WorldWideScience

Sample records for improve nacl tolerance

  1. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  2. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    Science.gov (United States)

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  3. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  4. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  5. Salinity tolerance in barley (hordeum vulgare l.): effects of varying NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ levels on cultivars differing in tolerance

    International Nuclear Information System (INIS)

    Mahmood, K.

    2011-01-01

    Although barley (Hordeum vulgare L.) is regarded as salt tolerant among crop plants, its growth and plant development is severely affected by ionic and osmotic stresses in salt-affected soils. To elucidate the tolerance mechanism, growth and ion uptake of three barley cultivars, differing in salt tolerance, were examined under different levels of NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ in the root medium. The cultivars differed greatly in their responses to varying root medium conditions. Plant growth was more adversely affected by NaHCO/sub 3/ than NaCl. In general, biomass yields were comparable under control and 100 mM NaCl. However, growth of all three cultivars was significantly inhibited by NaHCO/sub 3/ even at low concentration (10 mM). Improved K/sup +/ supply in saline medium increased K/sup +/ uptake and growth of less tolerant cultivars. K/sup +/ uptake was more adversely affected by NaHCO/sub 3/ than NaCl salinity. Selective K/sup +/ uptake and lower Cl/sup -/ in shoots seemed to be associated with the growth responses. K application would help better growth of these cultivars on K-deficient saline-sodic soils and under irrigation with poor quality water having high Residual Sodium Carbonate (RSC) and/or Sodium Adsorption Ratio (SAR). (author)

  6. Effect of halopriming on the induction of nacl salt tolerance in different wheat genotypes

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.; Rehmanullah, M.; Majeed, A.

    2015-01-01

    Salinity is a major environmental stress limiting plant growth and productivity of wide range of crops with impairing effects on germination and yield. The present study was conducted to assess the induction of salt tolerance in seven wheat genotypes (Bakhtawar-92, Bhakar-2002, Fakhar-e-Sarhad, Khyber-87, Nasir-2000, Pirsabak-2005, and Uqab-2000) at germination and seedling stage through halo-priming with NaCl. Seeds of each wheat genotype were halo-primed separately. Halo-primed seeds of each wheat genotype were subjected to 0.02 (control), 2, 4, 6 and 8 dS/m NaCl salinity under laboratory conditions. Germination percentage age varied significantly among various wheat genotypes; however, differences between different salt concentrations were non-significant. All the seedling growth characters (germination, plumule growth, fresh and dry weight of seedling and moisture contents) exhibited significant differences among wheat genotypes as well as under the applied salt concentration except for radicle growth which varied non-significantly under salt stress. Interaction between various wheat genotypes and salt concentration was also significant for all the seedling growth characters, while it was non-significant for germination percentage age. It is concluded that NaCl proved to be effective priming agents in inducing salt tolerance in the tested wheat genotypes. (author)

  7. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    Science.gov (United States)

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  8. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  9. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  10. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    Science.gov (United States)

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.

    Science.gov (United States)

    Yang, Guiyan; Yu, Lili; Zhang, Kaimin; Zhao, Yulin; Guo, Yucong; Gao, Caiqiu

    2017-04-01

    Dehydration-responsive element-binding (DREB) transcription factors are important abiotic stress tolerance related genes, and some reports on the roles of DREB have primarily addressed herbal plants. To explore the abiotic stress tolerance role of DREB (ThDREB) from Tamarix hispida, a ThDREB gene with a complete ORF of 783 bp that encodes a 28.74 kDa protein with 260 amino acids, was isolated and functionally annotated. ThDREB expression was highly induced by NaCl, PEG, NaHCO 3 and CdCl 2 treatments, and the highest expression level (369.2-fold of control) was found for the roots that were under NaCl stress for 6 h. The tobacco plants that were transformed by ThDREB were conferred with higher germination rates, fresh weights and root lengths than the wild type (WT) tobacco plants under NaCl and mannitol treatments. The total chlorophyll content (tcc), superoxide dismutase (SOD) and peroxidase (POD) activities were also higher in the transgenic lines in comparison with the WT, and the malondialdehyde (MDA) and H 2 O 2 content, electrolyte leakage (EL) rate and ROS as tracked by staining were generated to a lesser degree in ThDREB transgenic plants than in the WT under NaCl and mannitol stress. Furthermore, the transient overexpression analysis of ThDREB in T. hispida also improved plant salt and drought tolerance in comparison with the empty vector-transformed lines. Our results indicated that ThDREB expression could effectively improve tolerance to salt and drought stress by enhancing the antioxidase activity that keeps the ROS at a low accumulation level and makes them easy to scavenge. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2005-06-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy.Growing shoots were cut and re-cultured every 2 weeks until the 4th generation (MV 4 ) to make sure no chimeral tissues still existed in the mutant material. Plantlets were subsequently propagated to obtain enough explants for in vitro selection pressure. Around 3000 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on MS medium supplemented with the NaCl in varying concentrations ranging between 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Tolerant plantlets were acclimatized and transferred to pots and grown under glasshouse conditions. Plants were later subjected to another selection pressure, by irrigating them using water containing NaCl in concentrations ranging between 50-250 mM in addition to controls irrigated with normal water. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant and was tolerant and no plants from cultivar Draga were tolerant. Mutant plants varied in number of produced minitubers from 8 - 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  14. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  15. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  16. Effect of gamma radiation on different explants of sweet potato (Ipomoea batatas L. (Lam)) to induce NaCl tolerance

    International Nuclear Information System (INIS)

    Gutierrez-Rosati, A.

