treatment. Data obtained showed that the addition of 2 g/kg humic fertilizer and 40% vermicompost to the growing soil reduced T. absoluta populations in tomato cultures. In addition, these levels of fertilizers improved growth parameters of tomato seedlings (plant height, wet weight, and dry weight) compared with other treatments. These results could be useful in improving the sustainable management of the moth. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Biochar amendment improves soil fertility and productivity of mulberry plant

    Directory of Open Access Journals (Sweden)

    Faruque Ahmed

    2017-07-01

    Full Text Available Biochar has the potential to improve soil fertility and crop productivity. A field experiment was carried out at the experimental field of Bangladesh Sericulture Research and Training Institute (BSRTI, Rajshahi, Bangladesh. The objective of this study was to examine the effect of biochar on soil properties, growth, yield and foliar disease incidence of mulberry plant. The study consisted of 6 treatments: control, basal dose of NPK, rice husk biochar, mineral enriched biochar, basal dose + rice husk biochar and basal dose + mineral enriched biochar. Growth parameters such as node/meter, total branch number/plant, total leaf yield/hectare/year were significantly increased in basal dose + mineral enriched biochar treated plot in second year compared with the other fertilizer treatments. In second year, the total leaf yield/hectare/year were also 142.1% and 115.9% higher in combined application of basal dose + mineral enriched biochar and basal dose + rice husk biochar, respectively, than the control treatment. The soil properties such as organic matter, phosphorus, sulphur and zinc percentage were significantly increased with both the (mineral enriched and rice husk biochar treated soil applied with or without recommended basal dose of NPK than the control and only the recommended basal dose of NPK, respectively. Further, the lowest incidences of tukra (6.4%, powdery mildew (10.4% and leaf spot (7.6% disease were observed in second year under mineral enriched biochar treated plot than the others. The findings revealed that utilization of biochar has positive effect on the improvement of soil fertility and productivity as well as disease suppression of mulberry plant.

  14. EFFECT OF PLANTING MEDIA ON THE GROWTH OF Shorea pinanga Scheff. SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Diana Prameswari

    2004-11-01

    Full Text Available Shoreapinanga Scheff.   is a major tropical plant species which has an important  economic  value not  only for timber,  but also as illipe nut  (called tengkawang  in local  name production.   This species   is suggested   for  land  rehabilitation    and  forest  conservation.    In rehabilitation   action, S. pi11a11ga is usually   planted   on the poor  and degraded  area.   Application   of  chemical  fertilizer and compost  is used to increase  the survival  and growth  of  the  seedlings.  Excessive chemical fertilizer  input  to soil, however,  may cause  negative  effect on  soil,  plant  and  environment. Conversely,  compost  may improve soil porosity, soil aggregate,  water absorption   and soil fertility. The objective  of  the study  was  to examine  effect  of  planting  media  on growth  of  S. pinanga  seedlings. Complete  randomized  design has been arranged with 5 treatments,  e.g. soil mixed with husk  (at the proportion   of  1:1, soil mixed with acacia compost  (1:1,   soil mixed with charcoal of  rice husk (1:1   and soil mixed with humic acid (1:1.    Another  treatment  was  soil alone  used as control.   The  result showed that  growth  of  both  stem  height   and  diameter,  and  index  of seedling  quality  were affected  significantly   by planting  media.    The mixture  of  soil and  acacia compost  (1 :1  was the best  planting media for the growth  of S. pinanga seedlings,  which resulted in the growth  of height  (24.19   cm and stem diameter  (0.246 cm.  Meanwhile, soil mixed with rice husk charcoal (1:1  gave the best result to the index of  seedling quality (ISQ = 1.34   and total dry weight (TOW=   15.93  g.

  15. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    Science.gov (United States)

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  16. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA, a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  17. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Science.gov (United States)

    Zhang, Yi; Turner, John G

    2008-01-01

    When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA), a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  18. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  19. Stripping Away the Soil : Plant Growth Promoting Microbiology Opportunities in Aquaponics

    NARCIS (Netherlands)

    Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and

  20. Effect of two different plant growth regulators on production traits of sunflower

    Directory of Open Access Journals (Sweden)

    Dávid ERNST

    2016-12-01

    Full Text Available The plant growth regulators (PGR are an organic compounds that modify plant physiological processes. PGR applied to the field crops promotes photosynthesis, stimulates plant growth, improves flowering and protects plants against unfavourable year weather conditions. Listed is an assumption to the yield of high quality. The effects of year weather conditions, biological material (hybrids and foliar application of two different PGR (Terra-Sorb® Foliar – containing free amino acids and Unicum® – containing Abiestins® on the yield-forming parameters, seed yield and the oil content in seeds of three selected hybrids of sunflower (NK Brio, NK Neoma, NK Ferti were studied in this paper. The field poly-factorial experiments were realized during two growing seasons of 2012 and 2013. The experimental area is situated in the maize-growing region (climatic region: warm; climatic sub-region: mild dry or dry; climatic zone: warm and dry, with mild winter and long sunshine and soil is silt loam Haplic Luvisol. The climatic conditions in chosen experimental years were different in quantities and distribution of precipitation at main growth period of sunflower plants (June to August and allows evaluating the yield stability between used hybrids and foliar treatments. The results showed that the application of selected PGR has contributed to an increase of sunflower seed yield, mainly through increase the weight of thousand seeds (rp = 0.761; P < 0.001. Similarly, oil content in seeds was significantly higher in treatments with PGR, especially with preparation Terra-Sorb® Foliar containing free amino acids. The study describes the relationship between quality (oil content in seeds and quantity (seed yield of sunflower production (rp = ‒0.41; P < 0.01. Results showed that PGR can be an important rationalization tool of the sunflower cultivation technology.

  1. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  2. Effects of air pollution on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Bleasadle, J K.A.

    1959-01-01

    The environment for plant growth is affected in three ways by the presence of coal smoke (1) by a reduction in the amount of light available to the plants, (2) by an alteration in soil conditions, and (3) by the contamination of the air by foreign gases. The smoke haze in or near industrial areas reduced the light available to plants for photosynthesis, thus reducing their growth rate. The tarry deposit on leaves further reduced the light available to the plant, and lowered the assimilation rate. It was generally thought that rain falling in or near industrial areas dissolved the predominantly acidic polluting gases from the air and leached bases from the soil. Rainwater collected showed a reduced number of soil bacteria, resulting in a reduction in the availability of plant nutrients. The most common and abundant gaseous pollutant in Britain was sulfur dioxide formed from the sulfur contained in coal. Concentrations of 0.5 parts per million induced symptoms of leaf scorch in many species. Results showed the yield of Aberystwyth 523 ryegrass was reduced when plants were grown continuously in air polluted with coal smoke. This affected the processes involving cell division. Coal smoke and sulfur also increased the rate of leaf senescence. This rate increased as the concentration of sulfur dioxide increased, or as the length of exposure per day to a standard concentration was increased. The leaves of evergreen trees and shrubs also aged more rapidly in conditions of pollution. 14 references.

  3. Improvement in the bioenergetics system of plants under metal stress environment via seaweeds

    International Nuclear Information System (INIS)

    Azmat, R.; Askari, S.

    2015-01-01

    The effects of Hg and its remediation through seaweeds on seedlings were escorted in a greenhouse experiment in a randomized block design. The effects of Hg were monitored in relation with bioenergetics system of Trigonella foenumgraecum plant at test site scale. Plants that were exposed to Hg, showed affect in diverse ways, including affinity to suffer in morphological as well as on sugar metabolism. The stress imposed by Hg exposure also extends to chloroplast pigments that lead to the distorted photosynthetic apparatus. The outcomes of reduced contents of photosynthetic machinery related with reduced contents of glucose, sucrose, total soluble sugars and carbohydrate contents of plants. These contents plays vital rule for providing bioenergy to the plant growth regulation. It was suggested that Hg is lethal for plant bioenergetics system due to which plants fail to survive under stress. The lethal effects of Hg were tried to remediate through green seaweeds (Codium iyengrii). It was observed that seaweeds successfully controlled the mobility of Hg metal and improves the plant growth regulatory system at lower applied dose only. While at higher dose of Hg, seaweeds were also effective but to a certain limits. It was established that continuous addition of Hg in soil and aquatic resources execute to the plant productivity. It is demand of time to develop alternative eco-friendly remediation technologies for controlling, cleaning Hg-polluted zones. (author)

  4. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L. rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Karnwal Arun

    2017-06-01

    Full Text Available The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L. rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA, hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31, while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45 and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38. Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

  5. deaminase from plant growth promoting rhizobacteria in Striga

    African Journals Online (AJOL)

    Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-amino-cyclopropane-1-carboxylic acid ...

  6. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    Science.gov (United States)

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Plant growth promoters and methods of using them

    KAUST Repository

    Al-Babili, Salim

    2017-01-05

    New plant growth regulators, including compounds and compositions, and methods of use including for promoting root growth. The compounds are carotenoid oxidation products, and a preferred example is 3-OH--β-apo-13-Carotenone. A method comprising promoting the growth of at least one plant with use of an effective amount of at least one composition comprising an effective amount of at least one compound which is represented by A-B-C, wherein B is a bivalent polyene moiety, A is a monovalent moiety linked to B by a six-membered carbon ring, wherein the ring has at least one substituent linked to the ring by an oxygen atom, and C is a monovalent moiety linked to B by a carbonyl group. Synergistic effects can be used with combinations of compounds.

  8. Plant growth and laboratory atmosphere. [Phaseolus multiflorus Willd

    Energy Technology Data Exchange (ETDEWEB)

    Richter, O

    1903-01-01

    The author observed that Phaseolus seedlings grown under glass bell jars which were closed off by water were two or three times as long as those seedlings which were grown under jars without the water closure. It was suspected that coal gas or other impurities were causing these results. Thus, experiments were performed to determine if indeed coal gas was affecting plant growth. Results indicated that coal gas has an inhibiting effect on the growth and length of the seedlings, but it also promotes the growth in thickness. Shortening and thickening was proportional to the concentration of the coal gas and the time of exposure. Mercury vapors were found to produce similar differences in height and thickness of seedlings as coal gas, but they are at the same time lethal to the plants.

  9. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  10. Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392

  11. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    Directory of Open Access Journals (Sweden)

    Gilor Kelly

    Full Text Available Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1, a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m. Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  12. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    The present study was conducted to investigate the effects of different concentrations and combinations of growth regulators on callus induction and plant regeneration of potato (Solanum tuberosum L.) cultivar Diamant. The tuber segments were used as explants and cultured on Murashige and Skoog (MS) medium ...

  13. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    Science.gov (United States)

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  14. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

    Science.gov (United States)

    Sudo, Emi; Suzuki, Yuji; Makino, Amane

    2014-11-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Overexpression of a Grapevine Sucrose Transporter (VvSUC27 in Tobacco Improves Plant Growth Rate in the Presence of Sucrose In vitro

    Directory of Open Access Journals (Sweden)

    Yumeng Cai

    2017-06-01

    Full Text Available The import of sugar from source leaves and it further accumulation in grape berries are considerably high during ripening, and this process is mediated via sucrose transporters. In this study, a grape sucrose transporter (SUT gene, VvSUC27, located at the plasma membrane, was transferred to tobacco (Nicotiana tabacum. The transformants were more sensitive to sucrose and showed more rapid development, especially roots, when cultured on MS agar medium containing sucrose, considering that the shoot/root dry weight ratio was only half that of the control. Moreover, all transformed plants exhibited light-colored leaves throughout their development, which indicated chlorosis and an associated reduction in photosynthesis. The total sugar content in the roots and stems of transformants was higher than that in control plants. No significant difference was observed in the leaves between the transformants and control plants. The levels of growth-promoting hormones were increased, and those of stress-mediating hormones were reduced in transgenic tobacco plants. The qRT-PCR analysis revealed that the expression of VvSUC27 was 1,000 times higher than that of the autologous tobacco sucrose transporter, which suggested that the markedly increased growth rate of transformants was because of the heterogeneously expressed gene. The transgenic tobacco plants showed resistance to abiotic stresses. Strikingly, the overexpression of VvSUC27 leaded to the up regulation of most reactive oxygen species scavengers and abscisic acid-related genes that might enable transgenic plants to overcome abiotic stress. Taken together, these results revealed an important role of VvSUC27 in plant growth and response to abiotic stresses, especially in the presence of sucrose in vitro.

