WorldWideScience

Sample records for improve operational efficiency

  1. An efficiency improvement in warehouse operation using simulation analysis

    Science.gov (United States)

    Samattapapong, N.

    2017-11-01

    In general, industry requires an efficient system for warehouse operation. There are many important factors that must be considered when designing an efficient warehouse system. The most important is an effective warehouse operation system that can help transfer raw material, reduce costs and support transportation. By all these factors, researchers are interested in studying about work systems and warehouse distribution. We start by collecting the important data for storage, such as the information on products, information on size and location, information on data collection and information on production, and all this information to build simulation model in Flexsim® simulation software. The result for simulation analysis found that the conveyor belt was a bottleneck in the warehouse operation. Therefore, many scenarios to improve that problem were generated and testing through simulation analysis process. The result showed that an average queuing time was reduced from 89.8% to 48.7% and the ability in transporting the product increased from 10.2% to 50.9%. Thus, it can be stated that this is the best method for increasing efficiency in the warehouse operation.

  2. Self-assessment as an approach to improvement of efficient implementation of Ukrainian NPP operational experience

    International Nuclear Information System (INIS)

    Pecheritsya, L.M.; Lyigots'kij, O.Yi.; Pecheritsya, O.V.; Tarasenko, V.M.

    2012-01-01

    the paper contains a brief description of the procedure for implementation of operational experience, focuses on the role of self -assessment in efficient use of operational experience, presents a review of international and national practices of self-assessment and review of the main features, issues and ways to improve self-assessment of efficient use of operational experience in Ukraine

  3. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    Science.gov (United States)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  4. Surface Operations Systems Improve Airport Efficiency

    Science.gov (United States)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  5. Completion plug design provides improved operational efficiency and safety while minimizing environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Dum, Frank [T.D. Williamson, Inc., Tulsa, OK (United States)

    2012-07-01

    Pipeline repair standards have been raised with recent improvements for completion plugs when used with a brand new setting tool, resulting in lower environmental risks, improved operational efficiency and safety. The design changes were originally made to serve in an offshore environment in order to minimize the diver's time in the water and simplify steps by the diver to execute pipeline repair operations in cold, dark conditions. Enhancements in the design include fewer number of fittings, plugs, o-rings and gaskets isolating the pipeline product found inside the pipe. The new design is a step toward meeting strict operational and safety standards demanded in the field of pipeline maintenance and repair. (author)

  6. Improving operating room efficiency in academic children's hospital using Lean Six Sigma methodology.

    Science.gov (United States)

    Tagge, Edward P; Thirumoorthi, Arul S; Lenart, John; Garberoglio, Carlos; Mitchell, Kenneth W

    2017-06-01

    Lean Six Sigma (LSS) is a process improvement methodology that utilizes a collaborative team effort to improve performance by systematically identifying root causes of problems. Our objective was to determine whether application of LSS could improve efficiency when applied simultaneously to all services of an academic children's hospital. In our tertiary academic medical center, a multidisciplinary committee was formed, and the entire perioperative process was mapped, using fishbone diagrams, Pareto analysis, and other process improvement tools. Results for Children's Hospital scheduled main operating room (OR) cases were analyzed, where the surgical attending followed themselves. Six hundred twelve cases were included in the seven Children's Hospital operating rooms (OR) over a 6-month period. Turnover Time (interval between patient OR departure and arrival of the subsequent patient) decreased from a median 41min in the baseline period to 32min in the intervention period (p<0.0001). Turnaround Time (interval between surgical dressing application and subsequent surgical incision) decreased from a median 81.5min in the baseline period to 71min in the intervention period (p<0.0001). These results demonstrate that a coordinated multidisciplinary process improvement redesign can significantly improve efficiency in an academic Children's Hospital without preselecting specific services, removing surgical residents, or incorporating new personnel or technology. Prospective comparative study, Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Improving operating room first start efficiency - value of both checklist and a pre-operative facilitator.

    Science.gov (United States)

    Panni, M K; Shah, S J; Chavarro, C; Rawl, M; Wojnarwsky, P K; Panni, J K

    2013-10-01

    There are multiple components leading to improved operating room efficiency. We undertook a project focusing on first case starts; accounting for each delay component on a global basis. Our hypothesis was there would be a reduction in first start delays after we implemented strategies to address the issues identified through this accounting process. An orange sheet checklist was implemented, with specific items that needed to be clear prior to roll back to the operating room (OR), and an OR facilitator was employed to intervene whenever there were any missing items needed for a specific patient. We present the data from this quality improvement project over an 18-month period. Initially, 10.07 (± 0.73) delayed first starts occurred per day but declined steadily over time to a low of 4.95 (± 0.38) per day after 6 months (-49.2 %, P < 0.001). By the end of the project, the most common reasons for delay still included late surgical attending (19%), schedule changes (14%) as well as 'other reasons' (13%), but with an overall reduction per day of each. Total anaesthesia delay initially totalled 11% of the first start delays, but was negligible (< 1%) at the project's completion. While we have a challenging operating room environment based on our patient population, multiple trainees in both the surgery and anaesthesiology teams: an orange sheet - pre-operative checklist in addition to a dedicated pre-operative facilitator; allowed us to make a substantial improvement in our first start on time starts. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Efforts to Improve Efficiency of Extraction Well Operation at the Fernald Preserve, Harrison, Ohio – 16177

    Energy Technology Data Exchange (ETDEWEB)

    Glassmeyer, Cathy [Navarro Research and Engineering; Hooten, Gwen [U.S. Department of Energy, Office of Legacy Management; Hertel, Bill [Navarro Research and Engineering; Broberg, Ken [Nararro Research and Engineering

    2016-03-01

    The Fernald Preserve, a former uranium processing facility that produced high-purity uranium metal products during the Cold War, is located in southwest Ohio. The facility became a US Department of Energy Office of Legacy Management (LM) site in November 2006, following completion of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration (with the exception of groundwater). When the site was turned over to LM, approximately 76.5 ha of the Great Miami Aquifer remained contaminated with uranium above the final remediation level of 30 μg/L. Here, uranium contamination is being removed from groundwater in the Great Miami Aquifer through a pump-and-treat operation, which is predicted to continue until 2033. Twenty extraction wells pump about 30 million liters per day. Operation of the system is impacted by iron in the groundwater that promotes iron fouling of the well pumps, motors, and screens. The design of the well field evolved over 21 years and reflected a conservative system that could respond to a wide range of pumping conditions. For instance, some of the extraction wells were sized with pumps and motors that would allow the well to pump up to 1890 L/min (500 gpm) if warranted. The added flexibility, though, came at the cost of operational efficiency. We describe the efforts that have been taken by LM since the Fernald site was transferred to LM to mitigate the operational impacts from the iron fouling aquifer conditions and improve the efficiency of the well-field operation. Variable-frequency drives were installed at six wells to replace flow control valves. Several wells with oversized pumps and motors were changed from 24-hour per day operation to 8-hour per day operation to allow the pumps to operate closer to their design flow rates. Pumps and motors were “right-sized” at many wells to improve pumping efficiency. The process used to rehabilitate (or clean) well screens was improved, and

  9. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  10. Efficient boiler operations sourcebook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.W. (comp.)

    1985-01-01

    This book emphasizes the practical aspects of industrial and commercial boiler operations. It starts with a comprehensive review of general combustion and boiler fundamentals and then deals with specific efficiency improvement methods, and the cost savings which result. The book has the following chapter headings: boiler combustion fundamentals; boiler efficiency goals; major factors controlling boiler efficiency; boiler efficiency calculations; heat loss; graphical solutions; preparation for boiler testing; boiler test procedures; efficiency-related boiler maintenance procedures; boiler tune-up; boiler operational modifications; effect of water side and gas side scale deposits; load management; auxillary equipment to increase boiler efficiency; air preheaters and economizers; other types of auxillary equipment; combustion control systems and instrumentation; boiler O/sub 2/ trim controls; should you purchase a new boiler.; financial evaluation procedures; case studies. The last chapter includes a case study of a boiler burning pulverized coal and a case study of stoker-fired coal.

  11. Operational efficiency of forest energy supply chains in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D

    2012-06-15

    Ambitious international efforts to combat climate change have lead to a large interest about the use of forest biomass for energy in many countries. In order to meet the expected growing demand in the future, it will be necessary to improve operational efficiency of existing forest energy supply chains and support the establishment of efficient supply chains in new operational environments. The thesis applied a three-dimensional approach which examines forest energy supply chains from a technical, social and economic viewpoint. Four case studies in different operational environments have been carried out to investigate the applicability of the three dimensional approach to improve operational efficiency. The technical dimension was investigated in Paper 1 and 2. In Paper 1, the effects of climatic conditions, covering of piles, and partial debarking on drying of roundwood were studied in four experimental trials located in Scotland, Finland and Italy. In Paper 2, the chipping of forest biomass was studied in two different operational environments. The investigation of the social dimension in Paper 3 provides insights into the setup of two different supply chains through business process mapping and simulation. Finally, in paper 4, which investigated the economic dimension, an analysis of the effect of the operational environment on technology selection and design of supply chains, is presented. The thesis demonstrates that the chosen approach was practical to investigate the complex relationships between the chosen technologies and different supply chain actors and stakeholders thereby contributing to maintain or improve operational efficiency of forest energy supply chains. Due to its applicability in different operational environments, the approach is also suitable in a more global context. Furthermore, it captures the effect of different aspects and characteristics of the various operational environments on the setup and organization of supply chains. This will

  12. Operational Efficiency and Productivity Improvement Initiatives in a Large Cardiac Catheterization Laboratory.

    Science.gov (United States)

    Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R

    2018-02-26

    This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  14. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    International Nuclear Information System (INIS)

    Parsapour, Amir; Dehkordi, Behzad Mirzaeian; Moallem, Mehdi

    2015-01-01

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared. - Highlights: • Continuous current method for Switched Reluctance Motor (SRM) is explained. • An improved analytical technique is presented for SRM core loss calculation. • SRM losses in discontinuous and continuous current operation modes are presented. • Effect of mutual inductances on SRM performance is investigated

  15. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    Energy Technology Data Exchange (ETDEWEB)

    Parsapour, Amir, E-mail: amirparsapour@gmail.com [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.ir [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.ir [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-03-15

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared. - Highlights: • Continuous current method for Switched Reluctance Motor (SRM) is explained. • An improved analytical technique is presented for SRM core loss calculation. • SRM losses in discontinuous and continuous current operation modes are presented. • Effect of mutual inductances on SRM performance is investigated.

  16. Improved production operating efficiencies through automation: Wascana Energy`s SCADA system implementation in southeast Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, R; Foord, T; Bartle, A

    1996-12-31

    Supervisory control and data acquisition (SCADA) systems covering Wascana Energy`s whole southeast Saskatchewan operating area were implemented in 1994-95. The benefits of this automation were described. Operations practices were reviewed and a brief description of the system was provided. Main features of the system described included data storage/retrieval, data display, alarm group organization, alarm call out monitoring, dynagraph display, and the Microsoft SQL server computer. Automation was found to significantly change the operator`s traditional role and altered operation practices in general. SCADA systems were found to improve operating efficiencies and production performance significantly, when properly implemented and utilized. 6 refs., 3 figs.

  17. IMPROVING OPERATIONAL EFFICIENCY WITH KAIZEN PHILOSOPHY: A CASE STUDY IN A METALLURGICAL COMPANY

    OpenAIRE

    Rafael Luiz Santos; Fernanda Cristina Pierre

    2014-01-01

    The success of an organization should be the pursuit of business excellence which has shown the evolution of people's satisfaction, the preparation of leaders, operational efficiency and business culture based on a system which aims at raising the management, the processes and the products to excellence from the improvement in the training of all employees. Thus organizations apply in their cases the concept of Lean philosophy through Kaizen methodology which pursuits continuou...

  18. Artificial intelligence aid to efficient plant operations

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Pack, R.W.

    1987-01-01

    As the nuclear power industry matures, it is becoming more and more important that plants be operated in an efficient, cost-effective manner, without, of course, any decrease in the essential margins of safety. Indeed, most opportunities for improved efficiency have little or no relation to nuclear safety, but are based on trade-offs among operator controllable parameters both within and external to the reactor itself. While these trade-offs are describable in terms of basic physical theory, thermodynamics, and the mathematics of control systems, their actual application is highly plant specific and influenced even by the day-to-day condition of the various plant components. This paper proposes the use of artificial intelligence techniques to construct a computer-based expert assistant to the plant operator for the purpose of aiding him in improving the efficiency of plant operation on a routine basis. The proposed system, which only advises the human operator, seems more amenable to the current regulatory approach than a truly automated control system even if the latter provides for manual override

  19. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    Science.gov (United States)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-12-01

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Motor-operated gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  1. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  2. Motor-operator gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  3. Fuel improvement and WWER-1000 FA main operational results

    International Nuclear Information System (INIS)

    Rozhkov, V.; Enin, A.; Bezborodov, Y.; Petrov, V.

    2003-01-01

    The JSC NCCP experience of WWER-1000 Fuel Assemblies (FAs) fabrication and operation confirms the adequate feasibility and efficiency of fuel operation in 3-4-x fuel cycles, high operating reliability and competitive capacity as compared with foreign analogues. The work on fuel improvement is aimed at an improvement of the operating reliability and an enhancement of the fuel use efficiency in WWER-1000 advanced FAs

  4. Improved core monitoring for improved plant operations

    International Nuclear Information System (INIS)

    Mueller, N.P.

    1987-01-01

    Westinghouse has recently installed a core on-line surveillance, monitoring and operations systems (COSMOS), which uses only currently available core and plant data to accurately reconstruct the core average axial and radial power distributions. This information is provided to the operator in an immediately usable, human-engineered format and is accumulated for use in application programs that provide improved core performance predictive tools and a data base for improved fuel management. Dynamic on-line real-time axial and radial core monitoring supports a variety of plant operations to provide a favorable cost/benefit ratio for such a system. Benefits include: (1) relaxation or elimination of certain technical specifications to reduce surveillance and reporting requirements and allow higher availability factors, (2) improved information displays, predictive tools, and control strategies to support more efficient core control and reduce effluent production, and (3) expanded burnup data base for improved fuel management. Such systems can be backfit into operating plants without changing the existing instrumentation and control system and can frequently be implemented on existing plant computer capacity

  5. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  6. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  7. Optimal control of operation efficiency of belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2010-06-15

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)

  8. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  9. Fan Efficiency Improvement via Changing Guide Blade Shape Under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    G. I. Zamolodchikov

    2017-01-01

    Full Text Available The aim of this study is to examine the influence of sweep and tangential blade lean the guide vanes (GV on the pressure losses in the blade row, and development of an approach to creating the GV with a rationally-shaped blades to ensure increased efficiency in the partial operating conditions.A numerical simulation method was used for research. As an object to be studied, was used an axial fan comprising an impeller and a GV, which were profiled to have constant circulation of velocity in radius. Verification of numerical simulation was based on the experimental data of fan. It comprised a GV with a straight blade and a circular-arc blade, with an impeller remained stationary in both cases. Among the turbulence models under consideration, preference is given to k-ω, as under operating conditions close to design ones, its result falls within the confidence span of the experimental characteristics, and at much higher and lower discharge coefficients a discrepancy is 4% at most.  In addition to the characteristics, the fields of pressure losses in GV have been analyzed. Numerical modeling allowed us to have a well-reproduced structure of losses in the stationary blade row.Analysis of pressure loss fields has shown that in the original GV near the hub, on the blade back, under design conditions a flow breakdown takes off. In view of the research, was designed a new GV with a modified blade geometry. The GV blade axis near the hub was bent in the circumferential direction by 0.1 length of the blade. In the near-hub cross-sections the blade chord was increased by 10%.The results of numerical simulation have shown that, with the flow less than the designed one, a change of just the GV blade tip sections leads to reduced break-down zone near the hub by about 40% under both operating conditions without raising profile losses and to improved fan efficiency, which reduces fan drive power consumption under typical operating conditions in the propulsion

  10. Comparison of Management-Operational Efficiency of Agricultural Machinery Operating Systems (Case Study Alborz Province

    Directory of Open Access Journals (Sweden)

    A Omidi

    2017-10-01

    Full Text Available Introduction Measuring the efficiency of operating systems in comparison with the methods of comparing the performance of systems explains the various dimensions of issues such as, the lack of full use of agricultural machinery capacity, improper selection of machine, incorrect use of machinery, ownership, etc.. Any improvement in operating system conditions reduces costs,, consumption of inputs, increases the efficiency of production factors and consequently reduces the price and increases agricultural profitability. The main objective of this research is to compare the operational-management efficiency of operating systems in Alborz province and comparison of managerial and operational efficiency of agricultural machinery farming systems by calculating the efficiency of its major components in agricultural machinery farming systems including efficiency, social, economic, technical-operational and managerial and ranking them in order to understand the optimal model of agricultural machinery systems. Materials and Methods This research is a survey study.The study population was beneficiaries of agricultural machinery in the Alborz province which in the multi-stage random sample was determined. Alborz province has 31,438 agricultural operations, of which 543 are exploited agricultural machinery. Cochran formula was used to determine sample size. Since, Cronbach's alpha coefficient greater than 0.7 was obtained by questionnaire, the reliability of the questionnaires was assessed as desirable. To calculate the efficiency the component data were extracted from 4 specialized questionnaires after the initial examination and encoding, then they were analyzed using the software SPSS, MCDM Engine. TOPSIS techniques were used for ranking managerial performance operating system for operating agricultural machinery Alborz province. Results and Discussion The results showed that social efficiency of dedicated-professional operation with an average of 6.6 had

  11. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  12. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  13. Discontinuous interleaving of parallel inverters for efficiency improvement

    DEFF Research Database (Denmark)

    Rannestad, Bjørn; Munk-Nielsen, Stig; Gadgaard, Kristian

    2017-01-01

    Interleaved switching of parallel inverters has previously been proposed for efficiency/size improvements of grid connected three-phase inverters. This paper proposes a novel interleaving method which practically eliminates insulated gate bipolar transistor (IGBT) turn-on losses and drastically...... overall power module losses are reduced. The modulation strategy is suited for converters with doubly fed induction generators (DFIG) for wind turbines, but are not limited hereto. Improvement of switching performance are measured and operational efficiency improvements are calculated and verified...

  14. Improvement of operation efficiency for WWER-440 and WWER-1000 for TRIGON fuel assembly design features

    Energy Technology Data Exchange (ETDEWEB)

    Silberstein, A [European WWER Fuels GmbH, Lyon (France)

    1994-12-31

    TRIGON 440 and TRIGON 1000 fuel assemblies and their assembly matching counterparts are described. Their role in increasing the efficiency of WWER reactors is stressed. Special attention is paid to their design features as well as calibrated means of predicting behaviour under irradiation from light water reactor core operation. They reduce the fuel cycle cost as a result of the reduced need for natural uranium which have to be enriched and of the smaller number of fuel assemblies which have to be fabricated, stored or reprocessed. The improved control assemblies bring comfort to the plant operator due to intrinsic progress in safety with respect to accidental situation, trouble-free behaviour and long time utilization in the reactor. 14 figs.

  15. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center.

    Science.gov (United States)

    Cima, Robert R; Brown, Michael J; Hebl, James R; Moore, Robin; Rogers, James C; Kollengode, Anantha; Amstutz, Gwendolyn J; Weisbrod, Cheryl A; Narr, Bradly J; Deschamps, Claude

    2011-07-01

    Operating rooms (ORs) are resource-intense and costly hospital units. Maximizing OR efficiency is essential to maintaining an economically viable institution. OR efficiency projects often focus on a limited number of ORs or cases. Efforts across an entire OR suite have not been reported. Lean and Six Sigma methodologies were developed in the manufacturing industry to increase efficiency by eliminating non-value-added steps. We applied Lean and Six Sigma methodologies across an entire surgical suite to improve efficiency. A multidisciplinary surgical process improvement team constructed a value stream map of the entire surgical process from the decision for surgery to discharge. Each process step was analyzed in 3 domains, ie, personnel, information processed, and time. Multidisciplinary teams addressed 5 work streams to increase value at each step: minimizing volume variation; streamlining the preoperative process; reducing nonoperative time; eliminating redundant information; and promoting employee engagement. Process improvements were implemented sequentially in surgical specialties. Key performance metrics were collected before and after implementation. Across 3 surgical specialties, process redesign resulted in substantial improvements in on-time starts and reduction in number of cases past 5 pm. Substantial gains were achieved in nonoperative time, staff overtime, and ORs saved. These changes resulted in substantial increases in margin/OR/day. Use of Lean and Six Sigma methodologies increased OR efficiency and financial performance across an entire operating suite. Process mapping, leadership support, staff engagement, and sharing performance metrics are keys to enhancing OR efficiency. The performance gains were substantial, sustainable, positive financially, and transferrable to other specialties. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  17. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Harald; Meinecke, Gero; Ohresser, Sylvia; Pickard, Andreas

    2010-09-15

    One of the major global challenges of the present time is the reduction of CO2 emissions. Provisions for integration of a CO2 capture plant are already required today in new power plant construction projects in order to enable current plants to also benefit from the possibilities of carbon capture systems to be developed in the future. These provisions for integration should account for the fact that the scrubbing processes are still in the optimization phase. Requisite process parameters may still change in the future. In the development of a plant interface, the paper describes a concept developed by Siemens which ensures maximum flexibility with simultaneous optimization of the plant for the capture process. Emphasis was placed on the following points in the development of this interface and the associated connection concepts: Maximum plant efficiency before and after modification; Maximum flexibility with regard to future process parameters; Optimization of customer investment cash flow; and, Applicability also to existing plants. According to the paper, Siemens can offer a concept which enables future conversion in accordance with the specified criteria. This concept requires no compromises with regard to plant efficiency in process optimization for either current power plant operation without carbon capture or for future operation with carbon capture. The concept also enables retrofitting of existing plants which are not yet capture-ready. However, retrofitting of power plants which are not prepared for operation with carbon capture is considerably more elaborate in most cases, as corridors must frequently still be cleared for the connecting piping.

  18. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  19. Induction Motors Most Efficient Operation Points in Pumped Storage Systems

    DEFF Research Database (Denmark)

    Busca-Forcos, Andreea; Marinescu, Corneliu; Busca, Cristian

    2015-01-01

    A clear focus is nowadays on developing and improving the energy storage technologies. Pumped storage is a well-established one, and is capable of enhancing the integration of renewable energy sources. Pumped storage has an efficiency between 70-80%, and each of its elements affects it. Increased...... efficiency is desired especially when operating with renewable energy systems, which present low energy conversion factor (up to 50% - performance coefficient for wind turbines, and efficiency up to 40% for photovoltaic systems). In this paper the most efficient operation points of the induction motors...... in pumped storage systems are established. The variable speed operation of the pumped storage systems and motor loading conditions for pump applications have been the key factors for achieving the purpose of the paper....

  20. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  1. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  2. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  3. Drycon dry ash conveyor: dry bottom ash handling system with reduced operating costs and improved plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Drycon dry bottom ash extraction system is designed to remove bottom ash beneath the furnace, cooling it without any need of water. Fresh air in countercurrent flow to the ash is used for the ash cooling. Data presented show how savings of time and costs can be achieved with this system and how a boiler efficiency can be increased using this technology. Considerable advantages in the reliability of operation with new improvements of the design are described. 7 figs.

  4. Durable improvements in efficiency, safety, and satisfaction in the operating room.

    Science.gov (United States)

    Heslin, Martin J; Doster, Barbara E; Daily, Sandra L; Waldrum, Michael R; Boudreaux, Arthur M; Smith, A Blair; Peters, Glenn; Ragan, Debbie B; Buchalter, Scott; Bland, Kirby I; Rue, Loring W

    2008-05-01

    Enhanced productivity and efficiency in the operating room must be balanced with patient safety and staff satisfaction. In December 2004, transition to an expanded replacement hospital resulted in mandatory overtime, unpredictable work hours, and poor morale among operating room (OR) staff. A staff-retention crisis resulted, which threatened the viability of the OR and the institution. We report the changes implemented to efficiently deliver safe patient care in a supportive environment for surgeons and OR staff. University of Alabama at Birmingham University Hospital OR data were evaluated for fiscal year 2004 and compared with fiscal years 2005 and 2006. Case volumes, number of operational ORs, and on-time case starts were evaluated. OR adverse events were tabulated. Percentage of registered nurse hires and staff departures served as a proxy for staff satisfaction. Short, intermediate, and longterm strategies were implemented by an engaged OR management committee with the guidance of surgical, anesthesia, and hospital leadership. These included new block time release policies; use of traveling nurses until new staff could be hired and trained; and incentive-based, voluntary, employee-scheduled overtime. Mandatory nursing education time was blocked weekly. Enforcement of the National Patient Safety Goals were implemented and adjudicated with a "surgeon-of-the-day" system providing backup for nurse management. We demonstrated an increase in operations per year, on-time starts, and registered nurse hires in fiscal years 2005 and 2006. During this same time, we were able to markedly decrease the number of adverse events, admitting delays, and staff departures. Change is difficult to accept but essential when vital clinical activities are impaired and at risk. To maintain important clinical environments like the OR in an academic center, we developed and implemented effective, data-driven changes. This allowed us to retain critical human resources and restore a

  5. Efficiency of supply chain management. Strategic and operational approach

    Directory of Open Access Journals (Sweden)

    Grzegorz Lichocik

    2013-06-01

    Full Text Available Background: One of the most important issues subject to theoretical considerations and empirical studies is the measurement of efficiency of activities in logistics and supply chain management. Simultaneously, efficiency is one of the terms interpreted in an ambiguous and multi-aspect manner, depending on the subject of a study. The multitude of analytical dimensions of this term results in the fact that, apart from economic efficiency being the basic study area, other dimensions perceived as an added value by different groups of supply chain participants become more and more important. Methods: The objective of this paper is to attempt to explain the problem of supply chain management efficiency in the context of general theoretical considerations relating to supply chain management. The authors have also highlighted determinants and practical implications of supply chain management efficiency in strategic and operational contexts. The study employs critical analyses of logistics literature and the free-form interview with top management representatives of a company operating in the TSL sector. Results: We must find a comprehensive approach to supply chain efficiency including all analytical dimensions connected with real goods and services flow. An effective supply chain must be cost-effective (ensuring economic efficiency of a chain, functional (reducing processes, lean, minimising the number of links in the chain to the necessary ones, adapting supply chain participants' internal processes to a common objective based on its efficiency and ensuring high quality of services (customer-oriented logistics systems. Conclusions: Efficiency of supply chains is not only a task for which a logistics department is responsible as it is a strategic decision taken by the management as regards the method of future company's operation. Correctly planned and fulfilled logistics tasks may result in improving performance of a company as well as the whole

  6. New raw materials improve packing sealing efficiency

    International Nuclear Information System (INIS)

    Igel, B.; McKeague, L.

    2012-01-01

    End-users and OEM's using or manufacturing on/off and control valves expect a permanent and effective increase in service life together with an increased sealing capability while at the same time minimizing maintenance concerns. Developing materials which provide consistency and repeatability are essential characteristics to optimizing valve performance. “New Generation” materials and yarn allow us to meet this growing demand while complying with the requirements related to chemical purity and an increased level of safety to both plant workers and equipment in the nuclear environment. Through R&D initiatives and developments in new and improved raw materials; a new mechanical packing generation which optimizes friction coefficients and extended life cycle has been introduced to the industry. Lower friction values drastically optimize actuator effort and size improving efficiency for stem operation with significant improvements in flow control of fluids. Combined with new and improved procedures (installation, torque levels and consolidation recommendations), this new packing generation has provided significant improvement in the mechanical behavior of packing materials (independent tests carried out in collaboration with AECL and CETIM) this has provided the opportunity to develop successful Valve Enhancement Programs which offer improved efficiency, valve operation and repeatability. These NEW generation yarns are available with or without wire reinforcement depending on specific operating parameters and conditions. The purpose of this presentation is to demonstrate that new generation material(s). Which are available to the industry for AOV, MOV and Manual valves? - To highlight the steps taken in R&D and manufacturing contributing to the much improved yarns and finished packing products. - Comply and are designed to meet the stringent requirements in the nuclear industry - Simplify valve maintenance without risk to safety or performance - Increase service

  7. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  8. The improving efficiency frontier of religious not-for-profit hospitals.

    Science.gov (United States)

    Harrison, Jeffrey P; Sexton, Christopher

    2006-01-01

    By using data-envelopment analysis (DEA), this study evaluates the efficiency of religious not-for-profit hospitals. Hospital executives, healthcare policy makers, taxpayers, and other stakeholders benefit from studies that improve hospital efficiency. Results indicate that overall efficiency in religious hospitals improved from 72% in 1998 to 74% in 2001. What is more important is that the number of religious hospitals operating on the efficiency frontier increased from 40 in 1998 to 47 in 2001. This clearly documents that religious hospitals are becoming more efficient in the management of resources. From a policy perspective, this study highlights the economic importance of encouraging increased efficiency throughout the healthcare industry.

  9. [Improving operating room efficiency: an observational and multidimensional approach in the San Camillo-Forlanini Hospital, Rome].

    Science.gov (United States)

    Mitello, Lucia; D'Alba, Fabrizio; Milito, Francesca; Monaco, Cinzia; Orazi, Daniela; Battilana, Daniela; Marucci, Anna Rita; Longo, Angelo; Latina, Roberto

    2017-01-01

    The management of operating rooms (ORs) is a complex process which requires an effective organizational scheme. In order to amore convinient allocation of resources a rigorous monitoring plan is needed to ensure operating rooms performances. All the necessary actions should be taken to improve the quality of the planning and scheduling procedure. Between April-December, 2016 an organizational analysis has been carried out on the performances of the A.O. S. Camillo-Forlanini Hospital Operating Block applying the "process management" approach to the ORs efficiency. The project involved two different surgical areas of the same operating block the multi-specialist and elective surgery and cardio-vascular surgery . The analyses of the processes was made through the product, patient and safety approach and from different points of view: the "asis", process and stakeholder perspectives. Descriptive statistics was used to process raw data and Student's t-distribution was used to assess the difference between the two means (significant p value ˂0,05). The Coefficient of Variation (CV) was used to describe the variabilityamong data. The asis approach allowed us to describe the ORs inbound activities. For both operating block the most demanding weekly commitments in terms of time turned out to be the inventory management procedures of controlling and stocking medicines, general medical supplies and instruments (130[DS=±14] for BOE and 30[DS=±18] for CCH. The average time spent on preparing the operating room, separately calculated starting from the first surgical case, was of 27 minutes (SD=± 17) while for the following surgical procedures preparation time decreased to 15 minutes (SD= ± 10), which highlighted a meaningful difference of 12 minutes. A great variability was registered in CCH due to the unpredictability of these operations (CV 82%). The stakeholders' perspective revealed a reasonable level of satisfaction among nurses and surgeons (2.9 vs 2.3, respectively

  10. An operations research and simulation based study on improving the efficiency of a slurry drying tower

    Directory of Open Access Journals (Sweden)

    De Jongh, E.

    2013-08-01

    Full Text Available This paper relates to a company that produces washing powders. The focus is on improving the efficiency of gas usage (per unit of powder produced in the furnace that produces hot air. This hot air is an integral part of washing powder production: it dries the viscous slurry and transforms it into the base powder used in all washing powders. The cost of gas is the factorys largest expense. This paper attempts to increase the productivity and profitability of the operations by applying operations research using MATLAB and the non-linear optimiser called SNOPT (sparse non-linear optimiser. Using these techniques, a proposed solution that aims to balance the amount of open space between spraying slurry, as well as the overlap of spraying slurry within the furnace, is obtained. This is achieved by optimising the positioning of the top layer of 24 lances. The placement of the bottom layer of lances is done by positioning them in the areas of biggest overlap. These improvements result in a positive impact on the amount of gas burnt within the furnace to dry slurry to powder.

  11. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  12. The Efficiency Potential of ICT in Haulier Operations

    DEFF Research Database (Denmark)

    Sternberg, Henrik; Prockl, Günter; Holmström, Jan

    2014-01-01

    What is the efficiency potential of Information Communication Technology (ICT) in haulier operations? Previous literature has focused on the aggregated level benefits that could be achieved once a large proportion of hauliers have introduced ICT in their trucks. In reality, hauliers are only ready...... to invest in technologies that generate business benefits, yet there is a gap in the literature regarding the linking of technology to the actual efficiency improvement of hauliers. The purpose of this paper is to address this gap and consider the potential of ICT to improve the activities in road freight...... transportation. The focus is on the individual driver, and the level of analysis is the truck and driver activities. We have chosen time as the primary measure of efficiency. We carried out three parallel research steps over a five-year period. The first was a literature review on the potential effects of using...

  13. Improving machine operation management efficiency via improving the vehicle park structure and using the production operation information database

    Science.gov (United States)

    Koptev, V. Yu

    2017-02-01

    The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.

  14. Operational Efficiency And Customer Satisfaction of Restaurants: Basis For Business Operation Enhancement

    Directory of Open Access Journals (Sweden)

    Annie Gay Barlan-Espino

    2017-02-01

    Full Text Available Restaurants’ primary objective is to provide comfort and satisfaction to guest without compromising the operational efficiency of the business. This research aimed to determine the operational efficiency and customer satisfaction of restaurants as a basis for business operation enhancement. Specifically to determine the operational efficiency of the restaurant in terms of kitchen operations and dining operations and the level of customer satisfaction of the restaurant business in terms of: Product, Policies, People, Processes and Proactivity as well as the problems encountered by the restaurant in their operation and customer service. Descriptive research design was used with managers and customers as respondents of the study. It was concluded that majority of the restaurants are operating for more than a year with sufficient number of employees having enough seating capacity that accommodate large volume of customers. Restaurants are efficient on the aspect of kitchen and dining operations and sometimes encountered problems. Customers are satisfied in terms of 5 P’s. It was found out that there is no significant difference in the operational efficiency of restaurant when grouped according to profile variables. An action plan for continuous business operation enhancement on operational efficiency and customer satisfaction was proposed.

  15. Non-transboundary pollution and the efficiency of international environmental co-operation

    International Nuclear Information System (INIS)

    Kox, Henk L.M.; Van der Tak, Casper M.

    1996-01-01

    The standard view is that situations where no transborder environmental externalities occur are most efficiently dealt with by national environmental policies rather than by international co-operation. Though this may be the general case, non-coordinated national policies do not always produce the most efficient international allocation. This paper presents four cases in which the allocative outcome of non-coordinated domestic policy choices can be improved upon by international environmental co-operation. The first case refers to the use of environmental policy as a strategic trade instrument. The other cases refer to the existence of discrete technologies, set-up costs and increasing returns to scale. The form of international environmental co-operation should be adapted to the situation. Formal international agreements between countries are characterised by high transaction costs and may not always be the most efficient form of co-operation

  16. IMPROVED METHOD OF DETERMINATION OF ECONOMIC EFFICIENCY OF CONSTRUCTION AND OPERATION OF HIGH SPEED MAINLINE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    YU. S. Barash

    2014-01-01

    Full Text Available Purpose. To develop an advanced methodology and formulate the measures concerning the definition of economic efficiency of high-speed movement organization taking into account the operating experience of rapid transportations in Ukraine, travel time, number of stops on the route, schedule and the demand for these transportations. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment to the construction. To solve such problems one uses net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. On the basis of obtained studies one can state that the methodology of complex determination of construction efficiency and high-speed passenger trains operation taking into account the cost of infrastructure, rolling stock, impact of environmental factors, etc. was developed in the article. Originality. We propose a scientific approach to determine the economic efficiency of the construction and high-speed main lines operation. This approach, unlike the existing one, includes the improved principles of determining the passenger traffic, the cost of high-speed mainline construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and impact of the external factors on the company. For the first time it was taken into account the transit flow of passengers departing from CIS countries to the vacation in the Crimea, the Carpathians, Odessa and Lviv regions. The account of these factors increases the feasibility of administrative decisions concerning ensuring the efficiency of high-speed traffic functioning. Practical value. The proposed methodology and the research results allowed determining the construction reasonability of high-speed mainline for the passenger trains with a speed at least250 km/h in

  17. Efficiency of PRECIS Role Operators.

    Science.gov (United States)

    Mahapatra, M.; Biswas, S. C.