    1997-01-01

    Clonal lines tolerant to NaCl were obtained by combining in vitro culture and gamma radiation in two Peruvian varieties 'Amarillo de Quillabamba' and 'Nemanete'. The most suitable explants were pedicel sections and leaf blades. Embryogenic callus was induced on basal MS basal medium containing 0.5 ppm 2,4-D. The embryogenic calli were irradiated with 5 Gy from a 137 Cs source. Several putative mutants appeared to be stable. (author). 9 refs, 3 tabs

  17. Effect of gamma radiation on different explants of sweet potato (Ipomoea batatas L. (Lam)) to induce NaCl tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Rosati, A [Biology Dept., National Agriculture Univ., La Molina, Lima (Peru)

    1997-07-01

    Clonal lines tolerant to NaCl were obtained by combining in vitro culture and gamma radiation in two Peruvian varieties `Amarillo de Quillabamba` and `Nemanete`. The most suitable explants were pedicel sections and leaf blades. Embryogenic callus was induced on basal MS basal medium containing 0.5 ppm 2,4-D. The embryogenic calli were irradiated with 5 Gy from a {sup 137}Cs source. Several putative mutants appeared to be stable. (author). 9 refs, 3 tabs.

  18. Morphological, Physiological, and Structural Responses of Two Species of Artemisia to NaCl Stress

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Guan

    2013-01-01

    Full Text Available Effects of salt stress on Artemisia scoparia and A. vulgaris “Variegate” were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris “Variegate” leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na+ increased in both species under salt stress, but A. vulgaris “Variegate” had higher level of proline and soluble carbohydrate and lower level of MDA and Na+. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ in A. vulgaris “Variegate” under NaCl stress were higher. Moreover, A. vulgaris “Variegate” had higher transport selectivity of K+/Na+ from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris “Variegate” chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris “Variegate.” Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K+ between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance.

  19. Effect of mycorrhiza symbiosis on the Nacl salinity in Sorghum bicolor

    African Journals Online (AJOL)

    In order to determine mycorrhizal symbiosis on the Nacl salinity tolerance in Sorghum bicolor (aspydfyd cultivar), an experiment with two factors was done in Damghan Islamic Azad University laboratory (Iran) in 2007. The first factor with two levels (mycorihizal and non-mycorihizal) and second factor with six levels Nacl ...

  20. Influence of Rhizobacterium Inoculation on NaCl Salinity Tolerance in Pusa Sukomal and RC101 Varieties of Cowpea (Vigna unguiculata L.

    Directory of Open Access Journals (Sweden)

    Sadhna Chaturvedi

    2017-06-01

    Full Text Available Soil salinity is one of the most severe factors limiting growth and physiological response in cowpea plants. In the present study, the effect of rhizobacterium strains BR2 and BR3 on the growth of cowpea (Vigna unguiculata L. varieties—Pusa Sukomal and RC101—tolerance to 0, 25, 50, and 75 mM concentrations of NaCl salinity was evaluated. The rate of growth, in general, was high in plants irrigated with 25 mM NaCl saline water as compared to control, and thereafter, the growth reduced with increase in salinity concentrations. The results revealed that treating the seeds with rhizobacteria accompanied by NaCl salinity increased growth parameters of the cowpea plant as compared to the seeds irrigated with sodium chloride alone. Treatment with rhizobacteria mitigated the harmful effect of NaCl, and the growth was significantly better than the plants growing in saline water without rhizobacterium inoculation. The overall performance of Pusa Sukomal with BR3 strain was found to be better than the other combinations tested. Flowering in field plants started within 45 days of sowing, and the seeds in plants irrigated with saline water, in the presence of rhizobacterium, were found to be healthy as compared to control seeds. Seed protein profile was analyzed by SDS PAGE gel studies.

  1. Rootstock Effect on the Tolerance of cv. Hass Avocado Plants to Nacl Stress Efecto del Portainjerto en la Tolerancia de Plantas de Palto cv. Hass al Estrés por NaCl

    Directory of Open Access Journals (Sweden)

    Mónica Castro V

    2009-09-01

    Full Text Available The avocado tree (Persea americana Mill. is one of the species most sensitive to salinity. Since the root system of this species is particularly affected by this type of stress, it is crucial to find a rootstock that is tolerant to saline water irrigation. Plant material from the cv. Hass was grafted on five rootstocks to find possible candidates: the clonal ‘Duke 7’, ‘Nabal’, ‘Degania 117’,’Mexicola’, and ‘Zutano’ seedlings. One year-old plants were placed in 55 L pots; river sand was used as substrate, and the plants were fertilized with a modified Hoagland solution. Vegetative growth and internal nutrient content were compared with control plants with 30 mg L-1 of Cl-, and plants treated with 200 mg L-1 Cl- for 130 days using NaCl in the nutrient solution (5.64 mM. No interaction between NaCl and the rootstocks for the vegetative growth variables was detected neither in K+ internal foliar or root content nor Ca+2 root. With regard to the carbon assimilation rate, the Nabal rootstock showed the highest rates under the NaCl treatment by retaining the highest chloride concentration in the roots and greatly limiting the concentration found in the leaves of the cv. Hass cultivar. It is therefore a promising rootstock for salt tolerance.El palto (Persea americana Mill. es una de las especies más sensibles a la salinidad, debido a que su sistema radical es particularmente afectado por este estrés, es importante identificar un portainjerto tolerante al riego con agua salina. Para encontrar posibles candidatos se utilizó material vegetal del cv. Hass injertado sobre cinco portainjertos, el clonal Duke 7 y los provenientes de semilla, Nabal, Degania 117, Mexícola y Zutano. Plantas de 1 año de edad fueron colocadas en macetas de 55 L, con arena de río como sustrato y fertilizadas con una solución Hoagland modificada. Durante 130 días se comparó el crecimiento vegetativo y los contenidos internos de nutrientes en plantas