  16. Effects of Vinegar Bad and Flyash on the Growth of Sorghum and the Improvement of Saline Soils

    Directory of Open Access Journals (Sweden)

    FAN Na

    2017-10-01

    Full Text Available Based on the sorghum growth and salinity soil improvement, the effects of vinegar bad and flyash on the growth of sorghum and the improvement of saline soils were studied. The experiment was carried out with random block design, in 4 treatment, which were pure vinegar bad(treatment 1, vinegar bad and fly ash 1:1 ratio(treatment 2, vinegar bad and fly ash 2:1 ratio(treatment 3 and control respectively. The results showed that the contents of available nutrient in the four periods of sorghum growth increased firstly and then decreased, and the effect of vinegar bad and flyash treatment was better than that of control. Among them, the ratio 1:1 of vinegar and fly ash had the best effect. The results showed that compared with the control, the soil bulk density of treatment 1~3 was decreased by 19.6%, 28.6% and 11.32%, respectively. The spike length of treatment 1~3 was 6.25%, 9.06%, 3.93% higher than that of the control, respectively. The yield per plant of treatment 1~3 was increased by 10.53%, 13.26% and 8.89%, respectively. In summary, vinegar bad, flyash could improve the physical and chemical properties of saline soil, improve the environment of deep soil for plant growth, thereby increase the yield of sorghum.

  17. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  18. Laboratory study on influence of plant growth promoting ...

    African Journals Online (AJOL)

    The influence of rhizobacteria on the growth and tolerance of Zea mays (maize) in a petroleum hydrocarbon (crude oil) impacted medium was investigated. This study evaluated the effect of inoculating maize seeds with plant growth promoting rhizobacterial strains in a crude oil impacted medium. The rhizobacterial strains ...

  19. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities.

    Science.gov (United States)

    Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong

    2018-02-19

    An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.

  20. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2018-04-01

    Full Text Available Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol−1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol−1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.

  1. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Hsu, Chiun-Kang; Micallef, Shirley A

    2017-10-16

    Reducing Salmonella enterica association with plants during crop production could reduce risks of fresh produce-borne salmonellosis. Plant growth-promoting rhizobacteria (PGPR) colonizing plant roots are capable of promoting plant growth and boosting resistance to disease, but the effects of PGPR on human pathogen-plant associations are not known. Two root-colonizing Pseudomonas strains S2 and S4 were investigated in spinach, lettuce and tomato for their plant growth-promoting properties and their influence on leaf populations of S. enterica serovar Newport. Plant roots were inoculated with Pseudomonas in the seedling stage. At four (tomato) and six (spinach and lettuce) weeks post-germination, plant growth promotion was assessed by shoot dry weight (SDW) and leaf chlorophyll content measurements. Leaf populations of S. Newport were measured after 24h of leaf inoculation with this pathogen by direct plate counts on Tryptic Soy Agar. Root inoculation of spinach cv. 'Tyee', with Pseudomonas strain S2 or S4 resulted in a 69% and 63% increase in SDW compared to non-inoculated controls (pgrowth by over 40% compared to controls (pgrowth promotion was detected in tomato cv. 'BHN602', but S2-inoculated plants had elevated leaf chlorophyll content (13%, pgrowth, but also reduce the fitness of epiphytic S. enterica in the phyllosphere. Plant-mediated effects induced by PGPR may be an effective strategy to minimize contamination of crops with S. enterica during cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    Science.gov (United States)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  3. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    Science.gov (United States)

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  4. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  5. A Study on Nonconformance and Construction Method Improvement for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jong Yeob; Roh, Myung Sub

    2014-01-01

    Advanced power reactor was developed by domestic technology, and finally exported to abroad. In order to place the current nuclear power industrial base, construction has played a big role. Without magnificent construction technology, it would have been impossible to get a safe nuclear power plant on time and in budget. Construction industry occupies very large portion of the economy in South Korea and it has been a core of South Korea's economic growth. With a competitive construction industry and advanced nuclear power plant construction know-how, South Korea could provide safe and reliable nuclear power plants in domestic and world. However there are many repairs and number of corrective actions are in actual construction. Thus, this paper suggested the result of nonconformance and construction method improvement for nuclear power plant. Constructional engineering is a kind of science that has a variety of disciplines including structure, geology, mechanical equipment and other fields. Thus, the development of constructional engineering is closely associated with experience from failure and application advanced construction method. The recent experience in nuclear power plants construction has shown that those improved methods are fully applicable and can help shorten the construction schedule. The future of nuclear power plant construction seems to be more encouraged, even though it has many obstacles

  6. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics

    OpenAIRE

    Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquapo...

  7. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  8. Role of plant growth regulators on oil yield and biodiesel production of linseed (linum usitatissimum l)

    International Nuclear Information System (INIS)

    Faizanullah, A.; Bano, A.; Nosheen, A.

    2010-01-01

    A field experiment was conducted to compare the effect of plant growth regulators (PGRs) viz. kinetin (K), chlorocholine chloride (CCC) and salicylic acid (SA) on seed yield, oil content and oil quality of Linseed (Linum usitatissimum L) cv. Chandni with a new perspective to biodiesel production. The growth regulators (10-6M) were applied as seed soaking for 10 h prior to cultivation. Kinetin significantly increased the number of capsules/plant, seed number/capsule, 1000 seed weight and total seed yield (kg/h). The growth regulators increased the seed oil content maximum being in kinetin and CCC treatments. Kinetin and CCC significantly decreased the oil acid value, free fatty acid content (% oleic acid) and increased the pH of oil. Nevertheless, SA significantly decreased the oil specific gravity and did not alter the pH. Only kinetin significantly increased the oil iodine value. The oil extracted from seeds of kinetin and CCC treated plants showed maximum conversion (% w/w) to methyl esters/biodiesel after transesterification. It can be inferred that PGRs can be utilized successfully for improving the biodiesel yield of linseed. (author)

  9. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  10. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  11. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  12. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress

    Directory of Open Access Journals (Sweden)

    ِArafat eAbdel Latef

    2016-03-01

    Full Text Available Silicon (Si has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L. is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this work, grains of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50 and 75 mM with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC, and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K+, as well as potassium/sodium ion (K+/Na+ ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na+ and malondialdehyde (MDA, as well as the activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD in stressed plants. On the other hand, application of Si by grain priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids, K+ and activities of SOD, CAT and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na+, which together with enhanced K+ level led to a favorable adjustment of K+/Na+ ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on the maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K+/Na+. Thus, our findings demonstrate that seed priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  13. Information Integration and Communication in Plant Growth Regulation.

    Science.gov (United States)

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Phenological growth stages of saffron plant (Crocus sativus L.) according to the BBCH Scale

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Corcoles, H.; Brasa-Ramos, A.; Montero-Garcia, F.; Romero-Valverde, M.; Montero-Riquelme, F.

    2015-07-01

    Phenological studies are important for understanding the influence of climate dynamics on vegetative growth, flowering and fruiting on plants and can be used in many scientific subjects, such as Agronomy, Botany and Plant Biology, but also Climatology as a result of the current global interest in climate change monitoring. The purpose of the detailed specific culture descriptions of the principal growth stages in plants is to provide an instrument for standardization of data recording. To date, there was no coding method to describe developmental stages on saffron plant (Crocus sativus L.). Because of the increasing world-wide interest on this crop, a novel growth development code based on the BBCH extended scale is proposed in this paper. Six principal growth stages were set up, starting from sprouting, cataphylls and flowers appearance, plant appearance and development, replacement corms development, plant senescence and corm dormancy. Each principal growth stage is subdivided into secondary growth stages. Descriptive keys with illustrations are included to make effective use of the system. (Author)

  15. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    Science.gov (United States)

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  16. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  17. Utilization of γ-irradiation technique on plant mutation breeding and plant growth regulation in Tokyo Metropolitan Isotope Research Center

    International Nuclear Information System (INIS)

    Suda, Hirokatsu

    1997-01-01

    During about 30-years, we have developed γ-irradiation technique and breeding back pruning method for the study of mutation breeding of ornamental plants. As a result, we have made a wide variety of new mutant lines in chrysanthemum, narcissus, begonia rex, begonia iron cross, winter daphne, zelkova, sweet-scented oleander, abelia, kobus, and have obtained 7 plant patents. By the use of γ-irradiation to plant mutation breeding, we often observed that plants irradiated by low dose of γ-rays showed superior or inferior growth than the of non-irradiated plants. Now, we established the irradiation conditions of γ-rays for mutation breeding and growth of regulation in narcissus, tulip, Enkianthus perulatus Schneid., komatsuna, moyashi, african violet. In most cases, irradiation dose rate is suggested to be a more important factor to induce plant growth regulators than irradiation dose. (author)

  18. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?

    Science.gov (United States)

    Ahmad, Rashid; Waraich, Ejaz Ahmad; Nawaz, Fahim; Ashraf, Muhammad Y; Khalid, Muhammad

    2016-01-30

    Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper. © 2015 Society of Chemical Industry.

  19. The effects of planting media and leaf fertilizers on the growth of jamrud orchid (Dendrobium macrophyllum A. Rich.

    Directory of Open Access Journals (Sweden)

    I GEDE TIRTA

    2006-01-01

    Full Text Available Jamrud orchid (Dendrobium macrophyllum A. Rich. have attractive flowers which make the orchid become one of high economic ornamental plants. The orchid is one of endangered species. Its growth is slow, however appropriate planting media and leaf fertilizers can improve the growth of the orchid. The experiment was conducted from February to June 2003, at “Eka Karya” Bali Botanic Garden. The design used in the experiment was completely randomized block with two treatments and four replicates. The first factor were six kinds of planting medias (roots of C. contaminans, roots of Asplenium nidus, charcoal, roots of C. contaminans+roots of A. nidus, roots of C. contaminans+charcoal and roots of A. nidus+charcoal. The second factor were four kinds of fertilizers (plant catalyst, super bionik, inabio and subur inti persada and one treatment without fertilizer. The results of experiment showed that the interaction between planting medias and leaf fertilizers significantly affected increment of plant height at 12, 14, 16 and 18 weeks after planting, of leaf number at 14, 16 and 18 weeks after planting, of root length, of plant fresh weight and oven dry weight. Treatment of C. contaminans roots and of A. nidus roots combined with inabio fertilizer produced the highest vegetative growth. This treatment increased the total oven dry weight of plant (54.81%, increased the weight of plant (67.48%, of root length (41.63%, of total leaf number (70.73%, of plant height (59.01% and bud number (72.22% compared with treatment without fertilizer in the same media.

  20. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lykas, C.; Vegalas, I.; Gougaulias, N.