    1984-01-01

    Describes research which measured the efficiency of role operators through frequency of appearances in PRECIS input strings for 200 abstracts related to taxation, genetic psychology, and Shakespearian drama. Frequencies of appearance of major categories of role operators, role operators in different subjects, individual main line operators, and…

  18. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  19. Utilization of information and communications technology (ICT) to improve workface efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Haines, A.; Rasmussen, J. [Industrial Audit Corp., Toronto, Ontario (Canada)

    2010-07-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  20. Utilization of information and communications technology (ICT) to improve workface efficiency

    International Nuclear Information System (INIS)

    Haines, A.; Rasmussen, J.

    2010-01-01

    Improving the efficiency of personnel at the workface is a key objective for executing construction, maintenance, quality, engineering and human performance activities. Schedule and cost overruns have a significant impact on the bottom line and on future business efficiency in execution of tasks is paramount to success. Leveraging information and communications technology (ICT) in construction, maintenance and operation environments can create a mobile workforce where personnel efficiency is improved, significant gains are made on schedule and cost, and the overall quality of work is raised. This paper will discuss the impact of mobile technology specifically on workface efficiency and productivity. (author)

  1. The SmartOR: a distributed sensor network to improve operating room efficiency.

    Science.gov (United States)

    Huang, Albert Y; Joerger, Guillaume; Fikfak, Vid; Salmon, Remi; Dunkin, Brian J; Bass, Barbara L; Garbey, Marc

    2017-09-01

    Despite the significant expense of OR time, best practice achieves only 70% efficiency. Compounding this problem is a lack of real-time data. Most current OR utilization programs require manual data entry. Automated systems require installation and maintenance of expensive tracking hardware throughout the institution. This study developed an inexpensive, automated OR utilization system and analyzed data from multiple operating rooms. OR activity was deconstructed into four room states. A sensor network was then developed to automatically capture these states using only three sensors, a local wireless network, and a data capture computer. Two systems were then installed into two ORs, recordings captured 24/7. The SmartOR recorded the following events: any room activity, patient entry/exit time, anesthesia time, laparoscopy time, room turnover time, and time of preoperative patient identification by the surgeon. From November 2014 to December 2015, data on 1003 cases were collected. The mean turnover time was 36 min, and 38% of cases met the institutional goal of ≤30 min. Data analysis also identified outlier cases (>1 SD from mean) in the domains of time from patient entry into the OR to intubation (11% of cases) and time from extubation to patient exiting the OR (11% of cases). Time from surgeon identification of patient to scheduled procedure start time was 11 min (institution bylaws require 20 min before scheduled start time), yet OR teams required 22 min on average to bring a patient into the room after surgeon identification. The SmartOR automatically and reliably captures data on OR room state and, in real time, identifies outlier cases that may be examined closer to improve efficiency. As no manual entry is required, the data are indisputable and allow OR teams to maintain a patient-centric focus.

  2. Advances in new WWER designs to improve operation and maintenance

    International Nuclear Information System (INIS)

    Dragunov, Y.G.; Ryzhov, S.B.; Podshibiakin, A.K.; Vasilchenko, I.N.; Repin, A.I.; Nikitenko, M.P.; Konoplev, N.P.; Fil, N.S.

    2000-01-01

    Economic operational indices of WWER-type reactors show their competitiveness in all the countries where these reactors operate. Advanced WWERs being designed and constructed now have the improved characteristics of economical efficiency and are more convenient for operation and maintenance. Many technical solutions aimed at improvement of the operational performance are implemented in the design of WWER-1000/V-392 and WWER-640/V-407, and these reactors are the important basis for the nuclear power expansion in Russia. Some of these solutions are considered in the present paper. (author)

  3. Improving energy efficiency of an Olefin plant – A new approach

    International Nuclear Information System (INIS)

    Tahouni, Nassim; Bagheri, Narges; Towfighi, Jafar; Hassan Panjeshahi, M.

    2013-01-01

    Highlights: • The retrofit of an Olefin plant is studied to improve the overall energy efficiency. • Three levels of retrofit and optimization of this process are suggested. • A simultaneous method is presented to optimize low-temperature separation processes. - Abstract: Low-temperature gas separation processes are the most important gas separation routes. There is a complex interaction between core process (separation columns), associated heat exchanger network and refrigeration cycles in sub ambient processes. The aim of this paper is performing a comprehensive retrofit study of an Olefin plant (as an industrial example) to improve the overall energy efficiency. In this regard, the effect of improving column operating parameters and refrigeration cycles are first evaluated separately. Then, column operating parameters and refrigeration cycles as well as heat exchanger network are optimized simultaneously using genetic algorithm or simulated annealing. Having compared all results, one can conclude that simultaneous optimization leads to higher efficiency of the overall system

  4. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  5. Hospital operations management: improving organizational efficiency.

    Science.gov (United States)

    2013-08-01

    Reducing operational inefficiencies represents one of the most promising sources of potential savings in hospitals today. Health Forum convened a panel of hospital executives and industry experts to discuss the daunting challenges and big opportunities that lie ahead.

  6. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  7. Assembly Line Efficiency Improvement by Using WITNESS Simulation Software

    Science.gov (United States)

    Yasir, A. S. H. M.; Mohamed, N. M. Z. N.

    2018-03-01

    In the nowadays-competitive world, efficiencies and the productivity of the assembly line are essential in manufacturing company. This paper demonstrates the study of the existing production line performance. The actual cycle time observed and recorded during the working process. The current layout was designed and analysed using Witness simulation software. The productivity and effectiveness for every single operator are measured to determine the operator idle time and busy time. Two new alternatives layout were proposed and analysed by using Witness simulation software to improve the performance of production activities. This research provided valuable and better understanding of production effectiveness by adjusting the line balancing. After analysing the data, simulation result from the current layout and the proposed plan later been tabulated to compare the improved efficiency and productivity. The proposed design plan has shown an increase in yield and productivity compared to the current arrangement. This research has been carried out in company XYZ, which is one of the automotive premises in Pahang, Malaysia.

  8. Efficiency Improvement and Quality Initiatives Application in Financial Institutions

    Directory of Open Access Journals (Sweden)

    MSc. Ajtene Avdullahi

    2015-06-01

    Full Text Available Financial institutions in today’s economy have no longer the luxury to improve profit simply by increasing revenue. These firms, due to the significant measuring reductions in the financial services industry needed to improve operational efficiencies and merely support existing processes with fewer resources. This paper explains the benefits of Lean, Six Sigma, Total Quality Management and Lean Six Sigma that have improved organization's performance, by cutting costs and waste, improving their products or services, increasing profitability as well as enhancing customer satisfaction. The applicability of quality management practices in financial institutions in Kosovo is presented and also their efficiency and effectiveness. By analyzing data from Raiffeisen Bank Kosovo, this paper highlights the benefits of Individual and Micro companies customer segment as the result of organizational change and successful application of quality initiatives from financial institutions in Kosovo.

  9. Comprehensive Evaluation for Operating Efficiency of Electricity Retail Companies Based on the Improved TOPSIS Method and LSSVM Optimized by Modified Ant Colony Algorithm from the View of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-03-01

    Full Text Available The electricity market of China is currently in the process of a new institutional reform. Diversified electricity retail entities are gradually being established with the opening of the marketing electricity side. In the face of a complex market environment and fierce competition, the operating efficiency can directly reflect the current market position and development of electricity retail companies. TOPSIS method can make full use of the information of original data, calculate the distance between evaluated objects and the ideal solutions and get the relative proximity, which is generally used in the overall department and comprehensive evaluation of the benefits. Least squares support vector machine (LSSVM, with high convergence precision, helps save the training time of algorithm by solving linear equations and is used to predict the comprehensive evaluation value. Considering the ultimate goal of sustainable development, a comprehensive evaluation model on operating efficiency of electricity retail companies based on the improved TOPSIS method and LSSVM optimized by modified ant colony algorithm is proposed in this paper. Firstly, from the view of sustainable development, an operating efficiency evaluation indicator system is constructed. Secondly, the entropy weight method is applied to empower the indicators objectively. After that, based on the improved TOPSIS method, the reverse problem in the evaluation process is eliminated. According to the relative proximity between the evaluated objects and the absolute ideal solutions, the scores of comprehensive evaluation for operating efficiency can then be ranked. Finally, the LSSVM optimized by modified ant colony algorithm is introduced to realize the simplified expert scoring process and fast calculation in the comprehensive evaluation process, and its improved learning and generalization ability can be used in the comprehensive evaluation of similar projects. The example analysis proves

  10. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  11. Operation efficiency increasing of dual-purpose NPP's by means of improving turbine plants

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Borovkov, V.M.; Levit, I.G.; Averbakh, Yu.A.; Titova, I.B.

    1984-01-01

    Ways of operation efficiency increasing power plants for combined electrisity prodUction and centralized heating with WWER-440 reactors and wet-steam heating-condensating turbines are considered. Two variants of floWsheets of by-pass steam distribution permitting to use energy of excess steam in a wide pressure range in the secondary circuit for keeping electric or thermal power of the power unit at a possibly higher level are analyzed. Optimum time of operating cycle prolongation of a heating WWER-440 poWer unit when using the suggested flowsheets with pipelines of by-pass distribution of excess steam covers 16-40 days for the range of change in expenditures at reconstruction for electric power and heat 13.5-17 rub/MWxh and 2-3 rub./MWxh. The maximum time of the reactor operating cycle prolongation for the considered situations makes up 30-80 days

  12. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  13. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, Ulrich; Kurz, Harald; Meinecke, Gero; Pickard, Andreas

    2010-09-15

    The power generation sector is currently confronted with new challenges relating to the conservation of dwindling fuel reserves. At the same time we must reduce CO2 emissions in order to counteract global warming. This paper shows that power plant operation, which employs shutdowns during periods of low load demand coupled with the optimization of startup procedures are a key to reducing CO2 emissions and to conserving resources. The startup technology developed by Siemens also offers grid support in the event of naturally occurring failures of renewable energy sources. Additionally, plant profitability is improved due to the resulting savings in fuel.

  14. Impact of lean six sigma process improvement methodology on cardiac catheterization laboratory efficiency.

    Science.gov (United States)

    Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R

    2016-03-01

    Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trendprocess improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Assessment and comparison of hospital operating efficiency under different management systems].

    Science.gov (United States)

    2017-06-18

    To assess and analyze the operation efficiency of 8 commission general public hospitals managed directly by National Health and Family Planning Commission and 8 municipal general hospitals managed directly by Beijing Municipal Administration of Hospitals in Beijing and to provide suggestions on improving service capacity and designing relevant health policy. Input and output data of 8 commission hospitals and 8 municipal hospitals were obtained from Beijing Direct-Reported Health Statistics data from 2011 to 2014. Data envelopment analysis was used as the hospital operation efficiency measurement tool. The CCR and BCC models were built to calculate technical efficiency (TE), pure technical efficiency (PTE), scale efficiency (SE) and the status of scale efficiency of 16 hospitals in 2011 and 2014; the Malmquist index model was built to analyze the total factor productivity change (TFPC), technological change (TC), technical efficiency change, pure technical efficiency change and scale efficiency change of the 16 hospitals from 2011 to 2014. In 2011, the TE, PTE and SE of the commission hospitals were higher than those of the municipal hospitals, and the TEs of the commission hospitals and the municipal hospitals were 0.918 and 0.873 respectively. In 2014, the TE, PTE and SE of commission hospitals were lower than those of the municipal hospitals, and the TE of the commission hospitals and the municipal hospitals were 0.906 and 0.951, respectively, which was contrary to the results in 2011. According to the Malmquist index model, the average of TFPC of the municipal hospitals was larger than that of the commission hospitals, the former increased 5.9% and the latter increased 2.8% per year; the average of TC was greater than the one in both the municipal hospitals and the commission hospitals, with a growth of 3.2% and 2.9% per year, respectively; the average growth of PTE in the commission hospitals was lower than that of the municipal hospitals, and the average

  16. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  17. The Empirical Analysis of the Impact of Bank Capital Regulations on Operating Efficiency

    Directory of Open Access Journals (Sweden)

    Josephat Lotto

    2018-03-01

    Full Text Available This paper principally aims at examining the impact of capital requirements regulation on bank operating efficiency in Tanzania. The study employs bank level data for the period between 2009 and 2015. The findings show a positive and significant relationship between capital ratio and bank operating efficiency. This shows that commercial banks in Tanzania with more stringent capital regulations are more operationally efficient. This relationship proposes that capital adequacy does not only strengthen financial stability by providing a larger capital cushion but also improves bank operating efficiency by preventing a moral hazard problem between shareholders and debt-holders. This result may also imply that the increased regulations on capital requirements influence the bank’s decision to revisit their internal operations strategy in terms of strong corporate governance, risk assessment methods, credit evaluation procedures, employment of more qualified staffs, and enhanced internal control procedures. Another key finding is an inverse relationship between non-performing Loans (credit risk and bank operating efficiency. The implication of this relationship may simply mean that the bank’s total loan and advances in combination with total deposit either due from customers or from other banks are of little importance in determining the operational efficiency of banks. This probably implies that the amount of money banks loan out is too excessive, which would attract a greater chance of default. The paper lays down some recommendations: first, banks in Tanzania are advised to invest in more advanced technological innovations to reduce the staff costs and other operating expenses to increase their operational efficiency; and, second, bank management is also advised to be more careful in the loan screening process to reduce the incidence of non-performing loans.

  18. Operation optimization of a distributed energy system considering energy costs and exergy efficiency

    International Nuclear Information System (INIS)

    Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.

    2015-01-01

    Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the

  19. Improving Energy Efficiency of Micro-Networks Connected to a Smart Grid

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2014-12-01

    Full Text Available Technological development of distribution and transmission grids and building a so called smart grid also enable improving the efficiency of microgrids and microgenerators. Better coordination and scheduling of microgenerators operation make more effective adjustment to local conditions and achieving better overall energy efficiency possible. Due to smart communication interfaces the microgrids and microgenerators can also contribute to ancillary services.

  20. Improved Design of Crew Operation in Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Jung, Yeon Sub; Sung, Chan Ho [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The operators perform the paper-based procedures in analog-based conventional main control room (MCR) depending on only communications between operators except a procedure controller such as a Shift Supervisor (SS), however in digital-based MCR the operators can confirm the procedures simultaneously in own console when the procedure controller of computerized procedure (CP) opens the CP. The synchronization and a synchronization function between procedure controller and other operators has to be considered to support the function of crew operation. This paper suggests the improved design of crew operation in computerized procedure system of APR1400. This paper suggests the improved design of APR1400 CPS. These improvements can help operators perform the crew procedures more efficiently. And they reduce a burden of communication and misunderstanding of computerized procedures. These improvements can be applied to CPS after human factors engineering verification and validation.

  1. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.

  2. Surgical team turnover and operative time: An evaluation of operating room efficiency during pulmonary resection.

    Science.gov (United States)

    Azzi, Alain Joe; Shah, Karan; Seely, Andrew; Villeneuve, James Patrick; Sundaresan, Sudhir R; Shamji, Farid M; Maziak, Donna E; Gilbert, Sebastien

    2016-05-01

    Health care resources are costly and should be used judiciously and efficiently. Predicting the duration of surgical procedures is key to optimizing operating room resources. Our objective was to identify factors influencing operative time, particularly surgical team turnover. We performed a single-institution, retrospective review of lobectomy operations. Univariate and multivariate analyses were performed to evaluate the impact of different factors on surgical time (skin-to-skin) and total procedure time. Staff turnover within the nursing component of the surgical team was defined as the number of instances any nurse had to leave the operating room over the total number of nurses involved in the operation. A total of 235 lobectomies were performed by 5 surgeons, most commonly for lung cancer (95%). On multivariate analysis, percent forced expiratory volume in 1 second, surgical approach, and lesion size had a significant effect on surgical time. Nursing turnover was associated with a significant increase in surgical time (53.7 minutes; 95% confidence interval, 6.4-101; P = .026) and total procedure time (83.2 minutes; 95% confidence interval, 30.1-136.2; P = .002). Active management of surgical team turnover may be an opportunity to improve operating room efficiency when the surgical team is engaged in a major pulmonary resection. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  4. Technical Diagnostics of Ventilation Units for Energy Efficiency and Safety of Operation

    Directory of Open Access Journals (Sweden)

    Kuzin Evgeny

    2017-01-01

    Full Text Available The article considers the questions of application of technical diagnostics fan installations methods for providing safe operation, the system of the technical maintenance improvement and repair. Due to the feet that one of the most important aspects in fan operation in mining is energy efficiency and energy saving, the lack of the data in the control of the level in vibration of stationary sensors is shown. The necessity of taking into account the geometric parameters of the intake channel has been shown, and also the necessity of creation of the reference masks for the assessment of technical condition and energy efficiency when operating fan installations in mining. The results of technical diagnostics of the main fans using the methods of vibration diagnostics are provided. Aspects of vibration at characteristic points are shown. The necessity for further accumulation of data characterizing vibration for adjustment of the reference masks and more accurate detection of defects and deviations from the energy-efficient mode of operation of the fan installations is given.

  5. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    Science.gov (United States)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  6. Technical Diagnostics of Ventilation Units for Energy Efficiency and Safety of Operation

    Science.gov (United States)

    Kuzin, Evgeny; Shahmanov, Vitality; Dubinkin, Dmitriy

    2017-11-01

    The article considers the questions of application of technical diagnostics fan installations methods for providing safe operation, the system of the technical maintenance improvement and repair. Due to the feet that one of the most important aspects in fan operation in mining is energy efficiency and energy saving, the lack of the data in the control of the level in vibration of stationary sensors is shown. The necessity of taking into account the geometric parameters of the intake channel has been shown, and also the necessity of creation of the reference masks for the assessment of technical condition and energy efficiency when operating fan installations in mining. The results of technical diagnostics of the main fans using the methods of vibration diagnostics are provided. Aspects of vibration at characteristic points are shown. The necessity for further accumulation of data characterizing vibration for adjustment of the reference masks and more accurate detection of defects and deviations from the energy-efficient mode of operation of the fan installations is given.

  7. Enabling benchmarking and improving operational efficiency at nuclear power plants through adoption of a common process model: SNPM (standard nuclear performance model)

    International Nuclear Information System (INIS)

    Pete Karns

    2006-01-01

    others. The goal of the SNPM is to give the people maintaining and operating nuclear power stations a common model on which to base their business processes and measure/benchmark themselves against others. The importance of benchmarking and comparing 'apples to apples' has and will continue to safely drive improvement and efficiencies throughout the business. For example, in the mid 1990's it was quite difficult to compare work management statistics and programs between plants. The introduction of several INPO documents, which eventually became the SNPM work management process (AP 928) enabled plants to benchmark and compare information on many aspects of work management, in fact INPO began to evaluate the nuclear plants on their implementation and usage of AP 928. Also, the standardization enabled the identification and benchmarking of innovations in plant processes and performance, which in turn helped to facilitate those innovations being accepted in other plants-thus furthering the cycle of continuous improvement. Using a master plan, all communities of practice are able to identify specific improvement projects and coordinate the implementation of the processes to ensure smooth transitions between the various process interface or intersection points. In essence the nuclear energy industry in the United States is working as one company-driving efficiencies and operational improvements. Key enablers in adopting the best practices like the SNPM are work, asset and supply chain management solutions - both from a functional and a technological point of view. In addition to the importance of supporting industry best practices, there are two additional attributes a nuclear power operating company should evaluate regarding software solutions for work, asset, and supply chain management: breadth of assets managed, and the architecture of solution. (author)

  8. Operating room data management: improving efficiency and safety in a surgical block.

    Science.gov (United States)

    Agnoletti, Vanni; Buccioli, Matteo; Padovani, Emanuele; Corso, Ruggero M; Perger, Peter; Piraccini, Emanuele; Orelli, Rebecca Levy; Maitan, Stefano; Dell'amore, Davide; Garcea, Domenico; Vicini, Claudio; Montella, Teresa Maria; Gambale, Giorgio

    2013-03-11

    European Healthcare Systems are facing a difficult period characterized by increasing costs and spending cuts due to economic problems. There is the urgent need for new tools which sustain Hospitals decision makers work. This project aimed to develop a data recording system of the surgical process of every patient within the operating theatre. The primary goal was to create a practical and easy data processing tool to give hospital managers, anesthesiologists and surgeons the information basis to increase operating theaters efficiency and patient safety. The developed data analysis tool is embedded in an Oracle Business Intelligence Environment, which processes data to simple and understandable performance tachometers and tables. The underlying data analysis is based on scientific literature and the projects teams experience with tracked data. The system login is layered and different users have access to different data outputs depending on their professional needs. The system is divided in the tree profile types Manager, Anesthesiologist and Surgeon. Every profile includes subcategories where operators can access more detailed data analyses. The first data output screen shows general information and guides the user towards more detailed data analysis. The data recording system enabled the registration of 14.675 surgical operations performed from 2009 to 2011. Raw utilization increased from 44% in 2009 to 52% in 2011. The number of high complexity surgical procedures (≥120 minutes) has increased in certain units while decreased in others. The number of unscheduled procedures performed has been reduced (from 25% in 2009 to 14% in 2011) while maintaining the same percentage of surgical procedures. The number of overtime events decreased in 2010 (23%) and in 2011 (21%) compared to 2009 (28%) and the delays expressed in minutes are almost the same (mean 78 min). The direct link found between the complexity of surgical procedures, the number of unscheduled procedures

  9. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Van Velde, AA. de; Burtak, F.

    2000-01-01

    In this paper authors deals with nuclear fuel cycle and their economic aspects. At Siemens, the developments focusing on the reduction of fuel cycle costs are currently directed on .further batch average burnup increase, .improvement of fuel reliability, .enlargement of fuel operation margins, .improvement of methods for fuel design and core analysis. These items will be presented in detail in the full paper and illustrated by the global operating experience of Siemens fuel for both PWRs and BWRs. (authors)

  10. Operating Efficiency Evaluation of China Listed Automotive Firms: 2012–2016

    Directory of Open Access Journals (Sweden)

    Huichen Jiang

    2018-01-01

    Full Text Available As one of the important pillar industries in China, the automotive industry (i.e., the traditional vehicle and the new energy vehicle (NEV sub-industries plays a significant role in the national economy and social development. In this paper, by using the fixed assets, intangible assets, the operating expenses, and the number of employee as inputs and the operating income as output, we conduct efficiency evaluations based on data envelopment analysis (DEA and Malmquist models, and measure the efficiency of listed automotive firms with the panel data of 77 listed A-share firms spanning from 2012 to 2016, statically and dynamically. The results show that the five-year average Malmquist indices of all the listed firms slightly decreased due to the decline of the technical change and the improvement of the efficiency change. We subdivide the automotive industry into the traditional vehicle and NEV industries, and find that the NEV industry performed better than the traditional one. We combine the industry development and efficiency evaluation, and believe that the NEV will be a new driving force of the economy.

  11. Improving operating room safety

    Directory of Open Access Journals (Sweden)

    Garrett Jill

    2009-11-01

    Full Text Available Abstract Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of our operating room. Our efforts have prepared us for successfully implementing a standardized checklist to improve operating room safety throughout our entire system. Based on these findings we recommend a multimodal approach to improving operating room safety.

  12. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  13. Effective and efficient learning in the operating theater with intraoperative video-enhanced surgical procedure training

    OpenAIRE

    van Det, M.J.; Meijerink, W.J.; Hoff, C.; Middel, B.; Pierie, J.P.

    2013-01-01

    INtraoperative Video Enhanced Surgical procedure Training (INVEST) is a new training method designed to improve the transition from basic skills training in a skills lab to procedural training in the operating theater. Traditionally, the master-apprentice model (MAM) is used for procedural training in the operating theater, but this model lacks uniformity and efficiency at the beginning of the learning curve. This study was designed to investigate the effectiveness and efficiency of INVEST co...

  14. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    Science.gov (United States)

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  16. Reluctance motor of new design with improved efficiency and power factor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen-Goos, P; Pieper, W

    1981-09-01

    Improvement of operating conditions and efficiency by development of new configurations of lamination and production methods for reluctance motors. Investigations during the starting-up period and of the operating behaviour in connection with variable frequency. Reluctance motors are designed in the range from 0,6-4kW with 4-pole winding. They are due to the following identification: 1. The power of motors is in accordance with VDE 42673. 2. The volume of lamination is equal to asynchronous motors of the same IED size. 3. Synchronous pull-out torque is in compliance with VDE 0530: Msub(K)sub(S) > 1,35 Mn (nominal torque). As against standard reluctance motors the following improvements with the new ones have been realized: 4. Increase of nominal power by approx. 100%. 5. Increase of quality factor by approx. 50%. 6. The efficiency is equal to asynchronous motors of the same IEC size.

  17. Influence of Missile Fusillade Engagement Mode on Operation Efficiency

    Institute of Scientific and Technical Information of China (English)

    BU Xian-jin; REN Yi-guang; SHA Ji-chang

    2008-01-01

    Shoot efficiency is one of the most important evaluation indexes of the operation efficiency of weapon system. In this paper, based on definitions of the probability and the expected number of missed attacking missiles, the expected numbers of anti-missiles and attacking missiles hit by single anti-missile, fusillade mechanism of multi-missile is analyzed systematically. The weapon operation efficiency in various engagement patterns is also studied. The results show that double missiles fusillade is the most feasible manner for increasing the weapon operation efficiency.

  18. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  19. Management efficiency improvement promotion of SS; SS no unei koritsuka sokushin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Full amount fund petroleum product marketer and Sumisyo petroleum of Sumitomo accelerate management efficiency improvement of service station (SS). National about 300 places have been developed in within the year Within SS, it aims at break-even point achievement of gasoline, coarse advantage 10 yen per light oil of 1 liter in 84 all tied SS stores. SS which has realized the system of 10 yen in the current is whole about 50%. But, by doing personnel configurations and operational procedures, that they reexamine the balance management, etc. in half remaining SS 12 yen-13 yen; the efficiency improvement is done thoroughly. (translated by NEDO)

  20. Quality initiatives: lean approach to improving performance and efficiency in a radiology department.

    Science.gov (United States)

    Kruskal, Jonathan B; Reedy, Allen; Pascal, Laurie; Rosen, Max P; Boiselle, Phillip M

    2012-01-01

    Many hospital radiology departments are adopting "lean" methods developed in automobile manufacturing to improve operational efficiency, eliminate waste, and optimize the value of their services. The lean approach, which emphasizes process analysis, has particular relevance to radiology departments, which depend on a smooth flow of patients and uninterrupted equipment function for efficient operation. However, the application of lean methods to isolated problems is not likely to improve overall efficiency or to produce a sustained improvement. Instead, the authors recommend a gradual but continuous and comprehensive "lean transformation" of work philosophy and workplace culture. Fundamental principles that must consistently be put into action to achieve such a transformation include equal involvement of and equal respect for all staff members, elimination of waste, standardization of work processes, improvement of flow in all processes, use of visual cues to communicate and inform, and use of specific tools to perform targeted data collection and analysis and to implement and guide change. Many categories of lean tools are available to facilitate these tasks: value stream mapping for visualizing the current state of a process and identifying activities that add no value; root cause analysis for determining the fundamental cause of a problem; team charters for planning, guiding, and communicating about change in a specific process; management dashboards for monitoring real-time developments; and a balanced scorecard for strategic oversight and planning in the areas of finance, customer service, internal operations, and staff development. © RSNA, 2012.

  1. Improving extraction efficiency of the third integer resonant extraction using higher order multipoles

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tomizawa, M. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2017-03-09

    The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theory of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.

  2. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  3. The Gains from Improved Market Efficiency

    DEFF Research Database (Denmark)

    Persson, Karl Gunnar; Ejrnæs, Mette

    faster, violations of the law of one price become smaller and hence less persistent. There were also significant gains from improved market efficiency but that improvement took place after the information ‘regime’ shifted from pre-telegraphic communication to a regime with swift transmission...... of information in an era which developed a sophisticated commercial press and telegraphic communication. Improved market efficiency probably stimulated trade more than falling transport costs......This paper looks at the gains from improved market efficiency in long-distance grain trade in the second half of the 19th century when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer...

  4. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    Science.gov (United States)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  5. A study on operation efficiency evaluation based on firm's financial index and benchmark selection: take China Unicom as an example

    Science.gov (United States)

    Wu, Zu-guang; Tian, Zhan-jun; Liu, Hui; Huang, Rui; Zhu, Guo-hua

    2009-07-01

    Being the only listed telecom operators of A share market, China Unicom has always been attracted many institutional investors under the concept of 3G recent years,which itself is a great technical progress expectation.Do the institutional investors or the concept of technical progress have signficant effect on the improving of firm's operating efficiency?Though reviewing the documentary about operating efficiency we find that schoolars study this problem useing the regress analyzing based on traditional production function and data envelopment analysis(DEA) and financial index anayzing and marginal function and capital labor ratio coefficient etc. All the methods mainly based on macrodata. This paper we use the micro-data of company to evaluate the operating efficiency.Using factor analyzing based on financial index and comparing the factor score of three years from 2005 to 2007, we find that China Unicom's operating efficiency is under the averge level of benchmark corporates and has't improved under the concept of 3G from 2005 to 2007.In other words,institutional investor or the conception of technical progress expectation have faint effect on the changes of China Unicom's operating efficiency. Selecting benchmark corporates as post to evaluate the operating efficiency is a characteristic of this method ,which is basicallly sipmly and direct.This method is suit for the operation efficiency evaluation of agriculture listed companies because agriculture listed also face technical progress and marketing concept such as tax-free etc.

  6. Efficient Bulk Operations on Dynamic R-Trees

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Hinrichs, Klaus; Vahrenhold, Jan

    2002-01-01

    In recent years there has been an upsurge of interest in spatial databases. A major issue is how to manipulate efficiently massive amounts of spatial data stored on disk in multidimensional spatial indexes (data structures). Construction of spatial indexes (bulk loading ) has been studied...... intensively in the database community. The continuous arrival of massive amounts of new data makes it important to update existing indexes (bulk updating ) efficiently. In this paper we present a simple, yet efficient, technique for performing bulk update and query operations on multidimensional indexes. We...... present our technique in terms of the so-called R-tree and its variants, as they have emerged as practically efficient indexing methods for spatial data. Our method uses ideas from the buffer tree lazy buffering technique and fully utilizes the available internal memory and the page size of the operating...

  7. Magellan Project: Evolving enhanced operations efficiency to maximize science value

    Science.gov (United States)

    Cheuvront, Allan R.; Neuman, James C.; Mckinney, J. Franklin

    1994-01-01

    Magellan has been one of NASA's most successful spacecraft, returning more science data than all planetary spacecraft combined. The Magellan Spacecraft Team (SCT) has maximized the science return with innovative operational techniques to overcome anomalies and to perform activities for which the spacecraft was not designed. Commanding the spacecraft was originally time consuming because the standard development process was envisioned as manual tasks. The Program understood that reducing mission operations costs were essential for an extended mission. Management created an environment which encouraged automation of routine tasks, allowing staff reduction while maximizing the science data returned. Data analysis and trending, command preparation, and command reviews are some of the tasks that were automated. The SCT has accommodated personnel reductions by improving operations efficiency while returning the maximum science data possible.

  8. Improvement of human operator vibroprotection system in the utility machine

    Science.gov (United States)

    Korchagin, P. A.; Teterina, I. A.; Rahuba, L. F.

    2018-01-01

    The article is devoted to an urgent problem of improving efficiency of road-building utility machines in terms of improving human operator vibroprotection system by determining acceptable values of the rigidity coefficients and resistance coefficients of operator’s cab suspension system elements and those of operator’s seat. Negative effects of vibration result in labour productivity decrease and occupational diseases. Besides, structure vibrations have a damaging impact on the machine units and mechanisms, which leads to reducing an overall service life of the machine. Results of experimental and theoretical research of operator vibroprotection system in the road-building utility machine are presented. An algorithm for the program to calculate dynamic impacts on the operator in terms of different structural and performance parameters of the machine and considering combination of external pertrubation influences was proposed.

  9. Remotex: a new concept for efficient remote operation and maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Feldman, M.J.; White, J.R.

    1980-01-01

    Remotex is a concept of remote operation and maintenance that utilizes advanced manipulator design to improve plant operating efficiency, reduce personnel exposure, and improve safeguards and diversion resistance. It is a concept developed over the past two years in the conceptual design of the Hot Experimental Facility (HEF), a mechanically intense pilot plant facility designed to demonstrate reprocessng technology for early US breeder demonstration reactors. The Remotex concept is directly applicable to all segments of nuclear and nonnuclear industries where work tasks or conditions exist that are hazardous to the health of man

  10. Mastery of risks and operating safety, risks and efficiencies

    International Nuclear Information System (INIS)

    2006-01-01

    A proper management of ones risks consists in acting to exert prevention and protection capacities against the negative consequences of an event, but also by committing oneself into an offensive approach allowing to improve efficiency, quality and availability. Safety and efficiencies are mutual reinforcing goals aiming at ensuring the perenniality of industries and services. The implementation of a risk management approach in an industrial environment allows to reach a better reactiveness and to increase the efficiency of a system by the mastery of organization and processes. The activities in concern are those of industries and services: transports, energy and environment, automotive industry, petrochemistry, chemistry, food, space, health, defense industries, telecommunication, mining industry, information systems, textile industry, finances.. The topics approached during this meeting treat of: the relevance of risk-abatement resources with respect to risks criticality; the consistent management of uncertainties with respect to stakes; the mastery of components aging and the expression of aging-dependent availability, maintenance and safety policies; the expression of obsolescence-related renewing policies; the operating safety tools and methods applied to complex and computerized-controlled systems; the integration of social, organizational and human factors in technical decisions and companies management; transverse and global risk analysis and decision-aid approaches; the vigilance culture; crisis anticipation and management; the experience feedback on technical and organisational aspects; efficiency and risk mastery indicators; cost/benefit approach in risk management, and economic intelligence approaches. Nineteen presentations have been selected which deal with the mastery of risks and the operating safety at nuclear facilities. (J.S.)

  11. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities.

    Science.gov (United States)

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-09-11

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities.

  12. Efficiency improvements in transport

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Christensen, Linda; Jensen, Thomas C. [Technical Univ. of Denmark. DTU Transport, Kgs. Lyngby (Denmark)

    2012-11-15

    (HEV) has two different power sources: an electric motor and a small combustion engine to extend the operating range. Plug-in hybrid electric vehicles (PHEVs) add the ability to charge the battery from the mains. Many experts see PHEVs as a necessary transition to future EVs. The challenge for transport researchers and professionals will be to achieve dramatic efficiency improvements in modes of transport based on fossil fuels. At the same time it is necessary to promote research and demonstration of new power train technologies which can be used beyond 2050. (LN)

  13. Scope for improved eco-efficiency varies among diverse cropping systems.

    Science.gov (United States)

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  14. The Fuel Efficiency of Maritime Transport. Potential for improvement and analysis of barriers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M. [CE Delft, Delft (Netherlands); Behrends, B. [Marena Ltd., s.l. (United Kingdom); Lee, D.S. [Manchester Metropolitan University, Machester (United Kingdom)

    2012-02-15

    There is significant potential to improve the fuel efficiency of ships and thus contribute to reducing greenhouse gas emissions from maritime transport. It has long been recognised that this potential is not being fully exploited, owing to the existence of non-market barriers. This report analyses the barriers to implementing fuel efficiency improvements, and concludes that the most important of these are the split incentive between ship owners and operators, a lack of trusted data on new technologies, and transaction costs associated with evaluating measures. As a result, in practice about a quarter of the cost-effective abatement potential is unavailable. There are several ways to overcome these barriers. The split incentive can - to some extent - be overcome by providing more detailed information on the fuel efficiency of vessels, making due allowance for operational profiles. This would allow fuel consumption to be more accurately projected and a larger share of efficiency benefits to accrue to ship owners, thus increasing the return on investment in fuel-saving technologies. This would also require changes to standard charter parties. The credibility of information on new technologies can be improved through intensive collaboration between suppliers of new technologies and shipping companies. In order to overcome risk, government subsidies could provide an incentive. This could have the additional benefit that governments could require publication of results.

