Improvements in numerical modelling of highly injected crystalline silicon solar cells
Energy Technology Data Exchange (ETDEWEB)
Altermatt, P.P. [University of New South Wales, Centre for Photovoltaic Engineering, 2052 Sydney (Australia); Sinton, R.A. [Sinton Consulting, 1132 Green Circle, 80303 Boulder, CO (United States); Heiser, G. [University of NSW, School of Computer Science and Engineering, 2052 Sydney (Australia)
2001-01-01
We numerically model crystalline silicon concentrator cells with the inclusion of band gap narrowing (BGN) caused by injected free carriers. In previous studies, the revised room-temperature value of the intrinsic carrier density, n{sub i}=1.00x10{sup 10}cm{sup -3}, was inconsistent with the other material parameters of highly injected silicon. In this paper, we show that high-injection experiments can be described consistently with the revised value of n{sub i} if free-carrier induced BGN is included, and that such BGN is an important effect in silicon concentrator cells. The new model presented here significantly improves the ability to model highly injected silicon cells with a high level of precision.
An Improved Macro Model of Traffic Flow with the Consideration of Ramps and Numerical Tests
Directory of Open Access Journals (Sweden)
Zhongke Shi
2015-01-01
Full Text Available We present an improved macro model for traffic flow based on the existing models. The equilibrium point equation of the model is obtained. The stop-and-go traffic phenomenon is described in phase plane and the relationship between traffic jams and system instability is clearly shown in the phase plane diagrams. Using the improved model, some traffic phenomena on a highway with ramps are found in this paper. The numerical simulation is carried out to investigate various nonlinear traffic phenomena with a single ramp generated by different initial densities and vehicle generation rates. According to the actual road sections of Xi’an-Baoji highways, the situations of morning peak with several ramps are also analyzed. All these results are consistent with real traffic, which shows that the improved model is reasonable.
Numerical convergence improvements for porflow unsaturated flow simulations
Energy Technology Data Exchange (ETDEWEB)
Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-08-14
Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.
Directory of Open Access Journals (Sweden)
Zhang De-Sheng
2015-01-01
Full Text Available The prediction accuracies of partially-averaged Navier-Stokes model and improved shear stress transport k-ω turbulence model for simulating the unsteady cavitating flow around the hydrofoil were discussed in this paper. Numerical results show that the two turbulence models can effectively reproduce the cavitation evolution process. The numerical prediction for the cycle time of cavitation inception, development, detachment, and collapse agrees well with the experimental data. It is found that the vortex pair induced by the interaction between the re-entrant jet and mainstream is responsible for the instability of the cavitation shedding flow.
Numerical Modelling of Flow and Settling in Secondary Settling Tanks
DEFF Research Database (Denmark)
Dahl, Claus Poulsen
This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....
International Nuclear Information System (INIS)
Nagai, Haruyasu; Yamazawa, Hiromi
1995-03-01
This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)
Improving the seismic small-scale modelling by comparison with numerical methods
Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann
2017-10-01
The potential of experimental seismic modelling at reduced scale provides an intermediate step between numerical tests and geophysical campaigns on field sites. Recent technologies such as laser interferometers offer the opportunity to get data without any coupling effects. This kind of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for which an automated support system makes possible to generate multisource and multireceivers seismic data at laboratory scale. Experimental seismic modelling would become a great tool providing a value-added stage in the imaging process validation if (1) the experimental measurement chain is perfectly mastered, and thus if the experimental data are perfectly reproducible with a numerical tool, as well as if (2) the effective source is reproducible along the measurement setup. These aspects for a quantitative validation concerning devices with piezoelectrical sources and a laser interferometer have not been yet quantitatively studied in published studies. Thus, as a new stage for the experimental modelling approach, these two key issues are tackled in the proposed paper in order to precisely define the quality of the experimental small-scale data provided by the bench MUSC, which are available in the scientific community. These two steps of quantitative validation are dealt apart any imaging techniques in order to offer the opportunity to geophysicists who want to use such data (delivered as free data) of precisely knowing their quality before testing any imaging technique. First, in order to overcome the 2-D-3-D correction usually done in seismic processing when comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined the comparison between numerical and experimental data by generating accurate experimental line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source data. The comparison with 2-D and 3-D numerical modelling is based on
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Numerical modeling techniques for flood analysis
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
International Nuclear Information System (INIS)
Grange, J.L.; Caremoli, C.; Eddi, M.
1988-01-01
This paper presents improvements performed on SICLE numerical model in order to analyse the condensation front that occurs in the moisture separator reheaters (MSR) of nuclear power plants. Modifications of SICLE numerical model architecture and a fine modelling of reheater have allowed to correctly simulate the MSR thermohydraulic behaviour during a severe transient (plant islanding) [fr
Cross-flow turbines: physical and numerical model studies towards improved array simulations
Wosnik, M.; Bachant, P.
2015-12-01
Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An
Garnier, Valérie; Honnorat, Marc; Benshila, Rachid; Boutet, Martial; Cambon, Gildas; Chanut, Jérome; Couvelard, Xavier; Debreu, Laurent; Ducousso, Nicolas; Duhaut, Thomas; Dumas, Franck; Flavoni, Simona; Gouillon, Flavien; Lathuilière, Cyril; Le Boyer, Arnaud; Le Sommer, Julien; Lyard, Florent; Marsaleix, Patrick; Marchesiello, Patrick; Soufflet, Yves
2016-04-01
The COMODO group (http://www.comodo-ocean.fr) gathers developers of global and limited-area ocean models (NEMO, ROMS_AGRIF, S, MARS, HYCOM, S-TUGO) with the aim to address well-identified numerical issues. In order to evaluate existing models, to improve numerical approaches and methods or concept (such as effective resolution) to assess the behavior of numerical model in complex hydrodynamical regimes and to propose guidelines for the development of future ocean models, a benchmark suite that covers both idealized test cases dedicated to targeted properties of numerical schemes and more complex test case allowing the evaluation of the kernel coherence is proposed. The benchmark suite is built to study separately, then together, the main components of an ocean model : the continuity and momentum equations, the advection-diffusion of the tracers, the vertical coordinate design and the time stepping algorithms. The test cases are chosen for their simplicity of implementation (analytic initial conditions), for their capacity to focus on a (few) scheme or part of the kernel, for the availability of analytical solutions or accurate diagnoses and lastly to simulate a key oceanic processus in a controlled environment. Idealized test cases allow to verify properties of numerical schemes advection-diffusion of tracers, - upwelling, - lock exchange, - baroclinic vortex, - adiabatic motion along bathymetry, and to put into light numerical issues that remain undetected in realistic configurations - trajectory of barotropic vortex, - interaction current - topography. When complexity in the simulated dynamics grows up, - internal wave, - unstable baroclinic jet, the sharing of the same experimental designs by different existing models is useful to get a measure of the model sensitivity to numerical choices (Soufflet et al., 2016). Lastly, test cases help in understanding the submesoscale influence on the dynamics (Couvelard et al., 2015). Such a benchmark suite is an interesting
Numerical modeling of turbulent combustion and flame spread
Energy Technology Data Exchange (ETDEWEB)
Yan Zhenghua
1999-01-01
Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall
Directory of Open Access Journals (Sweden)
D. G. Patalakh
2018-02-01
Full Text Available Purpose. Development of calculation of electromagnetic and electromechanic transients is in asynchronous engines without iterations. Methodology. Numeral methods of integration of usual differential equations, programming. Findings. As the system of equations, describing the dynamics of asynchronous engine, contents the products of rotor and stator currents and product of rotation frequency of rotor and currents, so this system is nonlinear one. The numeral solution of nonlinear differential equations supposes an iteration process on every step of integration. Time-continuing and badly converging iteration process may be the reason of calculation slowing. The improvement of numeral method by the way of an iteration process removing is offered. As result the modeling time is reduced. The improved numeral method is applied for integration of differential equations, describing the dynamics of asynchronous engine. Originality. The improvement of numeral method allowing to execute numeral integrations of differential equations containing product of functions is offered, that allows to avoid an iteration process on every step of integration and shorten modeling time. Practical value. On the basis of the offered methodology the universal program of modeling of electromechanics processes in asynchronous engines could be developed as taking advantage on fast-acting.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL
Directory of Open Access Journals (Sweden)
Jan Veselý
2017-02-01
Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.
DEFF Research Database (Denmark)
Henriquez, Vicente Cutanda
This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....
Numerical Study of Wind Turbine Wake Modeling Based on a Actuator Surface Model
DEFF Research Database (Denmark)
Zhou, Huai-yang; Xu, Chang; Han, Xing Xing
2017-01-01
In the Actuator Surface Model (ALM), the turbine blades are represented by porous surfaces of velocity and pressure discontinuities to model the action of lifting surfaces on the flow. The numerical simulation is implemented on FLUENT platform combined with N-S equations. This model is improved o...
Directory of Open Access Journals (Sweden)
En-jin Zhao
2018-01-01
Full Text Available In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM, a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticipated that the numerical model in this paper can serve as an effective technological tool to study many emerging coastal environment problems. Keywords: Particle-tracking, Water exchange capability, Lagrangian system, Coastal pollution, Tangdao bay, FVCOM
Energy Technology Data Exchange (ETDEWEB)
Lorentzen, Rolf Johan
2002-04-01
The main objective of this thesis is to develop methods which can be used to improve predictions of two-phase flow (liquid and gas) in pipelines and wells. More reliable predictions are accomplished by improvements of numerical methods, and by using measured data to tune the mathematical model which describes the two-phase flow. We present a way to extend simple numerical methods to second order spatial accuracy. These methods are implemented, tested and compared with a second order Godunov-type scheme. In addition, a new (and faster) version of the Godunov-type scheme utilizing primitive (observable) variables is presented. We introduce a least squares method which is used to tune parameters embedded in the two-phase flow model. This method is tested using synthetic generated measurements. We also present an ensemble Kalman filter which is used to tune physical state variables and model parameters. This technique is tested on synthetic generated measurements, but also on several sets of full-scale experimental measurements. The thesis is divided into an introductory part, and a part consisting of four papers. The introduction serves both as a summary of the material treated in the papers, and as supplementary background material. It contains five sections, where the first gives an overview of the main topics which are addressed in the thesis. Section 2 contains a description and discussion of mathematical models for two-phase flow in pipelines. Section 3 deals with the numerical methods which are used to solve the equations arising from the two-phase flow model. The numerical scheme described in Section 3.5 is not included in the papers. This section includes results in addition to an outline of the numerical approach. Section 4 gives an introduction to estimation theory, and leads towards application of the two-phase flow model. The material in Sections 4.6 and 4.7 is not discussed in the papers, but is included in the thesis as it gives an important validation
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS
Energy Technology Data Exchange (ETDEWEB)
Chiswell, S.; Buckley, R.
2009-01-15
During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has
International Nuclear Information System (INIS)
Olofsson, Isabelle; Fredriksson, Anders
2005-05-01
The Swedish Nuclear and Fuel Management Company (SKB) is conducting Preliminary Site Investigations at two different locations in Sweden in order to study the possibility of a Deep Repository for spent fuel. In the frame of these Site Investigations, Site Descriptive Models are achieved. These products are the result of an interaction of several disciplines such as geology, hydrogeology, and meteorology. The Rock Mechanics Site Descriptive Model constitutes one of these models. Before the start of the Site Investigations a numerical method using Discrete Fracture Network (DFN) models and the 2D numerical software UDEC was developed. Numerical simulations were the tool chosen for applying the theoretical approach for characterising the mechanical rock mass properties. Some shortcomings were identified when developing the methodology. Their impacts on the modelling (in term of time and quality assurance of results) were estimated to be so important that the improvement of the methodology with another numerical tool was investigated. The theoretical approach is still based on DFN models but the numerical software used is 3DEC. The main assets of the programme compared to UDEC are an optimised algorithm for the generation of fractures in the model and for the assignment of mechanical fracture properties. Due to some numerical constraints the test conditions were set-up in order to simulate 2D plane strain tests. Numerical simulations were conducted on the same data set as used previously for the UDEC modelling in order to estimate and validate the results from the new methodology. A real 3D simulation was also conducted in order to assess the effect of the '2D' conditions in the 3DEC model. Based on the quality of the results it was decided to update the theoretical model and introduce the new methodology based on DFN models and 3DEC simulations for the establishment of the Rock Mechanics Site Descriptive Model. By separating the spatial variability into two parts, one
A delta-rule model of numerical and non-numerical order processing.
Verguts, Tom; Van Opstal, Filip
2014-06-01
Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.
An efficient numerical target strength prediction model: Validation against analysis solutions
Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de
2014-01-01
A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and
Numerical modelling of carbonate platforms and reefs: approaches and opportunities
Energy Technology Data Exchange (ETDEWEB)
Dalmasso, H.; Montaggioni, L.F.; Floquet, M. [Universite de Provence, Marseille (France). Centre de Sedimentologie-Palaeontologie; Bosence, D. [Royal Holloway University of London, Egham (United Kingdom). Dept. of Geology
2001-07-01
This paper compares different computing procedures that have been utilized in simulating shallow-water carbonate platform development. Based on our geological knowledge we can usually give a rather accurate qualitative description of the mechanisms controlling geological phenomena. Further description requires the use of computer stratigraphic simulation models that allow quantitative evaluation and understanding of the complex interactions of sedimentary depositional carbonate systems. The roles of modelling include: (1) encouraging accuracy and precision in data collection and process interpretation (Watney et al., 1999); (2) providing a means to quantitatively test interpretations concerning the control of various mechanisms on producing sedimentary packages; (3) predicting or extrapolating results into areas of limited control; (4) gaining new insights regarding the interaction of parameters; (5) helping focus on future studies to resolve specific problems. This paper addresses two main questions, namely: (1) What are the advantages and disadvantages of various types of models? (2) How well do models perform? In this paper we compare and discuss the application of five numerical models: CARBONATE (Bosence and Waltham, 1990), FUZZIM (Nordlund, 1999), CARBPLAT (Bosscher, 1992), DYNACARB (Li et al., 1993), PHIL (Bowman, 1997) and SEDPAK (Kendall et al., 1991). The comparison, testing and evaluation of these models allow one to gain a better knowledge and understanding of controlling parameters of carbonate platform development, which are necessary for modelling. Evaluating numerical models, critically comparing results from models using different approaches, and pushing experimental tests to their limits, provide an effective vehicle to improve and develop new numerical models. A main feature of this paper is to closely compare the performance between two numerical models: a forward model (CARBONATE) and a fuzzy logic model (FUZZIM). These two models use common
Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver
Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur
2017-12-01
Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.
Hardesty, Britta D.; Harari, Joseph; Isobe, Atsuhiko; Lebreton, Laurent; Maximenko, Nikolai; Potemra, Jim; van Sebille, Erik; Vethaak, A.Dick; Wilcox, Chris
2017-01-01
Numerical modeling is one of the key tools with which we can gain insight into the distribution of marine litter, especially micro-plastics. Over the past decade, a series of numerical simulations have been constructed that specifically target floating marine litter, based on ocean models of various
Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....
Numerical models for fluid-grains interactions: opportunities and limitations
Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony
2017-06-01
In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Directory of Open Access Journals (Sweden)
Shao Jie
2014-01-01
Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.
Learning linear spatial-numeric associations improves accuracy of memory for numbers
Directory of Open Access Journals (Sweden)
Clarissa Ann Thompson
2016-01-01
Full Text Available Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1. Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status. To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2. As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.
Numerical modeling of a nuclear production reactor cooling lake
International Nuclear Information System (INIS)
Hamm, L.L.; Pepper, D.W.
1987-01-01
A finite element model has been developed which predicts flow and temperature distributions within a nuclear reactor cooling lake at the Savannah River Plant near Aiken, South Carolina. Numerical results agree with values obtained from a 3-D EPA numerical lake model and actual measurements obtained from the lake. Because the effluent water from the reactor heat exchangers discharges directly into the lake, downstream temperatures at mid-lake could exceed the South Carolina DHEC guidelines for thermal exchanges during the summer months. Therefore, reactor power was reduced to maintain temperature compliance at mid-lake. Thermal mitigation measures were studied that included placing a 6.1 m deep fabric curtain across mid-lake and moving the reactor outfall upstream. These measurements were calculated to permit about an 8% improvement in reactor power during summer operation
International Nuclear Information System (INIS)
Faydide, B.
1997-01-01
This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained with Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients
Energy Technology Data Exchange (ETDEWEB)
Faydide, B. [Commissariat a l`Energie Atomique, Grenoble (France)
1997-07-01
This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained with Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients.
Numerical Modeling of Shoreline Undulations
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg
model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...
Numerical modelling of mine workings.
CSIR Research Space (South Africa)
Lightfoot, N
1999-03-01
Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...
Improved numerical modelling of heat transfer in human tissue exposed to RF
International Nuclear Information System (INIS)
Prishvin, Mikheil; Zaridze, Revaz; Bit-Babik, Georgi; Faraone, Antonio
2010-01-01
Full text: A novel numerical model to simulate thermal response of human body tissues exposed to RF energy is presented in this article. It is based on a new algorithm for the construction of a realistic blood vessel network, a new model of blood flow velocity distribution and an approach to solve the bio-heat equation in human tissue with variable and initially unknown blood temperature distribution. The algorithm generates a discrete 3D representation of both arterial and venous vascular networks and a continuous blood velocity vector field for arbitrary enclosed geome tries required to represent the complex anatomy of human body and blood flow. The results obtained in this article by applying the developed method to realistic exposure con ditions demonstrates relative difference in thermal response of the exposed tissue compared to results obtained by conventional bio-heat equation with constant blood perfusion and temperature. The developed technique may provide more accurate and realistic modelling in thermal dosimetry studies of human body RF exposure.
Mathematical and Numerical Modeling in Maritime Geomechanics
Directory of Open Access Journals (Sweden)
Miguel Martín Stickle
2012-04-01
Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.
Numerical modeling of a snow cover on Hooker Island (Franz Josef Land archipelago
Directory of Open Access Journals (Sweden)
V. S. Sokratov
2013-01-01
Full Text Available Results obtained by simulating snow characteristics with a numerical model of surface heat and moisture exchange SPONSOR are presented. The numerical experiments are carried out for Franz Josef Land with typical Arctic climate conditions. The blizzard evaporation parameter is shown to have great influence on snow depth on territories with high wind speed. This parameter significantly improves the simulation quality of the numerical model. Some discrepancies between evaluated and observed snow depth values can be explained by inaccuracies in precipitation measurements (at least in certain cases and errors in calculations of incoming radiation, mostly due to low accuracy in the cloudiness observations.
NUMERICAL MODELLING AND EXPERIMENTAL INFLATION VALIDATION OF A BIAS TWO-WHEEL TIRE
Directory of Open Access Journals (Sweden)
CHUNG KET THEIN
2016-02-01
Full Text Available This paper presents a parametric study on the development of a computational model for bias two-wheel tire through finite element analysis (FEA. An 80/90- 17 bias two-wheel tire was adopted which made up of four major layers of rubber compound with different material properties to strengthen the structure. Mooney-Rivlin hyperelastic model was applied to represent the behaviour of incompressible rubber compound. A 3D tire model was built for structural static finite element analysis. The result was validated from the inflation analysis. Structural static finite element analysis method is suitable for evaluation of the tire design and improvement of the tire behaviour to desired performance. Experimental tire was inflated at various pressures and the geometry between numerical and experimental tire were compared. There are good agreements between numerical simulation model and the experiment results. This indicates that the simulation model can be applied to the bias two-wheel tire design in order to predict the tire behaviour and improve its mechanical characteristics.
A simplified model for TIG-dressing numerical simulation
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
International Nuclear Information System (INIS)
Bodvarsson, G.S.; Lippmann, M.J.