    2014-06-01

    The effect of olive mill wastewater (OMW) on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH), fresh mass (FM) and dry mass (DM) of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs. (Author)

  2. Effect of olive mill wastewater on growth and bulb production of tulip plants infected by bulb diseases

    Directory of Open Access Journals (Sweden)

    Christos Lykas

    2014-02-01

    Full Text Available The effect of olive mill wastewater (OMW on growth of tulip plants infected by common diseases as well as on their new bulbs production is analyzed in this work. Filtered and sterilized OMW was tested as growth inhibitor of Botrytis tulipae, Fusarium oxysporum, Aspergillus niger and Penicillium spp. mycelium. The effect of filtered OMW on uninfected tulip bulbs was also tested as well as on the growth of bulbs infected with the fungus B. tulipae and A. niger in vivo. The mycelium length, severity of scab-like lesions, plant height (PH, fresh mass (FM and dry mass (DM of plants and production of new bulbs were recorded. Only the filtered OMW inhibited the in vitro mycelium growth of all tested fungi. However filtered OMW caused infections when it sprayed on uninfected bulbs, malformations on 30% of the plants grown from these bulbs and decrease PH, FM and DM as well as new bulbs production at 75%, 72.4%, 79.1% and 50% respectively. The treatment of B. tulipae infected bulbs with filtered OMW reduced further the PH, FM, DM and the production of new bulbs in 92.1%, 81.4%, 78.7% and 97% respectively. In contrast the treatment of infected bulbs by B. tulipae + A. niger with filtered OMW did not affect PH, FM and the number of new bulbs produced and significantly improved plants DM and the mass of new bulbs.

  3. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions

    Science.gov (United States)

    Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara

    2014-02-01

    Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.

  5. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress[OA

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M.; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W.; Zhu, Genhai

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions. PMID:17933901

  6. Phenological growth stages of saffron plant (Crocus sativus L. according to the BBCH Scale

    Directory of Open Access Journals (Sweden)

    Horacio Lopez-Corcoles

    2015-09-01

    Full Text Available Phenological studies are important for understanding the influence of climate dynamics on vegetative growth, flowering and fruiting on plants and can be used in many scientific subjects, such as Agronomy, Botany and Plant Biology, but also Climatology as a result of the current global interest in climate change monitoring. The purpose of the detailed specific culture descriptions of the principal growth stages in plants is to provide an instrument for standardization of data recording. To date, there was no coding method to describe developmental stages on saffron plant (Crocus sativus L.. Because of the increasing world-wide interest on this crop, a novel growth development code based on the BBCH extended scale is proposed in this paper. Six principal growth stages were set up, starting from sprouting, cataphylls and flowers appearance, plant appearance and development, replacement corms development, plant senescence and corm dormancy. Each principal growth stage is subdivided into secondary growth stages. Descriptive keys with illustrations are included to make effective use of the system.

  7. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  8. Plant growth regulation by the light of LEDs; LED ko wo tsukatta shokubutsu saibai gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H. [Mitsubishi Chemical Co., Tokyo (Japan). Yokohama Research Center

    1996-03-01

    Light Emitting Diode (LED) has not only an excellent display function for the luminescent device but also a superior feature without other lamps as light source for plant growth. It was National Aeronautics and Space Administration (NASA) to find out such merit for this light source for plant growth and try at first to use for plant growth at the space. They began to examine the LED application to the light source for the plant growth at the space since a stage at high cost of the LED, to develop some researches centered at cultivation of lettuce, wheat, and others. Finding out future possibility of cost-down of the LEDs on the cost/performance and large merits of the LEDs for control of the plant growth and plant physiology, authors have conducted some cultivation experiments of the plants using the LEDs for light source some years ago. In this papers, characterizations, actual possibility, and future developments of the LEDs for the light sources of the plant growth, are introduced. 5 refs., 4 figs.

  9. Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR for inducing salinity tolerance in mung bean under field condition of semi arid climate

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2013-04-01

    Full Text Available Salinity stress severely affects the growth, nodulation and yield of mung bean (Vigna radiata L.. However, its growth can be improved under salinity stress by inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR containing 1-Aminocyclopropane-1-carboxylic acid (ACC deaminase enzyme. ACC-deaminase containing bacteria regulate the stress induced ethylene production by hydrolyzing the ACC (immediate precursor of ethylene into ammonia and ketobutyric acid, thus improve plant growth by lowering the ethylene level. A study was conducted under salt affected field conditions where pre-isolated strains of Rhizobium and PGPR were used alone as well as in combination for mitigating the salinity stress on growth, nodulation and yield of mung bean by following the randomized complete block design (RCBD. The data were recorded and analyzed statistically to see the difference among treatments.

  10. APPLICATION OF DRIP IRRIGATION ON COTTON PLANT GROWTH (Gossypium sp.

    Directory of Open Access Journals (Sweden)

    Syahruni Thamrin

    2017-12-01

    Full Text Available The condition of cotton planting in South Sulawesi is always constrained in the fulfillment of water. All plant growth stages are not optimal to increase production, so it is necessary to introduce good water management technology, such as through water supply with drip irrigation system. This study aims to analyze the strategy of irrigation management in cotton plants using drip irrigation system. Model of application by designing drip irrigation system and cotton planting on land prepared as demonstration plot. Observations were made in the germination phase and the vegetative phase of the early plants. Based on the result of drip irrigation design, the emitter droplet rate (EDR was 34.266 mm/hour with an operational time of 4.08 min/day. From the observation of cotton growth, it is known that germination time lasted from 6 to 13 days after planting, the average plant height reached 119.66 cm, with the number of leaves averaging 141.93 pieces and the number of bolls averaging 57.16 boll.

  11. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  12. Effects of plant growth regulators in heliconia ‘Red Opal’

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Ribeiro de Castro

    2016-12-01

    Full Text Available The objective of this study was to evaluate growth regulators with purpose of reducing the size of heliconia ‘Red Opal’ potted plants. The experiment was carried out in randomized block design with five treatments (trinexapac-ethyl and paclobutrazol at rates of 37.5 and 75.0 mg of active ingredient per pot and control without growth regulator and five replicates. The treatments were applied 40 days after planting the rhizomes in pots filled with soil. Thirty and 150 days after the growth regulator application, plant height, number of leaves and shoots, petioles length and leaf area were evaluated. One year after planting the rhizomes in pots the number of inflorescence and leaves (leaves, sheathing leaf bases and inflorescences and rhizomes (rhizomes and roots dry mass were determined. Trinexapac-ethyl had no differences compared to the control in any of the variables evaluated. Paclobutrazol proved effective in reducing plant height, leaf area and petiole length and increase in number of leaves and shoots but the effect was temporary. Also, it did not affect the inflorescences production and leaves and rhizomes dry mass. Paclobutrazol is efficient to promote height reduction and to increase the number of shoots in heliconia ‘Red Opal’ potted plants without affect the inflorescence formation but its effects is temporary.

  13. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    Science.gov (United States)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.

    Science.gov (United States)

    Walker, Tom N; Ward, Susan E; Ostle, Nicholas J; Bardgett, Richard D

    2015-05-01

    There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20%), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46%) and Eriophorum (20%), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change.

  15. MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF GROWTH AND DEVELOPMENT OF PLANTS IN HIGH SALINITY

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-10-01

    Full Text Available The effect of increasing salinity to the morpho-metric parameters of Salix alba L., which dominated in the coastal areas on rivers of Steppe Dnieper, is investigated. We added Mg as salt MgSO4 * 3H2O in the range of concentration: 0.5, 1.0, 1.5, 2.0 and 2.5 g/l in a solution of willow cuttings. In the solution was added and plant growth regulator "Kornevin" the synthetic origin. The negative effect of salt at a concentration from 1.0 g/l to 2.5 g/l in the dynamics of growth and development was found. The correlation between the size and salinity in dynamics of growth and development of plant were demonstrated: in the growth of shoots (R = 0.83, 0.91 and 0.95, in the growth of roots (R = 0.92, 0.68 and 0.84 respectively depended from salt concentration. The length of the leaf blade was from 4% to 8%, from 7% to 43%, from 333% to 11% (R = 0,68, 0,93, 0,61, depending on the concentration of salt and during observing compared with control (distilled water. "Kornevin" and combined effect of salt increased the length of the leaf blade growth by 4-5, 2-4, 3-5 times, the roots by7 and 3-14 times, the shoots by 3-4, 6-7 and 5-7 times in the dynamics of growth compared with control (MgSO4, 2,5 g/l. The recommendations regarding for the advisability of using the plant growth regulator "Kornevin", as very effective plant growth preparation that promoted rooting and activated physiological processes of plant organism, expressed protective effect in conditions of excessive salinity, were provided. Key words: the morpho-metric index, the plant growth regulators, abiotic factors, salinity factor, the adaptation.

  16. Screening of Plant Growth-Promoting Rhizobacteria from Maize ...

    African Journals Online (AJOL)

    Screening of Plant Growth-Promoting Rhizobacteria from Maize ( Zea Mays ) and Wheat ( Triticum Aestivum ) ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN ... African Journal of Food, Agriculture, Nutrition and Development.

  17. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  18. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    Science.gov (United States)

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  19. Effect on growth and nickel content of cabbage plants watered with nickel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, O B

    1979-01-01

    Chinese cabbage plants were watered with different concentrations of NiCl/sub 2/ solutions and the effect on growth and uptake of nickel in the plants were studied. No toxic effect on plant growth was observed. A higher content of nickel was found in the plants exposed to more concentrated nickel solutions. Nickel contamination and its clinical consequences are discussed. 29 references, 1 figure, 1 table.

  20. Interactive effects of above- and belowground herbivory and plant competition on plant growth and defence

    NARCIS (Netherlands)

    Jing, Y.; Raaijmakers, C.; Kostenko, O.; Kos, M.; Mulder, P.P.J.; Bezemer, T.M.

    2015-01-01

    Competition and herbivory are two major factors that can influence plant growth and plant defence. Although these two factors are often studied separately, they do not operate independently. We examined how aboveground herbivory by beet armyworm larvae (Spodoptera exigua) and belowground herbivory

  1. Growth and Development of Three-Dimensional Plant Form.

    Science.gov (United States)

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. (Plant growth with limited water)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The work supported by DOE in the last year built on our earlier findings that stem growth in soybean subjected to limited water is inhibited first by a physical limitation followed in a few hours by metabolic changes that reduce the extensibility of the cell walls. With time, there is modest recovery in extensibility and a 28kD protein accumulates in the walls of the growth-affected cells. A 31kD protein that was 80% similar in amino acid sequence also was present but did not accumulate in the walls of the stem cells. Explorations of the mRNA for these proteins showed that the mRNA for the 28kD protein increased in the shoot in response to water deprivation but the mRNA for the 31kD protein did not accumulate. In contrast, the roots continued to grow and the mRNA for the 31kD protein accumulated but the mRNA for the 28kD protein was undetectable. We also explored how growth occurs in the absence of an external water supply. We found that, under these conditions, internal water is mobilized from surrounding nongrowing or slowly growing tissues and is used by rapidly growing cells. We showed that a low water potential is normally present in the enlarging tissues and is the likely force that extracts water from the surrounding tissues. We found that it involved a gradient in water potential that extended from the xylem to the outlying cells in the enlarging region and was not observed in the slowly growing basal tissue of the stems of the same plant. The gradient was measured directly with single cell determinations of turgor and osmotic potential in intact plants. The gradient may explain instances of growth inhibition with limited water when there is no change in the turgor of the enlarging cells. 17 refs.

  3. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  4. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  5. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    Science.gov (United States)

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  6. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of vanadium on plant growth and its accumulation in plant tissues

    Directory of Open Access Journals (Sweden)

    Narumol Vachirapatama

    2011-06-01

    Full Text Available Hydroponic experiments were conducted to investigate vanadium uptake by Chinese green mustard and tomato plantsand its effect on their growth. Twenty-eight (Chinese green mustard and 79 days (tomato after germination, the plants wereexposed for a further seven days to a solution containing six different concentrations of ammonium metavanadate (0-80 mg/lNH4VO3. The vanadium accumulated in the plant tissues were determined by ion-interaction high performance liquid chromatography,with confirmation by magnetic sector ICP-MS.The results indicated that nutrient solution containing more than 40 mg/l NH4VO3 affected plant growth for bothChinese green mustard and tomato plant. Chinese green mustard grown in the solution containing NH4VO3 at the concentrationsof 40 and 80 mg/l had stem length, number of leaves, dry weight of leaf, stem and root significantly lower than those ofplants grown in the solution containing 0-20 mg/l NH4VO3. Tomato plants were observed to wilt after four days in contactwith the nutrient solutions containing 40 and 80 mg/l NH4VO3. As the vanadium concentrations increased, a resultantdecrease in the stem length, root fresh weight, and fruit fresh weight were noted. The accumulation of vanadium was higher inthe root compared with leaf, stem, or fruit. Measured levels of vanadium, from a nutrient solution containing 40 mg/l NH4VO3,were 328, 340, and 9.66x103 g/g in the leaf, stem and root for Chinese green mustard, and 4.04 and 4.01x103 g/g in the fruitand roots for tomato plants, respectively.