  15. Non-transboundary pollution and the efficiency of international environmental co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Kox, H.L.M.; Van der Tak, C.M. [Economics Department, Faculty of Economics and Econometrics, Vrije Universiteit, Amsterdam (Netherlands)

    1995-10-01

    The increased awareness of the transboundary pollution problems resulted in a number of international treaties, such as the Montreal protocol on ozone-depleting substances (1987), and the Basel Convention on hazardous waste (1989). Most authors writing on efficient environmental instruments make a sharp distinction between domestic and transboundary environmental problems. While the former should be abated by domestic environmental instruments, an efficient treatment of the latter requires international instruments. The underlying logic is that in case of non-transboundary pollution both the costs and benefits of environmental policies are strictly domestic, the trade-off between benefits and costs of abatement should also be a strictly domestic issue. In contrast, with transboundary pollution the trade-off between abatement costs and benefits becomes an international issue. In this paper we analyse four cases where international environmental co-ordination is required to achieve an efficient outcome, even though the environmental externality is non-transboundary in nature. Section two sketches the standard view on efficient intervention levels with regard to transborder and non-transborder pollution. In the third section we deal with cases where environmental policy is used in a trade-strategic way. The section pays attention to the motives for using domestic environmental policy as a disguise for trade policies. It will be argued that the resulting allocative efficiency can be improved upon by international co-operation. Sections 4-6 analyse three cases where international co-operation may improve the international outcome on the basis of non-coordinated domestic allocation decisions. These cases refer in particular to the situation of developing countries, when there is a high export dependency on the polluting good in combination with the existence of discrete technologies, set-up costs of environment-friendly technologies, and the existence of increasing

  16. Non-transboundary pollution and the efficiency of international environmental co-operation

    International Nuclear Information System (INIS)

    Kox, H.L.M.; Van der Tak, C.M.

    1995-10-01

    The increased awareness of the transboundary pollution problems resulted in a number of international treaties, such as the Montreal protocol on ozone-depleting substances (1987), and the Basel Convention on hazardous waste (1989). Most authors writing on efficient environmental instruments make a sharp distinction between domestic and transboundary environmental problems. While the former should be abated by domestic environmental instruments, an efficient treatment of the latter requires international instruments. The underlying logic is that in case of non-transboundary pollution both the costs and benefits of environmental policies are strictly domestic, the trade-off between benefits and costs of abatement should also be a strictly domestic issue. In contrast, with transboundary pollution the trade-off between abatement costs and benefits becomes an international issue. In this paper we analyse four cases where international environmental co-ordination is required to achieve an efficient outcome, even though the environmental externality is non-transboundary in nature. Section two sketches the standard view on efficient intervention levels with regard to transborder and non-transborder pollution. In the third section we deal with cases where environmental policy is used in a trade-strategic way. The section pays attention to the motives for using domestic environmental policy as a disguise for trade policies. It will be argued that the resulting allocative efficiency can be improved upon by international co-operation. Sections 4-6 analyse three cases where international co-operation may improve the international outcome on the basis of non-coordinated domestic allocation decisions. These cases refer in particular to the situation of developing countries, when there is a high export dependency on the polluting good in combination with the existence of discrete technologies, set-up costs of environment-friendly technologies, and the existence of increasing

  17. Improving efficiency in stereology

    DEFF Research Database (Denmark)

    Keller, Kresten Krarup; Andersen, Ina Trolle; Andersen, Johnnie Bremholm

    2013-01-01

    of the study was to investigate the time efficiency of the proportionator and the autodisector on virtual slides compared with traditional methods in a practical application, namely the estimation of osteoclast numbers in paws from mice with experimental arthritis and control mice. Tissue slides were scanned......, a proportionator sampling and a systematic, uniform random sampling were simulated. We found that the proportionator was 50% to 90% more time efficient than systematic, uniform random sampling. The time efficiency of the autodisector on virtual slides was 60% to 100% better than the disector on tissue slides. We...... conclude that both the proportionator and the autodisector on virtual slides may improve efficiency of cell counting in stereology....

  18. A study on the efficiency improvement of the plant secondary System in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Ho; Song Jong Sun [Chosun Univ., Kwangju (Korea, Republic of)

    2012-10-15

    The ultimate objective of the diagnostic test for thermal performance of generation facilities is to assist in making an economic decision on operation optimization of power plants by understanding the degree of heat aging due to operation of relevant facilities and planning on this basis the maintenance and repair. In this thesis, the trend in performance change was analyzed against the acceptance performance test conducted after the replacement of the high pressure turbine in 2007, through thermal performance diagnosis conducted at 100 % reactor thermal output after the 19th planned preventive maintenance of Yonggwang Nuclear Units 1 and 2, and the power plant operation was optimized by acquiring base line data for management of performance record for each major facility of the secondary system and by improving efficiency of unit instruments and peripheral instruments of the secondary system. As a result derived from the thermal performance analysis, the increase in electric output of the power plants was achieved through such operation optimizations of efficiency affecting instruments as optimization of the continuous exhaust flow rate for water supply heaters, vacuum improvement of condensers due to opening the upper/lower screens of heat transfer pipe washing system for condensers during summer, and flow rate optimization of the water vapor supplied to MSR (Moisture Separator Re heater) high pressure re heaters. This improves operation of the existing power plants without additional expense and so requires expert review by responsible personnel for practical application.

  19. Operator/contractor teamwork is the key to performance improvement

    International Nuclear Information System (INIS)

    Robins, K.B.; Roberts, J.D.M.

    1996-01-01

    The contract strategies developed by the two major E and P companies operating in the North Sea emphasize teamwork between operator and contractors to achieve the common goal of maximizing project value. These strategies have had significant repercussions across the whole industry. This paper compares these strategies and concludes that although they are structurally different, they have the same fundamental objectives. It describes the evolution of what these operators consider to be their core business, with the resultant changing roles for both operator and contractor staff. Several examples of results achieved through implementing these changes are described, highlighting the need for a structured performance measurement system to quantify the success of these initiatives. Finally, the potential for even greater efficiency improvements through further industry-wide cooperation is emphasized

  20. Aeration tank settling and real time control as a tool to improve the hydraulic capacity and treatment efficiency during wet weather: Results from 7 years' full-scale operational data

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H.A.R.

    2013-01-01

    This paper investigates the aeration tank settling (ATS) operation in combination with real time control (RTC) as a tool for increasing the hydraulic capacity and improving the treatment efficiency of a wastewater treatment plant (WWTP) during wet weather flows. Results from 7 years' full...

  1. 24 CFR 1006.325 - Maintenance, management and efficient operation.

    Science.gov (United States)

    2010-04-01

    ... § 1006.325 Maintenance, management and efficient operation. (a) Written policies. The DHHL must develop... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maintenance, management and efficient operation. 1006.325 Section 1006.325 Housing and Urban Development Regulations Relating to Housing...

  2. Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2018-01-01

    Full Text Available Although in 2012 the European Union (EU has promoted energy efficiency in order to ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity consumption by households decreased in the EU-28, the largest expansion was recorded in Romania. Taking into account that the projected consumption peak is increasing and energy consumption management for residential activities is an important measure for energy efficiency improvement since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics solution that assists both electricity suppliers/grid operators and consumers. It includes three models for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily operation of appliances can be optimized and scheduled to minimize the consumption peak and reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the operation of the programmable appliances from peak to off-peak hours. This approach enables the supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak, it becomes more predictable, and thus improves the strategies on the electricity markets. According to the results of the optimization process, we compare the proposed algorithms emphasizing the benefits. For building consumption profiles, we develop a clustering algorithm based on self-organizing maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for the consumption forecast, highly accurate feedforward artificial neural networks algorithm with backpropagation is implemented. Finally, we test these algorithms using several datasets showing their

  3. Use of automated rendezvous trajectory planning to improve spacecraft operations efficiency

    Science.gov (United States)

    Mulder, Tom A.

    1991-01-01

    The current planning process for space shuttle rendezvous with a second Earth-orbiting vehicle is time consuming and costly. It is a labor-intensive, manual process performed pre-mission with the aid of specialized maneuver processing tools. Real-time execution of a rendezvous plan must closely follow a predicted trajectory, and targeted solutions leading up to the terminal phase are computed on the ground. Despite over 25 years of Gemini, Apollo, Skylab, and shuttle vehicle-to-vehicle rendezvous missions flown to date, rendezvous in Earth orbit still requires careful monitoring and cannot be taken for granted. For example, a significant trajectory offset was experienced during terminal phase rendezvous of the STS-32 Long Duration Exposure Facility retrieval mission. Several improvements can be introduced to the present rendezvous planning process to reduce costs, produce more fuel-efficient profiles, and increase the probability of mission success.

  4. Common challenge in resource efficiency improvement

    International Nuclear Information System (INIS)

    La Motta, Sergio; Peronaci, Marcello

    2015-01-01

    Energy efficiency and technology improvements on their own will not achieve the Low Carbon Societies (LCS) goals. Thus, resource efficiency and a circular economy are keys to a low carbon society. Resource efficiency improvement potential has been analysed from the industrial and territorial management perspectives. Exploring synergies between LCS and the larger area of sustainable development and green economy, highlighting co-benefits and trade-offs, is of utmost importance to pave the way to a more equitable and largely participated low carbon transition.

  5. A selective study of Information technologies to improve operations efficiency in construction

    Directory of Open Access Journals (Sweden)

    Konikov Alexandr

    2018-01-01

    Full Text Available Today, information technologies (IT are used in almost every production industry. While the aspects of IT are well studied and discussed in relevant monographs, articles, web sources, etc., this paper reviews the performance improvement options in the construction industry by leveraging IT. From a wide range of information technologies the author has picked the most relevant solutions, from his point of view, based on several considerations, the most important one being the lack of adequate attention to these technologies specifically in the construction industry. The paper covers the following technologies: Big Data (a smart technology for high-speed processing of huge and diverse data arrays; situation centers (SC for construction and operations projects (SCs are successfully used in other industries for operating control of sophisticated facilities; data warehouses (DW for the construction industry (DWs are viewed as a standalone project rather than a supplement to Data Mining or Big Data; operational and dispatch radio communication service (radio communication can ensure instant connectivity between several subscribers; VSAT (a satellite technology for prompt connection of a distant construction site with the 'outer world' when no alternatives are available. The paper briefly presents the essence of each technology, describes the pre-requisites for its use in construction, outlines the key advantages, limits and shortcomings, and lists construction projects where it shall be worthwhile to use a specific technology projects.

  6. Numerical simulation of energy efficiency measures: control and operational strategies

    International Nuclear Information System (INIS)

    Ardehali, M. M.

    2006-01-01

    The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)

  7. Assesment criteria improvement for operational economical efficiency of NPP with WWER typr reactors

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Matveev, A.A.; Ignatenko, E.I.; Pshechenkova, T.V.

    1983-01-01

    A new technique for calculating fuel component of the cost of NPP electric power generation is suggested. To calculate the variable part of fuel component it is suggested to consider the acquisition cost of fuel assemblies, unloaded from the reactor on fuel cycle completion instead of acquisition cost of fresh fuel assemblies, loaded into the reactor for organization of this cycle; it is also suggested to include the acquisition cost of fuel assemblies, remaining in reactop core on completion of the last fuel cycle+ in constant fuel expenses. The fuel component of the cost of WWER-440 reactor electric power generation for desigh operating conditions with 700 full power days period of steady-state fuel cycle was calculated. The suggested technique enables to reveal the deviation of the real fuel cycling conditions from the standard ones and calculate the value of this deviation, establish the reasons, disturbing the economical conditions of reactor operation, to approximate the real conditions of fuel cycling to the optimal ones by influencing on technological process, resulting in the change of factors, determining the fuel cycling efficiency during electric power generation and refueling in considered cycle

  8. PFP total operating efficiency calculation and basis of estimate

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The purpose of the Plutonium Finishing Plant (PFP) Total Operating Efficiency Calculation and Basis of Estimate document is to provide the calculated value and basis of estimate for the Total Operating Efficiency (TOE) for the material stabilization operations to be conducted in 234-52 Building. This information will be used to support both the planning and execution of the Plutonium Finishing Plant (PFP) Stabilization and Deactivation Project's (hereafter called the Project) resource-loaded, integrated schedule

  9. The application of DEA (Data Envelopment Analysis) window analysis in the assessment of influence on operational efficiencies after the establishment of branched hospitals.

    Science.gov (United States)

    Jia, Tongying; Yuan, Huiyun

    2017-04-12

    Many large-scaled public hospitals have established branched hospitals in China. This study is to provide evidence for strategy making on the management and development of multi-branched hospitals by evaluating and comparing the operational efficiencies of different hospitals before and after their establishment of branched hospitals. DEA (Data Envelopment Analysis) window analysis was performed on a 7-year data pool from five public hospitals provided by health authorities and institutional surveys. The operational efficiencies of sample hospitals measured in this study (including technical efficiency, pure technical efficiency and scale efficiency) had overall trends towards increase during this 7-year period of time, however, a temporary downturn occurred shortly after the establishment of branched hospitals; pure technical efficiency contributed more to the improvement of technical efficiency compared to scale efficiency. The establishment of branched-hospitals did not lead to a long-term negative effect on hospital operational efficiencies. Our data indicated the importance of improving scale efficiency via the optimization of organizational management, as well as the advantage of a different form of branch-establishment, merging and reorganization. This study brought an insight into the practical application of DEA window analysis on the assessment of hospital operational efficiencies.

  10. The Effects of Operational and Environmental Variables on Efficiency of Danish Water and Wastewater Utilities

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini

    2015-06-01

    Full Text Available Efficiency improvement is one of three patterns a public utility should follow in order to get funds for investments realization. The other two are recourse to bank loans or to private equity and tariff increase. Efficiency can be improved, for example, by growth and vertical integration and may be conditioned by environmental variables, such as customer and output density. Prior studies into the effects of these variables on the efficiency of water utilities do not agree on certain points (e.g., scale and economies of scope and rarely consider others (e.g., density economies. This article aims to contribute to the literature by analysing the efficiency of water utilities in Denmark, observing the effects of operational and environmental variables. The method is based on two-stage Data Envelopment Analysis (DEA applied to 101 water utilities. We found that the efficiency of the water sector was not affected by the observed variables, whereas that of wastewater was improved by smaller firm size, vertical integration strategy, and higher population density.

  11. Quantification of the impact of multifaceted initiatives intended to improve operational efficiency and the safety culture: a case study from an academic medical center radiation oncology department.

    Science.gov (United States)

    Chera, Bhishamjit S; Mazur, Lukasz; Jackson, Marianne; Taylor, Kinely; Mosaly, Prithima; Chang, Sha; Deschesne, Kathy; LaChapelle, Dana; Hoyle, Lesley; Saponaro, Patricia; Rockwell, John; Adams, Robert; Marks, Lawrence B

    2014-01-01

    We have systematically been incorporating several operational efficiency and safety initiatives into our academic radiation oncology clinic. We herein quantify the impact of these initiatives on prospectively collected, clinically meaningful, metrics. The data from 5 quality improvement initiatives, each focused on a specific safety/process concern in our clinic, are presented. Data was collected prospectively: operational metrics recorded before and after implementation of the initiative were compared using statistical analysis. Results from the Agency for Health Care Research and Quality (AHRQ) patient safety culture surveys administered during and after many of these initiatives were similarly compared. (1) Workload levels for nurses assisting with brachytherapy were high (National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores >55-60, suggesting, "overwork"). Changes in work flow and procedure room layout reduced workload to more acceptable levels (NASA-TLX 50% to <10%; P < .01). To assess the overall changes in "patient safety culture," we conducted a pre- and postanalysis using the AHRQ survey. Improvements in all measured dimensions were noted. Quality improvement initiatives can be successfully implemented in an academic radiation oncology department to yield measurable improvements in operations resulting in improvement in patient safety culture. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. Improved operations through manpower management in the oil sector

    International Nuclear Information System (INIS)

    Ahmed, Hiba

    2007-01-01

    The need for improved operations was never higher than today in the oil industry. The world's demand for energy, especially for oil and natural gas, is rising rapidly and for many years to come. In order to meet this rising demand and to keep price volatility to a minimum; oil companies worldwide are looking for ways to improve operations in order to achieve increased production with decreased costs. This paper describes data from Southern Area Oil Operations (SAOO); an organization within the Saudi Arabian Oil Company (ARAMCO), to show how manpower management can be used to achieve improved operations. For the years 1983 to 2004, manpower management in SAOO focused on addressing both the quantity and quality dimensions of manpower. First, the level of manpower gradually declined by 35% for both the Saudi Arab and Expatriate categories for the entire period. Expatriate labor is defined as labor in three main categories: US/Canadian, UK, and Asians and Other Arabs. Second, the level of training slowly increased to align manpower to better fit organizational functions and work responsibilities. Not only a number of new training and development programs were initiated but also the percentage of employees involved in such programs doubled from 4.5% in 1990 to 8.9% in 2004. Third, technology based initiatives such as the use of computers, Internet, and intranet were heavily introduced to employees in the last 10 yrs. Due to these three changes reduced costs and increased manpower efficiency were achieved. In the period 1983 to 2004 the total labor bill declined by 35% and Net Direct Expenditures NDE by 24% after adjusting for inflation and using 2004 dollars. Net Direct Expenditure NDE is defined by SAOO to be the summation of labor cost, material cost, invoices cost, and net service income. In addition two signs of improved efficiency of manpower were apparent in the same period. First, SAOO manpower, despite its smaller size, could actually sustain an increased

  13. Human reliability and plant operating efficiency: Are 12-hour work schedules cause for concern?

    International Nuclear Information System (INIS)

    Baker, T.L.

    1992-01-01

    Since the introduction of 12-h shifts to the US nuclear power industry only 8 yr ago, compressed workweek schedules have proliferated among operations departments at a phenomenal rate. Many plants that continue to use 8-h shifts during normal operations routinely change to scheduled 12-h shifts during refueling or maintenance outages. The most critical issue in the use of extended work shifts is whether alertness, physical stamina, or mental performance are compromised to the point of reducing safety or efficiency of nuclear power plant operation. Laboratory and field research sponsored by the National Institute of Occupational Safety and Health suggests that alertness, measured by self-ratings, and mental performance, measured by computer-based performance tests, are impaired on 12-h shifts compared with 8-h shifts. In contrast to these findings, plant operating efficiency and operator performance have been rated as improved in two field studies conducted in operating nuclear power plants (Fast Flux Test Facility, Washington and Ontario Hydro, Canada). A recent Electric Power Research Institute review of nuclear industry experience with 12-h shifts also suggests an overwhelmingly positive rating of 12-h schedules from both control room operators and management

  14. Measuring the operational efficiency of individual theme park attractions.

    Science.gov (United States)

    Kim, Changhee; Kim, Soowook

    2016-01-01

    This study assesses the operation efficiency of theme park attractions using the data envelopment analysis, utilizing actual data on 15 attractions at Samsung Everland located in Yongin-si, Republic of Korea. In particular, this study identifies crowding and waiting time as one of the main causes of visitor's satisfaction, and analyzes the efficiency of individual attractions in terms of waiting time. The installation area, installation cost, and annual repair cost are set as input factors and the number of annual users and customer satisfaction as output factors. The results show that the roller coaster-type attractions were less efficient than other types of attractions while rotating-type attractions were relatively more efficient. However, an importance performance analysis on individual attraction's efficiency and satisfaction showed that operational efficiency should not be the sole consideration in attraction installation. In addition, the projection points for input factors for efficient use of attractions and the appropriate reference set for benchmarking are provided as guideline for attraction efficiency management.

  15. Improving the global efficiency in small hydropower practice

    Science.gov (United States)

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  16. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Tsuchiya, Toshio; Masuda, Hisao; Isono, Tomoyuki; Noji, Kunio; Togo, Toshiki

    1989-01-01

    BWR Operator Training Center Corporation (BTC) was established in April 1971 for the purpose of training the operators from all BWR utilities in Japan. Since April 1974, more than 2600 operators and 1000 shift teams have been trained with the full-scope simulators in BTC up to the end of March 1988. To get the satisfactory results of the training, BTC has been making every effort to improve the facilities, the training materials, the instruction methods and the curricula. In this paper, such a series of recent improvements in the instruction methods and the curricula are presented that are effective to expand the knowledge and to improve the skills of middle or senior class operators. (author)

  17. Physician Engagement in Improving Operative Supply Chain Efficiency Through Review of Surgeon Preference Cards.

    Science.gov (United States)

    Harvey, Lara F B; Smith, Katherine A; Curlin, Howard

    To reduce operative costs involved in the purchase, packing, and transport of unnecessary supplies by improving the accuracy of surgeon preference cards. Quality improvement study (Canadian Task Force classification II-3). Gynecologic surgery suite of an academic medical center. Twenty-one specialized and generalist gynecologic surgeons. The preference cards of up to the 5 most frequently performed procedures per surgeon were selected. A total of 81 cards were distributed to 21 surgeons for review. Changes to the cards were communicated to the operating room charge nurse and finalized. Fourteen surgeons returned a total of 48 reviewed cards, 39 of which had changes. A total of 109 disposable supplies were removed from these cards, at a total cost savings of $767.67. The cost per card was reduced by $16 on average for disposables alone. Three reusable instrument trays were also eliminated from the cards, resulting in savings of approximately $925 in processing costs over a 3-month period. Twenty-two items were requested by surgeons to be available on request but were not routinely placed in the room at the start of each case, at a total cost of $6,293.54. The rate of return of unused instruments to storage decreased after our intervention, from 10.1 to 9.6 instruments per case. Surgeon preference cards serve as the basis for economic decision making regarding the purchase, storing, packing, and transport of operative instruments and supplies. A one-time surgeon review of cards resulted in a decrease in the number of disposable and reusable instruments that must be stocked, transported, counted in the operating room, or returned, potentially translating into cost savings. Surgeon involvement in preference card management may reduce waste and provide ongoing cost savings. Copyright © 2017 American Association of Gynecologic Laparoscopists. Published by Elsevier Inc. All rights reserved.

  18. Selection of index complex for the NPP operator activity efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnik, A I; Chertorizhskij, E A

    1984-01-01

    Preconditions for choice of NPP operator activity efficiency index are determined. Results of the choice are given and a method for determination of generalized and particular parameters by means of which NPP operator activity efficiency can be estimated is considered. An algorithm of diagnosis of reason for unsuccess of operator activity based on assessment of psychological factors of complicacy is suggested.

  19. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    International Nuclear Information System (INIS)

    Kaoma, J.; Kasali, G.B.; Ellegaard, A.

    1994-01-01

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO 2 did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  20. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kaoma, J; Kasali, G B [Building and Industrial Minerals Research Unit, National Council for Scientific Research, (Zambia); Ellegaard, A [Stockholm Environment Inst. (Sweden)

    1994-12-31

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO{sub 2} did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  1. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  2. Using Operational Analysis to Improve Access to Pulmonary Function Testing

    Directory of Open Access Journals (Sweden)

    Ada Ip

    2016-01-01

    Full Text Available Background. Timely pulmonary function testing is crucial to improving diagnosis and treatment of pulmonary diseases. Perceptions of poor access at an academic pulmonary function laboratory prompted analysis of system demand and capacity to identify factors contributing to poor access. Methods. Surveys and interviews identified stakeholder perspectives on operational processes and access challenges. Retrospective data on testing demand and resource capacity was analyzed to understand utilization of testing resources. Results. Qualitative analysis demonstrated that stakeholder groups had discrepant views on access and capacity in the laboratory. Mean daily resource utilization was 0.64 (SD 0.15, with monthly average utilization consistently less than 0.75. Reserved testing slots for subspecialty clinics were poorly utilized, leaving many testing slots unfilled. When subspecialty demand exceeded number of reserved slots, there was sufficient capacity in the pulmonary function schedule to accommodate added demand. Findings were shared with stakeholders and influenced scheduling process improvements. Conclusion. This study highlights the importance of operational data to identify causes of poor access, guide system decision-making, and determine effects of improvement initiatives in a variety of healthcare settings. Importantly, simple operational analysis can help to improve efficiency of health systems with little or no added financial investment.

  3. A Benchmarking of Operational Efficiency in Asia Pacific International Cargo Airports

    Directory of Open Access Journals (Sweden)

    Tae-won Chung

    2015-03-01

    Full Text Available This paper compares operational efficiency of major cargo airports in the Asia Pacific region. The multi-dimensional scaling cluster analysis by R-square method was used as the benchmarking tool to provide airport management with a means to examine various aspects of their operational efficiency against those of other airports. Ten operational efficiency factors for the clustering and efficiency estimation of airports in the Asia Pacific region were used in a regression model to overcome the complexity of multi-dimensional scaling approach. The resulting classification is used to identify the efficiency benchmarks of leading air cargo airports which have implications for Incheon airport in Korea.

  4. Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.

  5. Efficiency and hospital effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems ratings.

    Science.gov (United States)

    Al-Amin, Mona; Makarem, Suzanne C; Rosko, Michael

    2016-01-01

    Efficiency has emerged as a central goal to the operations of health care organizations. There are two competing perspectives on the relationship between efficiency and organizational performance. Some argue that organizational slack is a waste and that efficiency contributes to organizational performance, whereas others maintain that slack acts as a buffer, allowing organizations to adapt to environmental demands and contributing to organizational performance. As value-based purchasing becomes more prevalent, health care organizations are incented to become more efficient and, at the same time, improve their patients' experiences and outcomes. Unused slack resources might facilitate the timely implementation of these improvements. Building on previous research on organizational slack and inertia, we test whether efficiency and other organizational factors predict organizational effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings. We rely on data from the American Hospital Association and HCAHPS. We estimate hospital cost-efficiency by Stochastic Frontier Analysis and use regression analysis to determine whether efficiency, competition, hospital size, and other organizational factors are significant predictors of hospital effectiveness. Our findings indicate that efficiency and hospital size have a significant negative association with organizational ability to improve HCAHPS ratings. Although achieving organizational efficiency is necessary for health care organizations, given the changes that are currently occurring in the U.S. health care system, it is important for health care managers to maintain a certain level of slack to respond to environmental demands and have the resources needed to improve their performance.

  6. Membrane Bioreactors design and operation improvements: The Spanish Experience

    International Nuclear Information System (INIS)

    Iglesias Esteban, R.; Ortega de Miguel, E.; Martinez Tarifa, M. A.; Simon Andreu, P.; Moragas Bouyart, L.; Garcia Fernandez, E.; Robuste Cartro, J.; Rodriguez-Roda layret, I.

    2012-01-01

    A Membrane Bioreactor (MBR) is a modification of a conventional activated sludge (CAS) plant where the secondary settling ins replaced by a low pressure ultrafiltration (UF) or micro filtration (MF) membranes separation process in order to obtain an effluent almost free of suspended solids and microorganisms. since the first MBR installation in 2002, the number and capacity of these systems have exponentially increased in spain, driven by the high quality of the effluent which allows direct reuse and discharge into environmentally sensitive areas, the compactness and automation of these plants and the possibility of upgrading existing wastewater treatment plants (WWTP) which no longer reach the required effluent quality levels. There were 45 operating MBR systems in 2011 and the total municipal wastewater treatment capacity by this type of plants will be about 90 hm 3 in 204 when the current projects have been implemented. Today, Spain public and private wastewater management agencies consider MBR plants as an alternative of treatment but first they had to face a complex learning period to operate and design this kind of system. A significant progress has been made over the last years, but especially energy efficiency responds to the challenge of continuous improvement. Membrane fouling control consumes most of the energy involved in the process therefore, anti fouling materials and better membrane air-scour systems that allow the frequency and intensity of air flow to be controlled in realtime, are being investigated. This brings MBR closer to the CAS process in terms of energy efficiency. Breakthroughs in the design and operation of MBR plants are being collected in a guide for the implementation of MBR led by CEDEX, in which the main managers and operators are involved. This paper presents some of these improvements. (Author) 9 refs.

  7. Frontier technologies to improve efficiency

    International Nuclear Information System (INIS)

    Kalhammer, F.R.

    1992-01-01

    The author discusses conservation technology to improve the efficiency of energy production. Although coal is seen as the largest source of fuel for producing electricity until the year 2040, the heating value of coal is expected to be increased by using Integrated Gasification Combined Cycle (IGCC) technology. Use of fuel cells to produce electricity will be a viable option only if costs can be reduced to make the technology competitive. By coupling IGCC with fuel cells it may be possible to increase total conversion efficiency of coal to electricity at 50%. Photovoltaics technology is more likely to be used in developing countries. Electric utilities target power electronics, lighting fixtures, heat pumps, plasma processing, freeze concentration and application of superconductivity as electricity end use technologies that have the most potential for efficiency improvement. The impact of these technologies in coping with the greenhouse effect was not addressed

  8. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  9. Determinants of Operational Efficiency at Chemical Cargo Terminals

    Directory of Open Access Journals (Sweden)

    T.A. Gúlcan

    2014-06-01

    Full Text Available In today’s globalized world, one of the requirements of global supply chains is efficient transportation systems. Approximately 80 per cent of world merchandise trade carried by sea and handled by ports worldwide. For this reason, maritime transport has the strategic economic importance. Loading of oil and gas has the biggest share (%30 in commodities carried by sea and 2.9 billion tons oil and gas loaded to ship in 2013. This study is focus on chemical cargo terminals which is a special terminal form where high and international levels of safety and quality elements applied. Unlike conventional bulk cargo and container cargo operations, chemical cargo operations include own priorities, applications, and the evaluation criteria. The aim of this study is to perform a qualitative research to determine the factors affecting the operational efficiency of ship, berth and warehousing operations in chemical cargo terminals.

  10. Model-Based Analysis and Efficient Operation of a Glucose Isomerization Reactor Plant

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Madsen, Ulrich; Pedersen, Sven

    2015-01-01

    efficiency. The objective of this study is the application of the developed framework on an industrial case study of a glucose isomerization (GI) reactor plant that is part of a corn refinery, with the objective to improve the productivity of the process. Therefore, a multi-scale reactor model...... is developedfor use as a building block for the GI reactor plant simulation. An optimal operation strategy is proposed on the basis of the simulation results...

  11. Energy-efficient operation of a booster RF system for Taiwan light source operated in top-up mode

    International Nuclear Information System (INIS)

    Yeh, Meng-Shu; Wang, Chaoen; Chang, Lung-Hai; Chung, Fu-Tsai; Yu, Tsung-Chi; Lin, Ming-Chyuan; Chen, Ling-Jhen; Yang, Tz-Te; Chang, Mei-Hsia; Lin, Yu-Han; Tsai, Ming-Hsun; Lo, Chih-Hung; Liu, Zong-Kai

    2015-01-01

    Contemporary light sources operate in a top-up mode to maintain their photon intensity quasi-constant so as to improve significantly the thermal stability of the photon beam and to maximize ultimately the average photon flux at a designed maximum operational beam current. Operating in a top-up mode requires frequent beam injection from the synchrotron booster to the storage ring of the light source, but the injection intervals occupy only a tiny portion of the operational time of the integrated machine. To maintain a high operational reliability, the booster RF system practically operates necessarily under injection conditions around the clock and consumes full electric power whether during top-up injection or not. How to decrease the power consumption of the booster RF system during its stand-by time but not to sacrifice the reliability and availability of the RF system is obviously of fundamental interest for routine operation of the light source in a top-up mode. Here, an energy-efficient operation of a booster RF system adaptive to top-up operation of a light source is proposed that has been developed, realized and integrated into the booster RF system of the Taiwan Light Source (TLS), and routinely operated since the end of year 2008. The klystron cathode current and RF gap voltage of the booster's accelerating RF cavity are both periodically modulated to adapt the injection rhythm during top-up operation, which results in decreased consumption of electric power of the booster RF system by more than 78%. The impact on the reliability and availability of the booster RF system has been carefully monitored during the past five operational years, delivering more than 5000 h scheduled user beam time per year. The booster RF system retains its excellent reliability and availability as previously. Neither a decrease of the service time nor an induced reliability issue from the klystron or any high-power high-voltage component of the transmitter has been

  12. Efficiency improvements of offline metrology job creation

    Science.gov (United States)

    Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.

    1999-06-01

    Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.

  13. AltaLink uses interactive voice response to improve call centre efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tellerman, N.; Sutherland, T.

    2010-11-15

    This article discussed an automated check-in/check-out system implemented by a transmission provider to improve efficiency and worker safety. The system, known as SEEN (Substation Entry/Exit Notification), replaced an inefficient process in which individuals entering or leaving a substation checked in or out by telephoning a control centre. With the increase in maintenance work resulting from aging infrastructure and increased power consumption, the call centre became overburdened with entry/exit calls, which created inefficient wait times for workers. The SEEN system allows crews to check in and out of substations through an Interactive Voice Response (IVR) server that communicates to the Staff-on-Site system through a web service interface. Employees or contractors follow automated voice instructions to check in and out of stations. Dedicated 10-digit phone numbers allow for automatic employee recognition. Each caller is prompted to enter a site number, the reason the site is being accessed, and, for solitary workers, a contact number. The system verifies the worker is qualified to enter the site and allows the control centre to identify hazardous sites. The new system resulted in improved efficiency for both crews and control centre operators. In the first operating year, the system reduced the number of entrance/exit calls by 70 percent. The next phase of the project will link the system into the energy management system and will display icons on pertinent System Operator displays when workers are checked into a site. 3 figs.

  14. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  15. Use of computer codes to improve nuclear power plant operation

    International Nuclear Information System (INIS)

    Misak, J.; Polak, V.; Filo, J.; Gatas, J.

    1985-01-01

    For safety and economic reasons, the scope for carrying out experiments on operational nuclear power plants (NPPs) is very limited and any changes in technical equipment and operating parameters or conditions have to be supported by theoretical calculations. In the Nuclear Power Plant Scientific Research Institute (NIIAEhS), computer codes are systematically used to analyse actual operating events, assess safety aspects of changes in equipment and operating conditions, optimize the conditions, preparation and analysis of NPP startup trials and review and amend operating instructions. In addition, calculation codes are gradually being introduced into power plant computer systems to perform real time processing of the parameters being measured. The paper describes a number of specific examples of the use of calculation codes for the thermohydraulic analysis of operating and accident conditions aimed at improving the operation of WWER-440 units at the Jaslovske Bohunice V-1 and V-2 nuclear power plants. These examples confirm that computer calculations are an effective way of solving operating problems and of further increasing the level of safety and economic efficiency of NPP operation. (author)

  16. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  17. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  18. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  19. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  20. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  2. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  3. Energy efficiency estimation of a steam powered LNG tanker using normal operating data

    Directory of Open Access Journals (Sweden)

    Sinha Rajendra Prasad

    2016-01-01

    Full Text Available A ship’s energy efficiency performance is generally estimated by conducting special sea trials of few hours under very controlled environmental conditions of calm sea, standard draft and optimum trim. This indicator is then used as the benchmark for future reference of the ship’s Energy Efficiency Performance (EEP. In practice, however, for greater part of operating life the ship operates in conditions which are far removed from original sea trial conditions and therefore comparing energy performance with benchmark performance indicator is not truly valid. In such situations a higher fuel consumption reading from the ship fuel meter may not be a true indicator of poor machinery performance or dirty underwater hull. Most likely, the reasons for higher fuel consumption may lie in factors other than the condition of hull and machinery, such as head wind, current, low load operations or incorrect trim [1]. Thus a better and more accurate approach to determine energy efficiency of the ship attributable only to main machinery and underwater hull condition will be to filter out the influence of all spurious and non-standard operating conditions from the ship’s fuel consumption [2]. The author in this paper identifies parameters of a suitable filter to be used on the daily report data of a typical LNG tanker of 33000 kW shaft power to remove effects of spurious and non-standard ship operations on its fuel consumption. The filtered daily report data has been then used to estimate actual fuel efficiency of the ship and compared with the sea trials benchmark performance. Results obtained using data filter show closer agreement with the benchmark EEP than obtained from the monthly mini trials . The data filtering method proposed in this paper has the advantage of using the actual operational data of the ship and thus saving cost of conducting special sea trials to estimate ship EEP. The agreement between estimated results and special sea trials EEP is

  4. Operational Improvements of Continuous Process with Tools of Lean Production - A Case Study in a Brazilian Petrochemical

    Directory of Open Access Journals (Sweden)

    Francisco Uchoa Passos

    2013-06-01

    Full Text Available This study seeks to evaluate operational improvements in Brazilian petrochemical company Braskem, which has been using lean production management tools to monitor its processes. There was some improvement in plant efficiency, measured from the beginning of implementation of management tools Six Sigma and TPM. Thus, we investigated three efficiency indicators considered by the company of great importance for the competitiveness of the business: the physical loss of products, plant’s energy efficiency, and the utilization rate of assets. The differences observed in these indicators, before and after the use of the tools, were tested for its statistical significance, which revealed that the physical losses of ethylene and plant’s energy efficiency improved, almost reaching the performance considered as class world. As for the utilization rate of assets, although it has evolved positively, still is at a considerable distance from that performance standard. By registering operational improvements in a continuous process plant, with lean production tools, this study indicates that these instruments, even if they have no causal relation with the improvements, are suitable for continuous processes and could have a much broader use, oriented, first of all, by the general approach of process optimization and, somehow, regardless of the nature of productive activity.