1980-01-01
The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented
Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges
Directory of Open Access Journals (Sweden)
Patrick Jöckel
2013-05-01
Full Text Available This paper reviews the current state and development of different numerical model classes that are used to simulate the global atmospheric system, particularly Earth’s climate and climate-chemistry connections. The focus is on Chemistry-Climate Models. In general, these serve to examine dynamical and chemical processes in the Earth atmosphere, their feedback, and interaction with climate. Such models have been established as helpful tools in addition to analyses of observational data. Definitions of the global model classes are given and their capabilities as well as weaknesses are discussed. Examples of scientific studies indicate how numerical exercises contribute to an improved understanding of atmospheric behavior. There, the focus is on synergistic investigations combining observations and model results. The possible future developments and challenges are presented, not only from the scientific point of view but also regarding the computer technology and respective consequences for numerical modeling of atmospheric processes. In the future, a stronger cross-linkage of subject-specific scientists is necessary, to tackle the looming challenges. It should link the specialist discipline and applied computer science.
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and
Development of numerical Grids for UZ Flow and Transport Modeling
International Nuclear Information System (INIS)
P. Dobson
2004-01-01
This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
An improved interfacial bonding model for material interface modeling
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2016-01-01
An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343
Numerical modelling of elastic space tethers
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.
2012-01-01
In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....
Numerical methods and modelling for engineering
Khoury, Richard
2016-01-01
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...
Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M
2003-12-01
Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.
Improving the physiological realism of experimental models.
Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L
2016-04-06
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Nonspinning numerical relativity waveform surrogates: assessing the model
Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.
Energy Technology Data Exchange (ETDEWEB)
Prinja, A.K.
1998-09-01
relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.
International Nuclear Information System (INIS)
Prinja, A.K.
1998-01-01
consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting
Numerical modeling of economic uncertainty
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2007-01-01
Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....
International Nuclear Information System (INIS)
Burr, G.W.; Harris, Todd L.; Babbitt, Wm. Randall; Jefferson, C. Michael
2004-01-01
We describe the incorporation of excitation-induced dephasing (EID) into the Maxwell-Bloch numerical simulation of photon echoes. At each time step of the usual numerical integration, stochastic frequency jumps of ions--caused by excitation of neighboring ions--is modeled by convolving each Bloch vector with the Bloch vectors of nearby frequency detunings. The width of this convolution kernel follows the instantaneous change in overall population, integrated over the simulated bandwidth. This approach is validated by extensive comparison against published and original experimental results. The enhanced numerical model is then used to investigate the accuracy of experiments designed to extrapolate to the intrinsic dephasing time T 2 from data taken in the presence of EID. Such a modeling capability offers improved understanding of experimental results, and should allow quantitative analysis of engineering tradeoffs in realistic optical coherent transient applications
Energy Technology Data Exchange (ETDEWEB)
Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))
2008-05-15
Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction
Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies
International Nuclear Information System (INIS)
Nagai, Haruyasu; Terada, Hiroaki
2007-01-01
As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)
Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-15
Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)
Use of numerical modeling in design for co-firing biomass in wall-fired burners
DEFF Research Database (Denmark)
Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen
2004-01-01
modification to the motion and reaction due to their non-sphericity. The simulation results show a big difference between the two cases and indicate it is very significant to take into account the non-sphericity of biomass particles in order to model biomass combustion more accurately. Methods to improve...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion...... and reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for
Prediction of qualitative parameters of slab steel ingot using numerical modelling
Directory of Open Access Journals (Sweden)
M. Tkadlečková
2016-07-01
Full Text Available The paper describes the verification of casting and solidification of heavy slab ingot weighing 40 t from tool steel by means of numerical modelling with use of a finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, the problems with determination of the thermodynamic properties of materials and with determination of the heat transfer between the individual parts of the casting system are discussed. The final porosity, macrosegregation and the risk of cracks were predicted. The results allowed us to use the slab ingot instead of the conventional heavy steel ingot and to improve the ratio, the chamfer and the external shape of the wall of the new design of the slab ingot.
QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL
Directory of Open Access Journals (Sweden)
Dusko Pavletic
2009-12-01
Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
On a turbulent wall model to predict hemolysis numerically in medical devices
Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung
2017-11-01
Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.
Numerical model updating technique for structures using firefly algorithm
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
2-dimensional numerical modeling of active magnetic regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...
Numerical modelling of steel arc welding
International Nuclear Information System (INIS)
Hamide, M.
2008-07-01
Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)
An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams
Hasan, MD. Anwarul
2010-01-01
Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...
Gallo, A.; Arana, A.; Oyanguren, A.; García, G.; Barbero, A.; Larrañaga, J.; Ulacia, I.
2013-07-01
In this work the properties of thermoelectric modules (TEMs) and their behavior have been numerically modeled. Moreover, their applications very often require modeling not only of the TEM but also of the working environment and the product in which they will be working. A clear example is the fact that TEMs are very often installed with heat-dissipating elements such as fans, heat sinks, and heat exchangers; thus, the module will only work according to the heat dissipation conditions that these external sources can provide in a certain environment. In this context, analytic approaches, even though they have been proved to be useful, do not provide enough, accurate information in this regard. Therefore, numerical modeling has been identified as a powerful tool to improve detailed designs of thermoelectric solutions. This paper presents numerical simulations of a TEM in different working conditions, as well as with different commercial dissipation devices. The objective is to obtain the characteristic curve of a TEM using a valid numerical model that can be introduced into larger models of different applications. Also, the numerical model of the module and different cooling devices is provided. Both of them are compared against real tested modules, so that the deviation between them can be measured and discussed. Finally, the TEM is introduced into a manufacturing application and results are discussed to validate the model for further use.
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
The influence of numerical models on determining the drag coefficient
Directory of Open Access Journals (Sweden)
Dobeš Josef
2014-03-01
Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.
Numerical models of groundwater flow and transport
International Nuclear Information System (INIS)
Konikow, L.F.
1996-01-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs
Numerical models of groundwater flow and transport
Energy Technology Data Exchange (ETDEWEB)
Konikow, L F [Geological Survey, Reston, VA (United States)
1996-10-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.
Improving stability of regional numerical ocean models
Herzfeld, Mike
2009-02-01
An operational limited-area ocean modelling system was developed to supply forecasts of ocean state out to 3 days. This system is designed to allow non-specialist users to locate the model domain anywhere within the Australasian region with minimum user input. The model is required to produce a stable simulation every time it is invoked. This paper outlines the methodology used to ensure the model remains stable over the wide range of circumstances it might encounter. Central to the model configuration is an alternative approach to implementing open boundary conditions in a one-way nesting environment. Approximately 170 simulations were performed on limited areas in the Australasian region to assess the model stability; of these, 130 ran successfully with a static model parameterisation allowing a statistical estimate of the model’s approach toward instability to be determined. Based on this, when the model was deemed to be approaching instability a strategy of adaptive intervention in the form of constraint on velocity and elevation was invoked to maintain stability.
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
An extended continuum model considering optimal velocity change with memory and numerical tests
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
Numerical Modelling Of Pumpkin Balloon Instability
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Numerical Modeling and Mechanical Analysis of Flexible Risers
Directory of Open Access Journals (Sweden)
J. Y. Li
2015-01-01
Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.
Numerical Modelling of Sediment Transport in Combined Sewer Systems
DEFF Research Database (Denmark)
Schlütter, Flemming
A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....
PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.
Xiong, F L; Chong, C K
2007-01-01
This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.
Application of an improved model for the identification of material parameters
DEFF Research Database (Denmark)
Frederiksen, Per S.
1997-01-01
Elastic material constants of thick plates can be identified by combining a range of measured natural frequencies with an accurate numerical model for the theoretical predictions. To deal with thick plates, a model that takes transverse shear effects into account is necessary. Since modeling errors...... affect the estimates in a systematic way, an accurate numerical model is of primary importance. Compared to a model used previously, an improved more accurate plate model is studied here for the purpose of identification. This new advanced model is used to assess the systematic errors...
Numerical 3-D Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.
2008-01-01
-dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...
Numerical modeling of the creep behavior of clays with emphasis on tunnels and underground openings
International Nuclear Information System (INIS)
1990-02-01
This report presents an interpretive overview and critical assessment of the state-of-the-art for numerical modeling of the creep behavior of clays. The overview and assessment is focused upon application to underground openings. Field and laboratory observations of time-dependent behavior, constitutive modeling of creep behavior, and numerical implementation of constitutive equations are addressed. A critical assessment of the ability of existing models to predict aspects of creep behavior relevant to waste repository design and suggestions for improved analyses that can be developed with existing technology are provided. Both heuristic and mathematical constitutive models are reviewed. Heuristic models provide a basis for evaluation of the required parameters for the continuum mechanics based mathematical models. The continuum mechanics models are required for numerical analysis. It has been demonstrated that, by using iterative and incremental analysis, virtually any viscous or inviscid continuum mechanics material model can be adapted to consider time-dependent behavior. Available numerical models for numerical analysis of geotechnical problems involving creep deformations are reviewed. Models for thermo-mechanical coupling are also addressed in this review. Cases where creep-inclusive analyses have been applied to analysis of prototype behavior are cited. However, the lack of well documented case histories of time-dependent deformations over significant time spans is identified as a major obstacle to model verification. Recommendations are made for an alternative design approach capable of guaranteeing the very long term mechanical integrity of the liner. 167 refs., 22 figs., 6 tabs
On the Hughes model and numerical aspects
Gomes, Diogo A.
2017-01-05
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.
Numerical modeling of underground openings behavior with a viscoplastic approach
International Nuclear Information System (INIS)
Kleine, A.
2007-01-01
Nature is complex and must be approached in total modesty by engineers seeking to predict the behavior of underground openings. The engineering of industrial projects in underground situations, with high economic and social stakes (Alpine mountain crossings, nuclear waste repository), mean striving to gain better understanding of the behavioral mechanisms of the openings to be designed. This improvement necessarily involves better physical representativeness of macroscopic mechanisms and the provision of prediction tools suited to the expectations and needs of the engineers. The calculation tools developed in this work is in step with this concern for satisfying industrial needs and developing knowledge related to the rheology of geo-materials. These developments led to the proposing of a mechanical constitutive model, suited to lightly fissured rocks, comparable to continuous media, while integrating more particularly the effect of time. Thread of this study, the problematics ensued from the subject of the thesis is precisely about the rock mass delayed behavior in numerical modeling and its consequences on underground openings design. Based on physical concepts of reference, defined in several scales (macro/meso/micro), the developed constitutive model is translated in a mathematical formalism in order to be numerically implemented. Numerical applications presented as illustrations fall mainly within the framework of nuclear waste repository problems. They concern two very different configurations of underground openings: the AECL's underground canadian laboratory, excavated in the Lac du Bonnet granite, and the GMR gallery of Bure's laboratory (Meuse/Haute-Marne), dug in argillaceous rock. In this two cases, this constitutive model use highlights the gains to be obtained from allowing for delayed behavior regarding the accuracy of numerical tunnel behavior predictions in the short, medium and long terms. (author)
Numerical modeling of cold room's hinged door opening and closing processes
Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.
2016-06-01
The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
Does attentional training improve numerical processing in developmental dyscalculia?
Ashkenazi, Sarit; Henik, Avishai
2012-01-01
Recently, a deficit in attention was found in those with pure developmental dyscalculia (DD). Accordingly, the present study aimed to examine the influence of attentional training on attention abilities, basic numerical abilities, and arithmetic in participants who were diagnosed as having DD. Nine university students diagnosed as having DD (IQ and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder) and nine matched controls participated in attentional training (i.e., video game training). First, training modulated the orienting system; after training, the size of the validity effect (i.e., effect of valid vs. invalid) decreased. This effect was comparable in the two groups. Training modulated abnormalities in the attention systems of those with DD, that is, it reduced their enlarged congruity effect (i.e., faster responding when flanking arrows pointed to the same location as a center arrow). Second, in relation to the enumeration task, training reduced the reaction time of the DD group in the subitizing range but did not change their smaller-than-normal subitizing range. Finally, training improved performance in addition problems in both the DD and control groups. These results imply that attentional training does improve most of the attentional deficits of those with DD. In contrast, training did not improve the abnormalities of the DD group in arithmetic or basic numerical processing. Thus, in contrast to the domain-general hypothesis, the deficits in attention among those with DD and the deficits in numerical processing appear to originate from different sources.
Advanced Numerical Model for Irradiated Concrete
Energy Technology Data Exchange (ETDEWEB)
Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Recent developments in KTF. Code optimization and improved numerics
International Nuclear Information System (INIS)
Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin
2012-01-01
The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)
Recent developments in KTF. Code optimization and improved numerics
Energy Technology Data Exchange (ETDEWEB)
Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin [Karlsruhe Institute of Technology (KIT) (Germany). Inst. for Neutron Physics and Reactor Technology (INR)
2012-11-01
The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)
Britto jr., A. de S.; Sabourin, R.; Lethelier, E.; Bortolozzi, F.; Suen, C.Y.
2004-01-01
This work describes a way of enhancing handwritten numeral string recognition by considering slant normalization and contextual information to train an implicit segmentationbased system. A word slant normalization method is modified in order to improve the results for handwritten numeral strings.
Numerical modelling approach for mine backfill
Indian Academy of Sciences (India)
Muhammad Zaka Emad
2017-07-24
Jul 24, 2017 ... conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. The .... placed in an ore pass that leads the ore to the ore bin and crusher, from ... 1 year, depending on the mine plan.
Conceptual and Numerical Models for UZ Flow and Transport
International Nuclear Information System (INIS)
Liu, H.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models
Numerical models for differential problems
Quarteroni, Alfio
2017-01-01
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Improved numerical solutions for chaotic-cancer-model
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes
Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.
2017-12-01
With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution
Energy Technology Data Exchange (ETDEWEB)
Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)
2013-09-15
Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Directory of Open Access Journals (Sweden)
Sung Kim
2014-01-01
Full Text Available This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump by impellers. The design of these impellers was optimized using a commercial CFD (computational fluid dynamics code and DOE (design of experiments. The design variables of meridional plane and vane plane development were defined for impeller design. In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane plane development. The verification of the experiment sets that were generated by 2k factorial was done by numerical analysis. The objective functions were defined as the NPSHre (net positive suction head required, total efficiency, and total head of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the NPSHre and total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2k factorial design results. The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.
Numerical modeling for longwall pillar design: a case study from a typical longwall panel in China
Zhang, Guangchao; Liang, Saijiang; Tan, Yunliang; Xie, Fuxing; Chen, Shaojie; Jia, Hongguo
2018-02-01
This paper presents a new numerical modeling procedure and design principle for longwall pillar design with the assistance of numerical simulation of FLAC3D. A coal mine located in Yanzhou city, Shandong Province, China, was selected for this case study. A meticulously validated numerical model was developed to investigate the stress changes across the longwall pillar with various sizes. In order to improve the reliability of the numerical modeling, a calibration procedure is undertaken to match the Salamon and Munro pillar strength formula for the coal pillar, while a similar calibration procedure is used to estimate the stress-strain response of a gob. The model results demonstrated that when the coal pillar width was 7-8 m, most of the vertical load was carried by the panel rib, whilst the gateroad was overall in a relatively low stress environment and could keep its stability with proper supports. Thus, the rational longwall pillar width was set as 8 m and the field monitoring results confirmed the feasibility of this pillar size. The proposed numerical simulation procedure and design principle presented in this study could be a viable alternative approach for longwall pillar design for other similar projects.
Large scale experiments as a tool for numerical model development
DEFF Research Database (Denmark)
Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper
2003-01-01
Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...
International Nuclear Information System (INIS)
Boudjemadi, R.
1996-03-01
The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends
Some Numerical Aspects on Crowd Motion - The Hughes Model
Gomes, Diogo A.
2016-01-06
Here, we study a crowd model proposed by R. Hughes in [5] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solution. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two numerical examples.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey
2017-04-01
City Yakutsk (administrative, culture and industrial center of the North East of Russia) situated on the left bank of large Russian river Lena last decades has faced with many problems, concerning intensive channel processes. Most dramatic among them are sediment accumulation near main water intake structure, supplying city Yakutsk by the drinking water, and deterioration in conditions of the navigation roots to the main city ports. Hydrodynamic modelling has been chosen as the main tool for analyses of the modern tendencies in channel processes and for the evaluation of possible channel improvement measures efficiency. STREAM_2D program complex (authors V. Belikov et al.), which is based on the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh and take into account sediment transport, was used for the simulations. Detailed field data about water regime of the Lena river, bathymetry of the channels and topography of the floodplains was collected for model developing. Model area has covered 75 km of the Lena river valley including branched channels and wide floodplain from Tabaga to Kangalassy gauge cites. Data of these stations were used for model boundary conditions assigning. Data of gauge station city Yakutsk as well as measured during field campaign water levels and flow velocities was taken into account for model calibration and validation. Results of modelling has demonstrated close correspondence with observed water levels and discharges distribution between channel branches for different hydrological situations. Different combinations of hydrographs of 1, 10, 50% exceedance probability was used as input for modelling of channel deformations. Simulation results has shown that in future 10 years aligning of water discharges distribution between main Lena river branches near Yakutsk is possible, that is a positive tendency from the point of view of water supply of the city. More than 15
Numerical Modelling and Measurement in a Test Secondary Settling Tank
DEFF Research Database (Denmark)
Dahl, C.; Larsen, Torben; Petersen, O.
1994-01-01
sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... for model description of settling and density differences. In the test tank experiments, flow velocities and suspended sludge concentrations were measured with different tank inlet geomotry and hydraulic and sludge loads. The test tank experiments provided results for the calibration of the numerical model......A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended...
Numerical modeling and the physical basis of seismic discriminants
International Nuclear Information System (INIS)
Denny, M.D.
1993-01-01
Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Fundamentals of Numerical Modelling of Casting Processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper
Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...
Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling
Dobronets, B. S.; Popova, O. A.
2018-05-01
Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.
Analytical and numerical modeling of sandbanks dynamics
Idier, Deborah; Astruc, Dominique
2003-01-01
Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model
Physical and numerical modeling of Joule-heated melters
Energy Technology Data Exchange (ETDEWEB)
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.
Physical and numerical modeling of Joule-heated melters
International Nuclear Information System (INIS)
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs
Climate change and high-resolution whole-building numerical modelling
Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.
2010-01-01
This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Directory of Open Access Journals (Sweden)
S. Carcano
2013-11-01
Full Text Available An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007 numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964. For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993. At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008. Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.
Directory of Open Access Journals (Sweden)
Eusébio Z. E. Conceição
2016-09-01
Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.
Numerical modeling for an electric-field hyperthermia applicator
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
Hozman, J.; Tichý, T.
2017-12-01
Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.
Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
Li, Qing; Zhou, P.; Yan, H. J.
2017-12-01
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
Advanced Combustion Numerics and Modeling - FY18 First Quarter Report
Energy Technology Data Exchange (ETDEWEB)
Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-05
This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.
Directory of Open Access Journals (Sweden)
Xin Gu
2017-01-01
Full Text Available The constitutive modeling and numerical implementation of a nonordinary state-based peridynamic (NOSB-PD model corresponding to the classical elastic model are presented. Besides, the numerical instability problem of the NOSB-PD model is analyzed, and a penalty method involving the hourglass force is proposed to control the instabilities. Further, two benchmark problems, the static elastic deformation of a simple supported beam and the elastic wave propagation in a two-dimensional rod, are discussed with the present method. It proves that the penalty instability control method is effective in suppressing the displacement oscillations and improving the accuracy of calculated stress fields with a proper hourglass force coefficient, and the NOSB-PD approach with instability control can analyze the problems of structure deformation and elastic wave propagation well.
Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald
2016-12-01
Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a
Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio
2017-12-01
The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical modeling of fires on gas pipelines
International Nuclear Information System (INIS)
Zhao Yang; Jianbo Lai; Lu Liu
2011-01-01
When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.
NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-12-01
Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
An Improved Walk Model for Train Movement on Railway Network
International Nuclear Information System (INIS)
Li Keping; Mao Bohua; Gao Ziyou
2009-01-01
In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Advanced numerical modelling of a fire. Final report
International Nuclear Information System (INIS)
Heikkilae, L.; Keski-Rahkonen, O.