  8. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    Science.gov (United States)

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  9. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  10. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  11. Restoring directional growth sense to plants in space

    Science.gov (United States)

    Gorgolewski, S.

    Introduction of new plant classification: electrotropic (Et) and non-electrotropic (nEt) plants gives us a criterion which plants need electric field to grow "normally" in space. The electric field: E is measured in V/m (volt per meter). Do not confuse "electrotropism" understood by some as the response to current flow transversely through the plant's root. This effect was previously described in biological textbooks. I suggest to call it as (Ct) (here C stands for current and t for tropism). In the laboratory we have in the plant growth chamber two transparent to light (wire mesh) conducting sheets separated by m(meters) and V volts potential difference. It has been shown in laboratory that Et is a very important factor in electrotropic plant development. Space experiments with plants grown in orbit from seed to seed have been fully successful only (in my very best knowledge) with nEt plants. The most common nEt plants are grasses (more than 50% of all plants). The nEt plants in space use phototropism as their sensor of direction. In space (and most greenhouses) we have to provide the electric field at least for the Et plants. It has been shown that the electric field is also beneficial to nEt plants which also acquire the sense of direction imposed by stronger than the normal 130V/m E field (vector). The stronger horizontal E field of 1.6kV/m (slightly more than 12 times stronger than 130V/m) does not influence the rate of growth of maize (which is nEt) in 130V/m vertical field or even in the Faraday cage 0V/m. Yet when the maize gets its leaves, they all lean in the horizontal field (1.6kV/m) towards the anode. The direction of the E vector is defined by the E field lines running from the positive to the negative charges. Because the electric forces are a factor of 1038 times stronger than the gravitational forces, it is not important for the E field whether it acts on ions in the gravity or in weightlessness. We have to recall that on the Earth and in space Et

  12. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions.

    Science.gov (United States)

    Sánchez-Blanco, Ma Jesús; Ferrández, Trinitario; Morales, Ma Angeles; Morte, Asunción; Alarcón, Juan José

    2004-06-01

    The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.

  13. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides

    Directory of Open Access Journals (Sweden)

    Wen-Hua eYou

    2016-05-01

    Full Text Available Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules may affect the establishment, growth and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments or low (one fragment propagule pressure was established either in bare soil (open habitat or dense native vegetation of Jussiaea repens (vegetative habitat, with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.

  14. Plant growth responses of apple and pear trees to doses of glyphosate

    Science.gov (United States)

    Glyphosate is commonly used for intra-row weed management in perennial plantations, where unintended crop exposure to this herbicide can cause growth reduction. The objective of this research was to analyze the initial plant growth behavior of young apple and pear plants exposed to glyphosate. Glyph...

  15. Plant improvement by known-function genes

    Directory of Open Access Journals (Sweden)

    Jesús Quiroz Chávez

    2012-09-01

    Full Text Available Plant molecular improvement by recombinant DNA technology represents an advantage to obtain new varieties or traits. This technique is promised for genetic improvement of crop plants. Lines with increased yield, quality, disease resistance, or tolerant to abiotic stress have been obtained, with clear advantages for producers, marketers and consumers. However, they have several limitations in its application to agriculture because of its risk and hazards. The aim of the document is to show the advantages and disadvantages of GM crop plant, to develop represent an opportunity to have new exotic traits.

  16. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  17. Effect of plant growth regulators on production of alpha-linolenic ...

    Indian Academy of Sciences (India)

    Sujana Kokkiligadda

    2017-10-05

    Oct 5, 2017 ... MS received 13 October 2016; revised 22 March 2017; accepted 30 May 2017; ... Plant growth regulators; microalgae; Chlorella pyrenoidosa; alpha-linolenic acid. 1. ... the growth period by flocculation method [9] using alum.

  18. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  19. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  20. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    Science.gov (United States)

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  1. Introduction of Endophytic Pseudomonas rhodesiae and Acinetobacter sp. Effective on Seed Germination and Cucumber Growth Factors Improvement

    Directory of Open Access Journals (Sweden)

    Farkhondeh Amini

    2017-03-01

    Full Text Available Introduction: Some bacteria are capable of entering the plant as endophytes that do not cause harm and could establish a mutualistic association with host plants. Endophytic bacteria are bacteria that live in plant tissues without doing substantive harm. They enter plant tissue primarily through different plant zones. Both Gram-positive and Gram-negative bacteria have been isolated from several tissue types in several plant species. In addition, several different bacterial species have been isolated from a single plant. Variation in endophytic bacteria populations referred to the time of sampling, type of plant tissue, age and environment conditions, as well. In general endophytic bacteria occur at lower population densities than rhizospheric bacteria or bacterial pathogens. Endophytic populations, like rhizospheric populations, are conditioned by biotic and abiotic factors, but endophytic bacteria could be better protected from biotic and abiotic stresses than rhizospheric bacteria. It is clear that the interaction between plants and some endophytic bacteria is associated with beneficial effects such as plant growth promotion and biocontrol potential against plant pathogens. These types of bacteria are often capable of eliciting significant physiological changes that modulate the growth and development of the plant. Most of the time, these beneficial effects of endophytes are greater than those of many rhizosphere-colonizing bacteria. Endophytic bacteria affect bacterial growth by numerous mechanisms directly or indirectly. Some genus of bacteria such as Azosprillium, Enterobacter, Azotobacter and Pseudomonas produces plant growth regulators which lead to plant growth improvement. Microorganism profit from plants due to the enhanced availability of nutrients, whereas plants can receive benefits from bacterial associates by growth enhancement or stress reduction. Therefore, mutualistic interactions between host plants and associated

  2. Potential effects of plant growth promoting rhizobacteria ...

    African Journals Online (AJOL)

    Damping off caused by Sclerotium rolfsii on cowpea results in yield losses with serious socioeconomic implication. Induction of defense responses by plant growth promoting rhizobacteria (PGPR) is largely associated with the production of defense enzyme phenyl ammonia lyase (PAL) and oxidative enzymes like ...

  3. Balance of plant improvements for future reactor projects

    International Nuclear Information System (INIS)

    Hollingshaus, H.

    1987-01-01

    Many studies have shown that improvements in portions of the plant other than the reactor systems can yield large cost savings during the design, construction, and operation of future reactor power plants. This portion is defined as the Balance of Plant which includes virtually everything except the equipment furnished by the Nuclear Steam Supply System manufacturer. It normally includes the erection of the entire plant including the NSSS. Cost of BOP equipment, engineering and construction work is therefore most of the cost of the plant. Improvements in the BOP have been identified that will substantially reduce nuclear plant cost and construction time while at the same time increasing availability and operability and improving safety. Improvements achieved through standardizatoin, simplification, three-dimensional (3D) computer-aided design, modular construction, innovative construction techniques, and applications for Artificial Intelligence Systems are described. (author)

  4. Biofertilizer: a novel formulation for improving wheat growth, physiology and yield

    International Nuclear Information System (INIS)

    Hassan, T.; Bano, A.

    2016-01-01

    Bacillus cereus and Pseudomonas moraviensis strains were inoculated singly as well as in consortium with two different carriers i.e., maize straws and sugarcane husk in the formulation of biofertilizer. Plant growth promoting rhizobacteria (PGPR) strains used in biofertilizer were phosphate solubilizer and exhibited strong antifungal activities. Both PGPR used in formulation was maintained 15-16.5 * 10/sup 8/ cfu g-1 in carrier material after 40d. The field experiment was conducted at Quaid-e-Azam University Islamabad on wheat for two consecutive years (2011-2012) simultaneously in pots and field. Plants sampling for growth and physiological parameters was made after 57d of sowing and at maturity for yield parameters. Single inoculation of Pseudomonas moraviensis and Bacillus cereus with maize straw and sugarcane husk increased plant height and fresh weight by 18-30% and protein, proline, sugar contents and antioxidant activities by 25-40%. There were 20% increases in spike length, seeds/spike and seed weight in single inoculation. Co-inoculation of PGPR further increased plant growth, physiology and yield by 10-15% over single inoculation with carriers. PGPR consortium with sugarcane husk and maize straw (biofertilizer formulation) increased 20-30% plant growth chlorophyll, sugar, protein contents, antioxidants activities and yield parameters. It is inferred that carrier based biofertilzer effectively increased growth, maintained osmotic balance and enhanced the activities of antioxidant enzymes and yield parameters. (author)

  5. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings

    International Nuclear Information System (INIS)

    Chen, B.D.; Zhu, Y.-G.; Duan, J.; Xiao, X.Y.; Smith, S.E.

    2007-01-01

    A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings. - This study demonstrated that AM associations can encourage plant survival in Cu mine tailings

  6. Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus 'white prosperity'

    International Nuclear Information System (INIS)

    Sajjad, Y.; Jaskani, M. J.; Qasim, M.

    2014-01-01

    Gladiolus is very popular among ornamental bulbous plants mainly used as cut flower and greatly demanded in the world floral market. Production of inferior quality spikes is one of the major hurdles for their export. The research was conducted under Faisalabad conditions to evaluate the use of plant growth regulators in order to improve the vegetative, floral and physiological attributes. Gladiolus plants were sprayed thrice with different concentrations (0.1, 0.4, 0.7 and 1mM) of gibberellic acid, benzylaminopurine and salicylic acid at three leaf stage, five leaf stage and slipping stage. Foliar application of 1mM gibberellic acid increased the plant height (122.14cm), spike length (58.41cm), florets spike-1 (13.49), corm diameter (4.43cm), corm weight (25.34g) and total cormel weight (20.45g) compared to benzylaminopurine and salicylic acid. Gibberellic acid at 1mM concentration also increased the total chlorophyll content to 7.72mg/g, total carotenoids (1.61mg/g), total soluble sugars (3.68mg/g) followed by application of benzylaminopurine. Salicylic acid application at 1mM concentration decreased the number of days to flower (64.93) compared to 76.12 days in non treated plants. (author)

  7. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  8. Plant Growth Regulators as Potential Tools in Aquatic Plant Management: Efficacy and Persistence in Small-Scale Tests

    Science.gov (United States)

    1994-01-01

    gratefully acknowledge the support of the Waterways Experi- ment Station and Drs. Howard Westerdahl and Kurt Getsinger as this research was being conducted...E. Westerdahl , eds., Plant Growth Regulator Society of America, San Antonio, TX, 127-45. Anderson, L. W. J., and Dechoretz, N. (1988). "Bensulfuron...Vegetation Management. J. E. Kaufman and H. E. Westerdahl , eds., Plant Growth Regulator Society of America, San Antonio, TX, 155-86. Herbicide Handbook

  9. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  10. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  11. The growth response of plants to elevated CO2 under non-optimal environmental conditions

    NARCIS (Netherlands)

    Poorter, H.; Pérez-Soba, M.