  2. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    Science.gov (United States)

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Evaluation of Salt Tolerance (NaCl in Tunisian Chili Pepper (Capsicum frutescens L. on Growth, Mineral Analysis and Solutes Synthesis

    Directory of Open Access Journals (Sweden)

    Zhani, Kaouther

    2013-02-01

    Full Text Available Every year, more and more land becomes non-productive due to salinity which adversely affects the productivity and quality of most crops that is why salinity becomes a concern to be studied more to understand the mechanisms included and select the tolerant genotypes. In this context, this investigation was carried out to study the impact of NaCl on growth, mineral analysis and solutes synthesis in five Tunisian chili pepper (Capsicum frutescens L. cultivars: Tebourba (Tb, Somaa (Sm, Korba (Kb, Awald Haffouzz (Aw and Souk jedid (Sj. Thus, an experiment took place under greenhouse at Higher Institute of Agronomy, Chott Meriem, Tunisia and stress was induced during two months in water by NaCl (0, 2, 4, 6, 8, 10 and 12 g/l. Results showed that increasing salinity stress, for all cultivars, decreases the height and biomass (dry and fresh weight of plant in addition to the relative water content. Also, a decline in K+ and Ca2+ amounts in roots and K+/Na+ ratio was recorded. However, Na+ content in roots and the biosynthesis of soluble sugars and soluble proteins in leaves increased. Awlad Haffouzz and Korba cultivars succefully tolerated highest salinity level by accumulating more K+, Ca2+ in roots and containing the highest concentrations of soluble sugars and soluble protein in their leaves contrary to Souk jedid cultivar, considered as the sensitive cultivar.

  4. Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, L; Du, Y; Liu, Y

    2009-01-01

    High hydrostatic pressure has been reported to improve the fertilizing or developmental ability of mammalian spermatozoa, oocytes and embryos. This study investigated the effect of another stress, temporarily increased NaCl concentration, on cryotolerance and developmental competence of porcine...

  5. Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... levels of DnaJ in their transgenic sense lines exhibited tolerance to NaCl stress. Under 120 mM ... polymerase chain reaction; RT-PCR, reverse transcriptase –. PCR; CTAB ..... Engineering salt tolerance in plants. Curr. Opin.

  6. Genetic basis of variation for salinity tolerance in okra (abelmoschus esculentus L.)

    International Nuclear Information System (INIS)

    Ikram-ul-Haq; Khan, A.A.; Azhar, F.M.; Ullah, E.

    2010-01-01

    The development of salt tolerant plants through selection and breeding depends on the presence of the genetic variability within the crop species in response to salt stress, which must have significant genetic component. Such information is not extensively available in vegetable crops. The present study was carried out to gain some information on the genetic basis of variation for salinity tolerance in okra. North Carolina Mating Design II (NCM II) was used for the estimation of genetic components of variation in the traits affecting salinity tolerance. The inheritance of the traits affecting salinity tolerance at the seedling stage appeared to be controlled by both additive and non-additive effects (dominance and epistasis). The narrow sense heritability estimates ranged from 40 to 65% and 7 to 70% and the estimates of broad sense heritability ranged from 65 to 99% and 20 to 99% for absolute and relative values. The additive effects were relatively more prominent and narrow sense heritability was moderate. The high additive component for absolute Na/sup +/ and K/sup +//Na/sup +/ ratio at 60 and 80 mM NaCl, relative Na+ at 80 mM NaCl suggested that improvement for salinity tolerance in okra would be possible on the basis of these characteristics through selection and breeding. The genetic variation for tolerance to NaCl salinity existed among the okra genotypes, which had considerable heritable component and, therefore, genetic improvement of okra genotypes for salinity tolerance through recurrent selection method is possible. (author)

  7. Application of mutation breeding technique for producing NaCl tolerant plants of banana in tissue culture and greenhouse conditions

    International Nuclear Information System (INIS)

    Vedadi, C.; Rahimi, M.; Naserian, B.; Rahmani, E.; Neshan, N.

    2005-01-01

    Full text: To study of possibility to induce salt tolerant clones in banana by using mutation technique, an experiment was conducted with factorial (gamma irradiation and salt concentration factors) in a CRD design. In this research, plantlets of banana cv. Dwarf Cavendish were produced by subculture of irradiated shoot tips. It deserves to mention that consequent subculturing was aimed at getting rid of chimera. Next, these explants were transferred to MS medium containing 2.5 mg. l- 1 BAP and NaCl concentrations of 0, 6, 7, 8, 9 g.l -1 for 2 months .Then, living buds were transferred to medium without salt. After one month, we repeated the first stage. All living buds rooted and were transferred to potted soil. Acclimatized plants were irrigated weekly with above NaCl solution. Other irrigation was done with salt-free water. There was also a negative relation between salt concentration and survival - proliferation. In second salinity stress, salt had no significant difference on survival percentage. No-significant difference of effect salt on survival in second salinity stress was observed. (author)

  8. Arbuscular Mycorrhizal Fungi Enhance Basil Tolerance to Salt Stress through Improved Physiological and Nutritional Status

    International Nuclear Information System (INIS)

    Salwa, A.; Abeer, H.; Alqarawi, A. A.; Abdullah, E.F.; Egamberdieva, D.