1996-03-01
Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem 'Prediction of effects caused by a cable fire experiment within the HDR-facility'. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.)
Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process
Energy Technology Data Exchange (ETDEWEB)
Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis [CEA Marcoule: DTEC/SGCS/LGCI Bat. 57 B17171, 30207 Bagnols/Ceze (France); Du Terrail Couvat, Yves [SIMaP, Grenoble INP, CNRS: ENSEEG, BP 75, 38402 Saint Martin d' Heres Cedex (France)
2008-07-01
Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)
Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process
International Nuclear Information System (INIS)
Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis; Du Terrail Couvat, Yves
2008-01-01
Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)
Numerical modeling of foam flows
International Nuclear Information System (INIS)
Cheddadi, Ibrahim
2010-01-01
Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)
Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium
International Nuclear Information System (INIS)
Taylor, S.R.; Kamm, J.R.
1993-01-01
This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources
Experimental and Numerical Modelling of Flow over Complex Terrain: The Bolund Hill
Conan, Boris; Chaudhari, Ashvinkumar; Aubrun, Sandrine; van Beeck, Jeroen; Hämäläinen, Jari; Hellsten, Antti
2016-02-01
In the wind-energy sector, wind-power forecasting, turbine siting, and turbine-design selection are all highly dependent on a precise evaluation of atmospheric wind conditions. On-site measurements provide reliable data; however, in complex terrain and at the scale of a wind farm, local measurements may be insufficient for a detailed site description. On highly variable terrain, numerical models are commonly used but still constitute a challenge regarding simulation and interpretation. We propose a joint state-of-the-art study of two approaches to modelling atmospheric flow over the Bolund hill: a wind-tunnel test and a large-eddy simulation (LES). The approach has the particularity of describing both methods in parallel in order to highlight their similarities and differences. The work provides a first detailed comparison between field measurements, wind-tunnel experiments and numerical simulations. The systematic and quantitative approach used for the comparison contributes to a better understanding of the strengths and weaknesses of each model and, therefore, to their enhancement. Despite fundamental modelling differences, both techniques result in only a 5 % difference in the mean wind speed and 15 % in the turbulent kinetic energy (TKE). The joint comparison makes it possible to identify the most difficult features to model: the near-ground flow and the wake of the hill. When compared to field data, both models reach 11 % error for the mean wind speed, which is close to the best performance reported in the literature. For the TKE, a great improvement is found using the LES model compared to previous studies (20 % error). Wind-tunnel results are in the low range of error when compared to experiments reported previously (40 % error). This comparison highlights the potential of such approaches and gives directions for the improvement of complex flow modelling.
Improving the quality of numerical software through user-centered design
Energy Technology Data Exchange (ETDEWEB)
Pancake, C. M., Oregon State University
1998-06-01
The software interface - whether graphical, command-oriented, menu-driven, or in the form of subroutine calls - shapes the user`s perception of what software can do. It also establishes upper bounds on software usability. Numerical software interfaces typically are based on the designer`s understanding of how the software should be used. That is a poor foundation for usability, since the features that are ``instinctively right`` from the developer`s perspective are often the very ones that technical programmers find most objectionable or most difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users more actively in design, a process known as user-centered design (UCD). While UCD requires extra organization and effort, it results in much higher levels of usability and can actually reduce software costs. This is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved the usability of a subroutine library, a command language, and an invocation interface.
Numerical modelling of the HAB Energy Buoy: Stage 1
DEFF Research Database (Denmark)
Kurniawan, Adi
This report presents the results of the first stage of the project "Numerical modelling of the HAB Energy Buoy". The objectives of this stage are to develop a numerical model of the HAB Energy Buoy, a self-reacting wave energy device consisting of two heaving bodies, and to investigate a number...... and a summary of the main findings is presented. A numerical model of the HAB Energy Buoy has been developed in the frequency domain using two alternative formulations of the equations of motion. The model is capable of predicting the power capture, motion response, and power take-off loads of the device...... configuration are imposed to give a more realistic prediction of the power capture and help ensure a fair comparison. Recommendations with regard to the HAB design are finally suggested....
A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering
Directory of Open Access Journals (Sweden)
Qingzhen Xu
2013-01-01
Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.
Numerical modelling of the jet nozzle enrichment process
International Nuclear Information System (INIS)
Vercelli, P.
1983-01-01
A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt
CINDA-3G: Improved Numerical Differencing Analyzer Program for Third-Generation Computers
Gaski, J. D.; Lewis, D. R.; Thompson, L. R.
1970-01-01
The goal of this work was to develop a new and versatile program to supplement or replace the original Chrysler Improved Numerical Differencing Analyzer (CINDA) thermal analyzer program in order to take advantage of the improved systems software and machine speeds of the third-generation computers.
Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve
Directory of Open Access Journals (Sweden)
Zainal Nurul Amira
2017-01-01
Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.
On the Hughes model and numerical aspects
Gomes, Diogo A.; Machado Velho, Roberto
2017-01-01
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori
Directory of Open Access Journals (Sweden)
Moo-Yeon Lee
2012-01-01
Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.
Comparing numerically exact and modelled static friction
Directory of Open Access Journals (Sweden)
Krengel Dominik
2017-01-01
Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.
The Liquid Film Flow with Evaporation: Numerical Modelling
Directory of Open Access Journals (Sweden)
Rezanova Ekaterina
2016-01-01
Full Text Available The flow of thin liquid layer on an inclined substrate is investigated numerically. The mathematical modelling is based on the Oberbeck-Boussinesq equations and the generalized conditions on the thermocapillary boundary simplified during the parametrical analysis. In the framework of the long-wave approximation the evolution equation which determines the thickness of the liquid layer in the case of moderate Reynolds numbers is derived. The results of numerical modelling of the liquid flow with evaporation at the interface are obtained.
Polynomial model inversion control: numerical tests and applications
Novara, Carlo
2015-01-01
A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations
Zhang, Jingxin; Liang, Dongfang; Liu, Hua
2018-05-01
Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.
Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1991-01-01
As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. ...
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Mareels, Guy; Poyck, Paul P. C.; Eloot, Sunny; Chamuleau, Robert A. F. M.; Verdonck, Pascal R.
2006-01-01
A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte
Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction
Directory of Open Access Journals (Sweden)
Takemasa Miyoshi
2012-09-01
Full Text Available In addition to conventional observations, atmospheric temperature and humidity profile data from the Atmospheric Infrared Sounder (AIRS Version 5 retrieval products are assimilated into the Weather Research and Forecasting (WRF model, using the local ensemble transform Kalman filter (LETKF. Although a naive assimilation of all available quality-controlled AIRS retrieval data yields an inferior analysis, the additional enhancements of adaptive inflation and horizontal data thinning result in a general improvement of numerical weather prediction skill due to AIRS data. In particular, the adaptive inflation method is enhanced so that it no longer assumes temporal homogeneity of the observing network and allows for a better treatment of the temporally inhomogeneous AIRS data. Results indicate that the improvements due to AIRS data are more significant in longer-lead forecasts. Forecasts of Typhoons Sinlaku and Jangmi in September 2008 show improvements due to AIRS data.
Mathematical modelling and numerical simulation of casting processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri
1998-01-01
The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method....
Modeling and numerical simulation of multi-component flow in porous media
International Nuclear Information System (INIS)
Saad, B.
2011-01-01
This work deals with the modelization and numerical simulation of two phase multi-component flow in porous media. The study is divided into two parts. First we study and prove the mathematical existence in a weak sense of two degenerate parabolic systems modeling two phase (liquid and gas) two component (water and hydrogen) flow in porous media. In the first model, we assume that there is a local thermodynamic equilibrium between both phases of hydrogen by using the Henry's law. The second model consists of a relaxation of the previous model: the kinetic of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is no longer instantaneous. The second part is devoted to the numerical analysis of those models. Firstly, we propose a numerical scheme to compare numerical solutions obtained with the first model and numerical solutions obtained with the second model where the characteristic time to recover the thermodynamic equilibrium goes to zero. Secondly, we present a finite volume scheme with a phase-by-phase upstream weighting scheme without simplified assumptions on the state law of gas densities. We also validate this scheme on a 2D test cases. (author)
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Numerical modeling of magma-repository interactions
Bokhove, Onno
2001-01-01
This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic
Behavioral modeling of SRIM tables for numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Martinie, S., E-mail: sebastien.martinie@cea.fr; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L., E-mail: jean-luc.autran@univ-amu.fr
2014-03-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits.
Behavioral modeling of SRIM tables for numerical simulation
International Nuclear Information System (INIS)
Martinie, S.; Saad-Saoud, T.; Moindjie, S.; Munteanu, D.; Autran, J.L.
2014-01-01
Highlights: • Behavioral modeling of SRIM data is performed on the basis of power polynomial fitting functions. • Fast and continuous numerical functions are proposed for the stopping power and projected range. • Functions have been successfully tested for a wide variety of ions and targets. • Typical accuracies below the percent have been obtained in the range 1 keV–1 GeV. - Abstract: This work describes a simple way to implement SRIM stopping power and range tabulated data in the form of fast and continuous numerical functions for intensive simulation. We provide here the methodology of this behavioral modeling as well as the details of the implementation and some numerical examples for ions in silicon target. Developed functions have been successfully tested and used for the simulation of soft errors in microelectronics circuits
Wind laws for shockless initialization. [numerical forecasting model
Ghil, M.; Shkoller, B.
1976-01-01
A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
A deterministic combination of numerical and physical models for coastal waves
DEFF Research Database (Denmark)
Zhang, Haiwen
2006-01-01
of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
International Nuclear Information System (INIS)
Chan, B.C.; Kennett, R.J.; Van Tuyle, G.J.
1992-01-01
A basic limited scope, fast-running computer model is presented for the solution of single phase two-dimensional transients in thermally coupled incompressible fluid flow problems. The governing equations and the two-equation transport model (k-ε) of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The numerical formulation and general calculational procedure are described in detail. The calculations show good agreement when compared with experimental data and other independent analyses
A Numerical Model for Trickle Bed Reactors
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1978-01-01
The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)
Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective
International Nuclear Information System (INIS)
Paul, S.
2012-01-01
This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)
Soil remediation by heat injection: Experiments and numerical modelling
Energy Technology Data Exchange (ETDEWEB)
Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others
1995-03-01
In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.
Recent advances in numerical modeling of detonations
Energy Technology Data Exchange (ETDEWEB)
Mader, C.L.
1986-12-01
Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.
Development of Numerical Grids for UZ Flow and Transport Modeling
International Nuclear Information System (INIS)
Hinds, J.
2001-01-01
This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The
Numerical equilibrium analysis for structured consumer resource models.
de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A
2010-02-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.
Numerical solution of High-kappa model of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)
1996-12-31
We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Numerical modeling in materials science and engineering
Rappaz, Michel; Deville, Michel
2003-01-01
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
Description of Supply Openings in Numerical Models for Room Air Distribution
DEFF Research Database (Denmark)
Nielsen, Peter V.
This paper discusses various possibilities for describing supply openings in numerical models of room air distribution.......This paper discusses various possibilities for describing supply openings in numerical models of room air distribution....
Numerical modelling of ion transport in flames
Han, Jie
2015-10-20
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Generalized Roe's numerical scheme for a two-fluid model
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1993-01-01
This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
A modular approach to numerical human body modeling
Forbes, P.A.; Griotto, G.; Rooij, L. van
2007-01-01
The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body
Creating safer coastal and port infrastructure with innovative physical and numerical modelling
CSIR Research Space (South Africa)
Tulsi, K
2015-10-01
Full Text Available Infrastructure with Innovative Physical and Numerical Modelling Kishan Tulsi Physical and Numerical modelling Breakwater Monitoring Armour track Vessel manoeuvring simulations for safe port design and operations Simflex software... – Integrated Port Operations Support System Virtual Buoy Physical modelling Numerical modelling Armour Track Armour Track Armour Track Armour Track Armour track using 3D data points Ship manoeuvring simulations: Ship Manoeuvring simulations Port...
NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure
Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.
2013-12-01
Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.
An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules
Directory of Open Access Journals (Sweden)
Abdul Qayoom Jakhrani
2014-01-01
Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.
A numerical model for boiling heat transfer coefficient of zeotropic mixtures
Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo
2017-12-01
Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.
Numerical modelling of laser rapid prototyping by fusion wire deposit
Arbaoui , Larbi; Masse , J.E.; Barrallier , Laurent; Mocellin , Katia
2010-01-01
International audience; A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based...
Numerical simulations of a reduced model for blood coagulation
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
Energy Technology Data Exchange (ETDEWEB)
Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)
2016-06-08
Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.
Numerical model of thyroid counter
Directory of Open Access Journals (Sweden)
Szuchta Maciej
2016-03-01
Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)
1997-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide
2016-04-01
Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D
Numerical analysis of thermal response tests with a groundwater flow and heat transfer model
Energy Technology Data Exchange (ETDEWEB)
Raymond, J.; Therrien, R. [Departement de Geologie et de Genie Ggeologique, Universite Laval, 1065 avenue de la medecine, Quebec (Qc) G1V 0A6 (Canada); Gosselin, L. [Departement de Genie Mecanique, Universite Laval, 1065 avenue de la medecine, Quebec (Qc) G1V 0A6 (Canada); Lefebvre, R. [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Quebec (Qc) G1K 9A9 (Canada)
2011-01-15
The Kelvin line-source equation, used to analyze thermal response tests, describes conductive heat transfer in a homogeneous medium with a constant temperature at infinite boundaries. The equation is based on assumptions that are valid for most ground-coupled heat pump environments with the exception of geological settings where there is significant groundwater flow, heterogeneous distribution of subsurface properties, a high geothermal gradient or significant atmospheric temperature variations. To address these specific cases, an alternative method to analyze thermal response tests was developed. The method consists in estimating parameters by reproducing the output temperature signal recorded during a test with a numerical groundwater flow and heat transfer model. The input temperature signal is specified at the entrance of the ground heat exchanger, where flow and heat transfer are computed in 2D planes representing piping and whose contributions are added to the 3D porous medium. Results obtained with this method are compared to those of the line-source model for a test performed under standard conditions. A second test conducted in waste rock at the South Dump of the Doyon Mine, where conditions deviate from the line-source assumptions, is analyzed with the numerical model. The numerical model improves the representation of the physical processes involved during a thermal response test compared to the line-source equation, without a significant increase in computational time. (author)
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
Energy Technology Data Exchange (ETDEWEB)
Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE
2013-08-01
Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at
International Nuclear Information System (INIS)
Li Shun; Zhang Sijiong
2014-01-01
A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems. (research papers)
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-01-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land–atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe...
A numerical reference model for themomechanical subduction
DEFF Research Database (Denmark)
Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola
2010-01-01
Building an advanced numerical model of subduction requires choosing values for various geometrical parameters and material properties, among others, the initial lithosphere thicknesses, representative lithological types and their mechanical and thermal properties, rheologies, initial temperature...
Javernick, L.; Bertoldi, W.; Redolfi, M.
2017-12-01
Accessing or acquiring high quality, low-cost topographic data has never been easier due to recent developments of the photogrammetric techniques of Structure-from-Motion (SfM). Researchers can acquire the necessary SfM imagery with various platforms, with the ability to capture millimetre resolution and accuracy, or large-scale areas with the help of unmanned platforms. Such datasets in combination with numerical modelling have opened up new opportunities to study river environments physical and ecological relationships. While numerical models overall predictive accuracy is most influenced by topography, proper model calibration requires hydraulic data and morphological data; however, rich hydraulic and morphological datasets remain scarce. This lack in field and laboratory data has limited model advancement through the inability to properly calibrate, assess sensitivity, and validate the models performance. However, new time-lapse imagery techniques have shown success in identifying instantaneous sediment transport in flume experiments and their ability to improve hydraulic model calibration. With new capabilities to capture high resolution spatial and temporal datasets of flume experiments, there is a need to further assess model performance. To address this demand, this research used braided river flume experiments and captured time-lapse observed sediment transport and repeat SfM elevation surveys to provide unprecedented spatial and temporal datasets. Through newly created metrics that quantified observed and modeled activation, deactivation, and bank erosion rates, the numerical model Delft3d was calibrated. This increased temporal data of both high-resolution time series and long-term temporal coverage provided significantly improved calibration routines that refined calibration parameterization. Model results show that there is a trade-off between achieving quantitative statistical and qualitative morphological representations. Specifically, statistical
Development of a numerical 2-dimensional beach evolution model
DEFF Research Database (Denmark)
Baykal, Cüneyt
2014-01-01
This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical model...... is composed of 4 submodels: a nearshore spectral wave transformation model based on an energy balance equation including random wave breaking and diffraction terms to compute the nearshore wave characteristics, a nearshore wave-induced circulation model based on the nonlinear shallow water equations...... to compute the nearshore depth-averaged wave-induced current velocities and mean water level changes, a sediment transport model to compute the local total sediment transport rates occurring under the action of wind waves, and a bottom evolution model to compute the bed level changes in time based...
Energy Technology Data Exchange (ETDEWEB)
Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-02-01
The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)
Comprehensive numerical modelling of tokamaks
International Nuclear Information System (INIS)
Cohen, R.H.; Cohen, B.I.; Dubois, P.F.
1991-01-01
We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell
Advanced modelling and numerical strategies in nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Staedtke, H.
2001-01-01
The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at
Posttraumatic Orbital Emphysema: A Numerical Model
Directory of Open Access Journals (Sweden)
Andrzej Skorek
2014-01-01
Full Text Available Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall. The observation was made from 1·10-3 to 1·10-2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.
DEFF Research Database (Denmark)
Jensen, David Getreuer
The topic of this Ph.D. thesis is short term forecasting of precipitation for up to 6 hours called nowcasts. The focus is on improving the precision of deterministic nowcasts, assimilation of radar extrapolation model (REM) data into Danish Meteorological Institutes (DMI) HIRLAM numerical weather...
Thermodynamic analysis and numerical modeling of supercritical injection
Banuti, Daniel
2015-01-01
Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...
A constitutive model and numerical simulation of sintering processes at macroscopic level
Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy
2018-01-01
This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
International Nuclear Information System (INIS)
Jošt, D; Škerlavaj, A; Lipej, A
2012-01-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
Jošt, D.; Škerlavaj, A.; Lipej, A.
2012-11-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Numerical equilibrium analysis for structured consumer resource models
de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.
2010-01-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries
Numerical equilibrium analysis for structured consumer resource models
de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.
2010-01-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries
Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor
International Nuclear Information System (INIS)
Esfahanian, Vahid; Ghadyani, Mohsen
2015-01-01
Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.
Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor
Energy Technology Data Exchange (ETDEWEB)
Esfahanian, Vahid [University of Tehran, Tehran (Iran, Islamic Republic of); Ghadyani, Mohsen [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2015-05-15
Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.
Free surface modelling with two-fluid model and reduced numerical diffusion of the interface
International Nuclear Information System (INIS)
Strubelj, Luka; Tiselj, Izrok
2008-01-01
Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening
Numerical model for the thermal behavior of thermocline storage tanks
Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.
2018-03-01
Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.
Improvement and speed optimization of numerical tsunami modelling program using OpenMP technology
Chernov, A.; Zaytsev, A.; Yalciner, A.; Kurkin, A.
2009-04-01
Currently, the basic problem of tsunami modeling is low speed of calculations which is unacceptable for services of the operative notification. Existing algorithms of numerical modeling of hydrodynamic processes of tsunami waves are developed without taking the opportunities of modern computer facilities. There is an opportunity to have considerable acceleration of process of calculations by using parallel algorithms. We discuss here new approach to parallelization tsunami modeling code using OpenMP Technology (for multiprocessing systems with the general memory). Nowadays, multiprocessing systems are easily accessible for everyone. The cost of the use of such systems becomes much lower comparing to the costs of clusters. This opportunity also benefits all programmers to apply multithreading algorithms on desktop computers of researchers. Other important advantage of the given approach is the mechanism of the general memory - there is no necessity to send data on slow networks (for example Ethernet). All memory is the common for all computing processes; it causes almost linear scalability of the program and processes. In the new version of NAMI DANCE using OpenMP technology and multi-threading algorithm provide 80% gain in speed in comparison with the one-thread version for dual-processor unit. The speed increased and 320% gain was attained for four core processor unit of PCs. Thus, it was possible to reduce considerably time of performance of calculations on the scientific workstations (desktops) without complete change of the program and user interfaces. The further modernization of algorithms of preparation of initial data and processing of results using OpenMP looks reasonable. The final version of NAMI DANCE with the increased computational speed can be used not only for research purposes but also in real time Tsunami Warning Systems.
Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S
2015-07-27
In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.
Numerical investigation of the recruitment process in open marine population models
International Nuclear Information System (INIS)
Angulo, O; López-Marcos, J C; López-Marcos, M A; Martínez-Rodríguez, J
2011-01-01
The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model
Analytical and numerical models of uranium ignition assisted by hydride formation
International Nuclear Information System (INIS)
Totemeier, T.C.; Hayes, S.L.
1996-01-01
Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal
International Nuclear Information System (INIS)
Kareem, M W; Habib, K; Ruslan, M H
2015-01-01
In this paper, a theoretical modelling of a cheap solar thermal dryer for small and medium scale farmers with multi-pass approach has been investigated. Comsol Multiphysics modelling tool was employed using numerical technique. The rock particles were used to enhance the thermal storage of the drying system. The local weather data were used during the simulation while parameters and coefficients were sourced from literature. An improvement on efficiency of up to 7% was recorded with error of 10 -5 when compared with the reported double pass solar collector. A fair distribution of hot air within the cabinets was also achieved. Though the modelling tool used was robust but the characterization of the system materials need to be done to improve the system accuracy and better prediction. (paper)
Numerical Modeling of Ocean Circulation
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Numerical human model for impact and seating comfort
Hoof, J.F.A.M. van; Lange, R. de; Verver, M.M.
2003-01-01
This paper presents a detailed numerical model of the human body that can be used to evaluate both safety and comfort aspects of vehicle interiors. The model is based on a combination of rigid body and finite element techniques to provide an optimal combination of computational efficiency and
Increased-accuracy numerical modeling of electron-optical systems with space-charge
International Nuclear Information System (INIS)
Sveshnikov, V.
2011-01-01
This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.
Graphical interpretation of numerical model results
International Nuclear Information System (INIS)
Drewes, D.R.
1979-01-01
Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements
Improved numerical grid generation techniques for the B2 edge plasma code
International Nuclear Information System (INIS)
Stotler, D.P.; Coster, D.P.
1992-06-01
Techniques used to generate grids for edge fluid codes such as B2 from numerically computed equilibria are discussed. Fully orthogonal, numerically derived grids closely resembling analytically prescribed meshes can be obtained. But, the details of the poloidal field can vary, yielding significantly different plasma parameters in the simulations. The magnitude of these differences is consistent with the predictions of an analytic model of the scrape-off layer. Both numerical and analytic grids are insensitive to changes in their defining parameters. Methods for implementing nonorthogonal boundaries in these meshes are also presented; they differ slightly from those required for fully orthogonal grids
Numerical models for computation of pollutant-dispersion in the atmosphere
International Nuclear Information System (INIS)
Leder, S.M.; Biesemann-Krueger, A.
1985-04-01
The report describes some models which are used to compute the concentration of emitted pollutants in the lower atmosphere. A dispersion model, developed at the University of Hamburg, is considered in more detail and treated with two different numerical methods. The convergence of the methods is investigated and a comparison of numerical results and dispersion experiments carried out at the Nuclear Research Center Karlsruhe is given. (orig.) [de
Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier
2018-01-01
Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.
A review of laboratory and numerical modelling in volcanology
Directory of Open Access Journals (Sweden)
J. L. Kavanagh
2018-04-01
Full Text Available Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars, volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real
A review of laboratory and numerical modelling in volcanology
Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.
2018-04-01
Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.
Directory of Open Access Journals (Sweden)
Chun-Te Chen
2016-06-01
Full Text Available This study used the results from 45 microtremor array measurements to construct a shallow shear wave velocity structure in the western plain of Taiwan. We constructed a complete 3D velocity model based on shallow and tomography models for our numerical simulation. There are three major subsurfaces, engineering bedrock (VS = 600 m s-1, Pliocene formation and Miocene formation, constituted in the shallow model. The constant velocity is given in each subsurface. We employed a 3D-FD (finite-differences method to simulate seismic wave propagation in the western plain. The aim of this study was to perform a quantitative comparison of site amplifications and durations obtained from empirical data and numerical modelling in order to obtain the shallow substructure soil response. Modelling clearly revealed that the shallow substructure plays an important role in strong ground motion prediction using 3D simulation. The results show significant improvements in effective shaking duration and the peak ground velocity (PGV distribution in terms of the accuracy achieved by our developed model. We recommend a high-resolution shallow substructure as an essential component in future seismic hazard analyses.
A Discrete Numerical Scheme of Modified Leslie-Gower With Harvesting Model
Directory of Open Access Journals (Sweden)
Riski Nur Istiqomah Dinnullah
2018-05-01
Full Text Available Recently, exploitation of biological resources and the harvesting of two populations or more are widely practiced, such as fishery or foresty. The simplest way to describe the interaction of two species is by using predator prey model, that is one species feeds on another. The Leslie-Gower predator prey model has been studied in many works. In this paper, we use Euler method to discretisize the modified Leslie-Gower with harvesting model. The model consists of two simultanious predator prey equations. We show numerically that this discrete numerical scheme model is dynamically consistent with its continuous model only for relatively small step-size. By using computer simulation software, we show that equlibrium points can be stable, saddles, and unstable. It is shown that the numerical simulations not only illustrate the results, but also show the rich dynamics behaviors of the discrete system.
Numerical modeling of batch formation in waste incineration plants
Directory of Open Access Journals (Sweden)
Obroučka Karel
2015-03-01
Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.
Guadalupe River, California, Sedimentation Study. Numerical Model Investigation
National Research Council Canada - National Science Library
Copeland, Ronald
2002-01-01
A numerical model study was conducted to evaluate the potential impact that the Guadalupe River flood-control project would have on channel stability in terms of channel aggradation and degradation...
A numerical model for design and optimization of surface textures for tilting pad thrust bearings
Gropper, Daniel; Harvey, Terence; Wang, Ling
2018-01-01
A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; specifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the discrete system. Multithreading is applied to improv...
A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models
Directory of Open Access Journals (Sweden)
Shengwu Zhou
2012-01-01
Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.
Directory of Open Access Journals (Sweden)
Simon D Angus
Full Text Available Multi-dose radiotherapy protocols (fraction dose and timing currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5% and 7.1% (13.3% improvement (reduction on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h, leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost
Angus, Simon D; Piotrowska, Monika Joanna
2014-01-01
Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
Thin sheet numerical modelling of continental collision
Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.
2005-01-01
We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping
Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport
International Nuclear Information System (INIS)
H.H. Liu
2004-01-01
The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented
Directory of Open Access Journals (Sweden)
John (Jack P. Riegel III
2016-04-01
Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a
Numerical modeling of flow boiling instabilities using TRACE
International Nuclear Information System (INIS)
Kommer, Eric M.
2015-01-01
Highlights: • TRACE was used to realistically model boiling instabilities in single and parallel channel configurations. • Model parameters were chosen to exactly mimic other author’s work in order to provide for direct comparison of results. • Flow stability maps generated by the model show unstable flow at operating points similar to other authors. • The method of adjudicating when a flow is “unstable” is critical in this type of numerical study. - Abstract: Dynamic flow instabilities in two-phase systems are a vitally important area of study due to their effects on a great number of industrial applications, including heat exchangers in nuclear power plants. Several next generation nuclear reactor designs incorporate once through steam generators which will exhibit boiling flow instabilities if not properly designed or when operated outside design limits. A number of numerical thermal hydraulic codes attempt to model instabilities for initial design and for use in accident analysis. TRACE, the Nuclear Regulatory Commission’s newest thermal hydraulic code is used in this study to investigate flow instabilities in both single and dual parallel channel configurations. The model parameters are selected as to replicate other investigators’ experimental and numerical work in order to provide easy comparison. Particular attention is paid to the similarities between analysis using TRACE Version 5.0 and RELAP5/MOD3.3. Comparison of results is accomplished via flow stability maps non-dimensionalized via the phase change and subcooling numbers. Results of this study show that TRACE does indeed model two phase flow instabilities, with the transient response closely mimicking that seen in experimental studies. When compared to flow stability maps generated using RELAP, TRACE shows similar results with differences likely due to the somewhat qualitative criteria used by various authors to determine when the flow is truly unstable
Numerical modelling of inert gas bubble rising in liquid metal pool
International Nuclear Information System (INIS)
Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.
2016-01-01
Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)
Numerical modelling of fuel sprays
Energy Technology Data Exchange (ETDEWEB)
Bergstroem, C.
1999-06-01
The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs
The Turbulent Interstellar Medium: Insights and Questions from Numerical Models
Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.
2003-01-01
"The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...
Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project
DEFF Research Database (Denmark)
Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano
2011-01-01
Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....
Numerical modelling of concentrated leak erosion during Hole Erosion Tests
Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.
2015-01-01
This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...
International Nuclear Information System (INIS)
Aylott, Benjamin; Baker, John G; Camp, Jordan; Centrella, Joan; Boggs, William D; Buonanno, Alessandra; Boyle, Michael; Buchman, Luisa T; Chu, Tony; Brady, Patrick R; Brown, Duncan A; Bruegmann, Bernd; Cadonati, Laura; Campanelli, Manuela; Faber, Joshua; Chatterji, Shourov; Christensen, Nelson; Diener, Peter; Dorband, Nils; Etienne, Zachariah B
2009-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Experimental and numerical investigation of a simplified exhaust model
Directory of Open Access Journals (Sweden)
Balázs Vehovszky
2016-10-01
Full Text Available A simplified experimental equipment was built to investigate heat radiation and free convection around hot exhaust pipe. Temperatures were measured on the surface of the pipe as like as on heat insulating and -reflecting aluminum shield. Special care was taken to the temperature measuring method: result proved that inappropriate fixing of measuring thermocouples lead to an error of up to 30 % in the temperature-increase values. A detailed 1D numerical model was set up and parametrized so as to the calculation results can be fitted to measured temperature values. In this way thermal properties of the surfaces – as emissivities, absorption coefficients and convective heat transfer coefficients – were determined for temperature sweeps and stationary state cases. The used methods are to be further improved for real automotive parts and higher temperatures.
A numerical strategy for modelling rotating stall in core compressors
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary
COMPLEX OF NUMERICAL MODELS FOR COMPUTATION OF AIR ION CONCENTRATION IN PREMISES
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-04-01
Full Text Available Purpose. The article highlights the question about creation the complex numerical models in order to calculate the ions concentration fields in premises of various purpose and in work areas. Developed complex should take into account the main physical factors influencing the formation of the concentration field of ions, that is, aerodynamics of air jets in the room, presence of furniture, equipment, placement of ventilation holes, ventilation mode, location of ionization sources, transfer of ions under the electric field effect, other factors, determining the intensity and shape of the field of concentration of ions. In addition, complex of numerical models has to ensure conducting of the express calculation of the ions concentration in the premises, allowing quick sorting of possible variants and enabling «enlarged» evaluation of air ions concentration in the premises. Methodology. The complex numerical models to calculate air ion regime in the premises is developed. CFD numerical model is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles. The proposed balance model for computation of air ion regime indoors allows operative calculating the ions concentration field considering pulsed operation of the ionizer. Findings. The calculated data are received, on the basis of which one can estimate the ions concentration anywhere in the premises with artificial air ionization. An example of calculating the negative ions concentration on the basis of the CFD numerical model in the premises with reengineering transformations is given. On the basis of the developed balance model the air ions concentration in the room volume was calculated. Originality. Results of the air ion regime computation in premise, which
Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges
International Nuclear Information System (INIS)
Lazzaroni, C; Chabert, P; Lieberman, M A; Lichtenberg, A J; Leblanc, A
2012-01-01
A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)
UAV based hydromorphological mapping of a river reach to improve hydrodynamic numerical models
Lükő, Gabriella; Baranya, Sándor; Rüther, Nils
2017-04-01
Unmanned Aerial Vehicles (UAVs) are increasingly used in the field of engineering surveys. In river engineering, or in general, water resources engineering, UAV based measurements have a huge potential. For instance, indirect measurements of the flow discharge using e.g. large-scale particle image velocimetry (LSPIV), particle tracking velocimetry (PTV), space-time image velocimetry (STIV) or radars became a real alternative for direct flow measurements. Besides flow detection, topographic surveys are also essential for river flow studies as the channel and floodplain geometry is the primary steering feature of the flow. UAVs can play an important role in this field, too. The widely used laser based topographic survey method (LIDAR) can be deployed on UAVs, moreover, the application of the Structure from Motion (SfM) method, which is based on images taken by UAVs, might be an even more cost-efficient alternative to reveal the geometry of distinct objects in the river or on the floodplain. The goal of this study is to demonstrate the utilization of photogrammetry and videogrammetry from airborne footage to provide geometry and flow data for a hydrodynamic numerical simulation of a 2 km long river reach in Albania. First, the geometry of the river is revealed from photogrammetry using the SfM method. Second, a more detailed view of the channel bed at low water level is taken. Using the fine resolution images, a Matlab based code, BASEGrain, developed by the ETH in Zürich, will be applied to determine the grain size characteristics of the river bed. This information will be essential to define the hydraulic roughness in the numerical model. Third, flow mapping is performed using UAV measurements and LSPIV method to quantitatively asses the flow field at the free surface and to estimate the discharge in the river. All data collection and analysis will be carried out using a simple, low-cost UAV, moreover, for all the data processing, open source, freely available
Numerical modelling and experimental study of liquid evaporation during gel formation
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.
2015-12-01
Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be
Numerical simulation of the flow through a compressor-valve model using an immersed-boundary method
Directory of Open Access Journals (Sweden)
Franco Barbi
2016-01-01
Full Text Available Hermetic reciprocating compressors are widely used in small- and medium-size refrigeration systems based on the vapor-compression cycle. One of the main parts of this type of compressor is the automatic valve system used to control the suction and discharge processes. As the suction and discharge losses represent a large amount of the total thermodynamic losses (47%, a small improvement in the suction and discharge processes can produce expressive increases in the thermodynamic efficiency of the compressor. In this work, a new numerical methodology is applied to solve the flow through reed-type valves. The numerical results were experimentally validated through the pressure distribution acting on the frontal disk of a radial diffuser, which is a geometry usually used to model this type of valve. The numerical results for the velocity and pressure fields were comprehensively explored during the opening and closing movement imposed to the reed. The good quality of these results show that the numerical methodology is very promising in terms of solving the flow in the actual dynamics of reed-type valves.
Mathematical and numerical modeling of early atherosclerotic lesions***
Directory of Open Access Journals (Sweden)
Raoult Annie
2010-12-01
Full Text Available This article is devoted to the construction of a mathematical model describing the early formation of atherosclerotic lesions. The early stage of atherosclerosis is an inflammatory process that starts with the penetration of low density lipoproteins in the intima and with their oxidation. This phenomenon is closely linked to the local blood flow dynamics. Extending a previous work [5] that was mainly restricted to a one-dimensional setting, we couple a simple lesion growth model relying on the biomolecular process that takes place in the intima with blood flow dynamics and mass transfer. We perform numerical simulations on a two-dimensional geometry taken from [6,7] that mimicks a carotid artery deformed by a perivascular cast and we compare the numerical results with experimental data.
Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Munkejord, Svend Tollak
2006-05-11
This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Numerical modelling of methanol liquid pool fires
Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.
1999-12-01
The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.
3-dimensional numerical modelling of rolling of superconducting Ag/BSCCO tape
DEFF Research Database (Denmark)
Eriksen, Morten; Bech, Jakob Ilsted; Seifi, Behrouz
2000-01-01
and Ø126 mm) have been investigated. It is found that it is possible to perform numerical simulation with 3D models of flat rolling of multifilament wire. Two 3D models have been used; 3D pressing with rolls and 3D rolling. 3D pressing with rolls have the advance that the simulation time is lower than...... in the 3D rolling. The 3D models have the advantage compared to 2D pressing that they can predict the 3 dimensional flow in the flat rolling, which has been showed to be very imported for the super conduction properties......Numerical simulation of the deformation process during flat rolling of multifilament HTS tapes has been investigated using a commercial FEM program, ELFEN. The numerical models were built up in 2D and 3D using a Drucker-Prager/Cap model for the powder. Three different roll diameters (Ø24 mm, Ø85 mm...
Numerical modelling of convective heat transport by air flow in permafrost talus slopes
Directory of Open Access Journals (Sweden)
J. Wicky
2017-06-01
Full Text Available Talus slopes are a widespread geomorphic feature in the Alps. Due to their high porosity a gravity-driven internal air circulation can be established which is forced by the gradient between external (air and internal (talus temperature. The thermal regime is different from the surrounding environment, leading to the occurrence of permafrost below the typical permafrost zone. This phenomenon has mainly been analysed by field studies and only few explicit numerical modelling studies exist. Numerical simulations of permafrost sometimes use parameterisations for the effects of convection but mostly neglect the influence of convective heat transfer in air on the thermal regime. In contrast, in civil engineering many studies have been carried out to investigate the thermal behaviour of blocky layers and to improve their passive cooling effect. The present study further develops and applies these concepts to model heat transfer in air flows in a natural-scale talus slope. Modelling results show that convective heat transfer has the potential to develop a significant temperature difference between the lower and the upper parts of the talus slope. A seasonally alternating chimney-effect type of circulation develops. Modelling results also show that this convective heat transfer leads to the formation of a cold reservoir in the lower part of the talus slope, which can be crucial for maintaining the frozen ground conditions despite increasing air temperatures caused by climate change.
A review of recent advances in numerical modelling of local scour problems
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2014-01-01
A review is presented of recent advances in numerical modelling of local scour problems. The review is organized in five sections: Highlights of numerical modelling of local scour; Influence of turbulence on scour; Backfilling of scour holes; Scour around complex structures; and Scour protection ...
Numerically pricing American options under the generalized mixed fractional Brownian motion model
Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying
2016-06-01
In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.
A numerical method for a transient two-fluid model
International Nuclear Information System (INIS)
Le Coq, G.; Libmann, M.
1978-01-01
The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR
Some Numerical Aspects on Crowd Motion - The Hughes Model
Gomes, Diogo A.; Machado Velho, Roberto
2016-01-01
Here, we study a crowd model proposed by R. Hughes in [5] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. First, we establish a priori
Basset force in numerical models of saltation
Czech Academy of Sciences Publication Activity Database
Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel
2012-01-01
Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012
Mixed layer depth calculation in deep convection regions in ocean numerical models
Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Spence, Paul; Myers, Paul G.
2017-12-01
Mixed Layer Depths (MLDs) diagnosed by conventional numerical models are generally based on a density difference with the surface (e.g., 0.01 kg.m-3). However, the temperature-salinity compensation and the lack of vertical resolution contribute to over-estimated MLD, especially in regions of deep convection. In the present work, we examined the diagnostic MLD, associated with the deep convection of the Labrador Sea Water (LSW), calculated with a simple density difference criterion. The over-estimated MLD led us to develop a new tool, based on an observational approach, to recalculate MLD from model output. We used an eddy-permitting, 1/12° regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to test and discuss our newly defined MLD. We compared our new MLD with that from observations, and we showed a major improvement with our new algorithm. To show the new MLD is not dependent on a single model and its horizontal resolution, we extended our analysis to include 1/4° eddy-permitting simulations, and simulations using the Modular Ocean Model (MOM) model.
Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria
2010-05-01
Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies
International Nuclear Information System (INIS)
Travassos, L.