    2001-01-01

    Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass

  12. Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L. exposed to copper and lead

    Directory of Open Access Journals (Sweden)

    Li Shufen

    2015-01-01

    Full Text Available The effects of exposure to heavy metals, copper (Cu and lead (Pb in the soil, separately and in combination, were examined in Safflower (Carthamus tinctorius L.. Plant growth and development, GSH level and GSH2 expression at seedling, branching, and flowering stages were studied. Cu at lower concentrations had a stimulating effect on seedling height and root length. A significant positive correlation was observed between heavy metal concentrations and inhibition of plant growth. Plant height, root length and lateral root numbers decreased progressively with increasing concentrations of Cu and Pb. Except at the seedling stage, the metal mixture elicited a synergistic effect on safflower growth and development. The GSH content was significantly reduced in both safflower roots and leaves at increased concentrations of heavy metals, with the exception of the treatment with a low concentration of Cu that resulted in a slightl increase in GSH content at the seedling and branching stages. RT-PCR analysis revealed a negative correlation between GSH2 expression levels and metal concentration. Short exposure to low concentrations of Cu induce an increase in GSH synthesis to preserve normal plant growth, whereas prolonged exposure and large Cu and Pb concentrations affect the GSH metabolic chain, and are severely toxicity. The findings obtained in this study enhance our understanding of the role of the GSH pool in the response of plants to heavy metal-induced stress, and serve as a basis for improved cultivation of safflower.

  13. Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple - a Review.

    Science.gov (United States)

    Mosa, Walid F A E; Sas-Paszt, Lidia; Frąc, Mateusz; Trzciński, Paweł

    2016-08-26

    The excessive use of mineral fertilizers causes many negative consequences for the environment as well as potentially dangerous effects of chemical residues in plant tissues on the health of human and animal consumers. Bio-fertilizers are formulations of beneficial microorganisms, which upon application can increase the availability of nutrients by their biological activity and help to improve soil health. Microbes involved in the formulation of bio-fertilizers not only mobilize N and P but mediate the process of producing crops and foods naturally. This method avoids the use of synthetic chemical fertilizers and genetically modified organisms to influence the growth of crops. In addition to their role in enhancing the growth of the plants, biofertilizers can act as biocontrol agents in the rhizosphere at the same time. Biofertilizers are very safe for human, animal and environment. The use of Azotobacter, Azospirillum, Pseudomonas, Acetobacter, Burkholderia, Bacillus, Paenibacillus and some members of the Enterobacteriaceae is gaining worldwide importance and acceptance and appears to be the trend for the future.

  14. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin.

    Science.gov (United States)

    Tanimoto, Eiichi

    2012-07-01

    Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender

  15. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  16. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    Science.gov (United States)

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  17. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability.

    Science.gov (United States)

    Tall, Susanna; Meyling, Nicolai V

    2018-03-28

    Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.

  18. Effect of planting density and growing media on growth and yield of strawberry

    International Nuclear Information System (INIS)

    Tariq, R.; Qureshi, K.M.; Hassan, I.; Rasheed, M.; Qureshi, U.S.

    2013-01-01

    Strawberry (Fragaria ananasa), belonging to Rosaceae family, is a rich source of vitamins and minerals with delicate flavors. It is perishable crop which is exceedingly in demand for its taste, profitability, high yield and good quality. To make the plant growth successful in the container, the requirement of special media is very important step because plant growth is largely depended on the physiochemical properties of the growing media used. Winter strawberry production in a greenhouse using high plant densities and various media may be a viable alternative to open-field production system. Planting density can be increased thrice by using different production systems. Studies were conducted to see the impact of different planting densities and media on growth and yield of strawberry. The treatments were T 1 = Control, with normal planting distance of 30 cm x 60 cm and growing media silt, sand and farm yard manure (FYM); T 2 = 15 cm 2 x 30 cm and silt, sand and FYM; T 3 = 30 cm x 60 cm and coir; T 4 = 15 cm x 30 cm and coir; T 5 = 30 cm x 60 cm and peat moss; T 6 = 15 cm x 30 cm and 5 6 peat moss. Results showed that plants grown at low planting distance on all growth media showed more pronounced results as compared to high planting distance. Plants grown in peat moss at both planting densities moderately increased the plant height, canopy size, leaf area, number of fruits, fruit size, fruit weight and titratable acidity. A significant increase in fresh and dry weight of leaves, number of leaves, fruit yield in term of fruit number, fruit size and fruit weight, and fruit quality with high ascorbic acid contents were observed. On the other hand, plants grown in silt, sand and FYM (1 : 1 : 1) at both planting densities showed significant increment in vegetative growth resulting in early flowering with more flowers per plant, better fruit setting and fruit set percentage, greater fruit size and weight but fruit number per plant was reduced which lowered the overall

  19. The effect of cutting origin and organic plant growth regulator on the growth of Daun Ungu (Graptophyllum pictum) through stem cutting method

    Science.gov (United States)

    Pratama, S. P.; Yunus, A.; Purwanto, E.; Widyastuti, Y.

    2018-03-01

    Graptophyllum pictum is one of medical plants which has important chemical content to treat diseases. Leaf, bark and flower can be used to facilitate menstruation, treat hemorrhoid, constipation, ulcers, ulcers, swelling, and earache. G. pictum is difficult to propagated by seedling due to the long duration of seed formation, thusvegetative propagation is done by stem cutting. The aims of this study are to obtain optimum combination of cutting origin and organic plant growth regulator in various consentration for the growth of Daun Ungu through stem cutting method. This research was conducted at Research center for Medicinal Plant and Traditional DrugTanjungsari, Tegal Gede, Karanganyar in June to August 2016. Origin of cuttings and organic plant growth regulator were used as treatments factor. A completely randomized design (RAL) is used and data were analyzed by F test (ANOVA) with a confidence level of 95%. Any significant differences among treatment followed with Duncan test at a = 5%. The research indicates that longest root was resulted from the treatment of 0,5 ml/l of organic plant growth regulator. The treatment of 1 ml/l is able to increase the fresh and dry weight of root, treatment of 1,5 ml/l of organic plant growth regulator was able to increase the percentage of growing shoots. Treatment of base part as origin of cuttings increases the length, fresh weight and and dry weight of shoot, increase the number of leaves. Interaction treatment between 1 ml/l consentration of organic plant growth regulator and central part origin of cuttings is capable of increasing the leaf area, whereas treatment without organic plant growth regulator and base part as planting material affects the smallest leaf area.

  20. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  1. Evolutionary CANDU 9 plant improvements

    International Nuclear Information System (INIS)

    Yu, S.K.W.

    1999-01-01

    The CANDU 9 is a 935 MW(e) nuclear power plant (NPP) based on the multi-unit Darlington and Bruce B designs with additional enhancements from our ongoing engineering and research programs. Added to the advantages of using proven systems and components, CANDU 9 offers improvement features with enhanced safety, improved operability and maintenance including a control centre with advanced man-machine interface, and improved project delivery in both engineering and construction. The CANDU 9 NPP design incorporated safety enhancements through careful attention to emerging licensing and safety issues. The designers assessed, revised and evolved such systems as the moderator, end shield, containment and emergency core cooling (ECC) systems while providing an integrated final design that is more passive and severe-accident-immune. AECL uses a feedback process to incorporate lessons learned from operating plants, from current projects experiences and from the implementation or construction phase of previous projects. Most of the requirements for design improvements are based on a systematic review of current operating CANDU stations in the areas of design and reliability, operability, and maintainability. The CANDU 9 Control Centre provides plant staff with improved operability and maintainability capabilities due to the combination of systematic design with human factors engineering and enhanced operating and diagnostics features. The use of advanced engineering tools and modem construction methods will reduce project implementation risk on project costs and schedules. (author)

  2. Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, F; Halevy, A H; Wittwer, S H

    1967-01-01

    Bean and tomato plants were grown in solution culture root media containing pre-determined concentrations of gibberellin A/sub 3/ (GA), 1-naphthalene-acetic acid (NAA), N/sup 6/-benzyladenine (BA), (2-chloroethyl)trimethylammonium chloride (CCC), and at atmospheric levels of 300 and 1000 ppm of CO/sub 2/. Net assimilation rates (NAR), relative growth rates (RGR), leaf area ratios (LAR), root to top dry weight ratios (R/T) and changes in dry weight, size, and form of each organ were recorded. Gibberellin had no effect on RGR of either plant species but increased the NAR of tomatoes at 1000 ppm CO/sub 2/. Total dry weight was only slightly affected by GA but root growth and R/T were markedly depressed. CCC had no effect on NAR, but decreased RGR and LAR. Root growth of beans and R/T in both plants were promoted by CCC. NAR and RGR were strongly inhibited by BA and NAA. Inhibition of stem and leaf growth by CCC and NAA was greater than that for roots; thus, R/T ratios were increased. Root branching was promoted by NAA. High (1000 ppm), compared to the low (300 ppm), atmospheric levels of CO/sub 2/ generally promoted root growth and produced an increase in the R/T, both in the absence and presence of chemical treatment. The multiplicity of effects of the root-absorbed chemical growth substances and CO/sub 2/ on growth and photosynthesis is discussed.

  3. Growth, development, and fertilizer-15N recovery by the coffee plant

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Dourado-Neto, Durval; Favarin, Jose Laercio; Trivelim, Paulo Cesar Ocheuze; Costa, Flavio Murilo Pereira da

    2007-01-01

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of 15 N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha -1 of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and 15 N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  4. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress* #

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses. PMID:28124841

  5. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress.

    Science.gov (United States)

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  6. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  7. Plant growth nutrient (nitrobenzene poisoning with multiple complications

    Directory of Open Access Journals (Sweden)

    Yatendra Singh

    2015-01-01

    Full Text Available Nitrobenzene, a pale yellow oily liquid with an odor of bitter almonds, is used in the synthesis of Aniline dyes, flavoring agent, and also in rubber industry. Recently it is also used as a plant growth nutrient. It causes methemoglobinemia with symptoms including headache, nausea, dizziness, fatigue, shortness of breath, cyanosis, and convulsions. Severe acute exposure to nitrobenzene can cause jaundice, renal failure, and coma, and it may be fatal. We report a case of Plant growth nutrient (nitrobenzene poisoning with multiple complications like hemolytic anemia, renal failure, seizures, and pneumonia. Patient was managed with intravenous methylene blue along with other supportive therapy and survived. So, early aggressive management and a watch on complications might be helpful in saving patient′s life from this poisoning.

  8. growth and development of wetland-grown taro under different plant

    African Journals Online (AJOL)

    Administrator

    Each experimental subplot measured 6 m x 6 m and contained 36, 64 and 144 experimental plants, respectively. During a 5-month growth period, leaf area index (LAI) and corm yield were significantly (P 0.05) effect on taro growth and.

  9. Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants.

    Science.gov (United States)

    Doubková, Pavla; Kohout, Petr; Sudová, Radka

    2013-10-01

    Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant's ability to adapt to nutrient deficiency/excess.

  10. Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR's on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam.

    Directory of Open Access Journals (Sweden)

    Thangavel Selvaraj

    2008-10-01

    Full Text Available Begonia malabarica Lam. (Begoniaceae is one of the important medicinal plants whose main secondary metabolites are luteolin, quercetin and β-sitosterol. The leaves are used for the treatment of respiratory tract infections, diarrhoea, blood cancer and skin diseases. A study was undertaken to determine the effect of arbuscular mycorrhizal (AM fungus, Glomus mosseae, and some plant growth promoting rhizomicro-organisms (PGPR's on the growth, biomass, nutrients, and content of secondary metabolites of B. malabarica plant under green house conditions. Various plant growth parameters (total plant biomass, mycorrhizal parameter, shoot and root phosphorus, mineral content (potassium, iron, zinc, and copper, and secondary metabolites (total phenols, ortho-dihydroxy phenols, tannins, flavonoids, and alkaloids were determined and found to vary with different treatments. Among all the treatments, plants inoculated with 'microbial consortium' consisting of Glomus mosseae + Bacillus coagulans + Trichoderma viride performed better than with other treatments or uninoculated control plants. The results of this experiment clearly indicated that inoculation of B. malabarica with G. mosseae along with PGPR's enhanced its growth, biomass yield, nutrients and secondary metabolites.