    2016-01-01

    Pot experiments were conducted to evaluate the influence of salinity on some physio-biochemical traits in sweet basil (Ocimum basilicum L.) cultivars with contrasting salt stress tolerance and to determine the role of arbuscular mycorrhizal fungi (AMF) in ameliorating the salt stress in plant. Salt stress (250 mM NaCl) reduced the colonization potential of AMF and inhibited photosynthetic pigments, chlorophyll and carotenoids in plant tissue. AMF inoculated plants contained higher level of chlorophyll pigments. Salt stressed plants showed increased lipid peroxidation, antioxidant enzyme activities like superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). Plants inoculated with AMF showed lower lipid peroxidation and enhanced antioxidant enzyme activities. Moreover, the content of lipids, proline, and soluble sugars in basil plants was improved with AMF inoculation. AMF inoculation reduced accumulation of Na+ and improved nutrient acquisition. In conclusion, AMF were capable to reduce oxidative stress via supporting of the antioxidant system. Salt tolerant cultivar showed higher antioxidant enzyme activity and accumulation of osmolytes. (author)

  9. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    Science.gov (United States)

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  11. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. [Salt stress tolerance of cucumber-grafted rootstocks].

    Science.gov (United States)

    Wang, Li-Ping; Sun, Jin; Guo, Shi-Rong; Liu, Shu-Ren; Liu, Chao-Jie; Tian, Jing

    2012-05-01

    Taking 4 different Cucurbita maxima x C. moschata rootstocks for cucumber (Cucumis sativus) as test materials, a solution culture experiment was conducted to study their growth and antioxidative enzyme activities under the stresses of Ca(NO3)2 and NaCl, with the salt stress tolerance of the rootstocks evaluated by subordinate function. At 30 mmol x L(-1) of Ca (NO3)2 or 45 mmol x L(-1) of NaCl, the growth of the rootstock seedlings was improved; but at 60 and 120 mmol x L(-1) of Ca(NO3)2 or 90 and 180 mmol x L(-1) of NaCl, the growth and the antioxidative systems of the seedlings were inhibited, and the salt injury index of 'Qingzhen No. 1' was the smallest, with the decrement of biomass and SOD, POD and CAT activities and the increment of relative conductance being significantly lower than those of the others. Under the stress of high concentration Ca(NO3)2, the SOD, POD and CAT activities of test rootstocks were higher, and the salt injury index and relative conductance were lower, as compared with those under high concentration NaCl, suggesting that the damage of Ca(NO3)2 stress to cucumber-grafted rootstock were smaller than that of NaCl stress. Among the 4 rootstocks, 'Qingzhen No. 1' had the strongest salt stress tolerance, followed by 'Zuomu Nangua', 'Fengyuan Tiejia', and 'Chaoba Nangua'.

  13. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  14. 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl on pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Ibn Maaouia-Houimli Samira

    2012-04-01

    Full Text Available The present study investigates the role of 24-epibrassinolide (EBL in inducing plant tolerance to salinity. Seedlings of pepper (Capsicum annuum L. were grown in the presence of 70 mM NaCl and were sprayed with 10-6 M EBL at 7 days after transplantation and were sampled at 28 day. The plants exposed to NaCl exhibited a significant decline in relative growth rate, net CO2 assimilation, stomatal conductance, transpiration and water use efficiency. However, the follow up treatment with EBL significantly improved the above parameters. EBL treated plants had greater relative growth rate compared to untreated plants when exposed to salt stress. Application of EBL increased photosynthesis by increasing stomatal conductance in both control and salt stressed plants and may have contributed to the enhanced growth. The water use efficiency was improved because CO2 assimilation is more important than the transpiration.

  15. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  16. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  17. Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress

    DEFF Research Database (Denmark)

    Gori, Klaus; Hébraud, Michel; Chambon, Christophe

    2007-01-01

    The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS...... 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were...

  18. The effects of NaCl priming on salt tolerance in sunflower ...

    African Journals Online (AJOL)

    This experiment was conducted to evaluate the effects of NaCl priming with KNO3 on the germination traits and seedling growth of four Helianthus annuus L. cultivars under salinity conditions. Seeds of four spring sunflower (Armawireski, Airfloure, Alestar and Ismailli) were primed with KNO3 (-1.0 M Pa) for 24 h in ...

  19. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    Science.gov (United States)

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  20. Selection and characterizations of radiation-induced salinity-tolerant lines in rice

    International Nuclear Information System (INIS)

    Lee, I.S.; Kim, D.S.; Lee, S.J.; Song, H.S.; Lim, Y.P.; Lee, Y.I.

    2003-01-01

    NaCl tolerant cell lines were selected from irradiated callus, which were generated from seed cultures. M 1 -regenerates were obtained from the salt-tolerant callus cultured on the auxin-free medium for 30 days. Some regenerants were more tolerant than the parent variety (Dongjinbyeo) on a medium containing 0.75 % NaCl. Seeds (M 3 5,000 lines) derived from M 2 lines were grown to the 3 leaf stage. M 3 lines were soaked with a 0.75 % salt solution for 3 weeks and 350 salt-tolerant genotypes were selected. Among the M 3 350 lines, forty tolerant lines were selected from a saline field (10~14 mS) near the sea coast. Of the forty lines, two lines (18-1 and 50-1) showed more improved plant height, panicle length, tillering number, spikelet number and yield than those of the original variety. Thirty primers were screened and two RAPD markers were identified, which appeared in both the salt-tolerant lines (18-1 and 50-1). From DNA-hybridization experiments, it appeared that the fragment arose from the middle-repetitive copy sequences. The transcript involved in the marker showed a higher expression in the salt-tolerant lines than the sensitive lines. The salt-tolerant lines would be useful as a resource for salt-tolerant breeding. (author)