  5. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  6. Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure.

    Science.gov (United States)

    Wang, Ke; Zhang, Jieming; Wei, Yi-Ming

    2017-05-01

    The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational

  7. Improved district heating substation efficiency with a new control strategy

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2010-01-01

    In this paper, we describe a new alternative control approach for indirectly connected district heating substations. Simulations results showed that the new approach results in an increased ΔT across the substation. Results were obtained for both ideal and non-ideal operation of the system, meaning that less water must be pumped through the district heating network, and a higher overall fuel efficiency can be obtained in the district heating power plants. When a higher fuel efficiency is achieved, the usage of primary fuel sources can be reduced. Improved efficiency also increases the effective heat transfer capacity of a district heating network, allowing more customers to be connected to an existing network without increasing the heating plant or network capacity. Also, if combined heat and power plants are used to produce the heat, the increased ΔT will result in a further improved overall fuel efficiency, as more electricity can be produced with colder cooling water. The idea behind the new control method is to consider the temperature of the water supplying the district heating substation with heat, often referred to as the primary supply temperature. This represents a logical next step, as currently, the only parameter generally taken into account or measured when controlling the temperature level of the radiator circuit is the local outdoor temperature. In this paper we show how the primary supply temperature together with thermodynamic knowledge of the building can be used to maximize the ΔT across the district heating substation.

  8. Operational Efficiency of Public Transport System in Kwara State ...

    African Journals Online (AJOL)

    Operational Efficiency of Public Transport System in Kwara State, Nigeria. ... The paper examines the operations of Public Transport in Nigeria using the Kwara State Transport Service as a case study. ... EMAIL FULL TEXT EMAIL FULL TEXT

  9. Operational Efficiency of Information Technology and Organizational Performance of State Universities and Colleges in Region VI, Philippines

    Directory of Open Access Journals (Sweden)

    Samson M. Lausa

    2016-11-01

    Full Text Available Over the past years educational institutions have been investing increasingly substantial amount of money in integrating Information Technology (IT in the course of educational services delivery with the objective of improving operational efficiency and competitive advantage. The important role IT plays in educational institutions is unquestionable. It is regarded as a critical factor of innovation for growth and survival. The evaluation of the impact of this innovation in the educational system drives the researcher to undertake a study on Operational Efficiency of Information Technology and Organizational Performance of State Universities and Colleges (SUCs of Region VI, Philippines. Descriptive method was used utilizing a validated survey questionnaire which also involved the desk and field research conducted by a panel of two field researchers including the researcher himself covering selected SUCs of Region VI. Deans or department heads and faculty of the different colleges or departments, administrative and academic officials constitute the respondents of the study. Stratified proportional random sampling and purposive sampling were used in the study. Results of the study were viewed and analyzed using the Mean and the Pearson r Correlation Coefficient. Findings revealed that the operational efficiency of the SUCs of Region VI is moderately efficient while the majority of colleges/universities are performing moderately efficient. The study also revealed that the organizational performance of SUCs and the majority of colleges/universities are performing very satisfactory. Likewise, the findings also showed a significant relationship between the operational efficiency of information technology and organizational performance of SUCs. However, a significant relationship between operational efficiency and organizational performance of SUCs in instruction does not exist while a significant relationship exists in research, extension and

  10. Efficient implementation of real-time programs under the VAX/VMS operating system

    Science.gov (United States)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  11. A problem-solving routine for improving hospital operations.

    Science.gov (United States)

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  12. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    Science.gov (United States)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  13. Evaluation of economic and technical efficiency of diesel engines operation on the basis of volume combustion rate

    Directory of Open Access Journals (Sweden)

    І. О. Берестовой

    2016-11-01

    Full Text Available The article deals with a new approach to evaluation of complex efficiency of diesel engines. Traditionally, cylinder’s capacity, rotation frequency, average efficient pressure inside cylinder, piston’s stroke, average piston’s velocity, fuel specific consumption and other indices are used as generalizing criteria, characterizing diesel engine’s efficiency, but they do not reflect interrelation between engine’s complex efficiency and a set of economic, mass-dimensional, operational and ecological efficiency. The approach applied in the article makes it possible to reveal the existing and modify the existing methods of solving the problem of improving diesel engine’s efficiency with due regard to interrelation of the parameters, characterizing efficiency of their operation. Statistic analyses were carried out, on the basis of which an assumption regarding the existence of interrelation between specific fuel consumption and the analyzed engine’s parameters was made. Processing of statistical data for various analyzed functions of diesel engines helped offer a function, illustrating the link between volume combustion rate, piston’s area and nominal theoretical specific fuel consumption. Interrelation between volume combustion rate, nominal parameters of diesel operation and efficiency indices, obtained by processing statistical data of more than 500 models of diesels of different series was evaluated, the main feature of it being a mathematical trend. The analysis of the obtained function makes it possible to establish an interrelation between economic efficiency of a diesel, its main index being specific fuel consumption and volume combustion rate and design peculiarities

  14. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

    Directory of Open Access Journals (Sweden)

    Chengming Zhang

    2017-12-01

    Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

  15. The Efficiency of the Regulation for Horizontal Mergers Among Electricity Distribution Operators in Norway

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter; Gammeltvedt, Thor Erik

    2015-01-01

    the attractiveness of mergers. Norway is one country having implemented an ex ante regulation for mergers among electricity distribution operators (DSOs). We investigate whether the actual mergers of Norwegian DSOs in the period 1995-2004 can be rationalized as cost saving exercises or whether they should...... to identify plausible pre-merger motivations. We also discuss the possibility to gain from strategic gaming in the regulation. We compare the regulated revenues and the regulated efficiency improvement requirements before and after the mergers. We find limited potential cost gains ex ante but some improvement...

  16. Improving a Dental School's Clinic Operations Using Lean Process Improvement.

    Science.gov (United States)

    Robinson, Fonda G; Cunningham, Larry L; Turner, Sharon P; Lindroth, John; Ray, Deborah; Khan, Talib; Yates, Audrey

    2016-10-01

    The term "lean production," also known as "Lean," describes a process of operations management pioneered at the Toyota Motor Company that contributed significantly to the success of the company. Although developed by Toyota, the Lean process has been implemented at many other organizations, including those in health care, and should be considered by dental schools in evaluating their clinical operations. Lean combines engineering principles with operations management and improvement tools to optimize business and operating processes. One of the core concepts is relentless elimination of waste (non-value-added components of a process). Another key concept is utilization of individuals closest to the actual work to analyze and improve the process. When the medical center of the University of Kentucky adopted the Lean process for improving clinical operations, members of the College of Dentistry trained in the process applied the techniques to improve inefficient operations at the Walk-In Dental Clinic. The purpose of this project was to reduce patients' average in-the-door-to-out-the-door time from over four hours to three hours within 90 days. Achievement of this goal was realized by streamlining patient flow and strategically relocating key phases of the process. This initiative resulted in patient benefits such as shortening average in-the-door-to-out-the-door time by over an hour, improving satisfaction by 21%, and reducing negative comments by 24%, as well as providing opportunity to implement the electronic health record, improving teamwork, and enhancing educational experiences for students. These benefits were achieved while maintaining high-quality patient care with zero adverse outcomes during and two years following the process improvement project.

  17. Estimation of efficiency of new local rehabilitation method at the early post-operative period after dental implantation

    Directory of Open Access Journals (Sweden)

    A. V. Pasechnik

    2017-01-01

      Summary Despite of success of dental implantation, there are often complications at the early post-operative period of implant placing associated with wound damage and aseptic inflammation. Purpose of the work is studying clinical efficiency of combined local application of new mucosal gel “Apior” and magnetotherapy at the early post-operative period after dental implantation. Combined local application of the mucosal gel “Apior” and pulsating low-frequency electromagnetic field in the complex medical treatment of patients after conducting an operation of setting dental implants favourably affects the common state of patients and clinical symptoms of inflammation in the area of operating wound. As compared with patients who had traditional anti-inflammatory therapy, the patients treated with local application of apigel and magnetoterapy had decline of edema incidence, of gingival mucosa hyperemia, of discomfort in the area of conducted operation. There occurred more rapid improvement of inflammation painfulness, which correlated with the improvement of hygienic state of oral cavity and promoted to prevention of bacterial content of damaged mucous surfaces. Estimation of microvasculatory blood stream by the method of ultrasonic doppler flowmetry revealed more rapid normalization of volume and linear high systole speed of blood stream in the periimplant tissues in case of use of new complex local rehabilitation method, that testified to the less pronounced inflammation of oral mucosa after the operation. The authors came to conclusion that the local application of the offered method of medical treatment of early post-operative complications of dental implantation reduces terms of renewal of structural-functional integrity of oral mucosa, helps in preventing development of inflammatory complications and strengthening endosseus implant. The inclusion in the treatment management of a new combined method of application of mucosal gel “Apior” and

  18. Nuclear units operating improvement by using operating experience

    International Nuclear Information System (INIS)

    Rotaru, I.; Bilegan, I.C.

    1997-01-01

    The paper presents how the information experience can be used to improve the operation of nuclear units. This areas include the following items: conservative decision making; supervisory oversight; teamwork; control room distraction; communications; expectations and standards; operator training and fundamental knowledge, procedure quality and adherence; plant status awareness. For each of these topics, the information illustrate which are the principles, the lessons learned from operating experience and the most appropriate exemplifying documents. (authors)

  19. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  1. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  2. Effective and efficient learning in the operating theater with intraoperative video-enhanced surgical procedure training.

    Science.gov (United States)

    van Det, M J; Meijerink, W J H J; Hoff, C; Middel, B; Pierie, J P E N

    2013-08-01

    INtraoperative Video Enhanced Surgical procedure Training (INVEST) is a new training method designed to improve the transition from basic skills training in a skills lab to procedural training in the operating theater. Traditionally, the master-apprentice model (MAM) is used for procedural training in the operating theater, but this model lacks uniformity and efficiency at the beginning of the learning curve. This study was designed to investigate the effectiveness and efficiency of INVEST compared to MAM. Ten surgical residents with no laparoscopic experience were recruited for a laparoscopic cholecystectomy training curriculum either by the MAM or with INVEST. After a uniform course in basic laparoscopic skills, each trainee performed six cholecystectomies that were digitally recorded. For 14 steps of the procedure, an observer who was blinded for the type of training determined whether the step was performed entirely by the trainee (2 points), partially by the trainee (1 point), or by the supervisor (0 points). Time measurements revealed the total procedure time and the amount of effective procedure time during which the trainee acted as the operating surgeon. Results were compared between both groups. Trainees in the INVEST group were awarded statistically significant more points (115.8 vs. 70.2; p < 0.001) and performed more steps without the interference of the supervisor (46.6 vs. 18.8; p < 0.001). Total procedure time was not lengthened by INVEST, and the part performed by trainees was significantly larger (69.9 vs. 54.1 %; p = 0.004). INVEST enhances effectiveness and training efficiency for procedural training inside the operating theater without compromising operating theater time efficiency.

  3. Improvement for BWR operator training, 3

    International Nuclear Information System (INIS)

    Noji, Kunio; Toeda, Susumu; Saito, Genhachi; Suzuki, Koichi

    1990-01-01

    BWR Operator Training Center Corporation (BTC) is conducting training for BWR plant operators using Full-scope Simulators. There are several courses for individual operators and one training course for shift crew (Family Training Course) in BTC. Family Training is carried out by all members of the operating shift-crew. BTC has made efforts to improve the Family Training in order to acquire more effective training results and contribute to up-grade team performance of all crews. This paper describes some items of our efforts towards Family Training improvement. (author)

  4. Impact of improved operation and maintenance on cohesive sediment transport in Gezira Scheme, Sudan

    NARCIS (Netherlands)

    Osman, I.S.E.

    2015-01-01

    Summary

    Efficient operation and maintenance of irrigation schemes are needed for improving the hydraulic performance of the canals, enhancing the crop yields and insuring sustainable production. There is a great need to enhance the researches and for a variety of tools such as

  5. Energy efficiency improvement of medical electric tools and devices

    Directory of Open Access Journals (Sweden)

    Meshkov Aleksandr S.

    2014-01-01

    Full Text Available With the ever-increasing volume of applications of various kinds of electric drives in all spheres of human activity, the issues in improving the efficiency of the electromechanical converters of electric energy, one of the most important components of the electric drive (ED, are becoming increasingly important. Such issues include reducing their weight and size, improving the functional characteristics of these devices to increase their operational life and reducing the cost of manufacture. Taking full advantage of these opportunities relates to the AC and DC single-phase commutator motor (SCM, which is widely used in regulated and high-speed motor drives in medical electric hand tools. The SCM is used in machinery where the load torque has a hyperbolic dependence on the rotational speed and the need to work with a large motor overload due to the “soft” mechanical characteristics of such motors.

  6. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    Science.gov (United States)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  7. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Kurisu, Takanori; Takahashi, Yoshitaka; Harada, Mitsuhiro; Takahashi, Iwao.

    1988-01-01

    BWR Operator Training Center was founded in April, 1971, and in April, 1974, training was begun, since then, 13 years elapsed. During this period, the curriculum and training facilities were strengthened to meet the training needs, and the new training techniques from different viewpoint were developed, thus the improvement of training has been done. In this report, a number of the training techniques which have been developed and adopted recently, and are effective for the improvement of the knowledge and skill of operators are described. Recently Japanese nuclear power stations have been operated at stable high capacity factor, accordingly the chance of experiencing the occurrence of abnormality and the usual start and stop of plants decreased, and the training of operators using simulators becomes more important. The basic concept on training is explained. In the standard training course and the short period fundamental course, the development of the guide for reviewing lessons, the utilization of VTRs and the development of the techniques for diagnosing individual degree of learning were carried out. The problems, the points of improvement and the results of these are reported. (Kako, I.)

  8. Development of efficiency indicators of operating room management for multi-institutional comparisons.

    Science.gov (United States)

    Tanaka, Masayuki; Lee, Jason; Ikai, Hiroshi; Imanaka, Yuichi

    2013-04-01

    The efficiency of a hospital's operating room (OR) management can affect its overall profitability. However, existing indicators that assess OR management efficiency do not take into account differences in hospital size, manpower and functional characteristics, thereby rendering them unsuitable for multi-institutional comparisons. The aim of this study was to develop indicators of OR management efficiency that would take into account differences in hospital size and manpower, which may then be applied to multi-institutional comparisons. Using administrative data from 224 hospitals in Japan from 2008 to 2010, we performed four multiple linear regression analyses at the hospital level, in which the dependent variables were the number of operations per OR per month, procedural fees per OR per month, total utilization times per OR per month and total fees per OR per month for each of the models. The expected values of these four indicators were produced using multiple regression analysis results, adjusting for differences in hospital size and manpower, which are beyond the control of process owners' management. However, more than half of the variations in three of these four indicators were shown to be explained by differences in hospital size and manpower. Using the ratio of observed to expected values (OE ratio), as well as the difference between the two values (OE difference) allows hospitals to identify weaknesses in efficiency with more validity when compared to unadjusted indicators. The new indicators may support the improvement and sustainment of a high-quality health care system. © 2012 Blackwell Publishing Ltd.

  9. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    International Nuclear Information System (INIS)

    Burgess, T.; Noakes, M.; Spampinato, P.

    2005-01-01

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R and D program for improvements to remote handling technology that support operating enhancements

  10. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    Energy Technology Data Exchange (ETDEWEB)

    T. Burgess; M. Noakes; P. Spampinato

    2005-03-17

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.

  11. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Laubach, Sharon

    2014-01-01

    The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission

  12. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  13. Chipping operations and efficiency in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L., e-mail: dominik.roser@metla.fi

    2012-11-01

    This research analyses the productivity of energy wood chipping operations at several sites in Austria and Finland. The aim of the work is to examine the differences in productivity and the effects of the operational environment for the chipping of bioenergy at the roadside. Furthermore, the study quantifies the effects of different variables such as forest energy assortments, tree species, sieve size and machines on the overall productivity of chipping. The results revealed that there are significant differences in the chipping productivity in Austria and Finland which are largely based on the use of different sieve sizes. Furthermore, the different operational environments in both countries, as well as the characteristics of the raw material also seem to have an effect on productivity. In order to improve the chipping productivity, particularly in Central European conditions, all relevant stakeholders need to work jointly to find solutions that will allow a greater variation of chip size. Furthermore, in the future more consideration has to be given to the close interlinkage between the chipper, crane and grapple. As a result, investments costs can be optimized and operational costs and stress on the machines reduced. (orig.)

  14. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch-mode techno...... responses are estimated. For this woofer it is shown that the sensitivity can be improved approximately 1 dB, corresponding to a 30% efficiency improvement, just by increasing the fill factor using a low impedance voice coil with rectangular wire....

  15. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  16. Improved Efficient Routing Strategy on Scale-Free Networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Liang, Man-Gui

    Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.

  17. Enabling factors for the improvement of nitride-based LED efficiency

    International Nuclear Information System (INIS)

    Laubsch, Ansgar; Bergbauer, Werner; Sabathil, Matthias; Peter, Matthias; Meyer, Tobias; Bruederl, Georg; Linder, Norbert; Streubel, Klaus; Oberschmid, Raimund; Hahn, Berthold; Wagner, Joachim

    2008-01-01

    Recent progress in the epitaxial growth of LEDs with InGaN/GaN quantum-well heterostructures has led to a significant enhancement of output power. In this talk, we will discuss the mechanisms limiting the devices' internal efficiency and identify enabling factors for further improvements. We compare samples with different Indium content as well as different design of the active layer. Although heteroepitaxial growth of GaN on sapphire generates high defect densities, non-radiative defect-related Shockley-Read-Hall recombination does not seem to substantially limit the efficiency of standard InGaN/GaN LED structures. We rather discuss a supplemental Auger-like non-radiative path for carrier recombination that becomes dominant at quantum-well carrier densities typical for LED operation. Additionally, the piezo-field induced reduced overlap of electron and hole wavefunction in standard c-plane grown InGaN quantum wells reduces the radiative recombination rate

  18. The gain from improved market efficiency

    DEFF Research Database (Denmark)

    Ejrnæs, Mette; Persson, Karl Gunnar

    2010-01-01

    demand as well as excess supply, which triggered off the tâtonnement process. Over time, adjustments to equilibrium, as measured by the half-life of a shock, became faster and violations of the law of one price become smaller. There were significant gains from improved market efficiency, which took place......This article looks at the gains from improved market efficiency in long-distance grain trade in the second half of the nineteenth century, when violations of the law of one price were reduced due to improved information transmission. Two markets, a major export centre, Chicago, and a major importer......, Liverpool, are analysed. We show that the law of one price equilibrium was an ‘attractor equilibrium'. The implication is that prices converged to that equilibrium in a tâtonnement process. Because of asymmetrically timed information between markets separated by long distances there were periods of excess...

  19. Statistical analysis of operating efficiency and failures of a medical linear accelerator for ten years

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Huh, Seung Jae; Han, Young Yih

    2005-01-01

    To improve the management of a medical linear accelerator, the records of operational failures of a Varian CL2100C over a ten year period were retrospectively analyzed. The failures were classified according to the involved functional subunits, with each class rated into one of three levels depending on the operational conditions. The relationships between the failure rate and working ratio and between the failure rate and outside temperature were investigated. In addition, the average life time of the main part and the operating efficiency over the last 4 years were analyzed. Among the recorded failures (total 587 failures), the most frequent failure was observed in the parts related with the collimation system, including the monitor chamber, which accounted for 20% of all failures. With regard to the operational conditions, 2nd level of failures, which temporally interrupted treatments, were the most frequent. Third level of failures, which interrupted treatment for more than several hours, were mostly caused by the accelerating subunit. The number of failures was increased with number of treatments and operating time. The average life-times of the Klystron and Thyratron became shorter as the working ratio increased, and were 42 and 83% of the expected values, respectively. The operating efficiency was maintained at 95% or higher, but this value slightly decreased. There was no significant correlation between the number of failures and the outside temperature. The maintenance of detailed equipment problems and failures records over a long period of time can provide good knowledge of equipment function as well as the capability of predicting future failure. More rigorous equipment maintenance is required for old medical linear accelerators for the advanced avoidance of serious failure and to improve the quality of patient treatment

  20. An overmoded relativistic backward wave oscillator with efficient dual-mode operation

    International Nuclear Information System (INIS)

    Xiao, Renzhen; Li, Jiawei; Bai, Xianchen; Song, Zhimin; Teng, Yan; Ye, Hu; Li, Xiaoze; Sun, Jun; Chen, Changhua; Zhang, Xiaowei

    2014-01-01

    A dual-mode operation mechanism in an overmoded relativistic backward wave oscillator is presented. The electron beam interacts with the −1st space harmonic of TM 01 mode synchronously in the slow wave structure. Then the backward propagating TM 01 mode is converted to the forward propagating TM 02 mode. As the phase velocity of the volume harmonic of TM 02 mode is about twice that of the surface harmonic of TM 01 mode, the TM 02 mode also plays an important role in the high-power microwave generation. Particle-in-cell simulation shows that an efficiency of 48% and a significant improvement of the power capacity have been obtained

  1. Data-Mining – A Valuable Managerial Tool for Improving Power Plants Efficiency

    Directory of Open Access Journals (Sweden)

    Danubianu Mirela

    2014-05-01

    Full Text Available Energy and environment are top priorities for the EU’s Europe 2020 Strategy. Both fields imply complex approaches and consistent investment. The paper presents an alternative to large investments to improve the efficiencies of existing (outdated power installations: namely the use of data-mining techniques for analysing existing operational data. Data-mining is based upon exhaustive analysis of operational records, inferring high-value information by simply processing records with advanced mathematical / statistical tools. Results can be: assessment of the consistency of measurements, identification of new hardware needed for improving the quality of data, deducing the most efficient level for operation (internal benchmarking, correlation of consumptions with power/ heat production, of technical parameters with environmental impact, scheduling the optimal maintenance time, fuel stock optimization, simulating scenarios for equipment operation, anticipating periods of maximal stress of equipment, identification of medium and long term trends, planning and decision support for new investment, etc. The paper presents a data mining process carried out at the TERMICA - Suceava power plant. The analysis calls for a multidisciplinary approach, a complex team (experts in power&heat production, mechanics, environmental protection, economists, and last but not least IT experts and can be carried out with lower expenses than an investment in new equipment. Involvement of top management of the company is essential, being the driving force and motivation source for the data-mining team. The approach presented is self learning as once established, the data-mining analytical, modelling and simulation procedures and associated parameter databases can adjust themselves by absorbing and processing new relevant information and can be used on a long term basis for monitoring the performance of the installation, certifying the soundness of managerial measures taken

  2. Efficiency Comparison between Conventional and Modern Port Operation System for Small-Scale Dry Bulk Cargo

    Directory of Open Access Journals (Sweden)

    Tiara Aulia

    2018-01-01

    Full Text Available Since the launching of Sea Toll Road Program in 2015, the improvement in ports’ operation systems has become Indonesia’s foremost necessity. This improvement commonly leads to equipment modernization, while realistically, modern equipment does not always amount to a productive performance, especially in the context of small-scale ports. Instead, it is prone to creating wasteful capital and maintenance cost as well as making the planning time ineffective. This study compares two options of port operation systems in a small port, which is conventional and technologically-advanced method for dry bulk cargo. It results in thin gaps between each option’s financial assessment variables, which are Internal Rate of Return, Benefit/Cost Ratio and Payback Period, regardless of a stark difference between each option’s equipment cost. This study concludes that with the right approach, the conventional operation system is still the most efficient option compared to its contemporary opposite.

  3. Shaping the operating room and perioperative systems of the future: innovating for improved competitiveness.

    Science.gov (United States)

    Seim, Andreas R; Sandberg, Warren S

    2010-12-01

    To review the current state of anesthesiology for operative and invasive procedures, with an eye toward possible future states. Anesthesiology is at once a mature specialty and in a crisis--requiring breakthrough to move forward. The cost of care now approaches reimbursement, and outcomes as commonly measured approach perfection. Thus, the cost of further improvements seems ready to topple the field, just as the specialty is realizing that seemingly innocuous anesthetic choices have long-term consequences, and better practice is required. Anesthesiologists must create more headroom between costs and revenues in order to sustain the academic vigor and creativity required to create better clinical practice. We outline three areas in which technological and organizational innovation in anesthesiology can improve competitiveness and become a driving force in collaborative efforts to develop the operating rooms and perioperative systems of the future: increasing the profitability of operating rooms; increasing the efficiency of anesthesia; and technological and organizational innovation to foster improved patient flow, communication, coordination, and organizational learning.

  4. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  5. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Trucks, Daimler [Daimler Trucks North America Llc, Portland, OR (United States)

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  6. Evaluating operational efficiency of drainage holes in the Belchatow coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Marek, A.; Paluch, W.

    1979-03-01

    This paper characterizes drainage holes used for lowering water level in the Belchatow brown coal surface mine in central Poland. Machines and installations used for drilling holes, and filter construction are described. Two types of filters are evaluated, one based an a steel construction, the other an a concrete- asbestos construction. The problem of evaluating operational efficiency of drainage holes is discussed. Yield of the well is presented as the factor characterizing operational efficiency of the hole. Factors influencing yield of the well are described. The proposed analysis of drainage hole efficiency makes it possible to compare efficiency of work of the filters with steel construction and asbestos-concrete construction. Under conditions of the Belchatow mine the asbestos-concrete filters are more efficient than steel filters. All drainage holes at the mine are characterized by declining efficiency. This can be caused prematurely by silting up. (2 refs.) (In Polish)

  7. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  8. A BWR Safety and Operability Improvements

    International Nuclear Information System (INIS)

    Sawyer, Craig D.

    1993-01-01

    The A BWR is the culmination of 30 years of design, development and operating experience of BWRs around the world. It represents across the board improvements is safety, operation and maintenance practices (O and M), economics, radiation exposure and rad waste generation. More than ten years and $20m5 went into the design and development of its new features, and it is now under construction in Japan. This paper concentrates on the safety and operability improvements. In the safety area, more than a decade improvement in core damage frequency (CDFR) has been assessed by formal PIRA techniques, with CDFR less than 10 -6 /year. Severe accident mitigation has also been formally addressed in the design. Plant operations were simplified by incorporation of better materials, optimum use of redundancy in mechanical and electrical equipment so that on-line maintenance can be performed, by better arrangements which account for required maintenance practices, and by an advanced control room

  9. Operating Room Efficiency before and after Entrance in a Benchmarking Program for Surgical Process Data

    DEFF Research Database (Denmark)

    Pedron, Sara; Winter, Vera; Oppel, Eva-Maria

    2017-01-01

    Operating room (OR) efficiency continues to be a high priority for hospitals. In this context the concept of benchmarking has gained increasing importance as a means to improve OR performance. The aim of this study was to investigate whether and how participation in a benchmarking and reporting...... program for surgical process data was associated with a change in OR efficiency, measured through raw utilization, turnover times, and first-case tardiness. The main analysis is based on panel data from 202 surgical departments in German hospitals, which were derived from the largest database for surgical...... the availability of reliable, timely and detailed analysis tools to support the OR management seemed to be correlated especially with an increase in the timeliness of staff members regarding first-case starts. The increasing trend in turnover time revealed the absence of effective strategies to improve this aspect...

  10. Improved NGL recovery designs maximize operating flexibility and product recoveries

    International Nuclear Information System (INIS)

    Wilkinson, J.D.; Hudson, H.M.

    1992-01-01

    This paper reports that the historically cyclical nature in the market for ethane and propane has demonstrated the need for flexible natural gas liquids (NGL) recovery plants. NEwly developed and patented processes are now available which can provide ultra-high recovery of ethane (95%+) when demand for ethane is high and provide essentially complete ethane rejection without the normally concomitant reduction in propane recovery. This provides plant operators the flexibility to respond more readily to NGL market conditions, thus maximizing plant operating profits. The new process designs provide this flexibility without increasing utility requirements. In fact, utility consumption is often lower when compared to conventional designs. This same process technology can also be easily retrofit into existing plants with relatively quick payout of the modifications from both recovery and efficiency improvements

  11. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  12. The development of furrower model blade to paddlewheel aerator for improving aeration efficiency

    Science.gov (United States)

    Bahri, Samsul; Praeko Agus Setiawan, Radite; Hermawan, Wawan; Zairin Junior, Muhammad

    2018-05-01

    The successful of intensive aquaculture is strongly influenced by the ability of the farmers to overcome the deterioration of water quality. The problem is low dissolved oxygen through aeration process. The aerator device which widely used in pond farming is paddle wheel aerator because it is the best aerator in aeration mechanism and usable driven power. However, this aerator still has a low performance of aeration, so that the cost of aerator operational for aquaculture is still high. Up to now, the effort to improve the performance of aeration was made by two-dimensional blade design. Obviously, it does not provide the optimum result due to the power requirements for aeration is directly proportional to the increase of aeration rate. The aim of this research is to develop three-dimensional model furrowed blades. Design of Furrower model blades was 1.6 cm diameter hole, 45º of vertical angle blade position and 30º of the horizontal position. The optimum performance furrowed model blades operated on the submerged blade 9 cm with 567.54 Watt of electrical power consumption and 4.322 m3 of splash coverage volume. The standard efficiency aeration is 2.72 kg O2 kWh-1. The furrowed model blades can improve the aeration efficiency of paddlewheel aerator.

  13. EFFICIENT USE OF BIOMASS IN IMPROVED COOKSTOVES

    Directory of Open Access Journals (Sweden)

    R. K. PAL

    2016-12-01

    Full Text Available Traditional biomass cookstoves have very low efficiency. The improved cookstoves have very high efficiency. These improved cookstoves with high efficiency saves biomass fuels. Biomass can be saved in case of rocket elbow cookstoves. The amount of biomass which can be saved in case of rocket elbow cookstoves is 65.88 MT. More biomass can be saved in case of gasifier fan cookstoves. The amount of biomass which can be saved is 155.71 MT. The pollutants like particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission is lesser in case of rocket elbow cookstoves. The pollutants are least in case of gasifier fan cookstoves. The reduction in particulate matter, black carbon, carbon mono-oxide and carbon dioxide emission in gasifier fan cookstoves is 1.77 MT, 0.24 MT, 0.71 MT & 151.64 MT respectively in comparison to traditional cookstoves. Therefore indoor air pollution is greatly reduced in case of improved cookstoves especially in case of gasifier fan cookstoves as compared to traditional cookstoves.

  14. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  15. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  16. Local Exhaust Efficiency in an Operating Room Ventilated by Horizontal Unidirectional Airflow

    DEFF Research Database (Denmark)

    Brohus, Henrik; Balling, K. D.; Jeppesen, D.

    2004-01-01

    The paper examines the efficiency of a local exhaust applied during an orthopaedic surgical operation. During operations performing hip replacements bone cement is sometimes applied to fasten the new metal hip to the existing thighbone, especially in case of elderly patients. The bone cement emits...... harmful VOCs that may influence the operating room personnel and the patient. A local exhaust is applied to reduce the VOC concentration in the operating room air, however, apparently without success. The aim is to assess the efficiency of the existing solution and to provide an alternative and better...

  17. Highly-reliable operation of 638-nm broad stripe laser diode with high wall-plug efficiency for display applications

    Science.gov (United States)

    Yagi, Tetsuya; Shimada, Naoyuki; Nishida, Takehiro; Mitsuyama, Hiroshi; Miyashita, Motoharu

    2013-03-01

    Laser based displays, as pico to cinema laser projectors have gathered much attention because of wide gamut, low power consumption, and so on. Laser light sources for the displays are operated mainly in CW, and heat management is one of the big issues. Therefore, highly efficient operation is necessitated. Also the light sources for the displays are requested to be highly reliable. 638 nm broad stripe laser diode (LD) was newly developed for high efficiency and highly reliable operation. An AlGaInP/GaAs red LD suffers from low wall plug efficiency (WPE) due to electron overflow from an active layer to a p-cladding layer. Large optical confinement factor (Γ) design with AlInP cladding layers is adopted to improve the WPE. The design has a disadvantage for reliable operation because the large Γ causes high optical density and brings a catastrophic optical degradation (COD) at a front facet. To overcome the disadvantage, a window-mirror structure is also adopted in the LD. The LD shows WPE of 35% at 25°C, highest record in the world, and highly stable operation at 35°C, 550 mW up to 8,000 hours without any catastrophic optical degradation.

  18. Operational safety improvement in OPR 1000

    International Nuclear Information System (INIS)

    Jung, Y.-E.

    2005-01-01

    Nuclear power operating experience management might be an important factor for the operational safety improvement. KHNP's nuclear information management system, called KONIS receives, distributes and manages all nuclear information from domestic and foreign, especially operating experience. Ulchin 3 and 4, the first units of OPR 1000 series operates several organizations regarding management of operating experience e.g. specialist group program, various task forces, equipment specialist system for operator, etc. Peer review is another contribution for nuclear safety. (author)

  19. Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining

    Science.gov (United States)

    Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.

    2001-01-01

    A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.

  20. Measures for energy efficiency improvement of buildings

    Directory of Open Access Journals (Sweden)

    Vukadinović Ana V.

    2015-01-01

    Full Text Available The increase in energy consumption in buildings causes the need to propose energy efficiency improvement measures. Urban planning in accordance with micro location conditions can lead to energy consumption reduction in buildings through the passive solar design. While satisfying the thermal comfort to the user space purpose, energy efficiency can be achieved by optimizing the architectural and construction parameters such as shape of the building, envelope structure and the percentage of glazing. The improvement of the proposed measures, including the use of renewable energy sources, can meet requirements of Directive 2010/31 / EU of 'nearly zero energy buildings'.

  1. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long

  2. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  3. A Power-Efficient Access Point Operation for Infrastructure Basic Service Set in IEEE 802.11 MAC Protocol

    Directory of Open Access Journals (Sweden)

    Hua Ye Ming

    2006-01-01

    Full Text Available Infrastructure-based wireless LAN technology has been widely used in today's personal communication environment. Power efficiency and battery management have been the center of attention in the design of handheld devices with wireless LAN capability. In this paper, a hybrid protocol named improved PCF operation is proposed, which intelligently chooses the access point- (AP- assisted DCF (distributed coordinator function and enhanced PCF (point coordinator function transmission mechanism of IEEE 802.11 protocol in an infrastructure-based wireless LAN environment. Received signal strength indicator (RSSI is used to determine the tradeoff between direct mobile-to-mobile transmission and transmission routed by AP. Based on the estimation, mobile stations can efficiently communicate directly instead of being routed through AP if they are in the vicinity of each other. Furthermore, a smart AP protocol is proposed as extension to the improved PCF operation by utilizing the historical end-to-end delay information to decide the waking up time of mobile stations. Simulation results show that using the proposed protocol, energy consumption of mobile devices can be reduced at the cost of slightly longer end-to-end packet delay compared to traditional IEEE 802.11 PCF protocol. However, in a non-time-critical environment, this option can significantly prolong the operation time of mobile devices.