  11. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    International Nuclear Information System (INIS)

    Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H.

    2006-01-01

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations

  12. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Cheung, K.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Luo, Y.M. [Institute of Soil Science, Chinese Academy of Sciences, Nanjing (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Wong, M.H. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China) and Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-03-15

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations.

  13. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2.

    Science.gov (United States)

    Jha, Chaitanya Kumar; Patel, Baldev; Saraf, Meenu

    2012-03-01

    A novel Enterobacter cancerogenus MSA2 is a plant growth promoting gamma-proteobacterium that was isolated from the rhizosphere of Jatropha cucas a potentially important biofuel feed stock plant. Based on phenotypic, physiological, biochemical and phylogenetic studies, strain MSA2 could be classified as a member of E. cancerogenus. However, comparisons of characteristics with other known species of the genus Enterobacter suggested that strain MSA2 could be a novel PGPB strain. In vitro studies were carried for the plant growth promoting attribute of this culture. It tested positive for ACC (1-aminocyclopropane-1-carboxylic acid) deaminase production, phytase, phosphate solubilization, IAA (Indole acetic acid) production, siderophore, and ammonia production. The isolate was then used as a inoculant for the vegetative study of Jatropha curcas plant. Enterobacter cancerogenus MSA2 supplemented with 1% carboxymethylcellulose showed overall plant growth promotion effect resulting in enhanced root length (124.14%), fresh root mass (81%), fresh shoot mass (120.02%), dry root mass (124%), dry shoot mass (105.54%), number of leaf (30.72%), chlorophyll content (50.41%), and biomass (87.20%) over control under the days of experimental observation. This study was designed for 120 days and was in triplicate and the data was collected at every 30 days.

  14. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    International Nuclear Information System (INIS)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H.

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as 1 H and 13 C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA 3 -stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed. (author)

  15. Isolation and biological activity of a new plant growth regulator of Vicia faba L

    Energy Technology Data Exchange (ETDEWEB)

    Sembdner, G.; Dathe, W.; Bergner, C.; Roensch, H. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1983-01-01

    Jasmonic acid was identified as a plant growth inhibitor of the pericarp of Vicia faba by means of gas-liquid chromatography, high resolution mass spectrometry as well as /sup 1/H and /sup 13/C NMR. The highest level of jasmonic acid was reached during intensive pericarp growth. Jasmonic acid is a plant growth inhibitor possessing a relative activity in the wheat seedling bioassay of 1-2.5 % compared to ABA (=100%). Contrary to ABA, jasmonic acid does not cause retardation of leaf emergence. In the dwarf rice gibberellin bioassay relative low concentrations of jasmonic acid inhibit both autonomous and GA/sub 3/-stimulated growth. Jasmonic acid does not influence seed germination of Amaranthus caudatus. The possible physiological role of jasmonic acid in the Vicia pericarp and the distribution in plants of this new plant growth regulator type are discussed.

  16. The Contribution of food plants to the growth, development and ...

    African Journals Online (AJOL)

    The Contribution of food plants to the growth, development and fecundity of Zonocerus variegatus (L) ... African Journal of Biotechnology ... The performance of the variegated grasshopper, Zonocerus variegatus (L) fed on different food plants namely cassava (Manihot esculenta), pawpaw (Carica papaya) and acalypha ...

  17. Bedding Improves Yellow-Poplar Growth on Fragipan Soils

    Science.gov (United States)

    John K. Francis

    1979-01-01

    Yellow-poplar can be grown on soils that have a shallow fragipan--but unless such sites are bedded, growth is likely to be extremely poor. In a Tennessee study, bedding increased height of planted yellow-poplar over 5 years, but fertilizer did not. Because of the cost of bedding and the availability of nonfragipan sites, it would ordinarily be better not to plant...

  18. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    Science.gov (United States)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.).

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Shim, Kang-Bo; Lee, Byeong-Won; Hwang, Chung-Dong; Pae, Suk-Bok; Park, Chang-Hwan; Kim, Sung-Up; Lee, Choon-Ki; Baek, In-Youl

    2013-06-28

    Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growthpromoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

  20. Sphagnum growth in floating cultures: Effect of planting design

    Directory of Open Access Journals (Sweden)

    Y. Hoshi

    2017-11-01

    Full Text Available To establish rapid and stable Sphagnum growth, capitulum culture of a selected strain of S. palustre was carried out using a floating culture method. Four planting treatments were tested at mountain and urban sites in Kumamoto Prefecture on Kyushu Island, south-west Japan. Capitula were planted in colonies of different sizes on 30 cm square floating rafts, but with strict control of the number (75–77 of capitula per raft. The initial cover of live green Sphagnum ranged from 15 to 20 %. Growth of the colonies was followed throughout the growing season (April to November of 2008. After three months, green coverage rates reached 40–50 % in all planting treatments. At the end of the growing season, the highest Sphagnum cover (almost 90 % at the urban site was recorded in the planting treatment with eleven re-introduced colonies of seven capitula (‘11×7cap’, while the highest capitulum number and biomass (dry weight gain occurred in the ‘4×19cap’ planting treatment. Average stem elongation ranged from 5 cm to 7 cm in the ‘77×1cap’ and ‘4×19cap’planting treatments, respectively, indicating that the larger sized colony grew longer stems. However, contrary to expectation, the ‘4×19cap’planting treatment - which had the largest colony size - did not deliver the highest number of newly formed side shoots.

  1. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance

  2. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  3. TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses.

    Science.gov (United States)

    Danisman, Selahattin

    2016-01-01

    Plants are sessile and as such their reactions to environmental challenges differ from those of mobile organisms. Many adaptions involve growth responses and hence, growth regulation is one of the most crucial biological processes for plant survival and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factor family is involved in plant development from cradle to grave, i.e., from seed germination throughout vegetative development until the formation of flowers and fruits. TCP transcription factors have an evolutionary conserved role as regulators in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and the model plant Arabidopsis. Early TCP research focused on the regulatory functions of TCPs in the development of diverse organs via the cell cycle. Later research uncovered that TCP transcription factors are not static developmental regulators but crucial growth regulators that translate diverse endogenous and environmental signals into growth responses best fitted to ensure plant fitness and health. I will recapitulate the research on TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of their evolutionarily conserved roles across the plant kingdom, and the variety of signals, both endogenous (circadian clock, plant hormones) and environmental (pathogens, light, nutrients), TCPs respond to in the course of their developmental roles.

  4. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  5. Effect of directed-spray glyphosate applications on survival and growth of planted oaks after three growing seasons

    Science.gov (United States)

    Andrew B. Self; Andrew W. Ezell; Josh L. Moree; Rory O. Thornton

    2013-01-01

    Thousands of acres of oak (Quercus spp.) plantations are established across the South annually. Survival and growth of these plantings have been less than desirable. Several techniques have been utilized in attempts to achieve improved success in these areas. One such technique that has been recommended is the application of directed-spray herbicide...

  6. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M J; Gianello, C [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P I.F.; Carvalho, E B [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1994-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  7. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  8. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

    Directory of Open Access Journals (Sweden)

    Nisha Kadian

    2014-08-01

    Full Text Available A pot experiment was conducted under polyhouse conditions, to evaluate the effect of two different arbuscular mycorrhizal fungi (G. mosseae and A. laevis in combination with Bradyrhizobium japonicum on growth and nutrition of mungbean plant grown under different salt stress levels (4 dS m−1, 8dS m−1 and 12 dS m−1. It was found that under saline conditions, mycorrhizal fungi protect the host plant against the detrimental effect of salinity. The AM inoculated plants showed positive effects on plant growth, dry biomass production, chlorophyll content, mineral uptake, electrolyte leakage, proline, protein content and yield of mungbean plants in comparison to non-mycorrhizal ones but the extent of response varied with the increasing level of salinity. In general, the reduction in Na uptake along with associated increase in P, N, K, electrolyte leakage and high proline content were also found to be better in inoculated ones. The overall results demonstrate that the co-inoculation of microbes with AM fungi promotes salinity tolerance by enhancing nutrient acquisition especially phosphorus (P, producing plant growth hormones, improving rhizospheric and condition of soil by altering the physiological and biochemical properties of the mungbean plant.

  10. Laser effects on the growth and photosynthesis process in mustard plants (Sinapis Alba)

    Science.gov (United States)

    Anghel, Sorin; Stanescu, Constantin S.; Giosanu, Dana; Flenacu, Monica; Iorga-Siman, Ion

    2001-06-01

    In this paper we present the results of our experiments concerning the influence of the low energy laser (LEL) radiation on the germination, growth and photosyntheses processes in mustard plants (sinapis alba). We used a He-Ne laser ((lambda) equals 632.8 nm, P equals 6 mW) to irradiate the mustard seeds with different exposure times. The seeds were sowed and some determinations (the germination and growth intensity, chlorophyll quantity, and respiration intensity) were made on the plant culture. We ascertained that the germination and growth of the plants are influenced by the irradiation. Also, the chlorophyll quantity is the same for both plants from irradiated and non-irradiated seeds but the respiration and photosynthesis processes are influenced by the irradiation.

  11. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  12. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  13. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. Acclimation improves salt stress tolerance in Zea mays plants.

    Science.gov (United States)

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  17. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  18. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    characteristics of plant growth promoting rhizobacteria (PGPR) and hence selected for further study. The sixty ... tolerance to a wide range of pH by most of the isolates. The 66 isolates ... chemicals and change in traditional cultivation practices ...

  19. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  20. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  1. the role of plant growth regulators in morphogenesis

    Directory of Open Access Journals (Sweden)

    A. Mujib

    2018-01-01

    Full Text Available Althaea officinalis L. (marshmallow belonging to the Malvaceae family, is an important plant that contains a variety of important phytocompounds including asparagine, pectin, flavonoids, polyphenolic acid, and scopoletin. The yield of these compounds can be improved using biotechnological methods that allow for a steady and continuous regeneration of plant material. To the best of our knowledge, thus far, the In vitro clonal multiplication of marshmallow has not been attempted on a large scale. Therefore, in this study, we developed callus induction and multiple shoot regeneration protocols from explants. All the explants, i.e., roots, nodes, and leaves, evoked compact white or yellow calli in a medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, which grew vigorously. The callus induction frequency was the highest (62.1% from stem nodes, followed by leaves (39.1% and roots (27.5%. The differential behavior of explants in response to various plant growth regulators (PGRs was studied. The calli from leaves and roots were noted to be non-organogenic/embryogenic in media containing different PGR concentrations and have been described in this communication. The stem nodes used were cultured on MS media amended with different concentrations of benzyl-amino-purine (BAP: 0.5, 1.0, and 2.0 mg/l. Multiple shoots were formed at variable numbers, the maximum being in a medium supplemented with 1.0 mg/l of BAP. The induced shoots were rooted in IBA-, NAA-, and IAA-amended media, where IBA at 0.5 mg/l induced a maximum number of roots (8.8 roots/shoot. The regenerated plants were transferred to plastic pots, filled with soilrite and soil (1 : 1, and finally, transferred to outdoor conditions.

  2. An overview of the United States Department of Energy plant lifetime improvement program

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Clauss, J.M.; Harrison, D.L.

    1993-01-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US. The operating license of the first of these plants will expire in the year 2000; one third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: (1) establishment of the regulations, technical standards, and procedures for the preparation and review of a license renewal application; (2) development, verification, and validation of the various technical criteria and bases for needed monitoring, refurbishment, or replacement of plant equipment; and (3) demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE's Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues, including degradation of long-lived components, reactor pressure vessel (RPV) embrittlement management approaches, and analytical methodologies to characterize RPV integrity

  3. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  4. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  5. System 80+ Design and Licensing : Improving Plant Reliability

    International Nuclear Information System (INIS)

    Newman, Robert E.