  1. Combining zygotic embryo culture and mutation induction to improve salinity tolerance in avocado (Persea americana Mill)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, J. L.; Santiago, L.; Alvarez, A.; Valdés, Y.; Vernhe, M.; Guerra, M.; Altanez, S.; Prieto, E. F. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Miramar, Playa, C. Habana (Cuba); Rodríguez, N. N.; Arbelo, O. Coto; Velázquez, B.; Rodríguez, J. A.; Sourd, D. G.; Fuentes, V. R. [Instituto de Investigaciones de Fruticultura Tropical (IICF), Miramar, Playa, C. Habana (Cuba); Leal, M. R. [Departamento de Microbiología, Facultad de Biología, Universidad de la Habana, Vedado, C. Habana (Cuba)

    2009-05-15

    Mutation induction and biotechnological techniques are some of the current approaches used in plant breeding. In the present work radiation-induced mutation followed by in vitro culture of zygotic embryos and high osmotic pressure selection methods to improve salt tolerance in avocado are investigated. The in vitro germination, rooting, bud multiplication and plantlet acclimatization of Cuban avocado varieties were recorded. The germination rates of whole embryos in vitro were found to be higher when using mature rather than immature embryos. Almost 80% of the whole embryos derived plantlets produced were successfully acclimatized under greenhouse conditions. An in vitro propagation method for avocado breeding purposes was optimized and documented. However, in vitro multiplication results indicated the need to improve bud multiplication methods in avocado. The survival rates of gamma rays irradiated and salt pressured avocado embryos were also investigated. Both mutagenic (LD{sub 50} = 27-28 Gy) and selective (LD{sub 20} = 157 mM of NaCl) doses were established. A procedure combining zygotic embryo culture and mutation induction was used to obtain. Putative mutant lines derived from salt tolerant rootstocks were developed. Putative M{sub 1}V{sub 3} progenies were planted in the field for segregation analysis. An avocado gene bank was established under the same study. Therefore this methodology appears as an alternative to traditional breeding methods, particularly for improving agronomic characteristics such as salt tolerance in avocado. (author)

  2. Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain.

    Science.gov (United States)

    Fang, Zhen; Zhang, Juan; Du, Guocheng; Chen, Jian

    2016-06-14

    The keratinase from Stenotrophomonas maltophilia (KerSMD) is known for its high activity and pH stability in keratin degradation. However, catalytic efficiency and detergent tolerability need to be improved in order to be used for industrial application. In this work, we obtained several keratinase variants with enhanced catalytic efficiency, thermophilicity, and anti-salt and detergent tolerability by partially truncating the PPC domain of KerSMD. The variants all showed improved catalytic efficiency to synthetic substrate AAPF, with the V355 variant having the highest kcat /Km value of 143.6 s(-1) mM(-1). The truncation of keratinase had little effect on alkaline stability but obviously decreased collagenase activity, developing its potential application in leather treatment. The variants V380, V370, and V355 were thermophilic, with a 1.7-fold enhancement of keratinlytic activity at 60 °C when compared to the wild type. The entire truncation of PPC domain obtained the variant V355 with improved tolerance to alkalinity, salt, chaotropic agents, and detergents. The V355 variant showed more than a 40% improvement in activity under 15% (w/v) NaCl or 4% (w/v) SDS solution, showing excellent stability under harsh washing and unhairing conditions. Our work investigated how protein engineering affects the function of PPC domain of KerSMD.

  3. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars

    Science.gov (United States)

    Thiam, Mahamadou; Ourèye SY, Mame

    2013-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L−1) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations. PMID:25937976

  4. Tolerância à salinidade em feijão (Phaseolus vulgaris L Salt tolerance in bean (Paseolus vulgaris cell culture

    Directory of Open Access Journals (Sweden)

    F. Broetto

    1995-04-01

    Full Text Available Uma das aplicações das técnicas da cultura de tecidos no melhoramento é a identificação de linhas de células que apresentam tolerância à salinidade. Vários autores obtiveram linhas de células tolerantes ao estresse salino; e estudo de mecanismos bioquímicos da tolerância a sais em plantas tem demonstrado altas correlações entre estes e o acúmulo de macromoléculas em tecido de plantas superiores. Para verificar essas correlações em feijão (Phaseolus vulgaris cv IAC carioca, calos oriundos de eixos embrionários foram cultivados em meio sólido, suplementado com NaCl nas concentrações de 0 a 60 mM. Após 13 dias de incubação, os calos foram coletados e analisados quanto ao crescimento relativo, teor de proteínas, teor de prolina e atividade da peroxidase. Os parâmetros analisados mostraram decréscimo no crescimento relativo e no de proteínas em resposta ao NaCl. Paralelamente, observou-se aumento significativo no conteúdo de prolina e atividade da enzima peroxidase.One of the applications of the tissue culture technique in plant improvement is the identification of cell lines which show salinity tolerance. Several authors were able to obtain saline stress-tolerant cell lines and show that mechanisms of tolerance to salts have a strong correlation between this phenomenon and a high macromolecule concentration in plant tissues. Callus obtained from embrionic axis of Phaseolus vulgarís cv. IAC carioca in solid medium, supplemented with 0 to 60 mM NaCl, as the salt treatment, were used. Callus harvesting was done on the 13th day, when they were processed for relative growth, protein, proline content and peroxidase acivity. The results show both, a decrease of the relative growth and of protein content in response to the NaCl treatment, as compared to controls. However, there was a significant increase on the proline content and on the peroxidase activity.