  4. Impact of robotic operative efficiency on profitability.

    Science.gov (United States)

    Geller, Elizabeth J; Matthews, Catherine A

    2013-07-01

    We sought to determine the impact of robotic operative efficiency on profitability and assess the impact of secondary variables. Financial data were collected for all robotic cases performed for fiscal years 2010 (FY10) and 2011 (FY11) at University of North Carolina at Chapel Hill, and included 9 surgical subspecialties. Profitability was defined as a positive operating income. From July 2009 through June 2011, 1295 robotic cases were performed. Robotic surgery was profitable in both fiscal years, with an operating income of $386,735 in FY10 and $822,996 in FY11. In FY10, urogynecology and pediatric surgery were the only nonprofitable subspecialties. In FY11, all subspecialties were profitable. Profitability was associated with case time, payor mix, and procedure type (all P profitability regardless of surgical specialty. Copyright © 2013 Mosby, Inc. All rights reserved.

  5. Quality and efficiency operational like innovation

    International Nuclear Information System (INIS)

    2005-01-01

    ENUSA is focus to their customers, so workers over manufacturing more reliability in operation fuels, at less time and lower prices. In this way, ENUSA and particularly in the Factory of Juzbado uses 6 sigma and Lean Manufacturing methodologies for continuous and radical improvements of his product and process, developing innovation projects that are looking for Quality Improvements, Manufacturing Lead Times reduction, Waste Elimination that do not add valour to the product and Reduction Manufacturing Costs consequently. (Author)

  6. Quality and Efficiency Improvement Tools for Every Radiologist.

    Science.gov (United States)

    Kudla, Alexei U; Brook, Olga R

    2018-03-20

    In an era of value-based medicine, data-driven quality improvement is more important than ever to ensure safe and efficient imaging services. Familiarity with high-value tools enables all radiologists to successfully engage in quality and efficiency improvement. In this article, we review the model for improvement, strategies for measurement, and common practical tools with real-life examples that include Run chart, Control chart (Shewhart chart), Fishbone (Cause-and-Effect or Ishikawa) diagram, Pareto chart, 5 Whys, and Root Cause Analysis. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Operational safety performance and economical efficiency evaluation for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang

    2012-01-01

    The economical efficiency of nuclear power includes a series of environmental parameters, for example, cleanliness. Nuclear security is the precondition and guarantee for its economy, and both are the direct embodiment of the social benefits of nuclear power. Through analyzing the supervision and management system on the effective operation of nuclear power plants, which has been put forward by the International Atomic Energy Agency (IAEA), the World Association of Nuclear Operators (WANO), the U.S. Nuclear Regulatory Commission (NRC), and other organizations, a set of indexs on the safety performance and economical efficiency of nuclear power are explored and established; Based on data envelopment analysis, a DEA approach is employed to evaluate the efficiency of the operation performance of several nuclear power plants, Some primary conclusion are achieved on the basis of analyzing the threshold parameter's sensitivity and relativity which affected operational performance. To address the conflicts between certain security and economical indicators, a multi-objective programming model is established, where top priority is given to nuclear safety, and the investment behavior of nuclear power plant is thereby optimized. (authors)

  8. Improving Water Resources System Operation by Direct Use of Hydroclimatic Information

    Science.gov (United States)

    Castelletti, A.; Pianosi, F.

    2011-12-01

    It is generally agreed that more information translates into better decisions. For instance, the availability of inflow predictions can improve reservoir operation; soil moisture data can be exploited to increase irrigation efficiency; etc. However, beyond this general statement, many theoretical and practical questions remain open. Provided that not all information sources are equally relevant, how does their value depend on the physical features of the water system and on the purposes of the system operation? What is the minimum lead time needed for anticipatory management to be effective? How does uncertainty in the information propagates through the modelling chain from hydroclimatic data through descriptive and decision models, and finally affect the decision? Is the data-predictions-decision paradigm truly effective or would it be better to directly use hydroclimatic data to take optimal decisions, skipping the intermediate step of hydrological forecasting? In this work we investigate these issues by application to the management of a complex water system in Northern Vietnam, characterized by multiple, conflicting objectives including hydropower production, flood control and water supply. First, we quantify the value of hydroclimatic information as the improvement in the system performances that could be attained under the (ideal) assumption of perfect knowledge of all future meteorological and hydrological input. Then, we assess and compare the relevance of different candidate information (meteorological or hydrological observations; ground or remote data; etc.) for the purpose of system operation by novel Input Variable Selection techniques. Finally, we evaluate the performance improvement made possible by the use of such information in re-designing the system operation.

  9. Possible efficiency improvement by application of various operating regimes for the cooling water pump station at thermal power plant - Bitola

    Directory of Open Access Journals (Sweden)

    Mijakovski Vladimir

    2012-01-01

    Full Text Available Thermal power plant (TPP - Bitola is the largest electricity producer in the Republic of Macedonia with installed capacity of 691 MW. It is a lignite fired power plant, in operation since 1982. Most of the installed equipment is of Russian origin. Power plant's cold end comprised of a condenser, pump station and cooling tower is depicted in the article. Possible way to raise the efficiency of the cold end by changing the operating characteristics of the pumps is presented in the article. Diagramic and tabular presentation of the working characteristics of the pumps (two pumps working in paralel for one block with the pipeline, as well as engaged power for their operation are also presented in this article.

  10. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Directory of Open Access Journals (Sweden)

    Y. L. Li

    2013-01-01

    Full Text Available Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the partheno-genetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency.

  11. Improving the efficiency of spatially selective operations for agricultural robotics in cropping field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Yi, S. P.

    2013-05-01

    Cropping fields often have well-defined poor-performing patches due to spatial and temporal variability. In an attempt to increase crop performance on poor patches, spatially selective field operations may be performed by agricultural robotics to apply additional inputs with targeted requirements. This paper addresses the route planning problem for an agricultural robot that has to treat some poor-patches in a field with row crops, with respect to the minimization of the total non-working distance travelled during headland turnings and in-field travel distance. The traversal of patches in the field is expressed as the traversal of a mixed weighted graph, and then the problem of finding an optimal patch sequence is formulated as an asymmetric traveling salesman problem and solved by the parthenogenetic algorithm. The proposed method is applied on a cropping field located in Northwestern China. Research results show that by using optimum patch sequences, the total non-working distance travelled during headland turnings and in-field travel distance can be reduced. But the savings on the non-working distance inside the field interior depend on the size and location of patches in the field, and the introduction of agricultural robotics is beneficial to increase field efficiency. (Author) 21 refs.

  12. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety

    International Nuclear Information System (INIS)

    Sharifzadeh, Mahdi; Meghdari, Mojtaba; Rashtchian, Davood

    2017-01-01

    Highlights: • Integrating Solid Oxide Fuel Cells with thermal power plants enhance overall energy efficiency. • However, the high degree of process integration in hybrid power plants limits the operating window. • Multi-objective optimization was applied for integrated design and operation. • The Pareto optimal solutions demonstrated strong trade-off between energy efficiency and operational safety. - Abstract: Energy efficiency is one of the main pathways for energy security and environmental protection. In fact, the International Energy Agency asserts that without energy efficiency, 70% of targeted emission reductions are not achievable. Despite this clarity, enhancing the energy efficiency introduce significant challenge toward process operation. The reason is that the methods applied for energy-saving pose the process operation at the intersection of safety constraints. The present research aims at uncovering the trade-off between safe operation and energy efficiency; an optimization framework is developed that ensures process safety and simultaneously optimizes energy-efficiency, quantified in economic terms. The developed optimization framework is demonstrated for a solid oxide fuel cell (SOFC) power generation system. The significance of this industrial application is that SOFC power plants apply a highly degree of process integration resulting in very narrow operating windows. However, they are subject to significant uncertainties in power demand. The results demonstrate a strong trade-off between the competing objectives. It was observed that highly energy-efficient designs feature a very narrow operating window and limited flexibility. For instance, expanding the safe operating window by 100% will incur almost 47% more annualized costs. Establishing such a trade-off is essential for realizing energy-saving.

  13. Improve the efficiency of PEMFC using neutron imaging

    International Nuclear Information System (INIS)

    Kim, Tae Joo; Shim, Chulmuu

    2010-01-01

    The water management is one of the most critical issues for PEMFC commercialization. In order to make a proper scheme for water management, the information of water distribution and behavior is very important. But the visualization is difficult due to metallic coverage. Recently, neutron imaging has joined the canon of diagnostic methods for fuel cell research and is applied worldwide with qualitative and quantitative results. In this investigation, we prepared 3-parallel serpentine single PEMFC. The active area is 250 mm 2 and channel size is 1 Χ 1 mm, respectively. Distribution and transport of water in an operating PEMFC were observed as functions of flow directions and differential pressures between anode and cathodes. This investigation was performed at BST-2, Nest. The collimation ratio is 600 and neutron fluence of BST-2 is 7.2 Χ 10 6 n/s, respectively. Neutron image was captured by A-Si detector with 1 sec expsosure time. The PEMFC has different performances for each differential pressure and flow directions. When the neutron images are compared with operating conditions, the distribution and behavior of water are different. Total water fraction is increased and then decreases as the current density increases. This situation is similar trend for the flow directions. It is shown that neutron imaging technique is powerful tool to visualize the PEMFC and the water distribution and behavior of an operating PEMFC helps improve the efficiency of PEMFC

  14. Process control upgrades yield huge operational improvements

    International Nuclear Information System (INIS)

    Fitzgerald, W.V.

    2001-01-01

    Most nuclear plants in North America were designed and built in the late 60 and 70. The regulatory nature of this industry over the years has made design changes at the plant level difficult, if not impossible, to implement. As a result, many plants in this world region have been getting by on technology that is over 40 years behind the times. What this translates into is that the plants have not been able to take advantage of the huge technology gains that have been made in process control during this period. As a result, most of these plants are much less efficient and productive than they could be. One particular area of the plant that is receiving a lot of attention is the feedwater heaters. These systems were put in place to improve efficiency, but most are not operating correctly. This paper will present a case study where one progressive mid-western utility decided that enough was enough and implemented a process control audit of their heater systems. The audit clearly pointed out the existing problems with the current process control system. It resulted in a proposal for the implementation of a state of the art, digital distributed process control system for the heaters along with a complete upgrade of the level controls and field devices that will stabilize heater levels, resulting in significant efficiency gains and lower maintenance bills. Overall the payback period for this investment should be less than 6 months and the plant is now looking for more opportunities that can provide even bigger gains. (author)

  15. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  16. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  17. Tariff-based incentives for improving coal-power-plant efficiencies in India

    International Nuclear Information System (INIS)

    Chikkatur, Ananth P.; Sagar, Ambuj D.; Abhyankar, Nikit; Sreekumar, N.

    2007-01-01

    Improving the efficiency of coal-based power plants plays an important role in improving the performance of India's power sector. It allows for increased consumer benefits through cost reduction, while enhancing energy security and helping reduce local and global pollution through more efficient coal use. A focus on supply-side efficiency also complements other ongoing efforts on end-use efficiency. The recent restructuring of the Indian electricity sector offers an important route to improving power plant efficiency, through regulatory mechanisms that allow for an independent tariff setting process for bulk purchases of electricity from generators. Current tariffs based on normative benchmarks for performance norms are hobbled by information asymmetry (where regulators do not have access to detailed performance data). Hence, we propose a new incentive scheme that gets around the asymmetry problem by setting performance benchmarks based on actual efficiency data, rather than on a normative basis. The scheme provides direct tariff-based incentives for efficiency improvements, while benefiting consumers by reducing electricity costs in the long run. This proposal might also be useful for regulators in other countries to incorporate similar incentives for efficiency improvement in power generation

  18. Energy management in production: A novel method to develop key performance indicators for improving energy efficiency

    International Nuclear Information System (INIS)

    May, Gökan; Barletta, Ilaria; Stahl, Bojan; Taisch, Marco

    2015-01-01

    Highlights: • We propose a 7-step methodology to develop firm-tailored energy-related KPIs (e-KPIs). • We provide a practical guide for companies to identify their most important e-KPIs. • e-KPIs support identification of energy efficiency improvement areas in production. • The method employs an action plan for achieving energy saving targets. • The paper strengthens theoretical base for energy-based decision making in manufacturing. - Abstract: Measuring energy efficiency performance of equipments, processes and factories is the first step to effective energy management in production. Thus, enabled energy-related information allows the assessment of the progress of manufacturing companies toward their energy efficiency goals. In that respect, the study addresses this challenge where current industrial approaches lack the means and appropriate performance indicators to compare energy-use profiles of machines and processes, and for the comparison of their energy efficiency performance to that of competitors’. Focusing on this challenge, the main objective of the paper is to present a method which supports manufacturing companies in the development of energy-based performance indicators. For this purpose, we provide a 7-step method to develop production-tailored and energy-related key performance indicators (e-KPIs). These indicators allow the interpretation of cause-effect relationships and therefore support companies in their operative decision-making process. Consequently, the proposed method supports the identification of weaknesses and areas for energy efficiency improvements related to the management of production and operations. The study therefore aims to strengthen the theoretical base necessary to support energy-based decision making in manufacturing industries

  19. The Multiple Benefits of Measures to Improve Energy Efficiency

    DEFF Research Database (Denmark)

    Puig, Daniel; Farrell, Timothy Clifford

    Understanding the barriers to, and enablers for, energy efficiency requires targeted information and analysis. This report is a summary of four detailed studies providing new insights on how to promote efficiency in selected priority areas. It complements initiatives such as the so-called energy...... efficiency accelerators, which seek to increase the uptake of selected technologies, as well as the work of many other institutions committed to improving energy efficiency. The modelling estimates and the case studies presented in this report illustrate that, while significant progress has already been...... achieved, the case for accelerating energy efficiency action is strong. Key highlights include: • At the global level, energy efficiency improvements would account for between 2.6 and 3.3 Gt CO2e of the reductions in 2030, equivalent to between 23 and 26 percent of the overall reductions achieved...

  20. Automation and efficiency in the operational processes: a case study in a logistics operator

    OpenAIRE

    Nascimento, Dener Gomes do; Silva, Giovanni Henrique da

    2017-01-01

    Globalization has made the automations become increasingly feasible and with the technological development many operations can be optimized, bringing productivity gains. Logistics is a major benefit of all this development, because lives a time extremely competitive, in which being efficient is a requirement to stay alive in the market. Inserted in this context, this article seeks from the analysis of the processes in a distribution center, identify opportunities to automate operations to gai...

  1. IMPACT OF THE COLD END OPERATING CONDITIONS ON ENERGY EFFICIENCY OF THE STEAM POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Slobodan Laković

    2010-01-01

    Full Text Available The conventional steam power plant working under the Rankine Cycle and the steam condenser as a heat sink and the steam boiler as a heat source have the same importance for the power plant operating process. Energy efficiency of the coal fired power plant strongly depends on its turbine-condenser system operation mode. For the given thermal power plant configuration, cooling water temperature or/and flow rate change generate alterations in the condenser pressure. Those changes have great influence on the energy efficiency of the plant. This paper focuses on the influence of the cooling water temperature and flow rate on the condenser performance, and thus on the specific heat rate of the coal fired plant and its energy efficiency. Reference plant is working under turbine-follow mode with an open cycle cooling system. Analysis is done using thermodynamic theory, in order to define heat load dependence on the cooling water temperature and flow rate. Having these correlations, for given cooling water temperature it is possible to determine optimal flow rate of the cooling water in order to achieve an optimal condensing pressure, and thus, optimal energy efficiency of the plant. Obtained results could be used as useful guidelines in improving existing power plants performances and also in design of the new power plants.

  2. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  3. Improving operator quality at Genkai Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kuwano, Takeshi.

    1989-01-01

    Improvement in operator quality, or improvement in an operator's skill and professional knowledge, is of prime importance because of its great influence on safe and steady plant operation. This paper describes the education and training of reactor operators at the Genkai pressurized water reactor nuclear power plant with respect to the following topics: organization of Genkai power plant; education and training program management; training at the Nuclear Training Center; training and education on-site including emergency procedures training, normal operating procedures training, informational study of emergency conditions in existing plants, and all-around training of operators; qualifying tests for supervisors; and operator motivation

  4. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström

    2015-03-01

    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  5. Bank branch operating efficiency: evaluation with data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Roozbeh Talebi Zarinkamar

    2014-10-01

    Full Text Available Measuring the relative efficiency of similar units has been a popular research especially when the units were mostly non-financial. Even, similar financial units may not be necessarily evaluated based on traditional financial figures such as return of equities, return of assets, etc. In this paper, we present an empirical investigation to measure the relative efficiency of 30 branches of an Iranian bank named Bank Mellat. The study considers four inputs including operating expenses, interest paid, capital expenditures and fixed assets. In addition, we use customers’ bank deposit, commissions and loans paid as output parameters. Using three different data envelopment analyses, the study measures the relative efficiencies of all units. The preliminary results indicate that most banks were working under desirable level of efficiency.

  6. Improved efficiency in OLEDs with a thin Alq3 interlayer

    International Nuclear Information System (INIS)

    Lian Jiarong; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Zhou Yunfei; Zhou Xiang

    2007-01-01

    We demonstrate an improved efficiency in OLEDs with a thin Alq 3 interlayer, which is inserted into the hole-transport layer for adjusting the hole-injection and transport, and improving the hole-electron balance. The thin Alq 3 interlayer can effectively influence the electrical performance and electroluminescence (EL) efficiency of the devices. The devices with an optimum Alq 3 interlayer exhibit a maximum EL efficiency of around 3.3 cd/A, which is improved by a factor of two over the conventional devices (1.6 cd/A) without the interlayer

  7. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency

    International Nuclear Information System (INIS)

    Kim, T. S.; Jeong, S. H.; Chang, D. H.; In, S. R.; Park, M.; Jung, B. K.; Lee, K. W.; Wang, S. J.; Bae, Y. S.; Park, H. T.; Kim, J. S.; Cho, W.; Choi, D. J.

    2016-01-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP

  8. Deblending using an improved apex-shifted hyperbolic radon transform based on the Stolt migration operator

    Science.gov (United States)

    Gong, Xiangbo; Feng, Fei; Jiao, Xuming; Wang, Shengchao

    2017-10-01

    Simultaneous seismic source separation, also known as deblending, is an essential process for blended acquisition. With the assumption that the blending noise is coherent in the common shot domain but is incoherent in other domains, traditional deblending methods are commonly performed in the common receiver, common midpoint or common offset domain. In this paper, we propose an improved apex-shifted hyperbolic radon transform (ASHRT) to deblend directly in the common shot domain. A time-axis stretch strategy named Stolt-stretch is introduced to overcome the limitation of the constant velocity assumption of Stolt-based operators. To improve the sparsity in the transform domain, a total variation (TV) norm inversion is implemented to enhance the energy convergence in the radon panel. Because of highly efficient Stolt migration and the demigration operator in the frequency-wavenumber domain, as well as the flexible geometry condition of the source-receiver, this approach is quite suitable for quality control (QC) during streamer acquisition. The synthetic and field examples demonstrate that our proposition is robust and efficient.

  9. Report on system operation - A background report prepared by the Nordel Operation Committee/OPG in the Nordel project on enhancing efficient functioning of the Nordic electricity market

    International Nuclear Information System (INIS)

    2004-12-01

    This report contains the operation procedures in extreme situations and lessons learned from blackouts, based on a mandate given by the Operations Committee. Nordic TSOs have had common rules and principles for system operation i.e. System Operation Agreement since the late 1990s. The rules have been revised according to the system security and market changes and needs. The collaboration between system operators is regular and fruitful. The knowledge and capability to manage extreme situations of the Nordic power system has continuously increased and the recent blackouts did not show major deficiencies in operation practices. Regardless of the existing good collaboration it is important to continue development in the future in order to ensure high system security. Important development areas are security of reserve supervision and coordination of calculation procedures for transmission limits, enhancement of data exchange routines between control centres in order to improve the overview of the system security within the Nordic power system. More extensive coordination of outage planning processes will further improve the system security. Continuously training of operational staff is important to be able to manage different situations and disturbances efficiently. (BA)

  10. Improving STEM Undergraduate Education with Efficient Learning Design

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    2018-01-01

    The project investigates the potential of Learning Design for efficiently improving STEM undergraduate education with technology. In order to investigate this potential, the project consists of two main studies at Aarhus University: a study of the perspectives of the main stakeholders on Learning...... Design uptake. The project concludes that it is possible to improve STEM undergraduate education with Learning Design for technology-enhanced learning efficiently and that Efficient Learning Design provides a useful concept for qualifying educational decisions....... provided by technology-enhanced learning based on Learning Design, and in particular students’ learning was of a high common interest. However, only the educators were directly interested in Learning Design and its support for design, reuse in their practice and to inform pedagogy. A holistic concept...

  11. Improvement in Patient Transfer Process From the Operating Room to the PICU Using a Lean and Six Sigma-Based Quality Improvement Project.

    Science.gov (United States)

    Gleich, Stephen J; Nemergut, Michael E; Stans, Anthony A; Haile, Dawit T; Feigal, Scott A; Heinrich, Angela L; Bosley, Christopher L; Tripathi, Sandeep

    2016-08-01

    Ineffective and inefficient patient transfer processes can increase the chance of medical errors. Improvements in such processes are high-priority local institutional and national patient safety goals. At our institution, nonintubated postoperative pediatric patients are first admitted to the postanesthesia care unit before transfer to the PICU. This quality improvement project was designed to improve the patient transfer process from the operating room (OR) to the PICU. After direct observation of the baseline process, we introduced a structured, direct OR-PICU transfer process for orthopedic spinal fusion patients. We performed value stream mapping of the process to determine error-prone and inefficient areas. We evaluated primary outcome measures of handoff error reduction and the overall efficiency of patient transfer process time. Staff satisfaction was evaluated as a counterbalance measure. With the introduction of the new direct OR-PICU patient transfer process, the handoff communication error rate improved from 1.9 to 0.3 errors per patient handoff (P = .002). Inefficiency (patient wait time and non-value-creating activity) was reduced from 90 to 32 minutes. Handoff content was improved with fewer information omissions (P improved among nearly all PICU providers. By using quality improvement methodology to design and implement a new direct OR-PICU transfer process with a structured multidisciplinary verbal handoff, we achieved sustained improvements in patient safety and efficiency. Handoff communication was enhanced, with fewer errors and content omissions. The new process improved efficiency, with high staff satisfaction. Copyright © 2016 by the American Academy of Pediatrics.

  12. The Tore Supra control, computer system : six years of operation and improvements

    International Nuclear Information System (INIS)

    Journeaux, J.Y.; Badie, O.; Chatelier, E.; Hennion, F.; Lebourg, P.; Leveque, P.; Hernandez, M.; Moulin, D.

    1995-01-01

    The Tore Supra control computer system has been providing a good operation of the Tore Supra machine for six years. It controls all of the sub-systems, the continuous ones as well as the sequential ones, and the automatic operation is very efficient. The control system has been programmed by the users themselves thanks to its user-friendly qualities, in order to keep the full control and knowledge of the automatisms. Nevertheless, some improvements are now necessary. Their main principles are : to choose ergonomic and powerful tools, industrial standards, and to keep the users's participation. The whole control system will be upgraded : the automatism level as well as the display level and the communication networks. The operator's driving job is analysed as supervisory and diagnostic tasks which have an effect on the Tore Supra machine efficiency. So a very powerful driving software has been chosen and linked with an expert system, which is to be designed and implemented with the aim to give an immediate accurate and global understanding of the process and situations, in particular in case of trouble. The method is based on an artificial intelligence approach, and it exploits both the process' informations and automatisms' steps, to determine the process state, next possible states and diagnosis of the process troubles. (orig.)

  13. Guide to energy efficiency opportunities in Canadian foundries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In Canada, the foundry sector employs about 15000 people and most of the companies are members of the Canadian Foundry Association (CFA). The CFA is committed to reducing its greenhouse gas emissions and is therefore looking for energy savings which, in addition to reducing emissions, would help the industry save costs and improve its competitiveness. The aim of this document is to provide operators with a guide to improving energy efficiency in their foundries. The report provides guidance on carrying out energy audits, gathering energy saving ideas, prioritizing projects, and charting the course of improved energy performance. Many different energy saving ideas for many kinds of operation are presented in this guidebook as a help to operators in finding where they could improve their energy efficiency; references to energy saving methods from all over the world are provided. This guidebook is a useful tool for helping foundry operators improve energy efficiency in their operations.

  14. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  15. Job satisfaction or production? How staff and leadership understand operating room efficiency: a qualitative study.

    Science.gov (United States)

    Arakelian, E; Gunningberg, L; Larsson, J

    2008-11-01

    How to increase efficiency in operating departments has been widely studied. However, there is no overall definition of efficiency. Supervisors urging staff to work efficiently may meet strong reactions due to staff believing that demands for efficiency means just stress at work. Differences in how efficiency is understood may constitute an obstacle to supervisors' efforts to promote it. This study aimed to explore how staff and leadership understand operating room efficiency. Twenty-one members of staff and supervisors in an operating department in a Swedish county hospital were interviewed. The analysis was performed with a phenomenographic approach that aims to discover the variations in how a phenomenon is understood by a group of people. Six categories were found in the understanding of operation room efficiency: (A) having the right qualifications; (B) enjoying work; (C) planning and having good control and overview; (D) each professional performing the correct tasks; (E) completing a work assignment; and (F) producing as much as possible per time unit. The most significant finding was that most of the nurses and assistant nurses understood efficiency as individual knowledge and experience emphasizing the importance of the work process, whereas the supervisors and physicians understood efficiency in terms of production per time unit or completing an assignment. The concept 'operating room efficiency' is understood in different ways by leadership and staff members. Supervisors who are aware of this variation will have better prerequisites for defining the concept and for creating a common platform towards becoming efficient.

  16. Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems

    International Nuclear Information System (INIS)

    Zhang, Lijun; Xia, Xiaohua; Zhang, Jiangfeng

    2014-01-01

    Highlights: • A pump-storage system (PSS) is introduced in a coal washing plant to reduce energy consumption and cost. • Optimal operation of the PSS under TOU tariff is formulated and solved. Life cycle cost analysis of the design is done. • Simulation results show the effectiveness of energy efficiency improvement and load shifting effect of the proposed approach. • An annual 38% reduction of overall cost of the coal washing plant with 2.86 years payback period is achieved. • Capacity improvement of power plants contracted to the coal mine is expected as less electricity is required to get fuel. - Abstract: A pump storage system (PSS) is introduced to the coal preparation dense medium cyclone (DMC) plants to improve their energy efficiency while maintaining the required medium supply. The DMC processes are very energy intensive and inefficient because the medium supply pumps are constantly over-pumping. The PSS presented is to reduce energy consumption and cost by introducing an addition medium circulation loop. The corresponding pump operation optimization problem in the PSS scheme under time-based electricity tariff is formulated and solved, based on which the financial benefits of the design is investigated using life cycle cost analysis. A case study based on the operation status of a South African coal mine is carried out to verify the effectiveness of the proposed approach. It is demonstrated that the energy cost can be reduced by more than 50% in the studied case by introducing a 160 m 3 storage tank. According to life cycle analysis, the PSS Option 1 yields an annual 38% reduction of the overall cost for the beneficiation plant with a payback period of 2.68 years

  17. The effects of system configuration and operating condition on the MCFC system efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    The process simulation model of an externally reformed molten carbonate fuel cell (MCFC) system is used to analyze quantitatively the parametric effect on the system efficiency. In order to verify the MCFC process simulation model, the 25-kW system was analyzed on the basis of the experimental data and its calculated efficiency showed reasonable. The overall system efficiency of high-temperature fuel cell system, especially MCFC, can not be increased without the proper thermal integration between heat recovery units and additional power generation from auxiliary power generating units such as turbines. The simulation results show that the configuration of unit operators in a given system has great effect on the system efficiency while the system size and operating condition have slightly lower effect on it. Based on the system configuration, optimal operating condition including fuel, oxidant utilization, and recycle ratio can be specified to maximize the system efficiency. (author). 12 refs., 10 figs., 2 tabs.

  18. Improvement of uranium production efficiency to meet China's nuclear power requirements

    International Nuclear Information System (INIS)

    Zhang, R.

    1997-01-01

    Recently China put the Qinshan Nuclear Power Plant, with an installed capacity of 300 MW, in the province of Zhejiang and the Daya Bay Nuclear Power Plant, with a total installed capacity of 2 x 900 MW, in commercial operation. China plans a rapid growth in nuclear power from 1995 to 2010. China's uranium production will therefore also enter a new period with nuclear power increasing. In order to meet the demand of nuclear power for uranium special attention has been paid to both technical progress improvement using management with the aim of reducing the cost of uranium production. The application of the trackless mining technique has enhanced the uranium mining productivity significantly. China has produced a radiometric sorter, model 5421-2 for pre-concentrating uranium run-of-mine ore. This effectively increases the uranium content in mill feed and decreases the operating cost of hydrometallurgical treatment. The in situ leach technique after blasting is applied underground in the Lantian Mine, in addition to the surface heap leaching, and has obtained a perfect result. The concentrated acid-curing, and ferric sulphate trickle leaching process, will soon be used in commercial operation for treating uranium ore grading -5 to -7 mm in size. The annual production capability of the Yining Mine will be extended to 100 tonnes U using improving in situ leaching technology. For the purpose of improving the uranium production efficiency much work has been done optimizing the distribution of production centres. China plans to expand its uranium production to meet the uranium requirements of the developing nuclear power plants. (author). 4 tabs

  19. Modeling and energy efficiency optimization of belt conveyors

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2011-01-01

    Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

  20. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  1. Using Vision System Technologies to Enable Operational Improvements for Low Visibility Approach and Landing Operations

    Science.gov (United States)

    Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.

    2014-01-01

    Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.

  2. Improving Reliability, Security, and Efficiency of Reconfigurable Hardware Systems (Habilitation)

    NARCIS (Netherlands)

    Ziener, Daniel

    2017-01-01

    In this treatise,  my research on methods to improve efficiency, reliability, and security of reconfigurable hardware systems, i.e., FPGAs, through partial dynamic reconfiguration is outlined. The efficiency of reconfigurable systems can be improved by loading optimized data paths on-the-fly on an

  3. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  4. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  5. Increased water charges improve efficiency and equity in an irrigation system

    Directory of Open Access Journals (Sweden)

    Andrew Reid. Bell

    2016-09-01

    Full Text Available Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1 farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2 there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to

  6. Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment

    International Nuclear Information System (INIS)

    Viholainen, J.; Grönman, K.; Jaatinen-Värri, A.; Grönman, A.; Ukkonen, P.; Luoranen, M.

    2015-01-01

    Highlights: • Energy performance and environmental impact of the compressor operation was studied. • Diffusers can offer significant energy savings in aeration compressor tasks. • Diffusers used in compressors reduce the environmental impact of the machine use. • The influence of additional material and diffuser manufacturing is insignificant. - Abstract: Energy costs typically dominate the life-cycle costs of centrifugal compressors used in various industrial and municipal processes, making the compressor an attractive target for energy efficiency improvements. This study considers the achievable energy savings of using three different diffuser types in a centrifugal compressor supporting a typical end-use process in a waste water treatment plant. The effect of the energy efficiency improvements on the annual energy use and the environmental impacts are demonstrated with energy calculations and life-cycle assessment considering the selected compressor task in the waste water aeration. Besides the achievable energy saving benefits in the wastewater aeration process, the presented study shows the influence of the additional material needed in the diffuser manufacturing on the total greenhouse gas emissions of the compressor life-cycle. According to the calculations and assessment results, the studied diffuser types have a significant effect on the compressor energy use and environmental impacts when the compressor is operated in the aeration task. The achievable annual energy savings in this case were 2.5–4.9% in comparison with the baseline scenario. Also, the influence of the additional material and energy use for manufacturing the diffuser are insignificant compared with the avoided greenhouse gas reduction potential

  7. Efficiency improvement opportunities in TVs: Implications for market transformation programs

    International Nuclear Information System (INIS)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2013-01-01

    Televisions (TVs) account for a significant portion of residential electricity consumption and global TV shipments are expected to continue to increase. We assess the market trends in the energy efficiency of TVs that are likely to occur without any additional policy intervention and estimate that TV efficiency will likely improve by over 60% by 2015 with savings potential of 45 terawatt-hours [TW h] per year in 2015, compared to today’s technology. We discuss various energy-efficiency improvement options and evaluate the cost effectiveness of three of them. At least one of these options improves efficiency by at least 20% cost effectively beyond ongoing market trends. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy savings potential from TVs which we estimate to be up to 23 TW h per year in 2015. - Highlights: • We analyze the impact of the recent TV market transition on TV energy consumption. • We review TV technology options that could be realized in the near future. • We assess the cost-effectiveness of selected energy-efficiency improvement options. • We estimate global electricity savings potential in selected scenarios. • We discuss possible directions of market transformation programs

  8. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    Science.gov (United States)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  9. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2010-08-04

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

  10. Development and Evaluation of Algorithms to Improve Small- and Medium-Size Commercial Building Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using

  11. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  12. Electric motor systems in developing countries: Opportunities for efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  13. Operations and quality management for public service delivery improvement.

    Directory of Open Access Journals (Sweden)

    Paulin Mbecke

    2014-10-01

    Full Text Available Public service management reforms have not yet contributed to poverty eradication and generally socio-economic development of many African countries. The reforms suggested and implemented to date still prove to be weak in addressing the many challenges faced by the public service in delivering goods and services to the population. The failure of the current public service management calls for a consideration of business-driven approaches and practices that facilitate effectiveness, efficiency, competitiveness and flexibility in goods and services provision. The critical social theory methodology and the literature review technique described and raised awareness on service delivery chaos in South Africa. A public service reform that focuses on operations and quality management is one of the ways of improving and sustaining service delivery in South Africa. Operations management is an essential tool for the planning, execution, control, monitoring and evaluation of production processes. Quality management, in the other hand, is essential to ensure best quality of goods and services produced by the public service within acceptable time and available resources to meet or exceed people’s expectations. The operations and quality management framework proposed in this article is a potential alternative to the current service delivery crisis in South Africa.

  14. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  15. Is profitability a good proxy for efficiency? Evidence from the subsector of tour operators

    Directory of Open Access Journals (Sweden)

    Hedija Veronika

    2017-12-01

    Full Text Available The goal of the paper is to evaluate the economic efficiency of tour operators in the Czech Republic in the period 2007-2014 using data envelopment analysis (DEA models and prove the link between economic efficiency and profitability and to find out if profitability is a good proxy for economic efficiency. Data was exported from the database Albertina CZ Gold Edition. We calculated the efficiency score using CCR (Charnes, Cooper and Rhodes and BCC (Banker, Charnes and Cooper models based on 3 inputs and 1 output. In the years 2007 to 2010, the efficiency score of almost all the companies was higher than 0.5; however, in years since 2011, we revealed significant differences in the efficiency of individual firms and only about 40 percent of tour operators achieved an efficiency score higher than 0.5. Using Pearson and Spearman correlation coefficients, our findings show that, in the case of the Czech tour operator market, profitability ratios do not correspond with firm efficiency. Profitability ratios are not a good proxy for economic efficiency and should not be used as the only firm criterion of performance.

  16. Improved energy efficiency in juice production through waste heat recycling

    International Nuclear Information System (INIS)

    Anderson, J.-O.; Elfgren, E.; Westerlund, L.