    1989-01-01

    The U. S. nuclear industry is striving to improve plant reliability and availability through improved plant design, component designs and plant maintenance. In an effort to improve safety and to demonstrate that commercial nuclear power is economically competitive with other energy sources, the utilities, nuclear vendors, architect engineers and constructors, and component suppliers are all participating in an industry-wide effort to develop improved Light Water Reactor (LWR) designs that are based upon the many years of successful LWR operation. In an age when the world faces the environmental pressures of the greenhouse effect and acid rain, electricity generated from nuclear energy must play an increasing role in the energy picture of Korea, the United States and the rest of the world. This paper discusses the plant availability requirement that has been established by the industry-wide effort mentioned above. After briefly describing Combustion Engineering's program for development of the System 80 Plus standard design and the participation of the Korea Advanced Energy Research Institute (KAERI) in the program, the paper then describes the design features that are being incorporated into System 80+. The industry ALRR Program has established a very ambitious criterion of 87% for the plant availability of future nuclear units. To satisfy such a requirement, the next generation of nuclear plants will include a great many design improvements that reflect the hundreds of years of operating experience that we have accrued. C-ESA's System 80+ will include a number of design changes that improve operating margins and make the plant easier to operate and maintain. Not surprisingly, there is a great deal of overlap between improved safety and improved reliability. In the end, our design will satisfy the future needs of the utilities, the regulators, and the public. C-E is very pleased that KAERI is working with US to achieve these important goals

  6. Effect of plant growth regulators on regeneration of the endangered ...

    African Journals Online (AJOL)

    Development of an efficient in vitro regeneration protocol of Calligonum comosum is important and that has achieved to protect the endangered multipurpose medicinally important desert plant in the Kingdom of Bahrain. Nodal segments were used as explants source and the effect of various plant growth regulators (PGRs) ...

  7. Management of textile wastewater for improving growth and yield of field mustard (Brassica campestris L.).

    Science.gov (United States)

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Komal, Aqleema; Naveed, Muhammad

    2017-09-02

    Disposal of industrial wastewater is a current issue of urbanization. However, this problem can be sorted out by using wastewater as an alternate source of irrigation after the addition of some amendment. In this way, the problem of disposal of wastewater not only will be resolved but also scarcity of irrigation water can be kept off in the future. The current research study was performed to evaluate the influence of different concentrations of wastewater along with canal water for enhancing growth and yield of field mustard. Plants were irrigated with different mixtures of canal water and wastewater (75:25, 50:50, 25:75, and 00:100) in addition to canal water as control. The results revealed that application of 50:50% waste and canal water improved plant height, the number of pods plant -1 , pod length, root length, root dry weight, shoot dry weight, 100 grain weight, grain and biomass yield plant -1 , and nitrogen, phosphorus, and potassium concentration in grain and straw up to 16%, 15%, 17%, 29%, 15%, 56%, 25%, 41%, 35%, 20%, 52%, 45%, 20%, 44%, and 42%, respectively, over positive control treatment. While, nutrient uptakes and agronomic efficiency of fertilizers also improved by the application of 50:50% canal and wastewater compared to positive control treatment. Furthermore, the concentration of heavy metals, predominantly Cr, Cu, Cd, and Pb, was reduced in grains by application of 50% canal water and 50% wastewater. The outcomes suggest that wastewater utilization along with canal water mixing might be an effective approach for enhancing growth and yield of field mustard.

  8. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    Science.gov (United States)

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  9. Thermal diagnostics in power plant to improve performance

    International Nuclear Information System (INIS)

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  10. Effect of Plant Growth Promoting Rhizobacteria on Yield and Yield Components of Garlic Medicinal Plant (Allium sativum L. under the Conditions of Different Organic and Chemical Fertilizers Application

    Directory of Open Access Journals (Sweden)

    Yaser Esmaeilian

    2018-03-01

    Full Text Available Introduction: In recent years, the effect of exogenous organic amendments on soil properties and plant growth characteristics has received renewed attention. Although the utilization of mineral fertilizers could be viewed as the best solution in terms of plant productivity, this approach is often inefficient in long-term in tropical ecosystems due to the limited ability of low-activity clay soils to retain nutrients. Intensive use of agrochemicals in agricultural systems is also known to have irreversible effects on soil and water resources. Vermicompost is currently being promoted to improve soil quality, reduce water and fertilizer needs and therefore increase the sustainability of agricultural practices in tropical countries. Vermicomposting is a process which stabilizes organic matter under aerobic and mesophilic conditions through the joint action of earthworms and microorganisms. The products of vermicomposting have been successfully used to suppress plant pests and diseases, as well as increase crop productivity. Cow manure is an excellent fertilizer containing nitrogen, phosphorus, potassium and other nutrients. It also adds organic matter to the soil which may improve soil structure, aeration, soil moisture-holding capacity, and water infiltration. Biofertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help plants' nutrients uptake by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes in soil which augment the extent of availability of nutrients in a form easily assimilated by plants. Very often microorganisms are not as efficient in natural surroundings as one would expect them to be and therefore artificially multiplied cultures of efficient selected microorganisms play a vital role in accelerating the microbial processes in soil. Garlic (Allium sativum L. is a very powerful medicinal plant that is

  11. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  12. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    International Nuclear Information System (INIS)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; Lelie, Daniel van der; Carleer, Robert; Vangronsveld, Jaco

    2010-01-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l -1 TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l -1 TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. - The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  13. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  14. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization.

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D'Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-08-06

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  15. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva in Conditions of Reduced Fertilization

    Directory of Open Access Journals (Sweden)

    Elisa Gamalero

    2013-08-01

    Full Text Available Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.

  16. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva) in Conditions of Reduced Fertilization

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Manassero, Paola; Marsano, Francesco; Todeschini, Valeria; Cantamessa, Simone; Copetta, Andrea; D’Agostino, Giovanni; Gamalero, Elisa; Berta, Graziella

    2013-01-01

    Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry. PMID:23924942

  17. Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings.

    Science.gov (United States)

    Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-09-01

    Corn (Zea mays L.) is one of the most important cereal crops in the world and is used for food, feed and energy. Inoculation with plant-growth-promoting rhizobacteria (PGPR) would reduce the use of chemical fertilisers and pesticides and could be suggested as an alternative practice for sustainable production of corn in modern agricultural systems. In this study, the effect of two Bacillus PGPR formulated products, Companion (B. subtilis GB03) and FZB24 (B. subtilis FZB24), on corn growth and root uptake of insecticide thiamethoxam was investigated. All bacterial treatments enhanced root biomass production by 38-65% compared with the uninoculated control, with no stimulatory effect of PGPR on above-ground biomass of corn. The uptake results revealed that, in plants inoculated with the PGPR B. subtilis FZB24 and B. subtilis GB03, singly or in combination, the uptake and/or systemic translocation of thiamethoxam in the above-ground corn parts was significantly higher at the different growth ages compared with the control receiving no bacterial treatment. The findings suggest that the PGPR-elicited enhanced uptake of thiamethoxam could lead to improved efficiency of thiamethoxam using reduced rates of pesticides in combination with PGPR as an alternative crop protection technique. © 2014 Society of Chemical Industry.

  18. The effect of plant growth regulators, explants and cultivars on ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... The effect of plant growth regulators, explants and cultivars on spinach (Spinacia oleracea L.) tissue culture. Taha Roodbar Shojaei1*, Vahid Salari2, Darioush Ramazan3, Mahdi Ehyaei1, Javad. Gharechahi4 and Roya Motallebi Chaleshtori5. 1Department of Agronomy and Plant Breeding, College of ...

  19. Natural transformation in plant breeding - a biotechnological platform for quality improvement of ornamental, agricultural and medicinal plants

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Himmelboe, Martin

    2015-01-01

    Compactness is a desirable trait in ornamental plant breeding because it is preferred by producers, distributors and consumers. Presently, in ornamental plant production growth of many potted plants is regulated by application of chemical growth retardants, several of which are harmful to both...... (rol)-genes rolA, rolB, rolC and rolD among 18 ORFs, into the plant genome. Infection of plants by A. rhizogenes induces hairy roots, from which shoots containing rol-genes can be regenerated. Natural transformation with A. rhizogenes reveals very promising results in several plant species and can...... be useful in a broader range of application than ornamental breeding. One important aspect of this technology is that the hairy roots can be used directly in the selection proceß as a primary indicator of a succeßful transformation. Thus the technology avoids use of undesired antibiotic resistance marker...

  20. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    Science.gov (United States)

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  2. Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Elías, J M; Guerrero-Molina, M F; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2018-05-01

    Induced systemic resistance (ISR) is one of the indirect mechanisms of growth promotion exerted by plant growth-promoting bacteria, and can be mediated by ethylene (ET). We assessed ET production and the expression of related genes in the Azospirillum-strawberry plant interaction. Ethylene production was evaluated by gas chromatography in plants inoculated or not with A. brasilense REC3. Also, plants were treated with AgNO 3 , an inhibitor of ET biosynthesis; with 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ET biosynthesis; and with indole acetic acid (IAA). Plant dry biomass and the growth index were determined to assess the growth-promoting effect of A. brasilense REC3 in strawberry plants. Quantitative real time PCR (qRT-PCR) was performed to analyse relative expression of the genes Faetr1, Faers1 and Faein4, which encode ET receptors; Factr1 and Faein2, involved in the ET signalling pathway; Faacs1 encoding ACC synthase; Faaco1 encoding ACC oxidase; and Faaux1 and Faami1 for IAA synthesis enzymes. Results showed that ET acts as a rapid and transient signal in the first 12 h post-treatment. A. brasilense REC3-inoculated plants had a significantly higher growth index compared to control plants. Modulation of the genes Faetr1, Faers1, Faein4, Factr1, Faein2 and Faaco1 indicated activation of ET synthesis and signalling pathways. The up-regulation of Faaux1 and Faami1 involved in IAA synthesis suggested that inoculation with A. brasilense REC3 induces production of this auxin, modulating ET signalling. Ethylene production and up-regulation of genes associated with ET signalling in strawberry plants inoculated with A. brasilense REC3 support the priming activation characteristic of ISR. This type of resistance and the activation of systemic acquired resistance previously observed in this interaction indicate that both are present in strawberry plants, could act synergistically and increase protection against pathogens. © 2018 German Society

  3. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants

    Science.gov (United States)

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants. PMID:28187139

  4. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  5. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    Science.gov (United States)

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  6. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil

    OpenAIRE

    El-Sayed, Wael S.; Akhkha, Abdellah; El-Naggar, Moustafa Y.; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Alm...

  7. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  8. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  9. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics

    Directory of Open Access Journals (Sweden)

    Ryan P. Bartelme

    2018-01-01

    Full Text Available As the processes facilitated by plant growth promoting microorganisms (PGPMs become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems.

  10. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics.

    Science.gov (United States)

    Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems.

  11. The correlation between plant growth and intercepted radiation: an interpretation in terms of optimal plant nitrogen content

    International Nuclear Information System (INIS)

    Dewar, R.C.