  5. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    Science.gov (United States)

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  6. In vitro induction, isolation, and selection of potato mutants tolerant to salinity

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2008-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, and Spunta were irradiated with gamma ray doses of 25, 30, and 35 Gy. Growing plantlets were subsequently propagated to obtain enough explants for in vitro selection of plants tolerant to salinity. Around 1300 MV 4 plantlets from the three cultivars were subjected to selection pressure. MV 4 explants were cultured on an MS medium supplemented with NaCl in varying concentrations ranging from 50 to 200 mM. Surviving plantlets were propagated and re-cultured on a similar medium to insure their tolerance to salinity. Salt tolerant plantlets were acclimatized and transferred to pots and grown under greenhouse conditions. Mutant and control plants were later subjected to a second selection pressure by irrigating them with water containing NaCl in concentrations ranging from 50 to 250 mM. Cultivar Spunta produced the highest number of tolerant plants. Four plants of Spunta appeared to be tolerant to salinity whereas only one plant from Diamant was tolerant and no plants from cultivar Draga were tolerant. The average number of produced minitubers per plant varied in the mutant plants from eight to 14. Also, weight of these minitubers varied from less than 1 to 31 grams. (author)

  7. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high......-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress....

  8. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    Science.gov (United States)

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  9. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  10. Effect of NaCl on seed germination in some Centaurium Hill. Species (Gentianaceae

    Directory of Open Access Journals (Sweden)

    Živković S.

    2007-01-01

    Full Text Available The influence of high NaCl concentrations on seed germination in both light and darkness was examined in the species Centaurium pulchellum, C. erythraea, C. littorale, C. spicatum, and C. tenuiflorum. Salt tolerance was found to depend on the life history of the seeds. To be specific, seeds of all five species failed to complete germination when exposed to continuous white light if kept all the time in the presence of 100-200 mM and greater NaCl concentrations. However, when after two weeks NaCl was rinsed from the seeds and the seeds were left in distilled water under white light for an additional two weeks, all species completed germination to a certain extent. The percent of germination not only depended on NaCl concentration in the prior medium, but was also species specific. Thus, seeds of C. pulchellum, C. erythraea, and C. littorale completed germination well almost irrespective of the salt concentration previously experienced. On the other hand, seeds of C. tenuiflorum completed germination poorly if NaCl concentrations in the prior media were greater than 200 mM. When seeds after washing were transferred to darkness for an additional 14 days, they failed to complete germination if previously imbibed on media containing NaCl concentrations greater than 400 mM. However, the seeds of all species, even if previously imbibed at 800 mM NaCl, could be induced to complete germination in darkness by 1 mM gibberellic acid. .

  11. Tolerância de bactérias diazotróficas simbióticas à salinidade in vitro Tolerance of diazotrophic symbiotic bacteria to salinity

    Directory of Open Access Journals (Sweden)

    Rafaela Simão Abrahão Nóbrega

    2004-08-01

    the most salt tolerant in LB medium. The high salt tolerance of strain UFLA 03-84, as well as its highest efficiency (biological nitrogen fixation in cowpea symbiosis (Vigna unguiculata, indicates it can be assayed as inoculant to improve yields of this species at saline soils. Media 79 and LB were efficient to evaluate relative tolerance of rhizobia to NaCl, however 79 medium is more suitable as it allows growth of all strains.

  12. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+ /K+ and antioxidant competence.

    Science.gov (United States)

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.

  13. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.......Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  14. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  15. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    Directory of Open Access Journals (Sweden)

    Yuyan An

    Full Text Available 5-aminolevulinic acid (ALA, a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn. plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC, and reduced leaf superoxide anion ([Formula: see text] production rate and malonaldehyde (MDA content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD and peroxidase (POD, root vigor, and activities of root alcohol dehydrogenase (ADH, and lactate dehydrogenase (LDH, indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  16. Stem Cuttings as a Quick In Vitro Screening Method of Sodium Chloride Tolerance in Potato (Solanum) Genotypes

    International Nuclear Information System (INIS)

    Elhag, A. Z.; Mix-Wagnar, G.; Elbassam, N.; Horst, W.

    2008-01-01

    This study was conducted to find how far in vitro explants stem cuttings technique could be suitable for quick screening of NaCl tolerance solanum genotypes and to identify some aspects of their NaCl tolerance. Fifteen solanum genotypes were tested on four NaCl concentrations both in vitro and in vivo, two-node stem cuttings of in vitro produced explants were grown on Murashige and Skoog (MS) salts supplemented with four NaCl concentrations (0,40,80 and 120 mM) for six weeks in vitro. The other part of the in vitro grown explants were transplanted in Kick- Brauck- Manns pots containing sandy loam soil supplemented also with four NaCl concentration (0, 0.1, 0.2 and 0.3 NaCl, w/w) and grown further either for eight weeks or till harvest in a green house. Both experiments were in a completely randomized design with four replicates. The main stem length, shoot dry matter and tuber yield as well as mineral element (Na''+, K + , Ca''2''+ and Cl''-) were measured. The growth of all genotypes was affected by increasing of NaCl. There was a close correlation between growth response (length of explant main stem) in vitro and shoot dry matter and tuber yield in vivo (r=0.81** for dry matter and 0.72** for tuber yield. Na''+ and Cl''- concentrations in shoots wee inversely correlated with the vegetative growth (r=-0.73** for both in vitro and r=-0.89** and r=-0.88** in vivo, respectively). The genotypes showed varied ability to reduce the transport of Na''+ and Cl''- to the shoots, where by NaCl tolerant genotypes showed lower content of both elements than the sensitive ones. K''+ and Ca''2''+ concentrations were decreased with increasing NaCl concentration. The responses for mineral element (Na''+ and Cl - ) accumulation or restriction of explants in vitro and intact plants in vivo were also closely correlated (r=0.79** and 0.71**, respectively) especially at the medium NaCl concentrations (80 mM and 0.2% NaCl). The similar response of the explant and the intact plant

  17. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

  18. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  19. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.......The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  20. Evaluation of Effect of Silicon on NaCl Tolerance in Annual Medicago scutellata L.