    2014-01-01

    Highlights: • A heating system at a juice production was investigated and improved. • Different impacts of drying cycle improvements at the energy usage were explored. • The total heat use for drying could thereby be decreased with 52%. • The results point out a significant decrease of heat consumption with low investment costs. - Abstract: Berry juice concentrate is produced by pressing berries and heating up the juice. The by-products are berry skins and seeds in a press cake. Traditionally, these by-products have been composted, but due to their valuable nutrients, it could be profitable to sell them instead. The skins and seeds need to be separated and dried to a moisture content of less than 10 %wt (on dry basis) in order to avoid fermentation. A berry juice plant in the north of Sweden has been studied in order to increase the energy and resource efficiency, with special focus on the drying system. This was done by means of process integration with mass and energy balance, theory from thermodynamics and psychrometry along with measurements of the juice plant. Our study indicates that the drying system could be operated at full capacity without any external heat supply using waste heat supplied from the juice plant. This would be achieved by increasing the efficiency of the dryer by recirculation of the drying air and by heat supply from the flue gases of the industrial boiler. The recirculation would decrease the need of heat in the dryer with about 52%. The total heat use for the plant could thereby be decreased from 1262 kW to 1145 kW. The improvements could be done without compromising the production quality

  17. Improvement of the Dehulling Efficiency of Sorghum and Millet using ...

    African Journals Online (AJOL)

    Conditioning of grain with heat and moisture is known to loosen the adhesion of the seed coat from the endosperm and therefore improve the dehulling efficiency of some grains such as beans, cowpea and canola. This study investigated the effect of hydrothermal treatment on the improvement of dehulling efficiency of ...

  18. Regional hospital improves efficiency with co-generation retrofit.

    Science.gov (United States)

    Knutson, D; Anderson, L

    1999-11-01

    Feasibility analysis of the co-generation retrofit of the Red Deer Regional Hospital pointed to a reasonable payback of capital cost and increased efficiency in operation of the facility. Budget restrictions nearly stopped the project from proceeding. Innovative construction procedures proposed by the Facility Management Group, in particular, Mr Keith Metcalfe, Director of Maintenance, allowed a worthwhile project to reach successful completion. We feel that this model can perhaps be used by similar facilities in the future to achieve their energy efficiency goals.

  19. Efficiency improvement of technological preparation of power equipment manufacturing

    Science.gov (United States)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  20. Efficient operation of anisotropic synchronous machines for wind energy systems

    International Nuclear Information System (INIS)

    Eldeeb, Hisham; Hackl, Christoph M.; Kullick, Julian

    2016-01-01

    This paper presents an analytical solution for the Maximum-Torque-per-Ampere (MTPA) operation of synchronous machines (SM) with anisotropy and magnetic cross-coupling for the application in wind turbine systems and airborne wind energy systems. For a given reference torque, the analytical MTPA solution provides the optimal stator current references which produce the desired torque while minimizing the stator copper losses. From an implementation point of view, the proposed analytical method is appealing in terms of its fast online computation (compared to classical numerical methods) and its efficiency enhancement of the electrical drive system. The efficiency of the analytical MTPA operation, with and without consideration of cross-coupling, is compared to the conventional method with zero direct current. (paper)

  1. Efficient Storage and Querying of Horizontal Tables Using a PIVOT Operation in Commercial Relational DBMSs

    Science.gov (United States)

    Shin, Sung-Hyun; Moon, Yang-Sae; Kim, Jinho; Kim, Sang-Wook

    In recent years, a horizontal table with a large number of attributes is widely used in OLAP or e-business applications to analyze multidimensional data efficiently. For efficient storing and querying of horizontal tables, recent works have tried to transform a horizontal table to a traditional vertical table. Existing works, however, have the drawback of not considering an optimized PIVOT operation provided (or to be provided) in recent commercial RDBMSs. In this paper we propose a formal approach that exploits the optimized PIVOT operation of commercial RDBMSs for storing and querying of horizontal tables. To achieve this goal, we first provide an overall framework that stores and queries a horizontal table using an equivalent vertical table. Under the proposed framework, we then formally define 1) a method that stores a horizontal table in an equivalent vertical table and 2) a PIVOT operation that converts a stored vertical table to an equivalent horizontal view. Next, we propose a novel method that transforms a user-specified query on horizontal tables to an equivalent PIVOT-included query on vertical tables. In particular, by providing transformation rules for all five elementary operations in relational algebra as theorems, we prove our method is theoretically applicable to commercial RDBMSs. Experimental results show that, compared with the earlier work, our method reduces storage space significantly and also improves average performance by several orders of magnitude. These results indicate that our method provides an excellent framework to maximize performance in handling horizontal tables by exploiting the optimized PIVOT operation in commercial RDBMSs.

  2. METHODS FOR IMPROVING THE ENERGY EFFICIENCY OF WELL ROD PUMP UNITS

    Directory of Open Access Journals (Sweden)

    BRUNMAN1 Vladimir E.

    2016-11-01

    Full Text Available The concept of oil production energy efficiency improvement of good rod pumps by utilization of kinetic energy of the downward moving rod in capacitor bank is proposed. A mathematical model of the system is developed. Criteria of reduction of the peak values of current, consuming power and elimination of oscillations are obtained. It is shown that the developed system is capable of reducing the consumption of current twice and the peak power by three times. Thus it is possible to reduce operational and capital costs by reducing the cross-section of the feeder cables and decreasing the power of input transformers and diesel generator set if autonomous feeding of pumping units is used

  3. Does automation improve stock market efficiency in Ghana ...

    African Journals Online (AJOL)

    The automation of the Ghana Stock Exchange (GSE) in 2008, among other reforms, was expected to improve the efficiency of the market. The extent of this truism has, however, not been empirically established for the GSE. In this study, we attempt to assess the impact of the automation on the efficiency of the GSE within the ...

  4. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity

  5. Integrated hospital emergency care improves efficiency.

    Science.gov (United States)

    Boyle, A A; Robinson, S M; Whitwell, D; Myers, S; Bennett, T J H; Hall, N; Haydock, S; Fritz, Z; Atkinson, P

    2008-02-01

    There is uncertainty about the most efficient model of emergency care. An attempt has been made to improve the process of emergency care in one hospital by developing an integrated model. The medical admissions unit was relocated into the existing emergency department and came under the 4-hour target. Medical case records were redesigned to provide a common assessment document for all patients presenting as an emergency. Medical, surgical and paediatric short-stay wards were opened next to the emergency department. A clinical decision unit replaced the more traditional observation unit. The process of patient assessment was streamlined so that a patient requiring admission was fully clerked by the first attending doctor to a level suitable for registrar or consultant review. Patients were allocated directly to specialty on arrival. The effectiveness of this approach was measured with routine data over the same 3-month periods in 2005 and 2006. There was a 16.3% decrease in emergency medical admissions and a 3.9% decrease in emergency surgical admissions. The median length of stay for emergency medical patients was reduced from 7 to 5 days. The efficiency of the elective surgical services was also improved. Performance against the 4-hour target declined but was still acceptable. The number of bed days for admitted surgical and medical cases rose slightly. There was an increase in the number of medical outliers on surgical wards, a reduction in the number of incident forms and formal complaints and a reduction in income for the hospital. Integrated emergency care has the ability to use spare capacity within emergency care. It offers significant advantages beyond the emergency department. However, improved efficiency in processing emergency patients placed the hospital at a financial disadvantage.

  6. Impact of the Local Public Hospital Reform on the Efficiency of Medium-Sized Hospitals in Japan: An Improved Slacks-Based Measure Data Envelopment Analysis Approach.

    Science.gov (United States)

    Zhang, Xing; Tone, Kaoru; Lu, Yingzhe

    2018-04-01

    To assess the change in efficiency and total factor productivity (TFP) of the local public hospitals in Japan after the local public hospital reform launched in late 2007, which was aimed at improving the financial capability and operational efficiency of hospitals. Secondary data were collected from the Ministry of Internal Affairs and Communications on 213 eligible medium-sized hospitals, each operating 100-400 beds from FY2006 to FY2011. The improved slacks-based measure nonoriented data envelopment analysis models (Quasi-Max SBM nonoriented DEA models) were used to estimate dynamic efficiency score and Malmquist Index. The dynamic efficiency measure indicated an efficiency gain in the first several years of the reform and then was followed by a decrease. Malmquist Index analysis showed a significant decline in the TFP between 2006 and 2011. The financial improvement of medium-sized hospitals was not associated with enhancement of efficiency. Hospital efficiency was not significantly different among ownership structure and law-application system groups, but it was significantly affected by hospital location. The results indicate a need for region-tailored health care policies and for a more comprehensive reform to overcome the systemic constraints that might contribute to the decline of the TFP. © Health Research and Educational Trust.

  7. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    Science.gov (United States)

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  8. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds

  9. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  10. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  11. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  12. Improving operation notes to meet British Orthopaedic Association guidelines.

    Science.gov (United States)

    Morgan, David; Fisher, Noel; Ahmad, Aman; Alam, Fazle

    2009-04-01

    Operation notes are an important part of medical records for clinical, academic and medicolegal reasons. This study audited the quality of operative note keeping for total knee replacements against the standards set by the British Orthopaedic Association (BOA). A prospective review of all patients undergoing total knee replacement at a district general hospital over 8 months. Data recorded were compared with those required by the BOA good-practice guidelines. Change in practice was implemented and the audit cycle completed. Data were statistically analysed. A total of 129 operation notes were reviewed. There was a significant improvement in the mean number of data points recorded from 9.6 to 13.1. The least well recorded data were diagnosis, description of findings, alignment and postoperative flexion range. All had a significant improvement except description of findings. The operating surgeon writing the note improved from 56% to 67%. Detailed postoperative instructions also improved in quality. Surgeon education and the use of a checklist produce better quality total knee replacement operation notes in line with BOA guidelines. Further improvements may be made by making the data points part of the operation note itself.

  13. Improving the ecohydrological and economic efficiency of Small Hydropower Plants with water diversion

    Science.gov (United States)

    Razurel, Pierre; Gorla, Lorenzo; Tron, Stefania; Niayifar, Amin; Crouzy, Benoît; Perona, Paolo

    2018-03-01

    Water exploitation for energy production from Small Hydropower Plant (SHP) is increasing despite human pressure on freshwater already being very intense in several countries. Preserving natural rivers thus requires deeper understanding of the global (i.e., ecological and economic) efficiency of flow-diversion practice. In this work, we show that the global efficiency of SHP river intakes can be improved by non-proportional flow-redistribution policies. This innovative dynamic water allocation defines the fraction of water released to the river as a nonlinear function of river runoff. Three swiss SHP case studies are considered to systematically test the global performance of such policies, under both present and future hydroclimatic regimes. The environmental efficiency is plotted versus the economic efficiency showing that efficient solutions align along a (Pareto) frontier, which is entirely formed by non-proportional policies. On the contrary, other commonly used distribution policies generally lie below the Pareto frontier. This confirms the existence of better policies based on non-proportional redistribution, which should be considered in relation to implementation and operational costs. Our results recommend abandoning static (e.g., constant-minimal-flow) policies in favour of non-proportional dynamic ones towards a more sustainable use of the water resource, also considering changing hydroclimatic scenarios.

  14. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  15. Improvement of the efficiency of the Agnew micro hydro turbine at part loads due to installing guide vanes mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Yousef; hashemloo, Safar [Iranian Research Organization for Science and Technology (IROST), No. 29 Forssat St., Enghelaab Ave., Tehran (Iran)

    2010-10-15

    Agnew turbine is an axial micro hydro of Kaplan type, with its main shaft subtending 45 to the line of horizon. Due to governmental power generating programs for limited hydro potentials in Iran and on the basis of a joint project between the University of Glasgow and the Iranian Research Organization for Science and Technology (IROST), the turbine was developed to operate under low heads and limited flow potentials in Iran. However the turbine was originally designed to operate without any guide vanes and test results showed that the turbine achieved an efficiency of 62% at its best point of performance. Later a modified Agnew turbine, consisting of a guide blades mechanism was designed and manufactured, at (IROST). The mechanism was so designed that it was also used as a second support for the turbine's main shaft. The standard turbine tests proved that; the modified version of the Agnew turbine had 23% higher efficiency at its best performance point; compared to the original design. Then the effects of the improvements on the turbine were studied on the performance of the turbine at part loads. However, efficiency improvements were observed under all part load conditions. (author)

  16. Improvement of the efficiency of the Agnew micro hydro turbine at part loads due to installing guide vanes mechanism

    International Nuclear Information System (INIS)

    Yassi, Yousef; Hashemloo, Safar

    2010-01-01

    Agnew turbine is an axial micro hydro of Kaplan type, with its main shaft subtending 45 deg. to the line of horizon. Due to governmental power generating programs for limited hydro potentials in Iran and on the basis of a joint project between the University of Glasgow and the Iranian Research Organization for Science and Technology (IROST), the turbine was developed to operate under low heads and limited flow potentials in Iran. However the turbine was originally designed to operate without any guide vanes and test results showed that the turbine achieved an efficiency of 62% at its best point of performance. Later a modified Agnew turbine, consisting of a guide blades mechanism was designed and manufactured, at (IROST). The mechanism was so designed that it was also used as a second support for the turbine's main shaft. The standard turbine tests proved that; the modified version of the Agnew turbine had 23% higher efficiency at its best performance point; compared to the original design. Then the effects of the improvements on the turbine were studied on the performance of the turbine at part loads. However, efficiency improvements were observed under all part load conditions.

  17. Proposal for Managing Eco-efficient Operations Plant Dedicated to Waste Handling at Costa Rican Institute of Electricity

    Directory of Open Access Journals (Sweden)

    Annie Chinchilla

    2015-06-01

    Full Text Available In the present study, different eco-efficient specifications were established considered by Ingeniería y Construcciónor IC (Engineering and Construction, a business of the Costa Rican Institute of Electricity (ICE, in Spanish, at the time of developing an operational plant devoted to the handling of waste, in order to make rational use of resources and generate the lowest environmental impact. Initially a general diagnosis was conducted to learn about the current process of waste management in IC, as well as the identification and assessment of its aspects and environmental impacts. An ecoefficiency proposal program was subsequently prepared to be implemented once the ordinary, special and hazardous waste plant is operating. As part of this investigation, eco-efficient measures and technologies were also identified; this can be adopted by IC or any organization to improve its waste management. Finally, it is necessary that the Eco-efficient Management Program (PGE, in Spanish is organized, planned and systematized over time; in addition, the need to have an Ecoefficiency Management Committee arises, which will allow to implement it and measure it through a series of indicators.

  18. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  19. Application of digital solutions to help the safe and efficient operation of nuclear power plants

    International Nuclear Information System (INIS)

    Ortega P, F.; Fernandez F, S.

    2017-09-01

    In the search for excellence, the emergence of solutions to digitize nuclear power plants is an opportunity to optimize the operation and safety of them. The new technologies available today in the market, applied under a global vision of the operation, can contribute to the excellent operation of nuclear power plants in terms of efficiency and effectiveness. Tecnatom has a long experience in various areas related to the operation of the plants, giving the aforementioned global vision, essential to develop global solutions that pursue the safe and efficient operation of the operation. (Author)

  20. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    International Nuclear Information System (INIS)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape control due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described

  1. An Improved Supplier Driven Packaging Design and Development Method for Supply Chain Efficiency

    DEFF Research Database (Denmark)

    Sohrabpour, Vahid; Oghazi, Pejvak; Olsson, Annika

    2016-01-01

    and satisfaction in interaction with the product and packaging system. It also proposes a supply chain focused packaging design and development method to better satisfy supply chain needs placed on packaging. An extensive literature review was conducted, and a Tetra Pak derived case study was developed......Packaging and the role it plays in supply chain efficiency are overlooked in most design and development research. An opportunity exists to meet the needs of supply chains to increase efficiency. This research presents three propositions on how to reduce the gap between supply chain needs....... The propositions were formulated and became the basis for improving Tetra Pak's existing packaging design and development method by better integrating supply chain needs. This was accomplished by using an expanded operational life cycle perspective that includes the entire supply chain. The resulting supply chain...

  2. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    Science.gov (United States)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  3. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  4. Experience on operational safety improvement of control and operation support systems

    International Nuclear Information System (INIS)

    Itoh, N.; Nakagawa, T.; Mano, K.

    1988-01-01

    Japanese nuclear industry started in 1956 and about 30 years have passed since that time. Through these years, we have made a lot of efforts and developments in the field of Control and Instrumentation (C and I) system. The above 30 years and following years can be divided into four major periods. The first one is the period of research, the second of domestic production, the third of improvement, and the fourth of advancement. Improvements of C and I system, which we have made in those periods have made a great contribution to enhancement of reliability, availability and operability of nuclear power plants. Fig. 1 shows TEPCO's nuclear power plant (BWR) construction experience and technical trend of C and I system in Japan. This paper is to introduce the efforts and operational experience on control and operation support systems

  5. Improving biological efficiency of Oyster mushroom, Pleurotus ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences ... Yield improvement were observed in both pigeon pea and sunflower seed cake supplemented treatments with the highest mycelium vigor (91.65%) and biological ... Keywords: biological efficiency, compost, mycelium vigor, pigeon pea, sunflower seed cake

  6. A RISK BASED METHODOLOGY TO ASSESS THE ENERGY EFFICIENCY IMPROVEMENTS IN TRADITIONALLY CONSTRUCTED BUILDINGS

    Directory of Open Access Journals (Sweden)

    D. Herrera

    2013-07-01

    Full Text Available In order to achieve the CO2 reduction targets set by the Scottish government, it will be necessary to improve the energy efficiency of existing buildings. Within the total Scottish building stock, historic and traditionally constructed buildings are an important proportion, in the order of 19 % (Curtis, 2010, and represent cultural, emotional and identity values that should be protected. However, retrofit interventions could be a complex operation because of the several aspects that are involved in the hygrothermal performance of traditional buildings. Moreover, all these factors interact with each other and therefore need to be analysed as a whole. Upgrading the envelope of traditional buildings may produce severe changes to the moisture migration leading to superficial or interstitial condensation and thus fabric decay and mould growth. Retrofit projects carried out in the past have failed because of the misunderstanding, or the lack of expert prediction, of the potential consequences associated to the envelope's alteration. The evaluation of potential risks, prior to any alteration on building's physics in order to improve its energy efficiency, is critical to avoid future damage on the wall's performance or occupants' health and well being. The aim of this PhD research project is to point out the most critical aspects related to the energy efficiency improvement of traditional buildings and to develop a risk based methodology that helps owners and practitioners during the decision making process.

  7. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    electrolysis. PAA-K allowed for a wider operating potential for the electrolytic cell while increasing the rate for HER at lower cell voltages. The conversion of ammonia improved from 16 % to 25 %, while the current efficiency for the consumption of ammonia increased from 92 +/- 1 % to 97 +/- 2 % by using PAA-K in lieu of KOH. The use of PAA-K also prevented the crossover of the hydrogen produced to the anode side, unlike aqueous KOH.

  8. IMPROVEMENT OF THE SUPPORTING STRUCTURE OF PLATFORM CAR FOR HIGHER EFFICIENCY OF CONTAINER TRANSPORTATIONS

    Directory of Open Access Journals (Sweden)

    A. O. Lovska

    2017-02-01

    Full Text Available Purpose. The article is aimed to improve supporting structures of the platform car to increase the efficiency of container transportations. Methodology. In order to achieve the objective, the strength investigations of the universal platform car of the model 13-401 were conducted, strength reserves of the supporting elements were defined, and more optimal profiles of basic longitudinal beams of the frame in terms of the minimum material capacity were proposed. Decision correctness was confirmed by the strength calculation of the platform car supporting structure at basic loading operational modes and fatigue taking into account the research database of 107 cycles. It has been proposed to equip a platform car with swing fitting stops for fastening containers on the frame, which allows transportation of 20ft and 40ft containers. In order to improve container transportation efficiency along international transport corridors running through Ukraine, a platform car of articulated type has been designed on the base of the improved platform car structure. The mathematical simulation of dynamic loads of the platform car with containers (two 1CC containers at operational loading modes has been carried out, the maximum accelerations influencing the support structure have been defined, and their multiple values have been considered in computer simulation of the strength of the platform car of articulated type. Findings. The support structure of the platform car of articulated type on the basis of the standard platform car has been developed. Refined values of dynamic loads influencing supporting structure the platform car of articulated type with containers at operational loading modes have been obtained; the maximum equivalent stresses in the platform car support structure have been defined. Originality and practical value. A mathematical model of displacements for a platform car of articulated type with containers at operational loading modes of

  9. Energy efficiency of freezing tunnels: towards an optimal operation of compressors and air fans

    Energy Technology Data Exchange (ETDEWEB)

    Widell, Kristina Norne

    2012-07-01

    Fish is one of Norway's main exports, and can be shipped fresh, frozen or dried. This thesis examines the freezing of fish in batch tunnels and ways to increase the energy efficiency of this process. A fish freezing plant on the west coast of Norway was used as a baseline case and measurements were made of the freezing system. Different aspects of this system were simulated, mainly using MATLAB.The focus was on the compressors and the freezing tunnels of an industrial refrigeration system. The compressors and the freezing tunnel fans are the largest consumers of electricity, but they are often not operated at the highest efficiency. An analysis of the compressor operation showed that it was far from optimal, with several compressors often operating at part-load simultaneously. These were screw compressors regulated by slide valves, which provide easy capacity control, but also have low energy efficiency. The refrigeration system had several different sized compressors, and the results showed that it was possible to run the system with only one compressor at part-load operation. The total coefficient of performance was improved by as much as 29% for a low production period. A further analysis showed that installing a variable speed drive on one compressor would also improve energy efficiency and make capacity regulation straightforward.The freezing system included five batch freezing tunnels, each of which had a freezing capacity of more than 100 tonnes of pelagic fish. A typical freezing period lasted typically 20 h and decreased the fish temperature to -18?C or below. The main task was to develop a computer program that could simulate the freezing process and the refrigeration system and locate opportunities for improvement. The air velocities inside the freezing tunnel varied with location, which were pinpointed using the computational fluid dynamics software program Airpak. These velocities were used in freezing time calculations. It was shown that a guide

  10. An analysis of limits for part load efficiency improvement with VVA devices

    International Nuclear Information System (INIS)

    Knop, Vincent; Mattioli, Leonardo

    2015-01-01

    Highlights: • Variable valve actuation aims at reducing pumping losses for spark-ignition engines. • Fully unthrottled operation is never reached because of combustion degradation. • Present paper quantifies the combustion degradation origins for various strategies. • Fully unthrottled CAI combustion mode is a non-combustion-limited alternative. • Combustion limitation is, however, replaced by a heat loss limitation. - Abstract: The implementation of Variable Valve Actuation (VVA) in Spark-Ignition (SI) engines generally aims at increasing part-load efficiency by reducing pumping losses. However, any innovative valve strategy has effects on the combustion process itself, introducing new limitations and mitigating the fuel consumption benefits. The experimental analysis of such valve strategies identifies the optimum settings but does not explain the origin of benefits and the sources of unexpected drawbacks. In the present study, the experimentally-optimised operating conditions for different valve strategies were numerically compared with 3D CFD to gain knowledge about causes for efficiency benefits and consequences of valve strategy on combustion progress. We compared standard SI operation in a single-cylinder port-fuel injection gasoline engine to mixture leaning, early intake valve closure (Miller cycle), late intake valve closure (Atkinson cycle), as well as Controlled Auto-Ignition (CAI). All alternative methods reduced pumping work and improved fuel consumption. However, all alternative methods also altered combustion progress and thermodynamic state within the combustion chamber, so that the observed fuel consumption benefits never reached the expected values. An energy balance provided the additional losses induced by each strategy while in-cylinder turbulence and temperature quantification helped explain the trends in combustion speed.

  11. Extended operating times are more efficient, save money and maintain a high staff and patient satisfaction.

    Science.gov (United States)

    Herron, Jonathan Blair Thomas; French, Rachel; Gilliam, Andrew Douglas

    2018-01-01

    Current public sector austerity measures necessitate efficiency savings throughout the NHS. Performance targets have resulted in activity being performed in the private sector, waiting list initiative lists and requests for staff to work overtime. This has resulted in staff fatigue and additional agency costs. Adoption of extended operating theatre times (0800-1800 hours) may improve productivity and efficiency, with potentially significant financial savings; however, implementation may adversely affect staff morale and patient compliance. A pilot period of four months of extended operating times (4.5 hour sessions) was completed and included all theatre surgical specialties. Outcome measures included: the number of cases completed, late starts, early finishes, cancelled operations, theatre overruns, preoperative assessment and 18-week targets. The outcomes were then compared to pre-existing normal working day operating lists (0900-1700). Theatre staff, patient and surgical trainee satisfaction with the system were also considered by use of an anonymous questionnaire. The study showed that in-session utilisation time was unchanged by extended operating hours 88.7% (vs 89.2%). The service was rated as 'good' or 'excellent' by 87.5% of patients. Over £345,000 was saved by reducing premium payments. Savings of £225,000 were made by reducing privately outsourced operation and a further £63,000 by reviewing staff hours. Day case procedures increased from 2.8 to 3.2 cases/day with extended operating. There was no significant increase in late starts (5.1% vs 6.8%) or cancellation rates (0.75% vs 1.02%). Theatre over-runs reduced from 5% to 3.4%. The 18 weeks target for surgery was achieved in 93.7% of cases (vs 88.3%). The number of elective procedures increased from 4.1 to 4.89 cases/day. Only 13.33% of trainees (n = 33) surveyed felt that extended operating had a negative impact on training. The study concludes that extended operating increased productivity from

  12. Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-10-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower in water systems is being analysed to improve the overall energy efficiency. In this line, the present research is focused on the proposal and development of a novel optimization strategy for increasing the energy efficiency in pressurized irrigation networks by energy recovering. The recovered energy is maximized considering different objective functions, including feasibility index: the best energy converter must be selected, operating in its best efficiency conditions by variation of its rotational speed, providing the required flow in each moment. These flows (previously estimated through farmers’ habits are compared with registered values of flow in the main line with very suitable calibration results, getting a Nash–Sutcliffe value above 0.6 for different time intervals, and a PBIAS index below 10% in all time interval range. The methodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66% of the available energy, improving the recovered energy values between 141 and 184% when comparing to energy recovery considering a constant rotational speed. The proposal of this strategy shows the real possibility of installing micro hydropower machines to improve the water–energy nexus management in pressurized systems.

  13. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  14. Improving the Efficiency of Solid State Light Sources

    International Nuclear Information System (INIS)

    Joanna McKittrick

    2003-01-01

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths (λ=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range (λ=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution

  15. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  16. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  17. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  18. Scaling production and improving efficiency in DEA: an interactive approach

    Science.gov (United States)

    Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas

    2017-10-01

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

  19. Improved Safety and Efficiency of Protected/Permitted Right-Turns in Oregon

    Science.gov (United States)

    2018-05-01

    This research aimed to develop an understanding of the safety and operational implications of using the flashing yellow arrow (FYA) in permitted and protected/permitted right turn (PPRT) operations to maximize safety and efficiency. This report inclu...

  20. Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Xie, Angjun; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • Based on the PG9351FA gas turbine, two gas-steam combined cycles are redesigned. • Analysis of detailed off-design characteristics of the combined cycle main parts. • Suggestions for improving design and operation performance of the combined cycle. • Higher design efficiency has higher off-design efficiency in general PR range. • High pressure ratio combined cycles possess good off-design performance. - Abstract: To achieve a highly efficient design and operation of combined cycles, this study analyzed in detail the off-design characteristics of the main components of three combined cycles with different compressor pressure ratios (PRs) based on real units. The off-design model of combined cycle was built consisting of a compressor, a combustor, a gas turbine, and a heat recovery steam generator (HRSG). The PG9351FA unit is selected as the benchmark unit, on the basis of which the compressor is redesigned with two different PRs. Then, the design/off-design characteristics of the three units with different design PRs and the interactive relations between topping and bottoming cycles are analyzed with the same turbine inlet temperature (TIT). The results show that the off-design characteristics of the topping cycle affect dramatically the combined cycle performance. The variation range of the exergy efficiency of the topping cycle for the three units is between 11.9% and 12.4% under the design/off-design conditions. This range is larger than that of the bottoming cycle (between 9.2% and 9.5%). The HRSG can effectively recycle the heat/heat exergy of the gas turbine exhaust. Comparison among the three units shows that for a traditional gas-steam combined cycle, a high design efficiency results in a high off-design efficiency in the usual PR range. The combined cycle design efficiency of higher pressure ratio is almost equal to that of the PG9351FA, but its off-design efficiency is higher (maximum 0.42%) and the specific power decreases. As for

  1. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  2. Increasing hydro turbine operation range and efficiencies using water injection in draft tubes

    Energy Technology Data Exchange (ETDEWEB)

    Francke, Haakon Hjort

    2010-09-15

    from this project should be presented as a linear equation to give the ideal nozzle configuration for a given operating condition. This has not yet been possible because of the complexity of the system and its variable factors. However, several effects from changing nozzle variables individually have been detected, and are summarized in chapter 1- Conclusions and Achievements. Efficiency measurements in the laboratory and in the field experiments indicated a possibility of increasing the hydraulic efficiency with the water injection system activated. This positive feature was believed to be caused by improvement of the velocity field in the draft tube. However, the total efficiency was always decreased because of the nozzle water bypass. (Author)

  3. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  4. Reliability and efficiency upgrades of power systems operation by implementing intelligent electronic devices with synchrophasor measurement technology support

    OpenAIRE

    Mokeev Alexey

    2017-01-01

    This paper reviews issues of reliability and efficiency upgrades of power systems functions by means of a widespread implementation of intelligent electronic devices (IED) in various purposes supporting synchrophasor measurement technology. Thus, such issues as IED’s operational analysis in the conditions of electromagnetic and electromechanical transient processes and synthesis of digital filters that improve static and dynamic responses of these devices play an important role in their devel...

  5. Evaluation of economic efficiency of process improvement in food packaging

    Directory of Open Access Journals (Sweden)

    Jana Hron

    2012-01-01

    Full Text Available In general, we make gains in process by the three fundamental ways. First, we define or redefine our process in a strategic sense. Second, once defined or redefined, we commence process operations and use process control methods to target and stabilize our process. Third, we use process improvement methods, as described in this paper, along with process control to fully exploit our process management and/or technology. Process improvement is focused primarily in our subprocesses and sub-subprocesses. Process leverage is the key to process improvement initiatives. This means that small improvements of the basic manufacturing operations can have (with the assumption of mass repetition of the operation a big impact on the functioning of the whole production unit. The complexity within even small organizations, in people, products, and processes, creates significant challenges in effectively and efficiently using these initiatives tools. In this paper we are going to place process purposes in the foreground and initiatives and tools in the background as facilitator to help accomplish process purpose. Initiatives and tools are not the ends we are seeking; result/outcomes in physical, economics, timeliness, and customer service performance matter. In the paper process boundaries (in a generic sense are set by our process purpose and our process definition. Process improvement is initiated within our existing process boundaries. For example, in a fast-food restaurant, if we define our cooking process around a frying technology, then we provide process improvements within our frying technology. On the other hand, if we are considering changing to a broiling technology, then we are likely faced with extensive change, impacting our external customers, and a process redefinition may be required. The result / aim of the paper are based on the example of the process improving of a food packaging quality. Specifically, the integration of two approaches

  6. An effort to improve the operators' habits of actions in normal operations and in disturbance situations at TVO NPP in Finland

    International Nuclear Information System (INIS)

    Karlsson, C.

    2004-01-01

    Teollisuuden Voima Oy owns and operates two ABB BWR's, each of 850 MW net outputs. A full-scope training simulator was commissioned in March 1990 at the TVO Olkiluoto plant site. This paper discusses the development of a method to evaluate and improve the operators' habits of actions in a task performance at the Teollisuuden Voima Oy full-scope training simulator. The development of the method started as a study in autumn 1992 and the first goal of the study was to analyse the dynamics of operators' decision making in the on-line control of a disturbance situation. The analysis was ready in 1994. The second goal was to develop out of the analysis method a tool that could serve as the instructor's in evaluating the individuals and the crew's simulator performances. It was assumed that such a tool would enhance the efficiency of the simulator training, because with it the instructors could provide more explicit performance feedback for the operators. The next stage was to apply the method to the entire simulator training and create a course, which consists of a theoretical part and practical training on the simulator. That was done in the retraining period in 1998. The future goals are to improve the method so that it will be used in all the simulator training at the Teollisuuden Voima Oy full-scope training simulator (OLKS). (author)

  7. Dynamic Simulation as a tool to improve the efficiency of Energy Sytems. Applications in the Steel Industry

    Directory of Open Access Journals (Sweden)

    Kitzber R.

    2012-10-01

    Full Text Available To answer the need in reducing the amount and costs of the energetic consumptions in large industries, improvement methods mostly based on stationary considerations are being used today. It is difficult with such approaches to consider potentials hidden in time dependent effects. The batch operated processes of an Integrated Iron and Steel Plant (IISP typically show time dependent behaviour. Therefore, dynamic considerations are used in this paper to increase the efficiency of energy systems (steam and hot water networks in a European IISP. This allows the consideration of potential improvements not only through modifications of the process design and operating conditions but also through optimized control parameters, and enhancement of the transient operation procedures. This paper describes an improvement procedure for the considered energy systems. The physical modelling of all main components (sources, network piping, valves and control devices, is carried out with the simulation program APROS. The potential use of the physical dynamic models is then illustrated by a practical example, which deals with the operating conditions enhancement of a steam turbine. Finally, the application range of the developed simulation models is discussed. Especially, their further utilization for the implementation of model predictive control is outlined.

  8. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  9. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  10. Efficiency of a Woody 60 processor attached to a Mounty 4100 tower yarder when processing coniferous timber from thinning operations

    Directory of Open Access Journals (Sweden)

    S.A. Borz

    2014-12-01

    Full Text Available Processor tower yarders (PTY represent the current state of yarding technology being extensively used in mountainous conditions such as those from Central Europe where they were also developed and used for the first time. In proper technical conditions which are mostly related to forest road infrastructure such equipment may be introduced by technology transfer in other countries such as Romania where they could replace actual less-efficient forest equipment used in steep terrains. The aim of this study was to evaluate the efficiency of such equipment in conditions of thinning operations by adapting a time study to the general concepts and by using data collection techniques to suit the operational conditions imposed by such equipment. In conditions of a mean tree volume of 0.21 m3 × tree-1, the results of our study indicate net production rates as high as 12.72 m3 × h-1 when processing trees on landing, which could be also improved up to 17.52 m3 × h-1 if the PTY have been be adequately installed on the forest road. Another key aspect which could improve the efficiency of such equipment performing landing operations is the number of planned and realized wood assortments since the time expenditure was affected by their number. Given the reduced impact on forest soils as well as the increased efficiency of tower yarders, our study concludes that there would be a lot of potential in actually using them in the Romanian forests located in steep terrain, if proper transportation infrastructure would exist.

  11. Efficiency Improvement of Capacitor Operation

    Directory of Open Access Journals (Sweden)

    V. P. Kashcheev

    2010-01-01

    Full Text Available A system of modernized capacitor ball-cleaning that prevents formation of depositions on internal capacitor tube surface has been developed in the paper.The system has been introduced at the Minsk TPP-4 (Power Block No.5. The paper presupposes that the economic effect will be nearly 0.43 million US dollars per year at one poer block with turbine Т-250/300-240.

  12. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    International Nuclear Information System (INIS)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S.

    2010-01-01

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature.