    1996-01-01

    Photosynthesis of leaves is commonly observed to have a saturating response to increases in their nitrogen (N) content, while the response of plant maintenance respiration is more nearly linear over the normal range of tissue N contents. Hence, for a given amount of foliage, net primary productivity (NPP) may have a maximum value with respect to variations in plant N content. Using a simple analytically-solvable model of NPP, this idea is formulated and its broad implications for plant growth are explored at the scale of a closed stand of vegetation. The maximum-NPP hypothesis implies that NPP is proportional to intercepted radiation, as commonly observed. The light utilization coefficient (ε), defined as the slope of this relationship, is predicted to be ε = αY g (1−λ) 2 , where α is the quantum yield, Y g is the biosynthetic efficiency, and λ is a dimensionless combination of physiological and environmental parameters of the model. The maximum-NPP hypothesis is also consistent with observations that whole-plant respiration (R) is an approximately constant proportion of gross canopy photosynthesis (A c ), and predicts their ratio to be R:A c = 1−Y g (1−λ). Using realistic parameter values, predicted values for ε and R:A c are typical of C 3 plants. ε is predicted to be independent of plant N supply, consistent with observations that long-term growth responses to N fertilization are dominated by increased light interception associated with increased growth allocation to leaf area. Observed acclimated responses of plants to atmospheric [CO 2 ], light and temperature are interpreted in terms of the model. (author)

  12. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    International Nuclear Information System (INIS)

    1981-01-01

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations

  13. Impacts of Plant Growth-Promoting Rhizobacteria-based Biostimulants on Wheat Growth under Greenhouse and Field Conditions

    OpenAIRE

    Nguyen, Minh; Ongena, Marc; Colinet, Gilles; Vandenbol, Micheline; Spaepen, Stijn; Bodson, Bernard; Jijakli, Haissam; du Jardin, Patrick; Delaplace, Pierre

    2015-01-01

    Plant Growth-Promoting Rhizobacteria (PGPR) are one of the main biostimulant classes due to their capacity of stimulating root growth and enhancing soil mineral availability, hence increasing nutrient use efficiency in crops. The aim of this study is to screen commercially PGPR-containing products to enhance wheat growth and yield in combination with an optimized nitrogen (N) fertilizer application scheme. This could lead to a significant reduction of N fertilizer application without affectin...

  14. Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.

    Science.gov (United States)

    Best, Norman B; Hartwig, Thomas; Budka, Joshua S; Bishop, Brandon J; Brown, Elliot; Potluri, Devi P V; Cooper, Bruce R; Premachandra, Gnanasiri S; Johnston, Cliff T; Schulz, Burkhard

    2014-01-01

    Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay.

  15. Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants – a current review

    Directory of Open Access Journals (Sweden)

    Bergstrand Karl-Johan I.

    2017-06-01

    Full Text Available Chemical plant growth regulators (PGRs are used in the production of ornamental potted and bedding plants. Growth control is needed for maximizing production per unit area, reducing transportation costs and to obtain a desired visual quality. However, the use of PGRs is associated with toxicity risks to humans and the environment. In many countries the availability of PGRs is restricted as few substances are registered for use. A number of alternative methods have been suggested. The methods include genetic methods (breeding and crop cultivation practices such as fertigation, temperature and light management. A lot of research into “alternative” growth regulation was performed during the 1980-1990s, revealing several possible ways of using different climatic factors to optimize plant growth with respect to plant height. In recent years, the interest in climatic growth regulation has been resurrected, not least due to the coming phase-out of the plant growth regulator chlormequat chloride (CCC. Today, authorities in many countries are aiming towards reducing the use of agrochemicals. At the same time, there is a strong demand from consumers for products produced without chemicals. This article provides a broad overview of available methods for non-chemical growth control. It is concluded that a combination of plant breeding and management of temperature, fertigation and light management has the potential of replacing chemical growth regulators in the commercial production of ornamental pot- and bedding plants.

  16. Antifungal activity of plant growth-promoting rhizobacteria isolates ...

    African Journals Online (AJOL)

    Seven plant growth-promoting rhizobacterial (PGPR) strains were isolated from the rhizoplane and rhizosphere of wheat from four different sites of Pakistan. These strains were analyzed for production of indole acetic acid (IAA), phosphorous solublization capability and inhibition of Rhizoctonia solani on rye agar medium.

  17. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana.

    Science.gov (United States)

    Vasseur, François; Exposito-Alonso, Moises; Ayala-Garay, Oscar J; Wang, George; Enquist, Brian J; Vile, Denis; Violle, Cyrille; Weigel, Detlef

    2018-03-27

    Seed plants vary tremendously in size and morphology; however, variation and covariation in plant traits may be governed, at least in part, by universal biophysical laws and biological constants. Metabolic scaling theory (MST) posits that whole-organismal metabolism and growth rate are under stabilizing selection that minimizes the scaling of hydrodynamic resistance and maximizes the scaling of resource uptake. This constrains variation in physiological traits and in the rate of biomass accumulation, so that they can be expressed as mathematical functions of plant size with near-constant allometric scaling exponents across species. However, the observed variation in scaling exponents calls into question the evolutionary drivers and the universality of allometric equations. We have measured growth scaling and fitness traits of 451 Arabidopsis thaliana accessions with sequenced genomes. Variation among accessions around the scaling exponent predicted by MST was correlated with relative growth rate, seed production, and stress resistance. Genomic analyses indicate that growth allometry is affected by many genes associated with local climate and abiotic stress response. The gene with the strongest effect, PUB4 , has molecular signatures of balancing selection, suggesting that intraspecific variation in growth scaling is maintained by opposing selection on the trade-off between seed production and abiotic stress resistance. Our findings suggest that variation in allometry contributes to local adaptation to contrasting environments. Our results help reconcile past debates on the origin of allometric scaling in biology and begin to link adaptive variation in allometric scaling to specific genes. Copyright © 2018 the Author(s). Published by PNAS.

  18. Effect of arbuscular mycorrhiza on the growth and development of micropropagated Annona cherimola plants

    Directory of Open Access Journals (Sweden)

    Concepcion Azcón-Aguilar

    1994-05-01

    Full Text Available Annona cherimola Mill., cherimoya, is a tropical plantation crop of interest in fruit culture. Micropropagation techniques have been developed due to the need to increase productivity through clonal selection. Because of the mycorrhizal dependence exhibited by this crop for optimal growth and the recognized role of mycorrhiza establishment for the survival and development of most of the plants produced in vitro, the effect of mycorrhiza inoculation on the development of micropropagated plants of Annona cherimola was investigated. Mycorrhizal inoculation was assayed at two different stages of the micropropagation process: (i immediately after the in vitro phase, before starting the acclimatization period, and (ii after the acclimatization phase, before starting the post-acclimatization period under greenhouse conditions. Plantlet survival was about 50 % after the acclimatization period. Plant growth and development profited remarkably from mycorrhiza establishment. Most of the arbuscular mycorrhizal fungi (AMF assayed greatly increased shoot and root biomass and leaf area. Micropropagated Annona plants seem to be more dependent on mycorrhiza formation for optimal growth than plants derived from seeds. The greatest effects of AMF on plant growth were observed when they were introduced after the acclimatization period.

  19. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. INFLUENCE OF SURFACE-ACTIVE RHAMNOLIPID BIOCOMPLEX AND ETHYLTHIOSULFANILATE ON GROWTH AND BIOCHEMICAL PARAMETERS OF PLANTS IN THE OIL CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    A. R. Banya

    2015-10-01

    Full Text Available The aim of the work was to study the influence of rhamnolipid biocomplex and ethylthiosulfanilate on field pea and sorghum plants when growing in petroleum contaminated soil. Plant seeds were treated with solutions of rhamnolipid biocomplex or ethylthiosulfanilate (0.01 g/l before planting and grown in containers with soil artificially contaminated with petroleum (5, 8 and 10%. Effect of rhamnolipid biocomplex and ethylthiosulfanilate was determined by the determination of growth (weight, length plants and biochemical parameters (content of photosynthetic pigments, hydrogen peroxide, malondialdehyde. The stimulating effect of rhamnolipid biocomplex and ethylthiosulfanilate on growth parameters of field pea was shown: the shoot mass has significantly increased on 39%, root mass – on 26% if compared with the control. For sorghum somewhat smaller increase of growth parameters was observed. Under the influence of rhamnolipid biocomplex and ethylthiosulfanilate the content of photosynthetic pigments in field pea and sorghum has also increased. It was determined that the action rhamnolipid biocomplex and ethylthiosulfanilate promoted the decrease of indicators of plant oxidative reactions if compared with control: the content of hydrogen peroxide – in average on 15% and 16%, malondialdehyde – on 13.5% and 16% respectively. The results of the study testify to the effectiveness of rhamnolipid biocomplex and ethylthiosulfanilate as growth stimulators for field pea and sorghum, as well as improvement of adaptive capability of plants to unfavorable conditions. It creates the prospects of their application as effective and ecologically safe substances for the intensification of contaminated soil phytoremediation.

  1. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    Science.gov (United States)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  2. Improved expression of recombinant plant-made hEGF.

    Science.gov (United States)

    Thomas, David Rhys; Walmsley, Amanda Maree

    2014-11-01

    The yield of recombinant hEGF was increased approximately tenfold through a range of optimisations. Further, the recombinant protein was found to have biological activity comparable to commercial hEGF. Human epidermal growth factor (hEGF) is a powerful mitogen that can enhance the healing of a wide range of injuries, including burns, cuts, diabetic ulcers and gastric ulcers. However, despite its clinical value, hEGF is only consistently used for the treatment of chronic diabetic ulcers due to its high cost. In this study, hEGF was transiently expressed in Nicotiana benthamiana plants and targeted to the apoplast, ER and vacuole. Several other approaches were also included in a stepwise fashion to identify the optimal conditions for the expression of recombinant hEGF. Expression was found to be highest in the vacuole, while targeting hEGF to the ER caused a decrease in total soluble protein (TSP). Using a codon optimised sequence was found to increase vacuolar targeted hEGF yield by ~34 %, while it was unable to increase the yield of ER targeted hEGF. The use of the P19 silencing inhibitor was able to further increase expression by over threefold, and using 5-week-old plants significantly increased expression compared to 4- or 6-week-old-plants. The combined effect of these optimisations increased expression tenfold over the initial apoplast targeted construct to an average yield of 6.24 % of TSP. The plant-made hEGF was then shown to be equivalent to commercial E. coli derived hEGF in its ability to promote the proliferation of mouse keratinocytes. This study supports the potential for plants to be used for the commercial production of hEGF, and identifies a potential limitation for the further improvement of recombinant protein yields.

  3. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  4. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  5. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Rose Rizvi

    2012-12-01

    Full Text Available Soil application of organics has been explored as an alternative means of organic management of plant-parasitic nematodes. Efficiency of different oil-seed cakes of neem (Azadirachta indica, castor (Ricinus communis, groundnut (Arachis hypogaea, linseed (Linum usitatissimum, sunflower (Helianthus annuus and soybean (Glycine max were evaluated in field conditions with association of Pseudomonas fluorescens in relation to growth parameters of chickpea and population of plant-parasitic nematodes. Their efficacious nature was highly effective in reducing the population of these dominant soil nematodes. Significant improvement was observed in plant-growth parameters such as plant weight, percent pollen fertility, pod numbers, root-nodulation and chlorophyll content of chickpea, seemed to be due to reduction in disease incidence and might be due to growth promoting substances secreted by P. fluorescens. The multiplication rate of nematodes was less in the presence of P. fluorescens as compared to its absence. Most effective combination of P. fluorescens was observed with neem cake.

  6. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    Science.gov (United States)

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    Science.gov (United States)

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS.

    Science.gov (United States)

    Kim, Ji Seong; Lee, Jeong Eun; Nie, Hualin; Lee, Yong Jae; Kim, Sun Tae; Kim, Sun-Hyung

    2018-02-01

    In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.

  9. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. Missouri plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  10. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri� plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  11. Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential.

    Science.gov (United States)

    Souza, Mayara S T; de Baura, Valter A; Santos, Sandra A; Fernandes-Júnior, Paulo Ivan; Reis Junior, Fábio B; Marques, Maria Rita; Paggi, Gecele Matos; da Silva Brasil, Marivaine

    2017-04-01

    A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL -1 and 107-1038 µmol L -1 , respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.

  12. Plant