    Directory of Open Access Journals (Sweden)

    M Azizi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important stress resulting depletion of vegetation in large areas of the world including some regions of Iran. Reduction of plant growth due to salinity occurs with a range of mechanisms, including low external water potential, ion toxicity and interfere with the uptake. Silicon (Si is the second most abundant element in soil and could efficiently mitigate the effects of various biotic and abiotic stresses, such as drought, heavy metal toxicity and salinity on plants. Medicago scutellata is an important leguminous forage crop throughout the world that could increase soil nitrogen content via reduction of atmospheric nitrogen. To our knowledge, no study have examined the interaction of salinity and Si nutrition in Medicago scutellata or how the beneficial effects of Si in salt-stressed M. scutellata plants (if any are exerted. Accordingly, the aim of the present study was to evaluate the effect of silicon nutrition on salt tolerance of Medicago scutellata. Materials and Methods Seeds of alfalfa (Medicago scutellata L. were sterilized with a 2.5% sodium hypochlorite solution and were incubated in a moistened paper towel. Then, they germinated in the dark at 255  C for 48 h. Healthy seedlings of uniform sizes were selected for hydroponic culture (Hoagland solution in a 10×15×15 cm plastic pots. A factorial experiment carried out based on a completely randomized design with two factors. The first factor was salinity, including 0 and 100 mM NaCl and the second was silicon nutrition, including 0, 0.75 and 1.5 m.M sodium silicate. The pH of the nutrient solution was adjusted daily at 6.4  0.2 and nutrient solution was refreshed weekly. During the experiment, maximum and minimum air temperatures were 30ºC and 21ºC respectively, and the mean relative humidity was 67%. Four weeks after exerting the treatments, plants were harvested and used for the assessment of growth parameters and chemical analyses

  1. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  2. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  3. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  4. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    tropics. Improving drought tolerance and productivity is one of the most difficult tasks for cereal breeders. The diffi- culty arises from the diverse strategies adopted by plants themselves to combat drought stress depending on the timing,. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.).

  5. [Effects of NaCl stress on cation contents in different pumpkin cultivars' seedlings].

    Science.gov (United States)

    Li, Wei-Xin; Chen, Gui-Lin; Ren, Liang-Yu; Wang, Peng

    2008-03-01

    With the seedlings of 19 pumpkin cultivars as test materials, this paper studied the variations of Na+, K+, Ca2+, Na+/K+, Na+/Ca2+, SN+, K+ and SNa+, ca2+ in their shoots and roots under the stress of 300 mmol NaCl x L(-1). The results showed that after an 8-day exposure to 300 mmol NaCl x L(-1), the Na+ content in the seedlings increased significantly while the K+ content decreased, resulting in the brokenness of ion balance. The root Na+ content, shoot Na+/K+ and Na+/Ca2+ ratios, and SNa+, K+ and SNa+, Ca2+ of Cucurbita moschata (Q1) were significantly higher than those of C. maxima (H2) and C. ficifolia (H3). The variation tendency of these parameters of different pumpkin cultivars' seedlings were nearly consistent with the salt injury index of the seedlings under NaCl stress, which further proved that the strong salt-tolerance of Q1 was related to the lower values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and the high contents of K+ and Ca2+, while the salt-sensitivity of H2 and H3 was related to the higher values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and low contents of K+ and Ca2+ under NaCl stress.

  6. Evaluation of Indigenous Potato Challisha (Solanum tuberosum L. Cv. Challisha Somaclonals Tolerance to Salinity In Vitro

    Directory of Open Access Journals (Sweden)

    Md. Sanaullah Biswas

    2017-04-01

    Full Text Available Potato is one of the most important food crops in the world. It is generally sensitive to salinity and likes to grow in neutral soil. On the other hand, salinity is increasing alarmingly in the ever changing climatic conditions. Thus, the selection of salt tolerant potato cultivars is necessary to keep pace the production of potato. To select salt tolerant cultivars, here we attempt to compare the salinity level between indigenous and modern cultivars. In vitro selection of local and modern potato cultivars were investigated with five levels of NaCl (0, 30, 60, 90 and 120 mM. The indigenous potato Challisha and modern cultivars Diamant and Felsina were used as plant materials. Significant differences were noticed among the cultivars in response to different levels of NaCl. Plant growth and root development were gradually reduced with increased concentration of NaCl. All three cultivars were survived well with exhibiting different growth status up to 60 mM NaCl, but they performed poorly at 120 mM of NaCl. Cultivar Challisha performed better regarding shoot length, root length, the number of nodes per plantlet and the fresh weight per plant up to 90 mM of NaCl. Thus, we can conclude that local indigenous variety Challisha is salt tolerant comparing with the modern cultivated varieties.

  7. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  8. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    Directory of Open Access Journals (Sweden)

    Adassa Gama Tavares

    2015-09-01

    Full Text Available Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl, potassium chloride (KCl, lactic acid (LA and acetic acid (AA after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC of Origanum vulgare L. essential oil (OVEO. The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation.