2007-06-01
Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)
A Dynamic Operation Permission Technique Based on an MFM Model and Numerical Simulation
International Nuclear Information System (INIS)
Akio, Gofuku; Masahiro, Yonemura
2011-01-01
It is important to support operator activities to an abnormal plant situation where many counter actions are taken in relatively short time. The authors proposed a technique called dynamic operation permission to decrease human errors without eliminating creative idea of operators to cope with an abnormal plant situation by checking if the counter action taken is consistent with emergency operation procedure. If the counter action is inconsistent, a dynamic operation permission system warns it to operators. It also explains how and why the counter action is inconsistent and what influence will appear on the future plant behavior by a qualitative influence inference technique based on a model by the Mf (Multilevel Flow Modeling). However, the previous dynamic operation permission is not able to explain quantitative effects on plant future behavior. Moreover, many possible influence paths are derived because a qualitative reasoning does not give a solution when positive and negative influences are propagated to the same node. This study extends the dynamic operation permission by combining the qualitative reasoning and the numerical simulation technique. The qualitative reasoning based on an Mf model of plant derives all possible influence propagation paths. Then, a numerical simulation gives a prediction of plant future behavior in the case of taking a counter action. The influence propagation that does not coincide with the simulation results is excluded from possible influence paths. The extended technique is implemented in a dynamic operation permission system for an oil refinery plant. An MFM model and a static numerical simulator are developed. The results of dynamic operation permission for some abnormal plant situations show the improvement of the accuracy of dynamic operation permission and the quality of explanation for the effects of the counter action taken
Improvement for Amelioration Inventory Model with Weibull Distribution
Directory of Open Access Journals (Sweden)
Han-Wen Tuan
2017-01-01
Full Text Available Most inventory models dealt with deteriorated items. On the contrary, just a few papers considered inventory systems under amelioration environment. We study an amelioration inventory model with Weibull distribution. However, there are some questionable results in the amelioration paper. We will first point out those questionable results in the previous paper that did not derive the optimal solution and then provide some improvements. We will provide a rigorous analytical work for different cases dependent on the size of the shape parameter. We present a detailed numerical example for different ranges of the sharp parameter to illustrate that our solution method attains the optimal solution. We developed a new amelioration model and then provided a detailed analyzed procedure to find the optimal solution. Our findings will help researchers develop their new inventory models.
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: mdf2004@zju.edu.cn [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)
2015-10-16
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.
An improved multi-value cellular automata model for heterogeneous bicycle traffic flow
International Nuclear Information System (INIS)
Jin, Sheng; Qu, Xiaobo; Xu, Cheng; Ma, Dongfang; Wang, Dianhai
2015-01-01
This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko
2015-01-01
The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...
Numerical modelling of GPR electromagnetic fields for locating burial sites
Directory of Open Access Journals (Sweden)
Carcione José M.
2017-01-01
Full Text Available Ground-penetrating radar (GPR is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability. The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Numeral eddy current sensor modelling based on genetic neural network
International Nuclear Information System (INIS)
Yu Along
2008-01-01
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method
Minimal duality breaking in the Kallen-Lehman approach to 3D Ising model: A numerical test
International Nuclear Information System (INIS)
Astorino, Marco; Canfora, Fabrizio; Martinez, Cristian; Parisi, Luca
2008-01-01
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperatures. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the Monte Carlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with Monte Carlo results by introducing a more general duality breaking is shortly discussed
A transient one-dimensional numerical model for kinetic Stirling engine
International Nuclear Information System (INIS)
Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei
2016-01-01
Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different
On numerical considerations for modeling reactive astrophysical shocks
International Nuclear Information System (INIS)
Papatheodore, Thomas L.; Messer, O. E. Bronson
2014-01-01
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.
Challenges to Applying a Metamodel for Groundwater Flow Beyond Underlying Numerical Model Boundaries
Reeves, H. W.; Fienen, M. N.; Feinstein, D.
2015-12-01
Metamodels of environmental behavior offer opportunities for decision support, adaptive management, and increased stakeholder engagement through participatory modeling and model exploration. Metamodels are derived from calibrated, computationally demanding, numerical models. They may potentially be applied to non-modeled areas to provide screening or preliminary analysis tools for areas that do not yet have the benefit of more comprehensive study. In this decision-support mode, they may be fulfilling a role often accomplished by application of analytical solutions. The major challenge to transferring a metamodel to a non-modeled area is how to quantify the spatial data in the new area of interest in such a way that it is consistent with the data used to derive the metamodel. Tests based on transferring a metamodel derived from a numerical groundwater-flow model of the Lake Michigan Basin to other glacial settings across the northern U.S. show that the spatial scale of the numerical model must be appropriately scaled to adequately represent different settings. Careful GIS analysis of the numerical model, metamodel, and new area of interest is required for successful transfer of results.
Multi-scale modelling and numerical simulation of electronic kinetic transport
International Nuclear Information System (INIS)
Duclous, R.
2009-11-01
This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms
Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary
Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.
2012-04-01
. Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the
Numerical model of phase transformation of steel C80U during hardening
Directory of Open Access Journals (Sweden)
T. Domański
2007-12-01
Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Energy Technology Data Exchange (ETDEWEB)
Minami, T.; Adachi, T.; Isyii, Y. [Isuzu Motors Ltd., Tokyo (Japan)
1999-04-01
For the purpose of improving DI diesel engine combustion, it is important to predict air flow of intake and exhaust manifold, intake port flow, combustion chamber swirl and fuel spray combustion. This paper describes the application of numerical simulation to the engines, the analysis of phenomena and a problem of simulation model modification. (author)
Numerical modeling of nitrogen oxide emission and experimental verification
Directory of Open Access Journals (Sweden)
Szecowka Lech
2003-12-01
Full Text Available The results of nitrogen reduction in combustion process with application of primary method are presented in paper. The reduction of NOx emission, by the recirculation of combustion gasses, staging of fuel and of air was investigated, and than the reduction of NOx emission by simultaneous usage of the mentioned above primary method with pulsatory disturbances.The investigations contain numerical modeling of NOx reduction and experimental verification of obtained numerical calculation results.
Customer requirement modeling and mapping of numerical control machine
Directory of Open Access Journals (Sweden)
Zhongqi Sheng
2015-10-01
Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.
Sensitivity of a numerical wave model on wind re-analysis datasets
Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel
2017-03-01
Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.
Black-hole kicks from numerical-relativity surrogate models
Gerosa, Davide; Hébert, François; Stein, Leo C.
2018-05-01
Binary black holes radiate linear momentum in gravitational waves as they merge. Recoils imparted to the black-hole remnant can reach thousands of km /s , thus ejecting black holes from their host galaxies. We exploit recent advances in gravitational waveform modeling to quickly and reliably extract recoils imparted to generic, precessing, black-hole binaries. Our procedure uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters; then, from this waveform we directly integrate the gravitational-wave linear momentum flux. This entirely bypasses the need for fitting formulas which are typically used to model black-hole recoils in astrophysical contexts. We provide a thorough exploration of the black-hole kick phenomenology in the parameter space, summarizing and extending previous numerical results on the topic. Our extraction procedure is made publicly available as a module for the Python programming language named surrkick. Kick evaluations take ˜0.1 s on a standard off-the-shelf machine, thus making our code ideal to be ported to large-scale astrophysical studies.
Numerical modeling of oil spills in continental and estuarine waters
International Nuclear Information System (INIS)
Goeury, C.
2012-10-01
The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)
Directory of Open Access Journals (Sweden)
Misdariis A.
2013-11-01
Full Text Available In this article, Large Eddy Simulations (LES of Spark Ignition (SI engines are performed to evaluate the impact of the numerical set-upon the predictedflow motion and combustion process. Due to the high complexity and computational cost of such simulations, the classical set-up commonly includes “low” order numerical schemes (typically first or second-order accurate in time and space as well as simple turbulence models (such as the well known constant coefficient Smagorinsky model (Smagorinsky J. (1963 Mon. Weather Rev. 91, 99-164. The scope of this paper is to evaluate the feasibility and the potential benefits of using high precision methods for engine simulations, relying on higher order numerical methods and state-of-the-art Sub-Grid-Scale (SGS models. For this purpose, two high order convection schemes from the Two-step Taylor Galerkin (TTG family (Colin and Rudgyard (2000 J. Comput. Phys. 162, 338-371 and several SGS turbulence models, namely Dynamic Smagorinsky (Germano et al. (1991 Phys. Fluids 3, 1760-1765 and sigma (Baya Toda et al. (2010 Proc. Summer Program 2010, Stanford, Center for Turbulence Research, NASA Ames/Stanford Univ., pp. 193-202 are considered to improve the accuracy of the classically used Lax-Wendroff (LW (Lax and Wendroff (1964 Commun. Pure Appl. Math. 17, 381-398 - Smagorinsky set-up. This evaluation is performed considering two different engine configurations from IFP Energies nouvelles. The first one is the naturally aspirated four-valve spark-ignited F7P engine which benefits from an exhaustive experimental and numerical characterization. The second one, called Ecosural, is a highly supercharged spark-ignited engine. Unique realizations of engine cycles have been simulated for each set-up starting from the same initial conditions and the comparison is made with experimental and previous numerical results for the F7P configuration. For the Ecosural engine, experimental results are not available yet and only
A Fractional Supervision Game Model of Multiple Stakeholders and Numerical Simulation
Directory of Open Access Journals (Sweden)
Rongwu Lu
2017-01-01
Full Text Available Considering the popular use of a certain kind of supervision management problem in many fields, we firstly build an ordinary supervision game model of multiple stakeholders. Secondly, a fractional supervision game model is set up and solved based on the theory of fractional calculus and a predictor-corrector numerical approach. Thirdly, the methods of phase diagram and time series graph were applied to simulate and analyse the dynamic process of the fractional order game model. Results of numerical solutions are given to illustrate our conclusions and referred to the practice.
Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model
Megann, A.; Nurser, G.
2014-12-01
Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.
Satsangi, Rajiv; Bofferding, Laura
2017-01-01
A lack of numerical knowledge early on can impede a child's academic development. In past research, playing linear board games improved children's understanding of numerical relations, which the authors theorised could extend to children with autism spectrum disorder. For this pilot study, 10 children played a board game where they moved tokens…
Development of Numerical Grids for UZ Flow and Transport Modeling
International Nuclear Information System (INIS)
P. Dobson
2003-01-01
This Scientific Analysis report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of the Unsaturated Zone Flow and Transport Model (UZ Model), a complex, three-dimensional (3-D) model of Yucca Mountain. This revision incorporates changes made to both the geologic framework model and the proposed repository layout. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management of this Scientific Analysis report was initially controlled by the planning document, ''Technical Work Plan (TWP) for: Unsaturated Zone Sections of License Application Chapters 8 and 12'' (BSC 2002 [159051], Section 1.6.4). This TWP was later superseded by ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819]), which contains the Data Qualification Plan used to qualify the DTN: MO0212GWLSSPAX.000 [161271] (See Attachment IV). Grids generated and documented in this report supersede those documented in previous versions of this report (BSC 2001 [159356]). The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow. There were no deviations from the TWP scope of work in this report. Two software packages not listed in Table IV-2 of the TWP (BSC 2002 [159051]), ARCINFO V7.2.1 (CRWMS M and O 2000 [157019]; USGS 2000 [148304]) and 2kgrid8.for V1.0 (LBNL 2002 [154787]), were utilized in the development of the numerical grids; the use of additional software is accounted for in the TWP (BSC 2002 [159051], Section 13). The use of
Estimating the numerical diapycnal mixing in an eddy-permitting ocean model
Megann, Alex
2018-01-01
Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution
Rainfall-runoff modeling in the Turkey River using numerical and ...
African Journals Online (AJOL)
Modeling rainfall-runoff relationships in a watershed have an important role in water resources engineering. Researchers have used numerical models for modeling rainfall-runoff ... Also, by using SPSS software, the regression equations were developed and then the best equation was selected from regression analysis.
Analysis of the Numerical Modelling of Turbulence in the Conical Reverse-Flow Cyclone
Directory of Open Access Journals (Sweden)
Inga Jakštonienė
2011-02-01
Full Text Available The paper describes the numerical modelling of the swirling fluid flow in the Stairmand cyclone (conical reverse-flow – CRF with tangential inlet (equipment for separating solid particles from the gaseous fluid flow. A review of experimental and theoretical papers is conducted introducing three-dimensional differential equations for transfer processes. The numerical modelling of the Stairmand cyclone the height of which is 0.75 m, diameter – 0.17 m, the height of a cylindrical part – 0.290 m, a conical part – 0,39 m and an inlet area is 0,085×0,032 m is presented. When governing three-dimensional fluid flow, transfer equations Navje-Stokes and Reynolds are solved using the finite volume method in a body-fitted co-ordinate system using standard k– e and RNG k– e model of turbulence. Modelling is realised for inlet velocity 4.64, 9.0 and 14.8 m/s (flow rate was 0.0112, 0.0245 and 0.0388 m3/s. The results obtained from the numerical tests have demonstrated that the RNG k– e model of turbulence yields a reasonably good prediction for highly swirling flows in cyclones: the presented numerical results (tangential and radial velocity profiles are compared with numerical and experimental data obtained by other authors. The mean relative error of ± 7,5% is found. Keywords: cyclone, solid particles, numerical modelling, turbulence, one-phase flow.DOI: 10.3846/mla.2010.085
Numerical modeling and experimental research on the movement of the explosion clouds
International Nuclear Information System (INIS)
Li Xiaoli; Zheng Yi; Liu Wei; Wu Guansheng
2011-01-01
It presents the experimental research and numerical modeling on the movement of explosion clouds. The experiment was performed under two kinds of recorder, one is high speed CCD recorder which was mainly used to record the process of the fireball when the TNT was detonated, and the other is SONY vidicon that was mainly used to record the movement of the clouds. Based on the assumption that the effects on the clouds were gravity and buoyancy, the numerical model on the thermal was established. The initial condition of the thermal that was to say the initial cloud dimension was gained through the results of the recording of the highly CCD recorder. Followed this, the results of the numerical simulation were presented. And the computational results of the rising cloud are reasonable compared to that of the experiment. Thus, it can be seen that the numerical modeling and experimental research methods presented in this paper are reasonable and it can be serve as a reference to related person. Finally, the problems about the experiment and the model are pointed to establish a more accurate model. (authors)
Aerosol numerical modelling at local scale
International Nuclear Information System (INIS)
Albriet, Bastien
2007-01-01
At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr
Numerical modelling of erosion and sedimentation around offshore pipelines
van Beek, F.A.; Wind, H.G.
1990-01-01
In this paper a numerical model is presented for the description of the erosion and sedimentation near pipelines on the sea bottom. The model is based on the Navier-Stokes equations and the equation of motion and continuity of sediment. The results of the simulations have been compared with the
Improvement of numerical analysis method for FBR core characteristics. 3
International Nuclear Information System (INIS)
Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke
1998-03-01
As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
Numerical modeling of hydrodynamic in southwestern Johor, Malaysia
Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul
2014-09-01
Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.
Numerical modelling of flow and transport in rough fractures
Directory of Open Access Journals (Sweden)
Scott Briggs
2014-12-01
Full Text Available Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM and random walk (RW, respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs. Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow; and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow
International Nuclear Information System (INIS)
Wang Taichun; Fu Hanqing; Du Xiangwan
1999-01-01
Based on the analysis of advantages and disadvantages of the unstable resonator with a phase-unifying output coupler, the improving unstable resonator are designed. The numerical simulation results indicate that the improving unstable resonator overcomes disadvantages of that resonator and its far-field intensity focusing is better than the conventional resonator
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
International Nuclear Information System (INIS)
Ninokata, Hisashi; Sadatomi, Michio; Okawa, Tomio
2003-01-01
In order to establish a key technology to realize advanced BWR fuel designs, a three-year project of the advanced subchannel analysis code development had been started since 2002. The five dominant factors involved in the boiling transitional process in the fuel bundles were focused. They are, (1) inter-subchannel exchanges, (2) influences of obstacles (3) dryout of liquid film, (4) transition of two-phase flow regimes and (5) deposition of droplets. It has been recognized that present physical models or constitutive equations in subchannel formulations need to be improved so that they include geometrical effects in the fuel bundle design more mechanistically and universally. Through reviewing literatures and existent experimental results, underlying elementary processes and geometrical factors that are indispensable for improving subchannel codes were identified. The basic strategy that combines numerical and experimental approaches was proposed aiming at establishment of mechanistic models for the five dominant factors. In this paper, the present status of methodologies for detailed two-phase flow studies has been summarized. According to spatial scales of focused elementary processes, proper numerical approaches were selected. For some promising numerical approaches, preliminary calcitonins were performed for assessing their applicability to investigation of elementary processes involved in the boiling transition. (author)
CASTING IMPROVEMENT BASED ON METAHEURISTIC OPTIMIZATION AND NUMERICAL SIMULATION
Directory of Open Access Journals (Sweden)
Radomir Radiša
2017-12-01
Full Text Available This paper presents the use of metaheuristic optimization techniques to support the improvement of casting process. Genetic algorithm (GA, Ant Colony Optimization (ACO, Simulated annealing (SA and Particle Swarm Optimization (PSO have been considered as optimization tools to define the geometry of the casting part’s feeder. The proposed methodology has been demonstrated in the design of the feeder for casting Pelton turbine bucket. The results of the optimization are dimensional characteristics of the feeder, and the best result from all the implemented optimization processes has been adopted. Numerical simulation has been used to verify the validity of the presented design methodology and the feeding system optimization in the casting system of the Pelton turbine bucket.
New Trends in Model Coupling Theory, Numerics and Applications
International Nuclear Information System (INIS)
Coquel, F.; Godlewski, E.; Herard, J. M.; Segre, J.
2010-01-01
This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)
A quasi-stationary numerical model of atomized metal droplets, II: Prediction and assessment
DEFF Research Database (Denmark)
Pryds, Nini H.; Hattel, Jesper Henri; Thorborg, Jesper
1999-01-01
been illustrated.A comparison between the numerical model and the experimental results shows an excellent agreement and demonstrates the validity of the present model, e.g. the calculated gas temperature which has an important influence on the droplet solidification behaviour as well as the calculated......A new model which extends previous studies and includes the interaction between enveloping gas and an array of droplets has been developed and presented in a previous paper. The model incorporates the probability density function of atomized metallic droplets into the heat transfer equations....... The main thrust of the model is that the gas temperature was not predetermined and calculated empirically but calculated numerically based on heat balance consideration. In this paper, the accuracy of the numerical model and the applicability of the model as a predictive tool have been investigated...
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
Monte Carlo Numerical Models for Nuclear Logging Applications
Directory of Open Access Journals (Sweden)
Fusheng Li
2012-06-01
Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models
Ramo, Nicole L.; Puttlitz, Christian M.
2018-01-01
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558
International Nuclear Information System (INIS)
Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.
1977-05-01
The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs
Modeling and numerical analysis of non-equilibrium two-phase flows
International Nuclear Information System (INIS)
Rascle, P.; El Amine, K.
1997-01-01
We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)
International Nuclear Information System (INIS)
Dameris, M.
1993-01-01
Numerical models which are used to simulate the dynamics and chemistry of the Earth atmosphere are an important expedient to improve the knowledge of atmospheric processes. With such models it is possible to investigate single effects separately and to estimate their meaning for the whole system. It is possible to make sensitivity studies as well as calculations of different scenarios. This paper aims to describe different models which are available in the present time and which can be used for investigations dealing with the impact of aircraft emission on the Earth climate. Actual deficits of the modelling of atmospheric processes are discussed and the subsequent conclusions are presented. (orig.) 49 refs [de
Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium
International Nuclear Information System (INIS)
Taylor, S.R.; Kamm, J.R.
1993-11-01
The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base
Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium
Energy Technology Data Exchange (ETDEWEB)
Taylor, S.R.; Kamm, J.R. [eds.
1993-11-01
The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.
A simple numerical model of a geometrically nonlinear Timoshenko beam
Keijdener, C.; Metrikine, A.