  13. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, Martin J.; Walmsley, Michael R.W.; Morrison, Andrew S. [Energy Research Group, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240 (New Zealand)

    2010-05-15

    Solar thermal systems have the potential to provide renewable industrial process heat and are especially suited for low pinch temperature processes such as those in the food, beverage, and textile sectors. When correctly integrated within an industrial process, they can provide significant progress towards both increased energy efficiency and reduction in emissions. However, the integration of renewable solar energy into industrial processes presents a challenge for existing process integration techniques due to the non-continuous nature of the supply. A thorough pinch analysis study of the industrial process, taking in to account non-continuous operating rates, should be performed to evaluate the utility demand profile. Solar collector efficiency data under variable climatic conditions should also be collected for the specific site. A systematic method of combining this information leads to improved design and an optimal operating strategy. This approach has been applied to a New Zealand milk powder plant and benefits of several integration strategies, including mass integration, are investigated. The appropriate placement of the solar heat is analogous to the placement of a hot utility source and an energy penalty will be incurred when the solar thermal system provides heat below the pinch temperature. (author)

  14. Improving the thermodynamic efficiency of steam turbine condensers with partial tube replacement and an advanced tube bundle design

    International Nuclear Information System (INIS)

    Drosdziok, A.; Zorner, W.

    1989-01-01

    Many different problems have been experienced with power plant condensers all over the world. It has become apparent that plant availability and cost-effectiveness are significantly influenced by the thermodynamic design of the condensers and the materials selected. This paper reports that by refitting older condensers in operating plants it has proven possible to improve thermodynamic efficiency by changing the tube bundle design. In conjunction with the replacement of the cooper-bearing tubing in these condensers, which became necessary because of the introduction of high AVT (All Volatile Treatment) conditioning in the secondary circuit, it has generally been possible to fulfil the requirements imposed on the condensers without a deterioration of plant efficiency. By experience, best results have been obtained by replacing the condenser bundle with an advanced tube bundle design. Apart from solving all problems, this further improves the thermodynamic efficiency of the condensers. In nuclear power plants constructed by the Siemens KWU Group the condensers are tailored to present-day requirements

  15. Improving the efficiency of thermal power equipment based on technologies using surfactants

    Science.gov (United States)

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  16. Improvement of rate of operation of LWRs, (2)

    International Nuclear Information System (INIS)

    Makiura, Ryutaro

    1978-01-01

    In the first part, the growing importance of improving the rate of operation of nuclear power plants is expressed in view of the big unit capacity of the present plants. The following parts of this report are devoted to the description of various measures for improving the reliability and the rate of operation of BWR plants from the standpoint of plant makers. The first subject is the early solution of ''singular troubles'', for example, the channel wear due to the oscillation of LPRM strings. The second subject is ''ordinary troubles'' such as valve leak and malfunction, deterioration of various parts, and vibration of pipes. The improvement of load factor is discussed in the third part in connection with the present efforts to abolish the PCIOMR operation and to employ the fine motion of control rod-driving mechanism. The final subject concerns with the efforts for shortening the time required for regular inspection. Review of inspection items and shortening of their required time, reduction of radiation exposure automated and remote-controlled operation, and intensive training of operators are the main subjects discussed here. (Aoki, K.)

  17. IMPROVING THE EFFICIENCY OF SPRAY TYPE DEVICES WHEN SOLVING PROBLEMS IN INDUSTRIAL ECOLOGY

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. This carried out work is aimed enhancing the efficiency of the spray scrubber by combining processes and improving hydraulic conditions in the device. The problem of treating waste gases is often characterized by unique features and the significant factor that makes it difficult to find a solution to the problem of treatment is the low and/or variable concentration of the pollutant. With a removal efficiency of up to 98 %, wet treatment technology in scrubber type devices is the only practical method advantageous to the treatment of waste gases. The set objective is solved by developing a two-stage treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. A drift eliminator of the developed device is located on the case unit and a chain is suspended from a clamp mounted on the lower part of the tube neck by pins and two detachable joints. The operation of the scrubber was checked in compliance with the absorption gas treatment of sulfur dioxide. A chemical sorbent, calcium carbonate which is produced as a by-product in the manufacture of nitroammophos at JSC “Minudobrenia” factory is used. Preliminary results indicate that the stiochiometric inlet ratio of Ca/S equals about 2.0 and SO2 emissions reduce by 80-90 %, significantly larger than the planned 70 % and subsequently corresponds to the residue concentration of less than 30 mg/m3 . This is explained by the greater degree of capture and deposition of the sorbent on the chain curtain (not more than 20 mg/m3 . The proposed device for treating gases enables: improvement in the efficiency of gas treatment; increased reliability; increase in the degree of treatment of the gas flow without the use of additional equipment; reduction in metal and design complexity; reduction on the cost of the treatment process and simplification in the device design.

  18. Barriers to efficiency improvement and fuel switching in Karnataka, India

    International Nuclear Information System (INIS)

    Reddy, A.

    1991-01-01

    Implementing energy efficiency changes requires a wide range measures. Improvements, therefore, require actions at the lowest level of the consumer, through the highest level of the global agencies. Due to the multiplicity of participants, however, barriers to achieving these improvements can arise at every level. The major barriers to improving energy efficiency in developing countries are defined and paths to overcome these challenges are identified. Topics of discussion include: energy consumers; end-use equipment manufacturers; end-use equipment providers; energy carrier producers and distributors; actual/potential cogenerators; financial institutions; government; and international, multilateral and industrialized country funding/aid agencies

  19. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  20. The Effects of International Operations on the Relationship Between Manufacturing Improvement Programs and Operational Performance

    DEFF Research Database (Denmark)

    Matyusz, Zsolt; Demeter, Krisztina; Boer, Harry

    The link between manufacturing programs and operational performance, and the effects of company internal and external factors on that relationship, are well studied in the literature, both theoretically and empirically. However, previous studies rarely took into account how the scope of operations...... of the business unit affects the relationship between manufacturing programs and performances. We investigate the scope of operations from the manufacturing perspective (i.e. companies that manufacture in only one country have narrow scope of operations, while companies that manufacture in more than one country...... have broad scope of operations). We apply structural equation modelling (SEM) using PLS path modelling to investigate the effect of scope of operations on the relationship between manufacturing improvement programs and operational performance. Manufacturing improvement programs are programs like...

  1. Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)

    Science.gov (United States)

    Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.

    2017-12-01

    After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.

  2. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  3. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  4. Improving health and energy efficiency through community-based housing interventions.

    Science.gov (United States)

    Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff

    2011-12-01

    Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.

  5. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  6. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    Science.gov (United States)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  7. Advanced cycle efficiency: Generating 40% more power from the nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.; Leung, Laurence

    2010-09-15

    The introduction of supercritical water (SCW) nuclear power plants (NPPs) would improve the overall plant efficiency significantly compared to currently deployed systems. This improvement is attributed to the increase in plant operating conditions. In addition, the implementation of the reheat-channel option into the CANDU SCW NPPs would further enhance the efficiency. Overall, the combination of higher operating conditions and reheat-channel option would lead to overall plant efficiency of about 50% for the CANDU SCW NPPs, compared to 33--35% for currently deployed systems. This represents a whopping 40% improvement in efficiency.

  8. Predictive control strategy of a gas turbine for improvement of combined cycle power plant dynamic performance and efficiency.

    Science.gov (United States)

    Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan

    2016-01-01

    This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.

  9. Reliability and efficiency upgrades of power systems operation by implementing intelligent electronic devices with synchrophasor measurement technology support

    Directory of Open Access Journals (Sweden)

    Mokeev Alexey

    2017-01-01

    Full Text Available This paper reviews issues of reliability and efficiency upgrades of power systems functions by means of a widespread implementation of intelligent electronic devices (IED in various purposes supporting synchrophasor measurement technology. Thus, such issues as IED’s operational analysis in the conditions of electromagnetic and electromechanical transient processes and synthesis of digital filters that improve static and dynamic responses of these devices play an important role in their development.

  10. Performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators

    Science.gov (United States)

    Jeraputra, Chuttchaval; Tiptipakorn, Supun

    2017-05-01

    This paper presents performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators. The proposed regenerative brake recycles the energy loss of a dynamic brake and feeds into the grid while an elevator inverter is operating in the braking mode. According to field measurement of energy consumption, it reveals that the efficiency can be improved as much as 18%. The prototype of a regenerative brake 12 kW, 400V, 3ϕ is developed and tested on an elevator simulator. It is shown that it can transfer energy out of a DC capacitor before the dynamic brake kicks in. Further, an economic analysis is provided to carry out the payback period and the present worth equivalent to confirm economic feasibility.

  11. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  12. Does Automation Improve Stock Market Efficiency? Evidence from Ghana

    OpenAIRE

    Mensah, Justice T.; Pomaa-Berko, Maame; Adom, Philip Kofi

    2012-01-01

    As a burgeoning capital market in an emerging economy, automation of the stock market is regarded as a major step towards integrating the financial market as a conduit for economic growth. The automation of the Ghana Stock Exchange (GSE) in 2008 is expected among other things to improve the efficiency of the market. This paper therefore investigates the impact of the automation on the efficiency of the GSE within the framework of the weak-form Efficient Market Hypothesis (EMH) using daily mar...

  13. Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Shumei; Qiang, Jiaxi; Yang, Lin; Zhao, Xiaowei

    2016-01-01

    To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion. - Highlights: • Issues of over equalization, time consumption and energy loss are addressed. • A SOC-based equalization is proposed based on adaptive genetic algorithm. • The equalization aims to improve battery uniformity, efficiency of energy and time. • Data-driven parameter identification is used to enhance the real-time capability.

  14. Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine

    Directory of Open Access Journals (Sweden)

    Rita Rodrigues

    2014-12-01

    Full Text Available We report on the efficiency improvement of organic solar cells (OPVs based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine (PVP. We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from 2.4% to 2.9%. Modifications in the phase separation details of the active layer were investigated as a possible origin of the efficiency increase. At high concentrations of PVP, the blend morphology is radically altered as observed by Atomic Force Microscopy. Although the use of low molecular weight additives is a routine method to improve OPVs efficiency, this report shows that inert polymers, in terms of optical and charge transport properties, may also improve the performance of polymer-based solar cells.

  15. MANAGING OPERATIONS IMPROVEMENT IN ROMANIAN PUBLIC SERVICES

    Directory of Open Access Journals (Sweden)

    BALOI IONUT-COSMIN

    2015-07-01

    Full Text Available This paper aims to develop a pleading for the transfer of best practices to improving the operational activity in the Romanian public institutions. The practice of implementation demonstrates that the perception of many executives in the Romanian private enterprises regarding the set of tools to improve processes and assimilation of lean philosophy is not a very favorable and encouraging one. It can be said that only some large enterprises had successfully introduced in their daily practice and organization the improvement principles, the operational optimization and the elimination of waste sources. In the SMEs, and especially in the services the experiences are isolated, but they have demonstrated the usefulness (the frequency of saving goals indicate, indeed, the need for proliferation of continuous improvement principles. Regarding the public organizations, the implementation of the new management system of designing and operating the current practices is pretty unknown, accepted at declarative level, but becomes, when is planned and implemented rather a burden on managers who should take on this challenge. Both in public management and private management, today the focus is on people and relationships (processes and projects, starting of course with the work organization. The good practices successfully proved in the private management in the recent decades are transferred today to public institutions; and the Romanian public organizations tend to adapt, also in terms of processes optimization. The study aims to analyze the functioning of the hypothetical management system of processes improvements, respectively the applying of lean tools and principles within the public Romanian institution. They are treated some dysfunctions observed within the process of understanding the utility aspects and throughout the assuming of operational improvement goals within these organizations. The qualitative observations, the critical interpretations and

  16. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks

    International Nuclear Information System (INIS)

    Azar, Elie; Menassa, Carol C.

    2014-01-01

    While studies highlight the significant impact of actions performed by occupants and facility managers on building energy performance, current policies ignore the importance of human actions and the potential energy savings from a more efficient operation of building systems. This is mainly attributed to the lack of methods that evaluate non-technological drivers of energy use for large stocks of commercial buildings to support policy making efforts. Therefore, this study proposes a scientific approach to quantifying the energy savings potential due to improved operations of any stock of commercial buildings. The proposed framework combines energy modeling techniques, studies on human actions in buildings, and surveying and sampling methods. The contributions of this study to energy policy are significant as they reinforce the role of human actions in energy conservation, and support efforts to integrate operation-focused solutions in energy conservation policy frameworks. The framework's capabilities are illustrated in a case study performed on the stock of office buildings in the United States (US). Results indicate a potential 21 percent reduction in the current energy use levels of these buildings through realistic changes in current building operation patterns. - Highlights: • Human actions highly influence energy performance of commercial building stocks. • It is challenging to quantify operation-related energy savings potential. • The proposed framework quantifies potential energy savings from improved operations. • The framework can be applied on any stock of commercial buildings. • Applications include support for operation-focused solutions in energy policies

  17. Using the Continuous Improvement Process to optimize opencast mining operations; Nutzung des kontinuierlichen Verbesserungsprozesses zur Optimierung des Tagebaubetriebs

    Energy Technology Data Exchange (ETDEWEB)

    Oster, Arthur [RWE Power AG, Eschweiler (Germany). Tagebau Inden

    2011-11-15

    The value chain in the energy industry has changed over the last few years. Several stages, such as energy trading, have gained in significance while the character of others, for instance electricity generation, has changed. RWE Power is actively participating in shaping this change process and is a driving force of change. One focus of RWE Power's strategic alignment is on a highly efficient and integrated core business in lignite mining and lignite-based electricity generation. The Continuous Improvement Process ''immer:besser'' (getting better) ensures the continuous achievement and development of operational and commercial excellence in our daily operations. As a corporate culture this determines the requirements to be met by entrepreneurial ideas. It also ensures an increase in performance as well as cost reduction in our daily business. Obtaining cost reductions and efficiency increases with the aid of the Continuous Improvement Process as a kind of value-adding self-renewal process to ensure that lignite remains competitive, forms the basis for further increases in profitability and growth.

  18. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  19. Improving radiation use efficiency in greenhouse production systems

    OpenAIRE

    Li, Tao

    2015-01-01

    SUMMARY A large increase in agricultural production is needed to feed the increasing world population with their increasing demand per capita. However, growing competition for arable land, water, energy, and the degradation of the environment impose challenges to improve crop production. Hence agricultural production efficiency needs to increase. Greenhouses provide the possibility to create optimal growth conditions for crops, thereby improving production and product quality. Light is the dr...

  20. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  1. "Knife to skin" time is a poor marker of operating room utilization and efficiency in cardiac surgery.

    Science.gov (United States)

    Luthra, Suvitesh; Ramady, Omar; Monge, Mary; Fitzsimons, Michael G; Kaleta, Terry R; Sundt, Thoralf M

    2015-06-01

    Markers of operation room (OR) efficiency in cardiac surgery are focused on "knife to skin" and "start time tardiness." These do not evaluate the middle and later parts of the cardiac surgical pathway. The purpose of this analysis was to evaluate knife to skin time as an efficiency marker in cardiac surgery. We looked at knife to skin time, procedure time, and transfer times in the cardiac operational pathway for their correlation with predefined indices of operational efficiency (Index of Operation Efficiency - InOE, Surgical Index of Operational Efficiency - sInOE). A regression analysis was performed to test the goodness of fit of the regression curves estimated for InOE relative to the times on the operational pathway. The mean knife to skin time was 90.6 ± 13 minutes (23% of total OR time). The mean procedure time was 282 ± 123 minutes (71% of total OR time). Utilization efficiencies were highest for aortic valve replacement and coronary artery bypass grafting and least for complex aortic procedures. There were no significant procedure-specific or team-specific differences for standard procedures. Procedure times correlated the strongest with InOE (r = -0.98, p knife to skin is not as strong an indicator of efficiency. A statistically significant linear dependence on InOE was observed with "procedure times" only. Procedure times are a better marker of OR efficiency than knife to skin in cardiac cases. Strategies to increase OR utilization and efficiency should address procedure times in addition to knife to skin times. © 2015 Wiley Periodicals, Inc.

  2. Operator-based linearization for efficient modeling of geothermal processes

    OpenAIRE

    Khait, M.; Voskov, D.V.

    2018-01-01

    Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir modeling requires the solution of governing equations describing the conservation of mass and energy. The robust, accurate and computationally efficient implementation of ...

  3. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  4. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  5. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  6. Improved operability of the CANDU 9 control centre

    International Nuclear Information System (INIS)

    Macbeth, M. J.; Webster, A.

    1996-01-01

    The next generation CANDU nuclear power plant being designed by AECL is the 900 MWe class CANDU 9 station. It is based upon the Darlington CANDU station design which is among the world leaders in capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This Control Centre design includes the proven functionality of existing CANDU control centres (including the Wolsong 2,3, and 4 control centre improvements, such as the Emergency Core Cooling panels), the characteristics identified by systematic design with human factors analysis of operations requirements and the advanced features needed to improve station operability which is made possible by the application of new technology. The CANDU 9 Control Centre provides plant staff with an improved operability capability due to the combination of proveness, systematic design with human factors engineering and enhanced operating features. Significant features which contribute to this improved operability include: · Standard NSP, BOP and F/H panels with controls and indicators integrated by a standard display/presentation philosophy. · Common plant parameter signal database for extensive monitoring, checking, display and annunciation. · Powerful annunciation system allowing alarm filtering, prioritizing and interrogation to enhance staff recognition of events, plant state and required corrective procedural actions. · The use of an overview display to present immediate and uncomplicated plant status information to facilitate operator awareness of unit status in a highly readable and recognizable format. · Extensive cross checking of similar process parameters amongst themselves, with the counterpart safety system parameters and as well as with 'signature' values obtained from known steady state conditions. · Powerful calculation capabilities, using the plant wide database, providing immediate recognizable and readable and readable output data on plant state information and plant state change

  7. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    NARCIS (Netherlands)

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  8. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  9. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  10. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  11. Efficient ecologic and economic operational rules for dammed systems by means of nondominated sorting genetic algorithm II

    Science.gov (United States)

    Niayifar, A.; Perona, P.

    2015-12-01

    River impoundment by dams is known to strongly affect the natural flow regime and in turn the river attributes and the related ecosystem biodiversity. Making hydropower sustainable implies to seek for innovative operational policies able to generate dynamic environmental flows while maintaining economic efficiency. For dammed systems, we build the ecological and economical efficiency plot for non-proportional flow redistribution operational rules compared to minimal flow operational. As for the case of small hydropower plants (e.g., see the companion paper by Gorla et al., this session), we use a four parameters Fermi-Dirac statistical distribution to mathematically formulate non-proportional redistribution rules. These rules allocate a fraction of water to the riverine environment depending on current reservoir inflows and storage. Riverine ecological benefits associated to dynamic environmental flows are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, we apply nondominated sorting genetic algorithm II (NSGA-II) to an ensemble of non-proportional and minimal flow redistribution rules in order to generate the Pareto frontier showing the system performances in the ecologic and economic space. This fast and elitist multiobjective optimization method is eventually applied to a case study. It is found that non-proportional dynamic flow releases ensure maximal power production on the one hand, while conciliating ecological sustainability on the other hand. Much of the improvement in the environmental indicator is seen to arise from a better use of the reservoir storage dynamics, which allows to capture, and laminate flood events while recovering part of them for energy production. In conclusion, adopting such new operational policies would unravel a spectrum of globally-efficient performances of the dammed system when compared with those resulting from policies based on constant minimum flow releases.

  12. Efficiency improvement opportunities for personal computer monitors. Implications for market transformation programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-08-15

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that PC monitor efficiency will likely improve by over 40 % by 2015 with saving potential of 4.5 TWh per year in 2015, compared to today's technology. We discuss various energy-efficiency improvement options and evaluate the cost-effectiveness of three of them, at least one of which improves efficiency by at least 20 % cost effectively beyond the ongoing market trends. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus-powered liquid crystal display monitors and find that the current technology available and deployed in them has the potential to deeply and cost effectively reduce energy consumption by as much as 50 %. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to further capture global energy saving potential from PC monitors which we estimate to be 9.2 TWh per year in 2015.

  13. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  14. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  15. Improving operator training and performance through simulator observations

    International Nuclear Information System (INIS)

    Flynn, J.P.

    1987-01-01

    This paper describes the methods and results of INPO observations of simulator training for licensed operators. It discusses the history of the observation program to the present. Effective methods for conducting and documenting simulator observations are discussed. The methods used to analyze the observations is also discussed. The major conclusion of the analysis is that opportunities exist for improvement in the use of emergency operating procedures. Teamwork, communication, and simulator instructor skills are also areas where improvement could be made

  16. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  17. Process improvement in healthcare: Overall resource efficiency

    NARCIS (Netherlands)

    de Mast, J.; Kemper, B.; Does, R.J.M.M.; Mandjes, M.; van der Bijl, Y.

    2011-01-01

    This paper aims to develop a unifying and quantitative conceptual framework for healthcare processes from the viewpoint of process improvement. The work adapts standard models from operation management to the specifics of healthcare processes. We propose concepts for organizational modeling of

  18. Improving Inversions of the Overlap Operator

    International Nuclear Information System (INIS)

    Krieg, S.; Cundy, N.; Eshof, J. van den; Frommer, A.; Lippert, Th.; Schaefer, K.

    2005-01-01

    We present relaxation and preconditioning techniques which accelerate the inversion of the overlap operator by a factor of four on small lattices, with larger gains as the lattice size increases. These improvements can be used in both propagator calculations and dynamical simulations

  19. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley

    The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure...... and reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  20. A Methodology to Efficiently Compare Operating System Stability

    NARCIS (Netherlands)

    van der Kouwe, E.; Giuffrida, C.; Ghitulete, R.; Tanenbaum, A.S.

    2015-01-01

    Despite decades of advances in software engineering, operating systems (OSes) are still plagued by crashes due to software faults, calling for techniques to improve OS stability when faults occur. Evaluating such techniques requires a way to compare the stability of different OSes that is both

  1. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  2. Applying Toyota production system techniques for medication delivery: improving hospital safety and efficiency.

    Science.gov (United States)

    Newell, Terry L; Steinmetz-Malato, Laura L; Van Dyke, Deborah L

    2011-01-01

    The inpatient medication delivery system used at a large regional acute care hospital in the Midwest had become antiquated and inefficient. The existing 24-hr medication cart-fill exchange process with delivery to the patients' bedside did not always provide ordered medications to the nursing units when they were needed. In 2007 the principles of the Toyota Production System (TPS) were applied to the system. Project objectives were to improve medication safety and reduce the time needed for nurses to retrieve patient medications. A multidisciplinary team was formed that included representatives from nursing, pharmacy, informatics, quality, and various operational support departments. Team members were educated and trained in the tools and techniques of TPS, and then designed and implemented a new pull system benchmarking the TPS Ideal State model. The newly installed process, providing just-in-time medication availability, has measurably improved delivery processes as well as patient safety and satisfaction. Other positive outcomes have included improved nursing satisfaction, reduced nursing wait time for delivered medications, and improved efficiency in the pharmacy. After a successful pilot on two nursing units, the system is being extended to the rest of the hospital. © 2010 National Association for Healthcare Quality.

  3. Nuclear power operating experience and technical improvement in Japan

    International Nuclear Information System (INIS)

    Toyota, M.

    1983-01-01

    LWR technology in Japan, originally introduced from the United States of America, is now almost entirely supplied domestically. During the initial stage of plant operation, electric power companies experienced various troubles such as intergranular stress corrosion cracking (IGSCC) in the piping in BWRs and steam generator (S/G) tube leaks in PWRs, which once reduced the capacity factor to about 40%. As a result of efforts to investigate the causes of the troubles and to establish countermeasures, which were applied to the plants in operation and under construction for improvement, as well as to shorten the period of regular inspection and to extend the operation cycle, the capacity factor has been improved to 60% since 1980. In 1975 an LWR improvement and standardization programme was launched to aim at improvement of reliability and availability factor and reduction of occupational radiation exposure with the development of domestic technology based on construction and operating experience. The First Phase Programme, which ran from 1975 to 1977, established countermeasures to preclude these troubles and improved workability by enlargement of the containment vessel. The Second Phase Programme followed and ran until 1981. The major steps taken during this period include the adoption of new IGSCC-resistant material and improved core design for BWRs and the improvement of fuels and S/Gs for PWRs. With these improvements, the capacity factor is now expected to reach a 75% level and occupational radiation exposure should be reduced by 50%. A Third Phase Programme will centre on the test and development programme for advanced BWRs and PWRs now under way to further improve the availability factor and reliability while also minimizing radiation exposure. (author)

  4. Efficiency improvement for a sustainable agriculture : the integration of agronomic and farm economics approaches

    OpenAIRE

    Koeijer, de, T.J.

    2002-01-01

    Keywords: Sustainable farming systems, Agronomic efficiency, Economic efficiency, Environmental efficiency, Sustainability index, Interdisciplinary analysis.

    The objective of the research described in this thesis was to determine what role improved agronomic efficiency can play in the transition towards more sustainable production systems. Agronomic efficiency measures the technical performance. If it could be improved, environmental damage could be reduced while, at the sam...

  5. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  6. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  7. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Michael Killian

    2009-09-30

    exhibited durability issues, stripping away under conditions less demanding than 750,000 miles in service on the road. Failed coatings compound the problem by contaminating the lubricant with hard particles. Under the most severe conditions, super finished surfaces may polish further, reaching a surface roughness unable to support the critical oil film thickness. Low viscosity and low friction lubricants may not protect the gears and bearings adequately leading to excessive pitting, wear and noise. Additives in low friction oils may not stay in solution or suspended thus settling to the bottom and unavailable when they are needed most. Technical barriers and risks can be overcome through engineering, but two barriers remain formidable: (1) cost of the technology and (2) convincing fleet owners that the technology provides a tangible benefit. Dry sumps lower lubricant operating temperatures so the removal of heat exchangers and hoses and reduced demand on engine cooling systems justify their use. The benefits of surface texturing are varied and remain unproven. Lubricant costs seem manageable, but the cost of super finishing and gear coating are high. These are issues of scale and processing technology. Going across the board with gear super finishing and coating will reduce costs. Pushing the envelope to applications with higher torque and higher power density should drive the adoption of these technologies. Fleet owners are an educated and seasoned lot. Only technology measureable in dollars returned is used on truck fleets. To convince fleet owners of the benefit of these technologies, new precision in measuring fuel efficiency must be introduced. Legislation for a minimum standard in truck miles per gallon would also enable the use of these technologies. Improving the efficiency of truck transmissions and axle will make a noticeable impact on the fuel consumption by heavy vehicles in the United States. However, the greatest benefit will come when all the individual

  8. Improving the efficiency of aerodynamic shape optimization

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1994-01-01

    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  9. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Grigg, Reid B.

    2002-01-01

    A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO 2 Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core

  10. Thermodynamic analysis of thermal efficiency and power of Minto engine

    International Nuclear Information System (INIS)

    He, Wei; Hou, Jingxin; Zhang, Yang; Ji, Jie

    2011-01-01

    Minto engine is a kind of liquid piston heat engine that operates on a small temperature gradient. But there is no power formula for it yet. And its thermal efficiency is low and formula sometimes is misused. In this paper, deriving the power formula and simplifying the thermal efficiency formula of Minto engine based on energy distribution analysis will be discussed. To improve the original Minto engine, a new design of improved Minto engine is proposed and thermal efficiency formula and power formula are also given. A computer program was developed to analyze thermal efficiency and power of original and improved Minto engines operating between low and high-temperature heat sources. The simulation results show that thermal efficiency of improved Minto engine can reach over 7% between 293.15 K and 353.15 K which is much higher than that of original one; the temperature difference between upper and lower containers is lower than half of that between low and high temperature of heat sources when the original Minto engines output the maximum power; on the contrary, it is higher in the improved Minto engines. -- Highlights: ► The thermal efficiency formula of Minto engine is simplified and the power formula is established. ► A high-powered design of improved Minto engine is proposed. ► A computer simulation program based on real operating environment is developed.

  11. Quantum entanglement helps in improving economic efficiency

    International Nuclear Information System (INIS)

    Du Jiangfeng; Ju Chenyong; Li Hui

    2005-01-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character

  12. Quantum entanglement helps in improving economic efficiency

    Science.gov (United States)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  13. Improving primary health care facility performance in Ghana: efficiency analysis and fiscal space implications.

    Science.gov (United States)

    Novignon, Jacob; Nonvignon, Justice

    2017-06-12

    Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private

  14. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    Energy Technology Data Exchange (ETDEWEB)

    Simiele, Connie J.; Blackford, L. Ty [CH2M HILL Plateau Remediation Contract - CHPRC (United States); West, Lori D. [East Tennessee Materials and Energy Corporation - M and EC (United States)

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to

  15. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    International Nuclear Information System (INIS)

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-01-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  16. Safe and efficient operation of multistage cold compressor systems

    International Nuclear Information System (INIS)

    Kauschke, M.; Haberstroh, C.; Quack, H.

    1996-01-01

    Large refrigeration rates in the temperature range of super fluid helium can only be obtained with the help of centrifugal cold compressors. For the large 2 K systems, four compression stages are necessary to reach atmospheric pressure. Centrifugal cold compressors are quite sensitive to mass flow and suction temperature variations; but these have to be expected in a real system. The first step in the systems design is to find safe and efficient quasi-stationary modes of operation. The system which is being proposed for the TESLA refrigerators relies on two features. The first is to allow the room temperature screw compressor, downstream of the cold compressors to work occasionally with a subatmospheric suction pressure. The second is to stabilize the suction temperature of the third stage of compression at about 10 K. With these features it is possible, that in all modes of operation all four compressor stages operate exactly at their design point

  17. Process improvement of the emergency operating procedures for Embalse Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, A.D.; Pomerantz, M.; Moreno, C., E-mail: dmariotti@na-sa.com.ar, E-mail: mpomerantz@na-sa.com.ar, E-mail: cmoreno@na-sa.com.ar [Embalse Nuclear Power Plant, Nuclear Safety Dept., Embalse (Argentina)

    2014-07-01

    Emergency Operating Procedures (EOP) package of the Embalse Nuclear Power Plant (CNE) were made entirely by the plant staff since the beginning of its operation. With the emergence of Severe Accidents Guidelines (SAMG) and the latest events related to Fukushima, the EOP philosophy should include a new concept. It should consider that the EOP may be unsuccessful and an exit to the SAMG must be necessary. However, due to abnormal event mitigation using EOP is the way to prevent the beginning of a severe accident, EOP always had significant relevance in the plant documentation. For this reason, added to the overall requirement of an exit to the SAMG, it emerges a general review of the use efficiency of the EOP during an abnormal event. For this reason, a comprehensive process improvement has emerged using the operating experience, full-scope simulator training of the control room staff, advances in technology and the arrival of new generations. In this work, fundamental changes, new document format and ergonomic redesign for validation at full-scope simulator and use at main control room of new EOP for CNE are presented. (author)

  18. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  19. A technical system to improve the operational monitoring of the Zaporozhye nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M; Carl, H; Nowak, K [Technischer Ueberwachungsverein Rheinland, Koeln (Germany). Inst. for Nuclear Engineering and Radiation Protection; Schumann, P; Seidel, A; Weiss, F P; Zschau, J

    1998-10-01

    As part of the programme implemented by the German Ministry of Environment, Nature Conservation and Reactor Safety to cooperate with the Central and Eastern European States (CEES) and the Commonwealth of Independent States (CIS) in the area of nuclear safety, a technical system to improve operational monitoring has been designed, specified and established since 1992 as a pilot project in the Zaporozhye/Ukraine nuclear power plant by Forschungszentrum Rossendorf and Technischer Ueberwachungsverein Rheinland with a significant contribution from the State Scientific and Technical Centre of the Ukrainian supervisory authority. The technical system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables a continuous monitoring of the state of unit 5 in normal operation and in cases of anomalies or incidents so that when recognisable deviations from the regular plant operation occur, the Ukrainian supervisory authority can immediately inquire and if necessary impose conditions on the operator. The radiological and meteorological parameters at the nuclear power plant location are monitored to the extent necessary to assess the current radiation situation and to implement efficient emergency management measures. (orig.)

  20. A technical system to improve the operational monitoring of the Zaporozhye nuclear power plant

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Nowak, K.; Schumann, P.; Seidel, A.; Weiss, F.P.; Zschau, J.

    1998-01-01

    As part of the programme implemented by the German Ministry of Environment, Nature Conservation and Reactor Safety to cooperate with the Central and Eastern European States (CEES) and the Commonwealth of Independent States (CIS) in the area of nuclear safety, a technical system to improve operational monitoring has been designed, specified and established since 1992 as a pilot project in the Zaporozhye/Ukraine nuclear power plant by Forschungszentrum Rossendorf and Technischer Ueberwachungsverein Rheinland with a significant contribution from the State Scientific and Technical Centre of the Ukrainian supervisory authority. The technical system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables a continuous monitoring of the state of unit 5 in normal operation and in cases of anomalies or incidents so that when recognisable deviations from the regular plant operation occur, the Ukrainian supervisory authority can immediately inquire and if necessary impose conditions on the operator. The radiological and meteorological parameters at the nuclear power plant location are monitored to the extent necessary to assess the current radiation situation and to implement efficient emergency management measures. (orig.)

  1. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    Science.gov (United States)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  2. Improving the Eco-Efficiency of High Performance Computing Clusters Using EECluster

    Directory of Open Access Journals (Sweden)

    Alberto Cocaña-Fernández

    2016-03-01

    Full Text Available As data and supercomputing centres increase their performance to improve service quality and target more ambitious challenges every day, their carbon footprint also continues to grow, and has already reached the magnitude of the aviation industry. Also, high power consumptions are building up to a remarkable bottleneck for the expansion of these infrastructures in economic terms due to the unavailability of sufficient energy sources. A substantial part of the problem is caused by current energy consumptions of High Performance Computing (HPC clusters. To alleviate this situation, we present in this work EECluster, a tool that integrates with multiple open-source Resource Management Systems to significantly reduce the carbon footprint of clusters by improving their energy efficiency. EECluster implements a dynamic power management mechanism based on Computational Intelligence techniques by learning a set of rules through multi-criteria evolutionary algorithms. This approach enables cluster operators to find the optimal balance between a reduction in the cluster energy consumptions, service quality, and number of reconfigurations. Experimental studies using both synthetic and actual workloads from a real world cluster support the adoption of this tool to reduce the carbon footprint of HPC clusters.

  3. Improving the Solar Panel Efficiency by Using Cooling and Cleaning Techniques

    Directory of Open Access Journals (Sweden)

    Anmar Khalil Ibrahim

    2017-11-01

    Full Text Available This paper is a contribution to research work which aims at ending the electricity crisis in Iraq. The electric power stations, which use conventional fuel, are unable to provide the growing population with electricity all day-long. Moreover, electric distribution lines are sometimes exposed to attacks by terrorists. This paper recommends solar energy as the optimum solution to the electricity problem in Iraq, since it is both renewable and friendly to the environment. The paper also concentrated on reliability techniques to improve the efficiency of the solar energy system. This was achieved by means of designing and constructing a cooling system that consists of fans, sprinklers and wipers to eliminate excessive heat from solar panels when temperature rises to maximum levels. Sprinklers and wipers are also useful for cleaning the panels because dust is a negative factor which undermines the generation capacity of solar panels.   The cooling system is operated by means of a microcontroller that is programmed through Proteus 8, Arduino, and Matlab2016. Statistics reveal that a cooling system has significantly improved the productive capacity of the solar system and it can achieve an energy gain of (34.55%.

  4. Efficient Work Team Scheduling: Using Psychological Models of Knowledge Retention to Improve Code Writing Efficiency

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi

    2014-12-01

    Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.