2015-01-01
In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Multi-physics modeling and numerical simulation of weld pool in GTA welding
International Nuclear Information System (INIS)
Nguyen, Minh-Chien
2015-01-01
In this work, we develop a 3D physical and numerical model of the GTA (Gas Tungsten Arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly: weld bead shape, fluid flow in the weld pool as well as thermal distribution in the work piece. The model is developed in the Cast3M (http://www-cast3m.cea.fr/) finite element software and takes into account the main physical phenomena acting in the work piece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydraulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool. A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature and in quantifying the importance of the Lorentz force and the Joule effect compared to the other mechanical and thermal sources by computing power balances. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed: variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in WPROCESS the in-house CEA software dedicated to the numerical simulation of welding. (author) [fr
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or
Mathematic study and numerical implantation of the Vlasov-Darwin model
International Nuclear Information System (INIS)
Sonnendrucker, E.
1994-12-01
Numerical simulation of some phenomena in plasma physics, or more generally in electromagnetism, can be more easily done using approximate models of Maxwell equations such as the Darwin model in which the transverse part of the displacement current in the Ampere equation is neglected, or such as the static model in which the time derivatives are neglected. In this note, the Darwin model is presented first, and then an asymptotic analysis of Maxwell equations is given with limit conditions of perfect conductor on one part of the side, and Silver-Muller absorbing conditions on the other part. This allows to obtain a variational formulation for the Darwin model which is a good approximation of Maxwell equations. A variational formulation for the quasi-static model is also obtained. In a second part this implantation is described using a 2-D finite element method coupled with a particulate method for the Vlasov equations which leads to numerical results allowing a determination of the different models application. (J.S.). 2 refs
Application of numerical modelling in SSM automotive brake calliper castings
CSIR Research Space (South Africa)
Jahajeeah, N
2006-01-01
Full Text Available Numerical modelling has successfully been used as an efficient tool to convert a gravity cast brake calliper to a thixocasting process. The thixo-modue of Procast has been used for the modelling process to obtain optimum processing parameters...
Mathematical and numerical analysis of PN models for photons transport problems
International Nuclear Information System (INIS)
Valentin, Xavier
2015-01-01
Computational costs for direct numerical simulations of photon transport problems are very high in terms of CPU time and memory. One way to tackle this issue is to develop reduced models that a cheaper to solve numerically. There exists number of these models: moments models, discrete ordinates models (S N ), diffusion-like models... In this thesis, we focus on P N models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationally invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinement fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensional space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the P N equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretize. Existing numerical methods are not satisfactory for multiple reasons: (1) inaccuracy in the neighborhood of r = 0 ('flux-dip'), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L 2 stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelization of these problems is still under discussion in the literature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy
Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter
DEFF Research Database (Denmark)
López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede
2017-01-01
Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....
Bubbles in inkjet printheads: analytical and numerical models
Jeurissen, R.J.M.
2009-01-01
The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts
Bubbles in inkjet printheads : analytical and numerical models
Jeurissen, R.J.M.
2009-01-01
The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts
Venda Oliveira, P.J.; Cruz, R.F.P.M.L.; Lemos, L.J.L.; Almeida e Sousa, J.N.V.
2015-01-01
This work compares the field measurements of a non-symmetric embankment built on a Portuguese soft soil improved with prefabricated vertical drains (PVDs), with the numerical predictions of a 3D modelling where the PVDs are simulated according to the field flow conditions. The change in the permeability with the void ratio and the effect of the smear zone are also included in the numerical analysis. The numerical predictions are compared with the field data in terms of settlement, horizontal ...
Mathematical and numerical models for eddy currents and magnetostatics with selected applications
Rappaz, Jacques
2013-01-01
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem
Wu, Hui; Hu, Liming; Wen, Qingbo
2017-06-01
Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.
Improvement of airfoil trailing edge bluntness noise model
Directory of Open Access Journals (Sweden)
Wei Jun Zhu
2016-02-01
Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.
Numerical Modeling of Multi-Material Active Magnetic Regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden
2009-01-01
and the specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials...
Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH
International Nuclear Information System (INIS)
Niemi, A.; Bodvarsson, G.S.; Pruess, K.
1991-11-01
As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user's manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented
Numerical modeling of the 2017 active seismic infrasound balloon experiment
Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.
2017-12-01
We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.
Numerical modelling of multi-vane expander operating conditions in ORC system
Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr
2017-11-01
Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.
Interaction of tide and salinity barrier: Limitation of numerical model
Directory of Open Access Journals (Sweden)
Suphat Vongvisessomjai1
2008-07-01
Full Text Available Nowadays, the study of interaction of the tide and the salinity barrier in an estuarine area is usually accomplished vianumerical modeling, due to the speed and convenience of modern computers. However, numerical models provide littleinsight with respect to the fundamental physical mechanisms involved. In this study, it is found that all existing numericalmodels work satisfactorily when the barrier is located at some distance far from upstream and downstream boundary conditions.Results are considerably underestimate reality when the barrier is located near the downstream boundary, usually theriver mouth. Meanwhile, this analytical model provides satisfactory output for all scenarios. The main problem of thenumerical model is that the effects of barrier construction in creation of reflected tide are neglected when specifying thedownstream boundary conditions; the use of the boundary condition before construction of the barrier which are significantlydifferent from those after the barrier construction would result in an error outputs. Future numerical models shouldattempt to account for this deficiency; otherwise, using this analytical model is another choice.
Complexities in coastal sediment transport studies by numerical modelling
Digital Repository Service at National Institute of Oceanography (India)
Ilangovan, D.; ManiMurali, R.
equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters...
Optimized numerical annular flow dryout model using the drift-flux model in tube geometry
International Nuclear Information System (INIS)
Chun, Ji Han; Lee, Un Chul
2008-01-01
Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code
Modeling and numerical study of two phase flow
International Nuclear Information System (INIS)
Champmartin, A.
2011-01-01
This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr
Numerical modelling of multimode fibre-optic communication lines
Energy Technology Data Exchange (ETDEWEB)
Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)
2016-01-31
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)
Improvement of a near wake model for trailing vorticity
DEFF Research Database (Denmark)
Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge
2014-01-01
A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly...... the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model...... to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup...
Detailed numerical modeling of a linear parallel-plate Active Magnetic Regenerator
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders
2009-01-01
A numerical model simulating Active Magnetic Regeneration (AMR) is presented and compared to a selection of experiments. The model is an extension and re-implementation of a previous two-dimensional model. The new model is extended to 2.5D, meaning that parasitic thermal losses are included...
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
An improved car-following model accounting for the preceding car's taillight
Zhang, Jian; Tang, Tie-Qiao; Yu, Shao-Wei
2018-02-01
During the deceleration process, the preceding car's taillight may have influences on its following car's driving behavior. In this paper, we propose an extended car-following model with consideration of the preceding car's taillight. Two typical situations are used to simulate each car's movement and study the effects of the preceding car's taillight on the driving behavior. Meanwhile, sensitivity analysis of the model parameter is in detail discussed. The numerical results show that the proposed model can improve the stability of traffic flow and the traffic safety can be enhanced without a decrease of efficiency especially when cars pass through a signalized intersection.
Numerical modelling of the pump-to-signal relative intensity noise ...
Indian Academy of Sciences (India)
An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump ﬁbre optical parametric ampliﬁers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the ﬁeld, this model takes into account the ﬁbre loss, pump depletion as well as the gain ...
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components
Modelization and numerical simulation of atmospheric aerosols dynamics
International Nuclear Information System (INIS)
Debry, Edouard
2004-01-01
Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr
Numerical modelling of damage evolution in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf
2015-01-01
The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of feed...... (400mm and 800mm) are analysed. Comparison of the simulation results with recommendations in literature on ingot forging, indicates the normalized Cockcroft & Latham damage criterion to be the most realistic of the two....
Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system
Cui, T.J.; Chew, W.C.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2000-01-01
In this paper, two numerical models are presented to simulate an enhanced very early time electromagnetic (VETEM) prototype system, which is used for buried-object detection and environmental problems. Usually, the VETEM system contains a transmitting loop antenna and a receiving loop antenna, which run on a lossy ground to detect buried objects. In the first numerical model, the loop antennas are accurately analyzed using the Method of Moments (MoM) for wire antennas above or buried in lossy ground. Then, Conjugate Gradient (CG) methods, with the use of the fast Fourier transform (FFT) or MoM, are applied to investigate the scattering from buried objects. Reflected and scattered magnetic fields are evaluated at the receiving loop to calculate the output electric current. However, the working frequency for the VETEM system is usually low and, hence, two magnetic dipoles are used to replace the transmitter and receiver in the second numerical model. Comparing these two models, the second one is simple, but only valid for low frequency or small loops, while the first modeling is more general. In this paper, all computations are performed in the frequency domain, and the FFT is used to obtain the time-domain responses. Numerical examples show that simulation results from these two models fit very well when the frequency ranges from 10 kHz to 10 MHz, and both results are close to the measured data.
Numerical modelling of solidification of thin walled hypereutectic ductile cast iron
DEFF Research Database (Denmark)
Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels
2006-01-01
Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Design and implementation of new design of numerical experiments for non linear models
International Nuclear Information System (INIS)
Gazut, St.
2007-03-01
This thesis addresses the problem of the construction of surrogate models in numerical simulation. Whenever numerical experiments are costly, the simulation model is complex and difficult to use. It is important then to select the numerical experiments as efficiently as possible in order to minimize their number. In statistics, the selection of experiments is known as optimal experimental design. In the context of numerical simulation where no measurement uncertainty is present, we describe an alternative approach based on statistical learning theory and re-sampling techniques. The surrogate models are constructed using neural networks and the generalization error is estimated by leave-one-out, cross-validation and bootstrap. It is shown that the bootstrap can control the over-fitting and extend the concept of leverage for non linear in their parameters surrogate models. The thesis describes an iterative method called LDR for Learner Disagreement from experiment Re-sampling, based on active learning using several surrogate models constructed on bootstrap samples. The method consists in adding new experiments where the predictors constructed from bootstrap samples disagree most. We compare the LDR method with other methods of experimental design such as D-optimal selection. (author)
The concept of validation of numerical models for consequence analysis
International Nuclear Information System (INIS)
Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove
2014-01-01
Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation
Numerical methods for modeling photonic-crystal VCSELs
DEFF Research Database (Denmark)
Dems, Maciej; Chung, Il-Sug; Nyakas, Peter
2010-01-01
We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR...... to the effective index method. The simulation results elucidate the strength and weaknesses of the analyzed methods; and outline the limits of applicability of the different models....
Hierarchical modeling and its numerical implementation for layered thin elastic structures
Energy Technology Data Exchange (ETDEWEB)
Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)
2017-05-15
Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.
Numerical schemes for one-point closure turbulence models
International Nuclear Information System (INIS)
Larcher, Aurelien
2010-01-01
First-order Reynolds Averaged Navier-Stokes (RANS) turbulence models are studied in this thesis. These latter consist of the Navier-Stokes equations, supplemented with a system of balance equations describing the evolution of characteristic scalar quantities called 'turbulent scales'. In so doing, the contribution of the turbulent agitation to the momentum can be determined by adding a diffusive coefficient (called 'turbulent viscosity') in the Navier-Stokes equations, such that it is defined as a function of the turbulent scales. The numerical analysis problems, which are studied in this dissertation, are treated in the frame of a fractional step algorithm, consisting of an approximation on regular meshes of the Navier-Stokes equations by the nonconforming Crouzeix-Raviart finite elements, and a set of scalar convection-diffusion balance equations discretized by the standard finite volume method. A monotone numerical scheme based on the standard finite volume method is proposed so as to ensure that the turbulent scales, like the turbulent kinetic energy (k) and its dissipation rate (ε), remain positive in the case of the standard k - ε model, as well as the k - ε RNG and the extended k - ε - ν 2 models. The convergence of the proposed numerical scheme is then studied on a system composed of the incompressible Stokes equations and a steady convection-diffusion equation, which are both coupled by the viscosities and the turbulent production term. This reduced model allows to deal with the main difficulty encountered in the analysis of such problems: the definition of the turbulent production term leads to consider a class of convection-diffusion problems with an irregular right-hand side belonging to L 1 . Finally, to step towards the unsteady problem, the convergence of the finite volume scheme for a model convection-diffusion equation with L 1 data is proved. The a priori estimates on the solution and on its time derivative are obtained in discrete norms, for
Numerical Implementation of the Hoek-Brown Material Model with Strain Hardening
DEFF Research Database (Denmark)
Sørensen, Emil Smed; Clausen, Johan; Damkilde, Lars
2013-01-01
A numerical implementation of the Hoek-Brown criterion is presented, which is capable of modeling important aspects of the different post-failure behaviors observed in jointed rock mass. This is done by varying the material parameters based on the accumulated plastic strains. The implementation i....... The constitutive model is demonstrated on a simulation of a tunnel excavation and the results are compared with an analytical solution for a tunnel excavation in elastic-brittle rock material.......A numerical implementation of the Hoek-Brown criterion is presented, which is capable of modeling important aspects of the different post-failure behaviors observed in jointed rock mass. This is done by varying the material parameters based on the accumulated plastic strains. The implementation...
Towards improved modeling of steel-concrete composite wall elements
International Nuclear Information System (INIS)
Vecchio, Frank J.; McQuade, Ian
2011-01-01
Highlights: → Improved analysis of double skinned steel concrete composite containment walls. → Smeared rotating crack concept applied in formulation of new analytical model. → Model implemented into finite element program; numerically stable and robust. → Models behavior of shear-critical elements with greater ease and improved accuracy. → Accurate assessments of strength, deformation and failure mode of test specimens. - Abstract: The Disturbed Stress Field Model, a smeared rotating crack model for reinforced concrete based on the Modified Compression Field Theory, is adapted to the analysis of double-skin steel-concrete wall elements. The computational model is then incorporated into a two-dimensional nonlinear finite element analysis algorithm. Verification studies are undertaken by modeling various test specimens, including panel elements subject to uniaxial compression, panel elements subjected to in-plane shear, and wall specimens subjected to reversed cyclic lateral displacements. In all cases, the analysis model is found to provide accurate calculations of structural load capacities, pre- and post-peak displacement responses, post-peak ductility, chronology of damage, and ultimate failure mode. Minor deficiencies are found in regards to the accurate portrayal of faceplate buckling and the effects of interfacial slip between the faceplates and the concrete. Other aspects of the modeling procedure that are in need of further research and development are also identified and discussed.
Numerical Modelling of Flow and Settling in Secondary Settling Tanks
Dahl, Claus Poulsen
1995-01-01
Denne afhandling omhandler udviklingen af en numerisk model til simulering af efterklaringstanke. lndledningsvis er beskrevet status for udviklingen inden for numeriske modeller for efterklaring og den nuværende designpraksis. Resultatet af denne statusbeskrivelse er et behov for videre udvikling for at indføre numeriske modeller i design af efterklaringstanke og hermed forbedre efterklaringstanke i fremtiden. This thesis discusses the development of a numerical model for the simulation of...
Adaptive Numerical Algorithms in Space Weather Modeling
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
A double-panel active segmented partition module using decoupled analog feedback controllers: numerical model.
Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D
2009-06-01
Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.
Numerical modeling and design of a disk-type rotating permanent magnet induction pump
Energy Technology Data Exchange (ETDEWEB)
Koroteeva, E., E-mail: koroteeva@physics.msu.ru [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia); Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Ščepanskis, M. [Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia, Rīga 1002 (Latvia); Bucenieks, I.; Platacis, E. [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia)
2016-05-15
Highlights: • The design and performance of a disk-type induction pump are described. • A 3D numerical model based on an iterative coupling between EM and hydrodynamic solvers is developed. • The model is verified by comparing with the experiments in a Pb-Bi loop facility. • The suggestions are given to estimate the pump performance in a Pb-Li loop at high pressures. - Abstract: Electromagnetic induction pumps with rotating permanent magnets appear to be the most promising devices to transport liquid metals in high-temperature applications. Here we present a numerical methodology to simulate the operation of one particular modification of these types of pumps: a disk-type induction pump. The numerical model allows for the calculation and analysis of the flow parameters, including the pressure–flow rate characteristics of the pump. The simulations are based on an iterative fully coupled scheme for electromagnetic and hydrodynamic solvers. The developed model is verified by comparing with experimental data obtained using a Pb-Bi loop test facility, for pressures up to 4 bar and flow rates up to 9 kg/s. The verified model is then expanded to higher pressures, beyond the limits of the experimental loop. Based on the numerical simulations, suggestions are given to extrapolate experimental data to higher (industrially important) pressure ranges. Using the numerical model and analytical estimation, the pump performance for the Pb-Li loop is also examined, and the ability of the designed pump to develop pressure heads over 6 bar and to provide flow rates over 15 kg/s is shown.
Numerical methods for the Lévy LIBOR model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
2010-01-01
but the methods are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure....... This enables simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the L\\'evy LIBOR model of Eberlein and \\"Ozkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates...
Numerical Methods for the Lévy LIBOR Model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods...
International Nuclear Information System (INIS)
Altan, Gurkan; Topcu, Muzaffer
2010-01-01
This study was designed to analyze the load-carrying capacities of composite structures connected face-to-face by a butterfly coupling component experimentally and numerically without adhesive. The results of the experimental studies were supported with numerical analysis. In addition, the butterfly coupling component was developed geometrically with a view to the results of the numerical and experimental studies. The change in the load-carrying capacity of the improved butterfly coupling components was analyzed numerically and experimentally to obtain new results. Half-specimens and butterfly-shaped lock components were cut with a water jet machine. Experiments and analyses were conducted to analyze the effects of coupling geometry parameters, such as the ratio of the butterfly end width to the specimen width (w/b), the ratio of the butterfly middle width to the butterfly end width (x/w), and the ratio of the butterfly half height to the specimen width (y/b). It was intended to determine the damage in the butterfly before any damage to the composite structure and to increase the service-life span of the composite structure with the repair of the butterfly lock. As a result of this study, it was determined that the geometrical fixed ratios (w/b) and (x/w) were 0.4 and 0.2 at 0.4 of (y/b) according to the experimental and numerical studies with basic and modified models
An integrated numerical protection system (SPIN)
International Nuclear Information System (INIS)
Savornin, J.L.; Bouchet, J.M.; Furet, J.L.; Jover, P.; Sala, A.
1978-01-01
Developments in technology have now made it possible to perform more sophisticated protection functions which follow more closely the physical phenomena to be monitored. For this reason the Commissariat a l'energie atomique, Merlin-Gerin, Cerci and Framatome have embarked on the joint development of an Integrated Numerical Protection System (SPIN) which will fulfil this objective and will improve the safety and availability of power stations. The system described involves the use of programmed numerical techniques and a structure based on multiprocessors. The architecture has a redundancy of four. Throughout the development of the project the validity of the studies was confirmed by experiments. A first numerical model of a protection function was tested in the laboratory and is now in operation in a power station. A set of models was then introduced for checking the main components of the equipment finally chosen prior to building and testing a prototype. (author)
Numerical modeling of atmospheric washout processes
International Nuclear Information System (INIS)
Bayer, D.; Beheng, K.D.; Herbert, F.
1987-01-01
For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de
Numerical modelling of multi-vane expander operating conditions in ORC system
Directory of Open Access Journals (Sweden)
Rak Józef
2017-01-01
Full Text Available Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.
Numerical modeling and experimental validation of thermoplastic composites induction welding
Palmieri, Barbara; Nele, Luigi; Galise, Francesco
2018-05-01
In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.
Numerical modelling of moisture migration in non-uniformly heated concrete
International Nuclear Information System (INIS)
Khoylou, N.; England, G.L.
1995-01-01
This paper describes a numerical modelling procedure, capable of predicting temperature-dependent moisture flow in concrete. The flow direction is not defined by the sign of the temperature gradient. Irreversible thermodynamic process based on the production of entropy are used to check the course of the numerical calculations which take place in a stepwise manner in time. Numerical results indicate that thick walls will take many years to dry significantly. They also show that if venting to atmosphere is introduced at locations within the wall, the pore-water pressure, the water migration behaviour and the drying rate will be changed. This behaviour has also been experimentally observed. (author). 7 refs., 10 figs
Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.
2018-06-01
Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.
International Nuclear Information System (INIS)
Mallet, J.
2012-01-01
This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Seismic behavior of an Italian Renaissance Sanctuary: Damage assessment by numerical modelling
Clementi, Francesco; Nespeca, Andrea; Lenci, Stefano
2016-12-01
The paper deals with modelling and analysis of architectural heritage through the discussion of an illustrative case study: the Medieval Sanctuary of Sant'Agostino (Offida, Italy). Using the finite element technique, a 3D numerical model of the sanctuary is built, and then used to identify the main sources of the damages. The work shows that advanced numerical analyses could offer significant information for the understanding of the causes of existing damage and, more generally, on the seismic vulnerability.
Energy Technology Data Exchange (ETDEWEB)
Ge, Hong-Xia [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Lai, Ling-Ling [Faculty of Science, Ningbo University, Ningbo 315211 (China); Zheng, Peng-Jun [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Cheng, Rong-Jun, E-mail: chengrongjun76@126.com [Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)
2013-12-13
A new continuum traffic flow model is proposed based on an improved car-following model, which takes the driver's forecast effect into consideration. The backward travel problem is overcome by our model and the neutral stability condition of the new model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves and the Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived to describe the traffic flow near the neutral stability line. The corresponding solution for traffic density wave is also derived. Finally, the numerical results show that our model can not only reproduce the evolution of small perturbation, but also improve the stability of traffic flow.
Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model
Eijk, van R.J.; Brouwers, H.J.H.
2000-01-01
In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some
Using a {sigma}-coordinate numerical ocean model for simulating the circulation at Ormen Lange
Energy Technology Data Exchange (ETDEWEB)
Eliassen, Inge K.; Berntsen, Jarle
2000-01-01
This report describes a numerical model for the simulation of circulation at the Ormen Lange oil field. The model uses a topography following vertical coordinate and time split integration procedure. The model is implemented for a 28 km x 46 km area at Ormen Lange. The equations are given in detail and numerical experiments are discussed. The numerical studies investigate how the flow specified at open boundaries surrounding the Ormen Lange area may be interpolated into the interior domain taking into account the conservation laws that are believed to determine the flow and the local topography.
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)
2011-08-15
This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.
Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang
2016-12-01
Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.
On the Numerical Modeling of Confined Masonry Structures for In-plane Earthquake Loads
Directory of Open Access Journals (Sweden)
Mircea Barnaure
2015-07-01
Full Text Available The seismic design of confined masonry structures involves the use of numerical models. As there are many parameters that influence the structural behavior, these models can be very complex and unsuitable for the current design purposes of practicing engineers. Simplified models could lead to reasonably accurate results, but caution should be given to the simplification assumptions. An analysis of various parameters considered in the numerical modeling of confined masonry structural walls is made. Conclusions regarding the influence of simplified procedures on the results are drawn.
A CFD numerical model for the flow distribution in a MTR fuel element
International Nuclear Information System (INIS)
Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel
2015-01-01
Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)
A CFD numerical model for the flow distribution in a MTR fuel element
Energy Technology Data Exchange (ETDEWEB)
Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)
2015-07-01
Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)
Düben, Peter D.; Subramanian, Aneesh; Dawson, Andrew; Palmer, T. N.
2017-03-01
The use of reduced numerical precision to reduce computing costs for the cloud resolving model of superparameterized simulations of the atmosphere is investigated. An approach to identify the optimal level of precision for many different model components is presented, and a detailed analysis of precision is performed. This is nontrivial for a complex model that shows chaotic behavior such as the cloud resolving model in this paper. It is shown not only that numerical precision can be reduced significantly but also that the results of the reduced precision analysis provide valuable information for the quantification of model uncertainty for individual model components. The precision analysis is also used to identify model parts that are of less importance thus enabling a reduction of model complexity. It is shown that the precision analysis can be used to improve model efficiency for both simulations in double precision and in reduced precision. Model simulations are performed with a superparameterized single-column model version of the OpenIFS model that is forced by observational data sets. A software emulator was used to mimic the use of reduced precision floating point arithmetic in simulations.
Real time wave forecasting using wind time history and numerical model
Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.
Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental
Directory of Open Access Journals (Sweden)
Nataša Štambuk-Cvitanović
1999-12-01
Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.
Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.
Moura, Antonio Divino; Hastenrath, Stefan
2004-07-01
Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.
On the Numerical Modeling of Fluid Instabilities in the Small-Amplitude Limit
Zalesak, Steven; Schmitt, A. J.; Velikovich, A. L.
2008-11-01
The problem we wish to address is that of accurately modeling the evolution of small-amplitude perturbations to a time- dependent flow, where the unperturbed flow itself exhibits large-amplitude temporal and spatial variations. In particular, we wish to accurately model the evolution of small-amplitude perturbations to an imploding ICF pellet, which is subject to both Richtmyer-Meshkov and Rayleigh-Taylor instabilities. This modeling is difficult despite the expected linear evolution of the perturbations themselves, because these perturbations are embedded in a highly nonlinear, strongly- shocked, and highly complex flow field which in and of itself stresses numerical computation capabilities, and whose simulation often employs numerical techniques which were not designed with the proper treatment of small-amplitude perturbations in mind. We will review some of the techniques that we have found to be of use toward this end, including the imposition of a ``differentiability condition'' on the component numerical algorithms of the codes which implement such modeling, the appropriate representation of interfaces in an Eulerian hydrodynamics context, and the role of exact energy conservation.
LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions
DEFF Research Database (Denmark)
Quéau, Yvain; Durix, Bastien; Wu, Tao
2018-01-01
We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...
International Nuclear Information System (INIS)
Li, R.
2012-01-01
The aim of this research dissertation is at studying natural and mixed convections of fluid flows, and to develop and validate numerical schemes for interface tracking in order to treat incompressible and immiscible fluid flows, later. In a first step, an original numerical method, based on Finite Volume discretizations, is developed for modeling low Mach number flows with large temperature gaps. Three physical applications on air flowing through vertical heated parallel plates were investigated. We showed that the optimum spacing corresponding to the peak heat flux transferred from an array of isothermal parallel plates cooled by mixed convection is smaller than those for natural or forced convections when the pressure drop at the outlet keeps constant. We also proved that mixed convection flows resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives more realistic results. For channels heated by heat flux on one wall only, surface radiation tends to suppress the onset of re-circulations at the outlet and to unify the walls temperature. In a second step, the mathematical model coupling the incompressible Navier-Stokes equations and the Level-Set method for interface tracking is derived. Improvements in fluid volume conservation by using high order discretization (ENO-WENO) schemes for the transport equation and variants of the signed distance equation are discussed. (author)
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
Models and numerical methods for time- and energy-dependent particle transport
Energy Technology Data Exchange (ETDEWEB)
Olbrant, Edgar
2012-04-13
Particles passing through a medium can be described by the Boltzmann transport equation. Therein, all physical interactions of particles with matter are given by cross sections. We compare different analytical models of cross sections for photons, electrons and protons to state-of-the-art databases. The large dimensionality of the transport equation and its integro-differential form make it analytically difficult and computationally costly to solve. In this work, we focus on the following approximative models to the linear Boltzmann equation: (i) the time-dependent simplified P{sub N} (SP{sub N}) equations, (ii) the M{sub 1} model derived from entropy-based closures and (iii) a new perturbed M{sub 1} model derived from a perturbative entropy closure. In particular, an asymptotic analysis for SP{sub N} equations is presented and confirmed by numerical computations in 2D. Moreover, we design an explicit Runge-Kutta discontinuous Galerkin (RKDG) method to the M{sub 1} model of radiative transfer in slab geometry and construct a scheme ensuring the realizability of the moment variables. Among other things, M{sub 1} numerical results are compared with an analytical solution in a Riemann problem and the Marshak wave problem is considered. Additionally, we rigorously derive a new hierarchy of kinetic moment models in the context of grey photon transport in one spatial dimension. For the perturbed M{sub 1} model, we present numerical results known as the two beam instability or the analytical benchmark due to Su and Olson and compare them to the standard M{sub 1} as well as transport solutions.
Numerical modeling of polar mesocyclones generation mechanisms
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.
Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes
N. Yagnesh Sharma; K. Vasudeva Karanth
2009-01-01
The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of sp...
Direct numerical methods of mathematical modeling in mechanical structural design
International Nuclear Information System (INIS)
Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed
2002-01-01
Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures
International Nuclear Information System (INIS)
Sun Zhongguo; Xi Guang; Chen Xi
2009-01-01
The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation
Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.
2017-12-01
Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution
Infrared radiation parameterizations in numerical climate models
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Mathematical modelling and numerical resolution of multi-phase compressible fluid flows problems
International Nuclear Information System (INIS)
Lagoutiere, Frederic
2000-01-01
This work deals with Eulerian compressible multi-species fluid dynamics, the species being either mixed or separated (with interfaces). The document is composed of three parts. The first parts devoted to the numerical resolution of model problems: advection equation, Burgers equation, and Euler equations, in dimensions one and two. The goal is to find a precise method, especially for discontinuous initial conditions, and we develop non dissipative algorithms. They are based on a downwind finite-volume discretization under some stability constraints. The second part treats of the mathematical modelling of fluids mixtures. We construct and analyse a set of multi-temperature and multi-pressure models that are entropy, symmetrizable, hyperbolic, not ever conservative. In the third part, we apply the ideas developed in the first part (downwind discretization) to the numerical resolution of the partial differential problems we have constructed for fluids mixtures in the second part. We present some numerical results in dimensions one and two. (author) [fr
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
International Nuclear Information System (INIS)
Forni, M.; La Grotteria, M.; Martelli, A.; Bertola, S.; Bettinali, F.; Dusi, A.; Bergamo, G.; Bonacina, G.
2002-01-01
Due to the complexity of dynamic behaviour of seismic isolation (SI) devices, high cost of their tests and non-negligible number of devices having excellent potential for nuclear applications, several countries judged of great interest to extend validation of their numerical models of such devices to the analysis of experimental data obtained by others. Thus, a four-years Coordinated Research Program (CRP) on Intercomparison of Analysis Methods for Isolated Nuclear Structures, proposed by ENEA (1995), was endorsed by the IAEA in 1995. There, Italy was jointly represented by ENEA, ENEL and ISMES, and supplied test results concerning both High Damping Rubber Bearings (HDRBs) and the MISS (Model of Isolated Steel Structure) mock-up, which had been isolated using such bearings. Test data provided by Italy to the other countries were also re-analysed to improve mathematical models. Aim of this final report is to summarise, after a brief description of the devices and structures considered, the most important results and conclusions of the numerical analyses carried out by Italy. For more detailed information, especially as far as the execution of the tests and the implementation of the numerical models are concerned, please refer to the technical reports presented by Italy to the Research Coordination Meetings (RCMs). (author)
Calibration and verification of numerical runoff and erosion model
Directory of Open Access Journals (Sweden)
Gabrić Ognjen
2015-01-01
Full Text Available Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Based on the KINEROS2 model, this paper presents basic modelling principles of runoff and erosion processes based on the St. Venant's equations. Alternative equations for friction calculation, calculation of source and deposition elements and transport capacity are also shown. Numerical models based on original and alternative equations are calibrated and verified on laboratory scale model. According to the results, friction calculation based on the analytic solution of laminar flow must be included in all runoff and erosion models.
Directory of Open Access Journals (Sweden)
O. M. Pshinko
2015-01-01
Full Text Available The 2D numerical model was developed and used to simulate river pollution after accident on the ammonia pipe over Dnipro River. The model is based on the numerical integration of the K-gradient transport model and potential flow. The results of numerical experiment are presented.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Soňa Benešová
2013-09-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Sona Benesova
2013-05-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
Physicochemical and numerical modeling of electrokinetics in inhomogenous matrices
DEFF Research Database (Denmark)
Paz-Garcia, Juan Manuel
A physicochemical model has been proposed based on the Nernst-Planck-Poisson system. The model includes the transport of water through the porous media, the monitoring of the degree of saturation, the pH value and the porosity throughout the domain; and a comprehensive set of chemical and electrochemical reactions...... is mainly based on a finite elements method for the integration of the transient system of partial differential equations coupled with a Newton-Raphson method for computing chemical equilibrium. During the development of the proposed physicochemical and numerical model, different electrokinetic systems have...
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
During the past few decades the dramatic growth of computer technology has been paralleled by an increasing degree of complexity in material constitutive modeling. This paper documents the numerical implementation of one of these models, specifically a transverse-isotropic, inelastic, work-hardening constitutive model which is developed elsewhere by the author. (Auth.)
Mathematical and numerical modelling of fluids at Nano-metric scales
International Nuclear Information System (INIS)
Joubaud, R.
2012-01-01
This work presents some contributions to the mathematical and numerical modelling of fluids at Nano-metric scales. We are interested in two levels of modelling. The first level consists in an atomic description. We consider the problem of computing the shear viscosity of a fluid from a microscopic description. More precisely, we study the mathematical properties of the nonequilibrium Langevin dynamics allowing to compute the shear viscosity. The second level of description is a continuous description, and we consider a class of continuous models for equilibrium electrolytes, which incorporate on the one hand a confinement by charged solid objects and on the other hand non-ideality effects stemming from electrostatic correlations and steric exclusion phenomena due to the excluded volume effects. First, we perform the mathematical analysis of the case where the free energy is a convex function (mild non-ideality). Second, we consider numerically the case where the free energy is a non convex function (strong non-ideality) leading in particular to phase separation. (author)
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir
Energy Technology Data Exchange (ETDEWEB)
Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)
2005-01-15
Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)
Numerical Modeling of Large-Scale Rocky Coastline Evolution
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
, increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.
A numerical model of the mirror electron cyclotron resonance MECR source
International Nuclear Information System (INIS)
Hellblom, G.
1986-03-01
Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)
Flute-like musical instruments: A toy model investigated through numerical continuation
Terrien, Soizic; Vergez, Christophe; Fabre, Benoît
2013-07-01
Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.
WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint
Energy Technology Data Exchange (ETDEWEB)
Ruehl, Kelley; Michelen, Carlos; Bosma, Bret; Yu, Yi-Hsiang
2016-08-01
The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is a follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.
Numerical modelling of so-called secondary ultrasonic echoes
International Nuclear Information System (INIS)
Langenberg, K.J.; Fellinger, P.; Hofmann, C.
1994-01-01
The formation of secondary ultrasonic echoes is discussed for a particularly simple testing situation. This discussion is based upon the intuitive visualization of elastic wave propagation as obtained with the numerical EFIT-Code (Elastodynamic Finite Integration Technique). The resulting travel times for the econdary echoes contain well-defined limits as they originate from the simple model of grazing incidence plane longitudinal wave mode conversion. (orig.) [de
Numerical Model of Air Valve For Computation of One-dimensional Flow
Directory of Open Access Journals (Sweden)
Daniel HIMR
2014-06-01
Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.
Khmurovska, Y.; Štemberk, P.; Křístek, V.
2017-09-01
This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.
Directory of Open Access Journals (Sweden)
Stefano Invernizzi
2016-04-01
Full Text Available The paper reviews some recent numerical applications for the interpretation and exploitation of acoustic emission (AE monitoring results obtained from historical masonry structures and materials. Among possible numerical techniques, the finite element method and the distinct method are considered. The analyzed numerical models cover the entire scale range, from microstructure and meso-structure, up to full-size real structures. The micro-modeling includes heterogeneous concrete-like materials, but mainly focuses on the masonry texture meso-structure, where each brick and mortar joint is modeled singularly. The full-size models consider the different typology of historical structures such as masonry towers, cathedrals and chapels. The main difficulties and advantages of the different numerical approaches, depending on the problem typology and scale, are critically analyzed. The main insight we can achieve from micro and meso numerical modeling concerns the scaling of AE as a function of volume and time, since it is also able to simulate the b-value temporal evolution as the damage spread into the structure. The finite element modeling of the whole structure provides useful hints for the optimal placement of the AE sensors, while the combination of AE monitoring results is crucial for a reliable assessment of structural safety.
Numerical modeling of materials under extreme conditions
Brown, Eric
2014-01-01
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Numerical approach of multi-field two-phase flow models in the OVAP code
International Nuclear Information System (INIS)
Anela Kumbaro
2005-01-01
Full text of publication follows: A significant progress has been made in modeling the complexity of vapor-liquid two-phase flow. Different three-dimensional models exist in order to simulate the evolution of parameters which characterize a two-phase model. These models can be classified into various groups depending on the inter-field coupling. A hierarchy of increasing physical complexity can be defined. The simplest group corresponds to the homogeneous mixture models where no interactions are taken into account. Another group is constituted by the two-fluid models employing physically important interfacial forces between two-phases, liquid, and water. The last group is multi-field modeling where inter-field couplings can be taken into account at different degrees, such as the MUltiple Size Group modeling [2], the consideration of separate equations for the transport and generation of mass and momentum for each field under the assumption of the same energy for all the fields of the same phase, and a full multi-field two-phase model [1]. The numerical approach of the general three-dimensional two-phase flow is by complexity of the phenomena a very challenging task; the ideal numerical method should be at the same time simple in order to apply to any model, from equilibrium to multi-field model and conservative in order to respect the fundamental conservation physical laws. The approximate Riemann solvers have the good properties of conservation of mass, momentum and energy balance and have been extended successfully to two-fluid models [3]- [5]. But, the up-winding of the flux is based on the Eigen-decomposition of the two-phase flow model and the computation of the Eigen-structure of a multi-field model can be a high cost procedure. Our contribution will present a short review of the above two-phase models, and show numerical results obtained for some of them with an approximate Riemann solver and with lower-complexity alternative numerical methods that do not
Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi
2018-05-01
Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.
Validation of numerical model of a liquid flow in a tundish by laboratory measurements
Directory of Open Access Journals (Sweden)
T. Merder
2014-07-01
Full Text Available The article presents results of physical and numerical modelling of steel flow through a tundish of continuous casting machine. In numerical calculations the influence of mesh density was tested and the correctness of the flow description in the near-wall region was checked using Standard Wall Function model. Obtained results were verified using experimental results of velocity field (PIV method coming from a water tundish model.
State of the art of numerical modeling of thermohydrologic flow in fractured rock mass
International Nuclear Information System (INIS)
Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.
1983-01-01
The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model
Improving Bioenergy Crops through Dynamic Metabolic Modeling
Directory of Open Access Journals (Sweden)
Mojdeh Faraji
2017-10-01
Full Text Available Enormous advances in genetics and metabolic engineering have made it possible, in principle, to create new plants and crops with improved yield through targeted molecular alterations. However, while the potential is beyond doubt, the actual implementation of envisioned new strains is often difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is that methods of data mining and computational systems biology may become powerful enough that they could serve as beneficial tools for guiding future experimentation. In the first part of this article, we review the complexities of plants, as well as some of the mathematical and computational methods that have been used in the recent past to deepen our understanding of crops and their potential yield improvements. In the second part, we present a specific case study that indicates how robust models may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in switchgrass (Panicum virgatum. Switchgrass is considered one of the most promising candidates for the second generation of bioenergy production, which does not use edible plant parts. Lignin is important in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic model offers a platform for investigating the pathway behavior in transgenic lines. In particular, it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.
Theoretical and Numerical Modeling of Transport of Land Use-Specific Fecal Source Identifiers
Bombardelli, F. A.; Sirikanchana, K. J.; Bae, S.; Wuertz, S.