  5. How we improved operations in drilling pre-salt wells

    Energy Technology Data Exchange (ETDEWEB)

    Hougaz, Augusto Borella [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Martins, Luiz Felipe; Bittencourt, Jessica Lima; Braz, Luciano Machado [Genesis do Brasil, Sao Paulo, SP (Brazil); Damski, Carlos [Genesis Petroleum Technology Pty Ltd. (GPT), Bentley, WA (Australia)

    2012-07-01

    The development of pre-salt wells offshore Brazil has been one of the most challenging projects in history of E and P. Facing water depths of 2000+ meters, a salt layer 2000 meters thick to reach reservoirs at 7000 meters below sea level, has to use technological and procedural techniques never used before. In those 2 years of exploration of those fields many technologies were tested and improved. This paper describes the systematic approach was taken to analyze, plan and follow-up the development of drilling operations campaign in those fields, and the case study of overall process improvement. The assumption was to apply a risk analysis tool which uses previous data to analyze the performance and plan future time. The goals of this process are continuous improvement of execution and process control for each operation. Looking into previous performance, new interventions were planned more accurately and further improvements were studied. The frequent follow up of the drilling intervention was done using the statistical base to compare the most recent results. At operational level it was possible to see if the last operation was done in the 1st, 2nd, 3rd or 4th quartile of its related statistical distribution, as well as to verify the difference within P10 and P90, which indicates the control of each operation execution process. The same process was done for some rig related operations and for the whole intervention at end of it. Close contact with the intervention progress was kept and actions taken in any major deviation from the plan. This paper describes the case study where the process control and optimization of the total time for drilling 10 wells with similar design was measured between March 2009 and May 2011. It resulted in significant improvement in the drilling process. (author)

  6. Operating Room Efficiency before and after Entrance in a Benchmarking Program for Surgical Process Data.

    Science.gov (United States)

    Pedron, Sara; Winter, Vera; Oppel, Eva-Maria; Bialas, Enno

    2017-08-23

    Operating room (OR) efficiency continues to be a high priority for hospitals. In this context the concept of benchmarking has gained increasing importance as a means to improve OR performance. The aim of this study was to investigate whether and how participation in a benchmarking and reporting program for surgical process data was associated with a change in OR efficiency, measured through raw utilization, turnover times, and first-case tardiness. The main analysis is based on panel data from 202 surgical departments in German hospitals, which were derived from the largest database for surgical process data in Germany. Panel regression modelling was applied. Results revealed no clear and univocal trend of participation in a benchmarking and reporting program for surgical process data. The largest trend was observed for first-case tardiness. In contrast to expectations, turnover times showed a generally increasing trend during participation. For raw utilization no clear and statistically significant trend could be evidenced. Subgroup analyses revealed differences in effects across different hospital types and department specialties. Participation in a benchmarking and reporting program and thus the availability of reliable, timely and detailed analysis tools to support the OR management seemed to be correlated especially with an increase in the timeliness of staff members regarding first-case starts. The increasing trend in turnover time revealed the absence of effective strategies to improve this aspect of OR efficiency in German hospitals and could have meaningful consequences for the medium- and long-run capacity planning in the OR.

  7. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diddi, Saurabh [Bureau of Energy Efficiency, Government of India (India); Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-01

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant,and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one-star level) should be evaluated rigorously considering significant benefits to consumers, energy security, and environment

  8. Improving productivity and profitability of a bioanalytical business through sales and operation planning.

    Science.gov (United States)

    Islam, Rafiqul

    2013-07-01

    Today's bioanalytical CROs face increasing global competition, highly variable demand, high fixed costs, pricing pressure, and increasing demand for quality and speed. Most bioanalytical laboratories have responded to these challenges by implementing automation and by implementing process improvement methodologies (e.g., Six Sigma). These solutions have not resulted in a significant improvement in productivity and profitability since none of them are able to predict the upturn or downturn in demand. High volatility of demand causes long lead times and high costs during peak demand and poor productivity during trough demand. Most bioanalytical laboratories lack the tools to align supply efficiently to meet changing demand. In this paper, sales and operation planning (S&OP) has been investigated as a tool to balance supply and demand. The S&OP process, when executed effectively, can be the single greatest determinant of profitability for a bioanalytical business.

  9. Use of Minicameras to Improve Operative Procedure in Security Forces.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Diaz-Manzano, Montaña; Robles-Pérez, José Juan

    2017-09-01

    The aim of the present study was to analyze pistol and compact rifle marksmanship in close quarter combat (CQC). There is currently a controversy about what weapon is most appropriate to use in CQC, short weapon as pistols or long weapons as rifle. Forty two participants conducted two close quarter combat simulations, one with pistol and one with compact rifle. Marksmanship and time to cover the simulation were measured. Data obtained showed no significant differences between pistol and compact rifle. In addition, it was observed a tendency to obtain higher scores with compact rifle, probably be due to the higher stability provided in the shot action. Compact rifle could be an effective election in actual theaters of operation in which asymmetrical and symmetrical combat are combined and also in police interventions due to compact rifle provide higher fire power and range and obtained the same shooting performance than pistol. To the best of our knowledge this is the first study that provides empirical data to solve the discussion about the efficiency of the use of rifle and pistol in close quarter combat in military and police interventions. These results could be used to improve the military and police interventions efficiency.

  10. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    International Nuclear Information System (INIS)

    Ravi Prasad

    2000-01-01

    The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant

  11. The importance for nuclear safety of efficient feedback of operational experience

    International Nuclear Information System (INIS)

    1987-09-01

    Experience of practical operation is a valuable source of information for improving and optimizing the safety and reliability of nuclear power plants. Therefore it is essential to collect information on abnormal events occurring at plants during operation and on all deviations from normal performance by systems and personnel that could be precursors of accidents. For this purpose it is necessary to establish hierarchical systems to feedback operational safety experience at utility, national and international levels and to make these systems as effective as possible. The present report attempts to identify the safety objectives of these systems, to analyse the difficulties presently encountered and to suggest possible improvements

  12. SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Flanz, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pankuch, M; Kreydick, B [Northwestern Medicine Proton Center, Warrenville, IL (United States); Beltran, C [Mayo Clinic, Rochester, MN (United States); Robison, B; Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2016-06-15

    Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure mode and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.

  13. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Diddi, Saurabh [Government of India, New Delhi (India). Bureau of Energy Efficiency; Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  14. Efficiency improvement for vehicle powertrains using energy integration techniques

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the energy services for mobility and comfort are integrated. The energy integration of the mobility and the comfort service is a...

  15. Design improvements, construction and operating experience with BWRs in Japan

    International Nuclear Information System (INIS)

    Uchigasaki, G.; Yokomi, M.; Sasaki, M.; Aoki, R.; Hashimoto, H.

    1983-01-01

    (1) The first domestic-made 1100-MW(e) BWR in Japan commenced commercial operation in April 1982. The unit is the leading one of the subsequent three in Fukushima Daini nuclear power station owned by the Tokyo Electric Power Company Inc. (Tepco). Based on the accumulated construction and operation experience of 500-MW(e) and 800-MW(e) class BWRs, improvements in various aspects during both the design and construction stages were introduced in core and fuel design with advanced gadolinia distribution, reactor feedwater treatment technology for crud reduction, a radwaste island, control and instrumentation to cope with the lessons learned through Three Mile Island assessment etc. (2) Based on many operating experiences with BWRs, an improved BWR core, which has easier operability and higher load factor than the conventional core, has been developed. The characteristic of the improved core is ''axially two-zoned uranium enrichment distribution''; the enrichment of the upper part of the fuel is slightly higher than that of the lower part. Through the improved core it became possible to optimize the axial power flattening and core reactivity control separately by axial enrichment distribution and burnable poison content. The improved fuels were loaded into operating BWRs and successfully proved the performance by this experience. (3) To shorten annual outage time, to reduce radiation exposure, to save manpower, and to achieve high reliability and safety of inspection operation, the remote automatic service and inspection equipment were developed in Japan. This paper presents the concept, distinctive features, and actual operation experience of the automatic refuelling machine, control-rod drive (CRD) remote-handling machine, improved main steam line isolation plug, and the automated ultrasonic inspection system with a computerized data processing unit, which have been developed by Hitachi, Ltd. with excellent results. (author)

  16. Efficiency improvements in pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.; Horton, J. F.

    1977-09-09

    This report identifies potential energy-conservative pipeline innovations that are most energy- and cost-effective and formulates recommendations for the R, D, and D programs needed to exploit those opportunities. From a candidate field of over twenty classes of efficiency improvements, eight systems are recommended for pursuit. Most of these possess two highly important attributes: large potential energy savings and broad applicability outside the pipeline industry. The R, D, and D program for each improvement and the recommended immediate next step are described. The eight technologies recommended for R, D, and D are gas-fired combined cycle compressor station; internally cooled internal combustion engine; methanol-coal slurry pipeline; methanol-coal slurry-fired and coal-fired engines; indirect-fired coal-burning combined-cycle pump station; fuel-cell pump station; drag-reducing additives in liquid pipelines; and internal coatings in pipelines.

  17. Policy modeling for energy efficiency improvement in US industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Price, Lynn; Ruth, Michael

    2001-01-01

    We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy

  18. Improvements in operational safety performance of the Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, C.J. [BNFL Magnox Generation, Berkeley (United Kingdom)

    2000-10-01

    In the 43 years since commencement of operation of Calder Hall, the first Magnox power station, there remain eight Magnox stations and 20 reactors still in operation, owned by BNFL Magnox Generation. This paper describes how the operational safety performance of these stations has significantly improved over the last ten years. This has been achieved against a background of commercial competition introduced by privatization and despite the fact that the Magnox base design belongs to the past. Finally, the company's future plans for continued improvements in operational safety performance are discussed. (author)

  19. Using natural gas generation to improve power system efficiency in China

    International Nuclear Information System (INIS)

    Hu, Junfeng; Kwok, Gabe; Xuan, Wang; Williams, James H.; Kahrl, Fredrich

    2013-01-01

    China's electricity sector faces the challenge of managing cost increases, improving reliability, and reducing its environmental footprint even as operating conditions become more complex due to increasing renewable penetration, growing peak demand, and falling system load factors. Addressing these challenges will require changes in how power generation is planned, priced, and dispatched in China. This is especially true for natural gas generation, which is likely to play an important role in power systems worldwide as a flexible generation resource. Although natural gas is commonly perceived to be economically uncompetitive with coal in China, these perceptions are based on analysis that fails to account for the different roles that natural gas generation plays in power systems—baseload, load following, and peaking generation. Our analysis shows that natural gas generation is already cost-effective for meeting peak demand in China, resulting in improved capacity factors and heat rates for coal-fired generators and lower system costs. We find that the largest barrier to using natural gas for peaking generation in China is generation pricing, which could be addressed through modest reforms to support low capacity factor generation. - Highlights: • Using gas generation as a “capacity resource” in China could have multiple benefits. • Benefits include lower total costs, improved efficiency for coal generators. • Price reforms needed to support low capacity factor generation in China

  20. SWR 1000: Efficient design for operational excellence

    International Nuclear Information System (INIS)

    Brettschuh, W.

    2008-01-01

    The SWR 1000 boiling water reactor (BWR) offers all of the advantages associated with an advanced plant design, i.e. excellent safety performance and competitive power generation costs, in the medium capacity range (1000-1250 MW). The economic efficiency of this medium-sized plant in comparison with large-capacity designs is achieved by using very simple passive safety equipment, simplified plant operating systems, and a very simple plant configuration. Systems engineering is thus optimized, reducing dependence on electrical and instrumentation and control (I and C) systems. The fuel assemblies deployed in the SWR 1000 core are enlarged from a 10 x 10 to a 12 x 12 rod array. This cuts down the total number of fuel assemblies in the core and hence also the number of control rods and control rod drives, as well as in-core neutron flux monitors. The design owes its competitiveness to the fact that investment, maintenance and fuel cycle costs are all lower. In addition, refueling outages are shorter, thanks to the reduced scope for outage activities. For example, there are no bolted reactor internal joints, and the SWR 1000 has a permanently installed reactor vessel-to-drywell seal. Replacement of in-core detectors is carried out from below, and does not affect the critical path of the outage. Furthermore all in-service -inspections (ISIs) on the reactor pressure vessel (RPV) and its nozzles can be undertaken from the outside, so that no extended ISI outages are necessary. As in existing plants, forced coolant circulation is utilized, ensuring problem-free startup and enabling plant operators to adjust power rapidly in the high power range (70%-100%). This is achieved without moving the control rods, and allows both spectral-shift and stretch-out operation. The considerable gains provided by forced coolant circulation, in terms of operational flexibility and fuel utilization, mean that the investment and maintenance costs of the pumps are covered within just a few

  1. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    International Nuclear Information System (INIS)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto

    2008-01-01

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks

  2. Some research results by risk-inform approaches for NPP safety and operational efficiency

    International Nuclear Information System (INIS)

    Komarov, Yu.A.

    2013-01-01

    Article is the presentation of the same name monograph, which is planned to be issued. In the article the perspective problems of further development risk-oriented approach (ROA) for the grounding and realization of measures on increase of safety and operational efficiency of NPP are considered. Unlike the traditional approach for the ROA, mean due the definition of probabilistic and/or deterministic methods of risk parameters, as criterion functions essence and the measure of the estimation are defined by the solution of specific problem in nuclear field. The ROA application allows essentially expanding opportunities of the substantiations and realizations of measures on safety and operational efficiency increase of NPP

  3. TFTR radiation contour and shielding efficiency measurements during D-D operations

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione, G.; Elwood, S.; Gilbert, J.; Hwang, D.; Lewis, M.; Levine, J.; Ku, L.P.; Rule, K.; Hajnal, F.

    1994-11-01

    Extensive neutron and gamma radiation contour, shielding efficiency, and spectral measurements were performed during high power TFTR D-D operations at the tokamak Test Cell inner walls, ceiling, roof, and outer walls, in nearby control rooms, work areas, and personnel pathways, outdoors along the site fence at 125 m, and out to the nearest property lines at 180 m. The results confirmed that the efficiency of the basic radiation shielding was sufficient to allow the TFTR D-T experimental plan, and provide empirical guidance for simulating the radiation fields of future fusion reactors

  4. Gender and relative economic efficiency in improved cassava farms ...

    African Journals Online (AJOL)

    Educational level and extension contact were positive and significant at 5% for both gender farmer groups. Credit was negative but significant at 5% amongst female farmer groups. Gender participation in improved new cassava showed that those energy sapping operations were dominated by male folk while light operation ...

  5. CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency

    Directory of Open Access Journals (Sweden)

    Chakrabarty Spandan

    2016-01-01

    Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.

  6. Multi-objective efficiency enhancement using workload spreading in an operational data center

    International Nuclear Information System (INIS)

    Habibi Khalaj, Ali; Scherer, Thomas; Siriwardana, Jayantha; Halgamuge, Saman K.

    2015-01-01

    Highlights: • Development of the heat-flow reduced order model (HFROM) for the IBM ZRL data center. • Verification of the developed HFROM with the experimentally verified CFD model. • Multi-objective efficiency enhancement of the HFROM using particle swarm optimization. • Improving the COP of the data center’s cooling system by about 17%. • Increasing the total allocated workload of the servers by about 10%. - Abstract: The cooling systems of rapidly growing Data Centers (DCs) consume a considerable amount of energy, which is one of the main concerns in designing and operating DCs. The main source of thermal inefficiency in a typical air-cooled DC is hot air recirculation from outlets of servers into their inlets, causing hot spots and leading to performance reduction of the cooling system. In this study, a thermally aware workload spreading method is proposed for reducing the hot spots while the total allocated server workload is increased. The core of this methodology lies in developing an appropriate thermal DC model for the optimization process. Given the fact that utilizing a high-fidelity thermal model of a DC is highly time consuming in the optimization process, a three dimensional reduced order model of a real DC is developed in this study. This model, whose boundary conditions are determined based on measurement data of an operational DC, is developed based on the potential flow theory updated with the Rankine vortex to account for buoyancy and air recirculation effects inside the DC. Before evaluating the proposed method, this model is verified with a computational fluid dynamic (CFD) model simulated with the same boundary conditions. The efficient load spreading method is achieved by applying a multi-objective particle swarm optimization (MOPSO) algorithm whose objectives are to minimize the hot spot occurrences and to maximize the total workload allocated to servers. In this case study, by applying the proposed method, the Coefficient of

  7. Forest operations and woody biomass logistics to improve efficiency, value, and sustainability

    Science.gov (United States)

    Nathaniel Anderson; Dana Mitchell

    2016-01-01

    This paper reviews the most recent work conducted by scientists and engineers of the Forest Service of the US Department of Agriculture (USDA) in the areas of forest operations and woody biomass logistics, with an emphasis on feedstock supply for emerging bioenergy, biofuels, and bioproducts applications. This work is presented in the context of previous...

  8. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  9. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  10. Aggregate assessments support improved operational decision making

    International Nuclear Information System (INIS)

    Bauer, R.

    2003-01-01

    At Darlington Nuclear aggregate assessment of plant conditions is carried out in support of Operational Decision Making. This paper discusses how aggregate assessments have been applied to Operator Workarounds leading to improved prioritisation and alignment of work programs in different departments. As well, aggregate assessment of plant and human performance factors has been carried out to identify criteria which support conservative decision making in the main control room during unit transients. (author)

  11. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    Science.gov (United States)

    2014-09-01

    through changes in procedures and operational modifications. iENCON uses BBLs/hr (barrels per hour) to evaluate the change in fuel efficiency (Pehlivan...policies and procedures that can be changed to continue the Navy’s efforts in the reduction of fuel consumption. Chapter III addresses drift...and four main engines. In a “full power” lineup all four engines are online. In a “split plant” lineup two engines remain online, one per shaft

  12. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  13. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  14. Integrated Practice Improvement Solutions-Practical Steps to Operating Room Management.

    Science.gov (United States)

    Chernov, Mikhail; Pullockaran, Janet; Vick, Angela; Leyvi, Galina; Delphin, Ellise

    2016-10-01

    Perioperative productivity is a vital concern for surgeons, anesthesiologists, and administrators as the OR is a major source of hospital elective admissions and revenue. Based on elements of existing Practice Improvement Methodologies (PIMs), "Integrated Practice Improvement Solutions" (IPIS) is a practical and simple solution incorporating aspects of multiple management approaches into a single open source framework to increase OR efficiency and productivity by better utilization of existing resources. OR efficiency was measured both before and after IPIS implementation using the total number of cases versus room utilization, OR/anesthesia revenue and staff overtime (OT) costs. Other parameters of efficiency, such as the first case on-time start and the turnover time (TOT) were measured in parallel. IPIS implementation resulted in increased numbers of surgical procedures performed by an average of 10.7%, and OR and anesthesia revenue increases of 18.5% and 6.9%, respectively, with a simultaneous decrease in TOT (15%) and OT for anesthesia staff (26%). The number of perioperative adverse events was stable during the two-year study period which involved a total of 20,378 patients. IPIS, an effective and flexible practice improvement model, was designed to quickly, significantly, and sustainably improve OR efficiency by better utilization of existing resources. Success of its implementation directly correlates with the involvement of and acceptance by the entire OR team and hospital administration.

  15. New software for improving performance in wind farm operations

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Mark [Ekho for Wind (Canada)

    2011-07-01

    The performance of wind farms depends on multiple field and business systems. This makes operational planning difficult because of so many data being in separate systems, duplication of data and the impossibility of gathering all relevant data together in one place. The aim of this paper is to present a new software, Ekho for Wind, which helps improve performance in wind farm operations by providing features such as high level views, performance analysis, downtime tracking, quality data management and forecast generation. This new software provides operational intelligence which offers incentives for continuous improvement. Ekho for Wind can bring such benefits as maximization of generation, increased lifetime of assets, minimization of costs and increased profitability. This presentation introduced a new software for improving the performance of wind farms and the lifetime of assets, resulting in significant payback.

  16. Tank Farm Operations Surveillance Automation Analysis

    International Nuclear Information System (INIS)

    MARQUEZ, D.L.

    2000-01-01

    The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities

  17. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  18. LP turbine retrofit modernization: Improvements in performance and operation

    International Nuclear Information System (INIS)

    Groenedaal, J.C.; Fowls, L.G.; Subbiah, R.; Maxwell, B.P.; Persson, B.

    1996-01-01

    Westinghouse Electric Corporation retrofitted six low pressure (LP) nuclear turbine rotors and associated blade path components at Ringhals 1, a 1960's vintage English Electric (GEC) unit located near Varobacka, Sweden, and operated by Vattenfall AB. This achieved significant performance improvements and provided improved mechanical features over the original equipment. This paper, discusses design, manufacture, installation, operation and project coordination. The retrofit processes employed for these units can be applied to any potential customers units

  19. Transparency and efficiency through plant operations management systems

    International Nuclear Information System (INIS)

    Ladage, L.

    2001-01-01

    Plant operations management systems, being IT application systems, provide integral support of the business processes making up plant operations management. The use of plant operations management systems improves mutually interdependent factors, such as high economic performance, high availability, and maximum safety. Since its commissioning in 1988, the Emsland nuclear power station (KKE) has been run with the IBFS plant operations management system. The work flow management system (WfMS), a module of IBFS, is described as an example of job order processing. IBFS-WfMS is to optimize all processes, thus cutting costs and ensuring that processes are run and documented reliably. Assessing the savings effect achieved through the use of IBFS-WfMS clearly reveals the savings in work/time achieved by the system. These savings are quoted as approx. 4 minutes and DM 10, respectively, per working step, which corresponds to several dozens of manyears or several million DM per annum in the KKE plant under consideration. This result can be extrapolated to other plants. (orig.) [de

  20. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  1. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities

    Directory of Open Access Journals (Sweden)

    Beatrice Marchi

    2017-10-01

    Full Text Available Energy efficiency represents a key resource for economic and social development, providing substantial benefits to different stakeholders, ranging from the entities which develop energy efficient measures to everyone in society. In addition to cost savings, multiple benefits can be achieved by supporting a better alignment between energy issues and strategic business priorities: e.g., improved competitiveness, profitability, quality, etc. Thus, energy efficiency can be a strategic advantage, not just a marginal issue, for companies. However, most firms, especially small and medium enterprises (SMEs, face many problems and, in some cases, hostility when trying to effectively implement energy efficiency actions. The most dominant barriers are the access to capital and the lack of awareness (especially in terms of life cycle cost effects. The supply chain viewpoint represents one of the main opportunities for overcoming those barriers and improving energy performance even for weaker companies. Since the current literature on energy efficiency and practical approaches to ensure energy efficiency mainly focus on energy performance on a single-firm basis, this paper aims to provide a systematic review of papers on the integration of energy efficiency in supply chain design and management published in academic journal, thereby defining potential research streams to close the gaps in the literature. A number of literature reviews have been published focusing on specific aspects of sustainable or on green supply chain management; however, to the best of our knowledge, no review has focused on the energy efficiency issue. Firstly, the present paper shows how considering energy consumption in supply chain management can contribute to more energy-efficient processes from a systemic point of view. Then, the review methodology used is defined and the sampled papers are analyzed and categorized based on the different approaches they propose. From these

  2. Future energy efficiency improvements within the US department of defense: Incentives and barriers

    International Nuclear Information System (INIS)

    Umstattd, Ryan J.

    2009-01-01

    The present work describes the military impact of improved efficiency and then highlights existing technological, political, and financial barriers for improving overall energy efficiency. As the largest user of energy within the US government, the Department of Defense (DOD) is rightly concerned that any disruption to the nation's energy supply may have an extremely adverse impact on its military capabilities. The total solution to providing energy security will be multi-faceted with progress required on many fronts. Increasing the use of renewable energy sources and improving energy storage capabilities are gradually creating a positive impact, but investing in improving the overall efficiency of the military effort provides both immediate and long-lasting payback. One might suppose that a decrease in the energy used by the DOD should lead to a decrease in military capability, but historical data proves otherwise. It is shown that the military has additional impetus, compared to civilian consumers, to pursue energy-efficiency improvements. Many tools are available to help the DOD along this path, yet there remain obstacles which must first be identified and analyzed as discussed herein.

  3. A System-Wide Approach to Physician Efficiency and Utilization Rates for Non-Operating Room Anesthesia Sites.

    Science.gov (United States)

    Tsai, Mitchell H; Huynh, Tinh T; Breidenstein, Max W; O'Donnell, Stephen E; Ehrenfeld, Jesse M; Urman, Richard D

    2017-07-01

    There has been little in the development or application of operating room (OR) management metrics to non-operating room anesthesia (NORA) sites. This is in contrast to the well-developed management framework for the OR management. We hypothesized that by adopting the concept of physician efficiency, we could determine the applicability of this clinical productivity benchmark for physicians providing services for NORA cases at a tertiary care center. We conducted a retrospective data analysis of NORA sites at an academic, rural hospital, including both adult and pediatric patients. Using the time stamps from WiseOR® (Palo Alto, CA), we calculated site utilization and physician efficiency for each day. We defined scheduling efficiency (SE) as the number of staffed anesthesiologists divided by the number of staffed sites and stratified the data into three categories (SE 1). The mean physician efficiency was 0.293 (95% CI, [0.281, 0.305]), and the mean site utilization was 0.328 (95% CI, [0.314, 0.343]). When days were stratified by scheduling efficiency (SE 1), we found differences between physician efficiency and site utilization. On days where scheduling efficiency was less than 1, that is, there are more sites than physicians, mean physician efficiency (95% CI, [0.326, 0.402]) was higher than mean site utilization (95% CI, [0.250, 0.296]). We demonstrate that scheduling efficiency vis-à-vis physician efficiency as an OR management metric diverge when anesthesiologists travel between NORA sites. When the opportunity to scale operational efficiencies is limited, increasing scheduling efficiency by incorporating different NORA sites into a "block" allocation on any given day may be the only suitable tactical alternative.

  4. Improving the efficiency of aerodynamic shape optimization procedures

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.

    1992-01-01

    The computational efficiency of an aerodynamic shape optimization procedure which is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit (ADI) methodology to calculate the highly converged flow solutions which are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. A substantial factor of 8 decrease in computational time for the optimization process was achieved by implementing both of the design improvements.

  5. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  6. To cool a sweltering earth: Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus, E-mail: adua.1@buckeyemail.osu.ed [Rural Sociology Graduate Program, School of Environment and Natural Resources, Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle.

  7. To cool a sweltering earth. Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus [Rural Sociology Graduate Program, School of Environment and Natural Resources, The Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle. (author)

  8. Research on a Microgrid Subsidy Strategy Based on Operational Efficiency of the Industry Chain

    Directory of Open Access Journals (Sweden)

    Yong Long

    2018-05-01

    Full Text Available Government subsidy is a powerful tool to motivate the development of a new energy industry. At the early stage of microgrid development, for the sake of the cost and benefit issue, it is necessary for the government to subsidize so as to support and promote the development of microgrids. However, a big challenge in practice is how to optimize the operational efficiency of the microgrid industry chain with varying targets and methods of subsidy. In order to explore this problem, we construct a subsidy model based on the microgrid industry chain, involving government, investor, operator, equipment supplier, and user. Through calculation and solution of this model, we obtain price and return indicators of each microgrid industry chain participant when the subsidy target differs. Based on that, we contrast and compare the optimal subsidy strategy and influencing factors when operational efficiency indicators vary. Finally, we validate and analyze this model with numerical analysis and discuss the impact of development stage, technological level, and change in subsidy amount on the operational efficiency of the microgrid industry chain and on the returns of each participant. This result is of great significance to subsidy practice for microgrids and the development of microgrids.

  9. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  10. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  11. The effectiveness of lean manufacturing audits in measuring operational performance improvements

    Directory of Open Access Journals (Sweden)

    Taggart, P.

    2013-08-01

    Full Text Available The hypothesis that lean manufacturing audits are an effective way to measure improvements in operational performance was tested using 64 manufacturing sites owned by a FTSE 100 company. Commonly-used lean characteristics were evaluated: policy deployment, standardised work, visual management and housekeeping, quick changeover techniques, total productive maintenance, continuous improvement (kaizen, error proofing, cultural awareness, material control, and levelling (heijunka. Operational performance was assessed employing commonly-used operational performance measures: on-time-delivery, inventory turns, and direct labour utilisation. The findings are that lean manufacturing audits are effective in measuring improvements in operational performance provided that the audit scope and the lean characteristics are aligned up front.

  12. Determination of efficient assortments in operational assortment planning

    OpenAIRE

    Syring, Dietmar

    2010-01-01

    Increased levels of concentration in the retail and manufacturing industries have led to an intensification of competition. Product line-extensions and the rising number of new product introductions have resulted in an explosion of SKUs (stock keeping units), which is reflected in the fight of the industry for shelf space in the retail trade. Concepts such as Efficient Consumer Response and Category Management can support manufacturers in their effort to improve the rate of successful product...

  13. Efficiency Improvement Opportunities for Personal Computer Monitors. Implications for Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-29

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that display efficiency will likely improve by over 40% by 2015 compared to today’s technology. We evaluate the cost effectiveness of a key technology which further improves efficiency beyond this level by at least 20% and find that its adoption is cost effective. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus (USB) powered liquid crystal display (LCD) monitors and find that the current technology available and deployed in USB powered monitors has the potential to deeply reduce energy consumption by as much as 50%. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture global energy saving potential from PC monitors which we estimate to be 9.2 terawatt-hours [TWh] per year in 2015.

  14. DFAS an Operationally Efficient and Cost Effective Agency For 2000 and beyond

    National Research Council Canada - National Science Library

    Crowder, Kenneth

    2000-01-01

    ... over $7 billion in fiscal year 1997 performing, maintaining, and improving finance and accounting operations Auditors, however, have consistently reported that these operations continue to be plagued...

  15. Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter

    KAUST Repository

    Lippok, Norman

    2011-03-30

    We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarizing beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance,compared to a traditional OCT configuration using a 50/50 beam splitter. © 2011 Optical Society of America.

  16. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.

    Science.gov (United States)

    Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim

    2016-11-03

    Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.

  17. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  18. Improving thermoelectric energy harvesting efficiency by using graphene

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-05-01

    Full Text Available This study is aimed at enhancing the efficiency of a thermoelectric (TE energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-μm thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 % in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %. Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems.

  19. Sweep efficiency improvement of waterfloods in Steelman Units V and VII through the application of computer models

    Energy Technology Data Exchange (ETDEWEB)

    Woods, W S

    1967-01-01

    The use of a digital computer program as a tool to investigate the position of flood fronts in 2 Steelman units is described. The program involves a simulated potentiometric analyzer. Several years of historical performance were utilized and alterations to the model were made to match the historical performance until a satisfactory prediction is obtained. Subsequent to matching the historical performance, future predictions were obtained to evaluate the efficiency of the ultimate sweep configuration in the reservoir. These data are used as directives for improving the operation of the waterfloods. Rather than the complicated and elaborate computer techniques currently in use, it is suggested that the results obtained in this particular application of simple techniques provide sufficient economic operating directives.

  20. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  1. Strengthening the Three Lines of Defence in Terms of More Efficient Operational Risk Management in Central Banks

    Directory of Open Access Journals (Sweden)

    Luburić Radoica

    2017-01-01

    Full Text Available This paper is the result of the author`s many years of multidisciplinary research in the areas of quality management and operational risk management. The main focus of the research is aimed at strengthening the model of the “three lines of defence” in terms of more efficient management of operational risks - those that arise as a result of inadequate and unsuccessful processes and systems, human factors, as well as those that can appear as a result of external events. The strengthening of the three lines of defence model is brought about through the synergy of quality management principles, the principles of risk management, and the total quality management approach. In essence, the term strengthening may be interpreted as a process of continual improvement. Business operations based on the principles of quality management and risk management allow central banks to be able to continuously improve their overall business performance. The principles of quality management contain properly aligned and matched best solutions from current management theory and practice. Designed to work together - and this essentially means in a consistent, synchronized and synergistic manner, the principles are translated into a series of requirements and guidelines of international standards suitable for implementation. Through their synergy, the principles of quality management and risk management, as well as approaches to total quality management form a clear, applicable and sustainable paradigm of successful management of central banks. Incorporation of the principles of quality management in central bank systems and processes would significantly strengthen the three lines of defence, in terms of efficient operational risk management, which this paper aims to show in a clear and comprehensive manner. Although any central bank is a specific institution, all the principles of quality management and risk management can be applied to its operations. In addition to

  2. A New Method for Haul Road Design in Open-Pit Mines to Support Efficient Truck Haulage Operations

    Directory of Open Access Journals (Sweden)

    Jieun Baek

    2017-07-01

    Full Text Available The design of a haul road for an open-pit mine can significantly affect the cost associated with hauling ore and waste to the surface. This study proposes a new method for haul road design in open-pit mines to support efficient truck haulage operations. The road layout in open-pit mines was optimized by using raster-based least-cost path analysis, and the resulting zigzag road sections were simplified by applying the Douglas-Peucker algorithm. In addition, the road layout was modified by reflecting the radius of curvature suggested in the road design guides. Finally, a three-dimensional model reflecting the results of the road design was created by combining the road layout modification result with the slope of the open-pit mine and the bench design result. The application of the proposed method to an area containing gold deposits made it possible to design a haul road for open-pit mines such that it supported efficient truck haulage operations; furthermore, the time required for truck movement along the road could be estimated. The proposed method is expected to be useful for planning and designing open-pit mines and to facilitate the improvement of the road design function of existing mining software applications.

  3. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  4. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    Science.gov (United States)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  5. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    Energy Technology Data Exchange (ETDEWEB)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto [Natural Resources (Canada)

    2008-10-15

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks. (author)

  6. 75 FR 27341 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Science.gov (United States)

    2010-05-14

    ..., ramp rates, and network topology), flexible dispatch, settlement calculations, transmission switching... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference To Discuss Increasing Market and Planning Efficiency Through Improved Software May 7, 2010. Take notice that Commission...

  7. Relative efficiency of sawmill types operating in Uganda's softwood ...

    African Journals Online (AJOL)

    The overall aim of this study was to determine the appropriate saw milling ... the swivel and locally-maoufactu red sawmills operating in softwood plantations to improve their feed A ... technologies, poor maintenance of sawmill machinery, poor ... Production of timber from the softwood plantations ..... by Productive Capacity.

  8. Metropolitan transportation management center concepts of operation : a cross-cutting study : improving transportation network efficiency

    Science.gov (United States)

    1999-10-01

    The implementor and operator of a regional transportation management center (TMC) face a challenging task. Operators of TMCsthe primary point of coordination for managing transportation resourcestypically control millions of dollars of intellig...

  9. Improving Reliability and Operational Availability of Military Systems

    National Research Council Canada - National Science Library

    Koehn, Phillip

    2004-01-01

    ...: overhaul and prognostics asset management strategies. It is shown that the prognostics approach leads to improved operational availability by anticipating failure and reducing administrative and logistics delays...

  10. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S.

    1998-02-01

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  11. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  12. The use of well completion efficiency in the assessment of formation damage in initial well completion and workover operations

    Directory of Open Access Journals (Sweden)

    Amieibibama JOSEPH

    2016-07-01

    Full Text Available The calculation of well completion efficiency is very important in comparing pre/post workover or re-entry completion efficiencies of wells to enable the quantification and ranking of the success of workover operations. However, the quantification of the success of an operation could be misleading if comparisons are wrongly placed on wells or fields basis by different operators. In this work, comparative analysis of pre and post well completion efficiencies for different completions types are evaluated for wells in different fields using averaging techniques. According with this, the aim is to quantify the success rate of workover operations. The average completion efficiencies were calculated using the arithmetic mean for wells in different reservoirs and fields having the same completion type. The analysis of the results from the workover operation showed that some operations were successful while others are not and no field had all operations completely successful. Those that were adjudged successful are fields were enhanced production due to the operations was able to offset low productions from failed operations. However, it was observed in some fields that there was complete failure in the operations as all post-operation productions are lower than the pre-operation productions. The operations where failure occurred are due to loss of completion fluids into the formations, resulting to formation damage. Hence, chemical consolidation treatments must be handled with caution as they seem to be more susceptible to damage than other completion types.

  13. Tape write-efficiency improvements in CASTOR

    International Nuclear Information System (INIS)

    Murray, S; Bahyl, V; Cancio, G; Cano, E; Lo Presti, G; Lo Re, G; Ponce, S; Kotlyar, V

    2012-01-01

    The CERN Advanced STORage manager (CASTOR) is used to archive to tape the physics data of past and present physics experiments. For reasons of physical storage space, all of the tape resident data in CASTOR are repacked onto higher density tapes approximately every two years. Improving the performance of writing files smaller than 2GB to tape is essential in order to keep the time needed to repack all of the tape resident data within a period of no more than 1 year. This paper reports on the solution to writing efficiently to tape that is currently in its early deployment phases at CERN.