2008-12-01
Microbial contamination in coastal and estuarine waters is of particular concern to public health officials. In this work, we advocate that well-formulated and developed mathematical and numerical transport models can be combined with modern molecular techniques in order to predict continuous concentrations of microbial indicators under diverse scenarios of interest, and that they can help in source identification of fecal pollution. As a proof of concept, we present initially the theory, numerical implementation and validation of one- and two-dimensional numerical models aimed at computing the distribution of fecal source identifiers in water bodies (based on Bacteroidales marker DNA sequences) coming from different land uses such as wildlife, livestock, humans, dogs or cats. These models have been developed to allow for source identification of fecal contamination in large bodies of water. We test the model predictions using diverse velocity fields and boundary conditions. Then, we present some preliminary results of an application of a three-dimensional water quality model to address the source of fecal contamination in the San Pablo Bay (SPB), United States, which constitutes an important sub-embayment of the San Francisco Bay. The transport equations for Bacteroidales include the processes of advection, diffusion, and decay of Bacteroidales. We discuss the validation of the developed models through comparisons of numerical results with field campaigns developed in the SPB. We determine the extent and importance of the contamination in the bay for two decay rates obtained from field observations, corresponding to total host-specific Bacteroidales DNA and host-specific viable Bacteroidales cells, respectively. Finally, we infer transport conditions in the SPB based on the numerical results, characterizing the fate of outflows coming from the Napa, Petaluma and Sonoma rivers.
A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization
International Nuclear Information System (INIS)
Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, Niels; Viereck, Peter; Pryds, Nini
2016-01-01
Highlights: • A comprehensive model was developed to optimize the integrated TEG-heat exchanger. • The developed model was validated with the experimental data. • The effect of using different interface materials on the output power was assessed. • The influence of TEG arrangement on the power production was investigated. • Optimized geometrical parameters and proper interface materials were suggested. - Abstract: In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness of the interface surfaces as well as the air gap thermal resistance at the interface. The combined CMY and parallel plate gap model is then further developed to simulate the thermal contact resistance for the case of an interface material. The numerical results show good agreement with the experimental data with an average deviation of 17% for the case without interface material and 12% in the case of including additional material at the interfaces. The model is then employed to evaluate the power production of the integrated system using different interface materials, including graphite, aluminum (Al), tin (Sn) and lead (Pb) in a form of thin foils. The numerical results show that lead foil at the interface has the best performance, with an improvement in power production of 34% compared to graphite foil. Finally, the model predicts that for a certain flow rate, increasing the parallel TEG channels for the integrated systems with 4, 8, and 12 TEGs
Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli
2018-01-01
Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.
Numerical modelling of forces, stresses and breakages of concrete armour units
Latham, John Paul; Xiang, Jiansheng; Anastasaki, Eleni; Guo, Liwei; Karantzoulis, Nikolaos; Viré, A.C.; Pain, Christopher
2014-01-01
Numerical modelling has the potential to probe the complexity of the interacting physics of rubble mound armour systems. Through forward modelling of armour unit packs, stochastic variables such as unit displacement and maximum contact force per unit during an external oscillatory disturbance can
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi
2002-01-01
Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)
International Nuclear Information System (INIS)
Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli
2017-01-01
Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of
A numerical model of aerosol scavenging
International Nuclear Information System (INIS)
Bradley, M.M.; Molenkamp, C.R.
1991-10-01
Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.
The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
International Nuclear Information System (INIS)
Chang Tiejun; Tian Mingzhen
2007-01-01
A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process
Numerical modelling of two phase flow with hysteresis in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Abreu, E. [Instituto Nacional de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil); Furtado, F.; Pereira, F. [University of Wyoming, Laramie, WY (United States). Dept. of Mathematicsatics; Souza, G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2008-07-01
Numerical simulators are necessary for the understanding of multiphase flow in porous media in order to optimize hydrocarbon recovery. In this work, the immiscible flow of two incompressible phases, a problem very common in waterflooding of petroleum reservoirs, is considered and numerical simulation techniques are presented. The system of equations which describe this type of flow form a coupled, highly nonlinear system of time-dependent partial differential equations (PDEs). The equation for the saturation of the invading fluid is a convection-dominated, degenerate parabolic PDE whose solutions typically exhibit sharp fronts (i.e., internal layers with strong gradients) and is very difficult to approximate numerically. It is well known that accurate modeling of convective and diffusive processes is one of the most daunting tasks in the numerical approximation of PDEs. Particularly difficult is the case where convection dominates diffusion. Specifically, we consider the injection problem for a model of two-phase (water/oil) flow in a core sample of porous rock, taking into account hysteresis effects in the relative permeability of the oil phase. (author)
Benchmark problems for numerical implementations of phase field models
International Nuclear Information System (INIS)
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.
2016-01-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Numerical approximations for speeding up mcmc inference in the infinite relational model
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Albers, Kristoffer Jon
2015-01-01
The infinite relational model (IRM) is a powerful model for discovering clusters in complex networks; however, the computational speed of Markov chain Monte Carlo inference in the model can be a limiting factor when analyzing large networks. We investigate how using numerical approximations...
A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling
International Nuclear Information System (INIS)
Hwang, Moonkyu; Jeong, Jaejoon
2007-07-01
The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme
Numerical Optimization in Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2017-01-01
Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....
Rapid installation of numerical models in multiple parent codes
Energy Technology Data Exchange (ETDEWEB)
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Numerical Modelling Approaches for Assessing Improvements to the Flow Circulation in a Small Lake
Directory of Open Access Journals (Sweden)
Cheng He
2011-01-01
Full Text Available Kamaniskeg Lake is a long, narrow, and deep small lake located in the northern part of Ontario, Canada. The goals of this paper were to examine various options to improve the water quality in the northern part of the lake by altering the local hydraulic flow conditions. Towards this end, a preliminary screening suggested that the flow circulation could be increased around a central island (Mask Island in the northern part of the lake by opening up an existing causeway connecting the mainland and central island. Three-dimensional (3D hydraulic and transport models were adopted in this paper to investigate the hydraulic conditions under various wind forces and causeway structures. The modelling results show that opening the causeway in a few places is unlikely to generate a large flow circulation around the central island. Full circulation only appears to be possible if the causeway is fully removed and a strong wind blows in a favourable direction. The possible reasons for existing water quality variations at the intake of a local WTP (water treatment plant are also explored in the paper.
Catalytically stabilized combustion of lean methane-air-mixtures: a numerical model
Energy Technology Data Exchange (ETDEWEB)
Dogwiler, U; Benz, P; Mantharas, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
The catalytically stabilized combustion of lean methane/air mixtures has been studied numerically under conditions closely resembling the ones prevailing in technical devices. A detailed numerical model has been developed for a laminar, stationary, 2-D channel flow with full heterogeneous and homogeneous reaction mechanisms. The computations provide direct information on the coupling between heterogeneous-homogeneous combustion and in particular on the means of homogeneous ignitions and stabilization. (author) 4 figs., 3 refs.
Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)
2004-07-01
Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.
Active numerical model of human body for reconstruction of falls from height.
Milanowicz, Marcin; Kędzior, Krzysztof
2017-01-01
Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
National Research Council Canada - National Science Library
Demirbilek, Zeki; Nwogu, Okey G; Ward, Donald L; Sanchez, Alejandro
2009-01-01
Three one-dimensional (1D) numerical wave models are evaluated for wave transformation over reefs and estimates of wave setup, runup, and ponding levels in an island setting where the beach is fronted by fringing reef and lagoons...
Experimental investigation and numerical modelling of positive corona discharge: ozone generation
Energy Technology Data Exchange (ETDEWEB)
Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de FIsica Aplicada II, Universidad de Sevilla (Spain)
2009-03-21
The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.
Experimental investigation and numerical modelling of positive corona discharge: ozone generation
International Nuclear Information System (INIS)
Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A
2009-01-01
The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.
Experimental investigation and numerical modelling of positive corona discharge: ozone generation
Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A
2009-03-01
The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.
A 3-D model of superfluid helium suitable for numerical analysis
Darve, C; Van Sciver, S W
2009-01-01
The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.
Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...
International Nuclear Information System (INIS)
An Chen; Su Jian
2011-01-01
Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.
Directory of Open Access Journals (Sweden)
Peng Zhang
2014-03-01
Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.
Discrimination of numerical proportions: A comparison of binomial and Gaussian models.
Raidvee, Aire; Lember, Jüri; Allik, Jüri
2017-01-01
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.
Numerical simulation of a lattice polymer model at its integrable point
International Nuclear Information System (INIS)
Bedini, A; Owczarek, A L; Prellberg, T
2013-01-01
We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Blöte and Nienhuis (1989 J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via identification of the scaling dimensions x t = 1/12 and x h = −5/48. We directly investigate the polymer scaling exponents via Monte Carlo simulations using the pruned-enriched Rosenbluth method algorithm. By simulating this polymer model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5), which are clearly different from the predicted values. Our estimate for the exponent ν is compatible with the known θ-point value of 4/7 and in agreement with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A: Math. Theor. 45 505003). (paper)
Directory of Open Access Journals (Sweden)
Nemoda Stevan Đ.
2016-01-01
Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed
Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics
Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.
2017-11-01
The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.
Class Generation for Numerical Wind Atlases
DEFF Research Database (Denmark)
Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær
2006-01-01
A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...
Jin, Chao; Ren, Carolyn L; Emelko, Monica B
2016-04-19
It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.
Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.
2015-12-01
One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.
Numerical and experimental investigation of the melt casting of explosives
Energy Technology Data Exchange (ETDEWEB)
Sun, Dawei; Garimella, Suresh V. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States); Singh, Sanjeev; Naik, Neelam [US Army Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ 07806 (United States)
2005-10-01
Melt casting of energetic materials is investigated, and a numerical model is formulated for the analysis of the coupled fluid flow, heat transfer, and stress fields involved in this phase-change process. The numerical model is based on a conservative multi block control volume method. The SIMPLE algorithm is employed along with an enthalpy method approach to model the solidification process. Results from the model are verified against analytical solutions, experimental results, and published numerical results for simplified cases. In the melt casting of RDX-binder mixtures, the very high viscosity of the melt limits the influence of melt convection. The impacts of different cooling conditions on the velocity, temperature and stress distributions, as well as on the solidification time, are discussed. The present model can be used to improve the quality of cast explosives, by optimizing and controlling the processing conditions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Numerical solution of continuous-time DSGE models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...
Directory of Open Access Journals (Sweden)
Markov Sergey
2017-01-01
Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.
Numerical modelling of the erosion and deposition of sand inside a filter layer
DEFF Research Database (Denmark)
Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen
2017-01-01
This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...
Numerical solution of a model for a superconductor field problem
International Nuclear Information System (INIS)
Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.
1979-01-01
A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances
International Nuclear Information System (INIS)
Hey, Jonathan; Malloy, Adam C.; Martinez-Botas, Ricardo; Lamperth, Michael
2015-01-01
Highlights: • Conjugate heat transfer analysis of an electric machine. • Inverse identification method for estimating the model parameters. • Experimentally determined thermal properties and electromagnetic losses. • Coupling of inverse identification method with a numerical model. • Improved modeling accuracy through introduction of interface material. - Abstract: Energy conversion devices undergo thermal loading during their operation as a result of inefficiencies in the energy conversion process. This will eventually lead to degradation and possible failure of the device if the heat generated is not properly managed. The ability to accurately predict the thermal behavior of such a device during the initial developmental stage is an important requirement. However, accurate predictions of critical temperature is challenging due to the variation of heat transfer parameters from one device to another. The ability to determine the model parameters is key to accurately representing the heat transfer in such a device. This paper presents the use of an inverse identification technique to estimate the model parameters of an energy conversion device designed for vehicular applications. To simulate the imperfect contact and the presence of insulating materials in the permanent magnet electric machine, thin material are introduced at the component interface of the numerical model. The proposed inverse identification method is used to estimate the equivalent thermal conductance of the thin material. In addition, the electromagnetic losses generated in the permanent magnet is also derived indirectly from the temperature measurement using the same method. With the thermal properties and input parameters of the numerical model obtained from the inverse identification method, the critical temperature of the device can be predicted more accurately. The deviation between the maximum measured and predicted winding temperature is less than 2.4%
The basic approach to age-structured population dynamics models, methods and numerics
Iannelli, Mimmo
2017-01-01
This book provides an introduction to age-structured population modeling which emphasises the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology, and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modelling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behaviour of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students an...
Golombeck, M A; Dössel, O; Raiser, J
2003-09-01
Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.
Relaxation and Numerical Approximation of a Two-Fluid Two-Pressure Diphasic Model
International Nuclear Information System (INIS)
Ambroso, A.; Chalons, Ch.; Galie, Th.; Chalons, Ch.; Coquel, F.; Coquel, F.
2009-01-01
This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach. (authors)
Introduction to numerical modeling of thermohydrologic flow in fractured rock masses
International Nuclear Information System (INIS)
Wang, J.S.Y.
1980-01-01
More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper
Numerical orbit generators of artificial earth satellites
Kugar, H. K.; Dasilva, W. C. C.
1984-04-01
A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.
International Nuclear Information System (INIS)
Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J
2009-01-01
Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389
Directory of Open Access Journals (Sweden)
Sung Hwan Park
2013-01-01
Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
How to Overcome Numerical Challenges to Modeling Stirling Engines
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.
Orbitally shaken shallow fluid layers. II. An improved wall shear stress model
Alpresa, Paola; Sherwin, Spencer; Weinberg, Peter; van Reeuwijk, Maarten
2018-03-01
A new model for the analytical prediction of wall shear stress distributions at the base of orbitally shaken shallow fluid layers is developed. This model is a generalisation of the classical extended Stokes solution and will be referred to as the potential theory-Stokes model. The model is validated using a large set of numerical simulations covering a wide range of flow regimes representative of those used in laboratory experiments. It is demonstrated that the model is in much better agreement with the simulation data than the classical Stokes solution, improving the prediction in 63% of the studied cases. The central assumption of the model—which is to link the wall shear stress with the surface velocity—is shown to hold remarkably well over all regimes covered.
Multi-band effective mass approximations advanced mathematical models and numerical techniques
Koprucki, Thomas
2014-01-01
This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...
Development of numerical models for Monte Carlo simulations of Th-Pb fuel assembly
Directory of Open Access Journals (Sweden)
Oettingen Mikołaj
2017-01-01
Full Text Available The thorium-uranium fuel cycle is a promising alternative against uranium-plutonium fuel cycle, but it demands many advanced research before starting its industrial application in commercial nuclear reactors. The paper presents the development of the thorium-lead (Th-Pb fuel assembly numerical models for the integral irradiation experiments. The Th-Pb assembly consists of a hexagonal array of ThO2 fuel rods and metallic Pb rods. The design of the assembly allows different combinations of rods for various types of irradiations and experimental measurements. The numerical model of the Th-Pb assembly was designed for the numerical simulations with the continuous energy Monte Carlo Burnup code (MCB implemented on the supercomputer Prometheus of the Academic Computer Centre Cyfronet AGH.
An improved steam generator model for the SASSYS code
International Nuclear Information System (INIS)
Pizzica, P.A.
1989-01-01
A new steam generator model has been developed for the SASSYS computer code, which analyzes accident conditions in a liquid metal cooled fast reactor. It has been incorporated into the new SASSYS balance-of-plant model but it can also function on a stand-alone basis. The steam generator can be used in a once-through mode, or a variant of the model can be used as a separate evaporator and a superheater with recirculation loop. The new model provides for an exact steady-state solution as well as the transient calculation. There was a need for a faster and more flexible model than the old steam generator model. The new model provides for more detail with its multi-mode treatment as opposed to the previous model's one node per region approach. Numerical instability problems which were the result of cell-centered spatial differencing, fully explicit time differencing, and the moving boundary treatment of the boiling crisis point in the boiling region have been reduced. This leads to an increase in speed as larger time steps can now be taken. The new model is an improvement in many respects. 2 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2007-04-15
A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.
Gernez, S.; Bouchedda, A.; Gloaguen, E.; Paradis, D.
2017-12-01
In order to understand groundwater flow and contaminant transport in the subsurface, it is important to characterize accurately its permeability. Hydrogeophysics, which involves the use of geophysical data to infer the hydraulic properties of the subsurface, is a relatively new geoscience field that is promising to improve hydrogeological characterization. Amongst existing geophysical methods, Electrical Resistivity Tomography (ERT), that can cover a large continuous underground surface or volume, has been widely applied. The inversed electrical resistivities obtained are related to the permeabilities by different means and the resistivity anisotropy should theoretically be a proxy to the permeability anisotropy. However, the existing hydrogeophysical inversion tools usually do not take into account anisotropy. In this paper, we present an anisotropic forward- and inverse-problem 2.5D finite-differences electrical study, which allows to produce improved anisotropic permeability characterization models. We first detail the theoretical basis of the anisotropic ERT, which introduces a resistivity tensor in place of a scalar, and its numerical implementation. After that, we build a synthetic case presenting a simple but representative geological structure in two horizontal homogeneous and anisotropic beds: the numerical forward modelling shows a difference of less than 1% with the analytical solution; the inverse modelling is able to reproduce the initial structure well, with resistivity values close to the initial synthetic model (see attached figure). We show that by using both surface and single-borehole arrays, we overcome the equivalence principle making sure that a unique solution arises. The latter cannot be obtained when considering the media isotropic as typically assumed with existing inversion tools. Finally, we discuss the consequences of the integration of anisotropy in the data-integrated characterization of the permeability. We show that it has a
Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study
Energy Technology Data Exchange (ETDEWEB)
Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering
2002-12-01
This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.
Component-oriented approach to the development and use of numerical models in high energy physics
International Nuclear Information System (INIS)
Amelin, N.S.; Komogorov, M.Eh.
2002-01-01
We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users
Numerical study of a hybrid jet impingement/micro-channel cooling scheme
International Nuclear Information System (INIS)
Barrau, Jérôme; Omri, Mohammed; Chemisana, Daniel; Rosell, Joan; Ibañez, Manel; Tadrist, Lounes
2012-01-01
A new hybrid jet impingement/micro-channel cooling scheme is studied numerically for use in high-heat-flux thermal management of electronic and power devices. The device is developed with the objective of improving the temperature uniformity of the cooled object. A numerical model based on the k–ω SST turbulent model is developed and validated experimentally. This model is used to carry out a parametrical characterization of the heat sink. The study shows that variations in key parameters of jet impingement and micro-channel technologies allow for the cooling scheme to obtain a wide range of temperature profiles for the cooled object. - Highlights: ► A new hybrid cooling scheme is numerically studied. ► The cooling scheme combines the benefits of jet impingement and micro-channel flows. ► The numerical model is validated by comparison with experimental results. ► The temperature distribution can be adapted to the needs of the cooled system.
Analyzing numerics of bulk microphysics schemes in community models: warm rain processes
Directory of Open Access Journals (Sweden)
I. Sednev
2012-08-01
Full Text Available Implementation of bulk cloud microphysics (BLK parameterizations in atmospheric models of different scales has gained momentum in the last two decades. Utilization of these parameterizations in cloud-resolving models when timesteps used for the host model integration are a few seconds or less is justified from the point of view of cloud physics. However, mechanistic extrapolation of the applicability of BLK schemes to the regional or global scales and the utilization of timesteps of hundreds up to thousands of seconds affect both physics and numerics.
We focus on the mathematical aspects of BLK schemes, such as stability and positive-definiteness. We provide a strict mathematical definition for the problem of warm rain formation. We also derive a general analytical condition (SM-criterion that remains valid regardless of parameterizations for warm rain processes in an explicit Eulerian time integration framework used to advanced finite-difference equations, which govern warm rain formation processes in microphysics packages in the Community Atmosphere Model and the Weather Research and Forecasting model. The SM-criterion allows for the existence of a unique positive-definite stable mass-conserving numerical solution, imposes an additional constraint on the timestep permitted due to the microphysics (like the Courant-Friedrichs-Lewy condition for the advection equation, and prohibits use of any additional assumptions not included in the strict mathematical definition of the problem under consideration.
By analyzing the numerics of warm rain processes in source codes of BLK schemes implemented in community models we provide general guidelines regarding the appropriate choice of time steps in these models.
Lebon, G S Bruno; Tzanakis, I; Djambazov, G; Pericleous, K; Eskin, D G
2017-07-01
To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Numerical model of solar dynamic radiator for parametric analysis
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.