  9. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    Science.gov (United States)

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

  10. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  11. Imbibition and percentage of germination of cape gooseberry (Physalis peruviana L. seeds under NaCl stress

    Directory of Open Access Journals (Sweden)

    Miranda Diego

    2010-04-01

    Full Text Available

    In Colombia cape gooseberry is often grown on salt affected soils. The present study evaluated the effect of increasing NaCl concentrations on imbibition and percentage of germination of ‘Colombia’ ecotype cape gooseberry seeds. Under controlled laboratory conditions (25/20°C day/night temperature, 80% relative humidity, and a 12 hour photoperiod, the seeds were subjected to 0, 30, 60, 90 and 120 mM NaCl concentrations (corresponding to respective electrical conductivity levels of 0.8, 3.0, 6.0, 9.0, and 12.2 dS m-1, during an evaluation period of 299 hours. A significantly lower imbibition level, expressed as 35% of the fresh weight accumulated by the control seeds, was observed in the 120 mM NaCl treatment. At the end of the experiment, respective germination percentages of 97.6% and 96.4% were recorded in the salt-free seeds and in those exposed to 30 mM NaCl. In contrast, only 62.5% of those seeds treated with 120 mM NaCl germinated. Root malformations such as lack of elongation were observed in the highest NaCl concentration treatment. Regarding its germination process, cape gooseberry can be classified as moderately tolerant to sodium. In effect, after 299 h of treatment, there was no statistical difference in imbibition level or percentage of germination between the 0, 30 and 60 mM NaCl treatments.

  12. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    Science.gov (United States)

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  13. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice.

    Science.gov (United States)

    Roy, Swarnendu; Chakraborty, Usha

    2018-01-01

    Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.

  14. Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content

    DEFF Research Database (Denmark)

    Olesen, Inger; Thorsen, Line; Jespersen, Lene

    2010-01-01

    three liver pâtés with reduced NaCl content of which one also has been supplied with organic acids (Ca-acetate and Ca-lactate). The three strains (EGD-e: reference strain; O57: more NaCl sensitive; 6896: more NaCl tolerant) were selected out of twelve strains based on their growth in BHI broth adjusted......B for both O57 and 6896 were significantly higher when the strains were grown in BHI compared to the standard liver pâté. Reducing the NaCl content of the standard liver pâté did not change relative transcription levels of prfA, inlA, sigB or clpC (except for prfA in O57 and sigB in 6896). However......, the presence of Ca-acetate and Ca-lactate induced relative transcription of the stress response gene, clpC, for all three strains. This study demonstrates that relative microbial gene transcription can be measured in complex food matrices and points to the need for designing experimental set-ups in real food...

  15. Development of salt tolerant potato and sugarcane through in vitro techniques

    International Nuclear Information System (INIS)

    Asad, S.; Iqbal, M.J.; Saif-Ur-Rasheed, M.; Zafar, Y.; Malik, K.A.

    1997-01-01

    Improvement of sugarcane and potato in Pakistan is hampered by their intricate flowering behavior under natural day-length conditions. The improvement of these crops for their salt tolerance can be carried out by tissue culture mediated techniques. To induce variation in sugarcane, five-week old white yellow nodular embryogenic calli were irradiated with 5, 20, 40 and 60 Gy gamma rays. After one month, the calli were cultured on regeneration media, and plant hardening procedures were optimized. Irradiated and non-irradiated calli were subjected to various levels of salt stress and plant regeneration was investigated. Although growth of sugarcane calli was observed at 200 mM NaCl, regeneration was inhibited even at 50 mM NaCl in the medium. The regenerants from gamma irradiated material are under field evaluation. Variation was detected in both irradiated and salt treated calli by DNA fingerprinting using random amplified polymorphic DNA (RAPD) markers. In potato, 6-7 weeks old in vitro grown plants with single shoots having 8-10 buds were irradiated with 20 Gy gamma rays. Shoot formation was successful only from 50% of the axillary buds. The cultures were subjected to four levels of salinity (50, 100, 150 and 200 mM Nacl). Shoot-tip necrosis was observed along with significant reduction in shoot height. (author). 13 refs, 3 figs, 4 tabs

  16. Development of salt tolerant potato and sugarcane through in vitro techniques

    Energy Technology Data Exchange (ETDEWEB)

    Asad, S; Iqbal, M J; Saif-Ur-Rasheed, M; Zafar, Y; Malik, K A [Plant Biotechnology Div., National Inst. of Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    1997-07-01

    Improvement of sugarcane and potato in Pakistan is hampered by their intricate flowering behavior under natural day-length conditions. The improvement of these crops for their salt tolerance can be carried out by tissue culture mediated techniques. To induce variation in sugarcane, five-week old white yellow nodular embryogenic calli were irradiated with 5, 20, 40 and 60 Gy gamma rays. After one month, the calli were cultured on regeneration media, and plant hardening procedures were optimized. Irradiated and non-irradiated calli were subjected to various levels of salt stress and plant regeneration was investigated. Although growth of sugarcane calli was observed at 200 mM NaCl, regeneration was inhibited even at 50 mM NaCl in the medium. The regenerants from gamma irradiated material are under field evaluation. Variation was detected in both irradiated and salt treated calli by DNA fingerprinting using random amplified polymorphic DNA (RAPD) markers. In potato, 6-7 weeks old in vitro grown plants with single shoots having 8-10 buds were irradiated with 20 Gy gamma rays. Shoot formation was successful only from 50% of the axillary buds. The cultures were subjected to four levels of salinity (50, 100, 150 and 200 mM Nacl). Shoot-tip necrosis was observed along with significant reduction in shoot height. (author). 13 refs, 3 figs, 4 tabs.

  17. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  18. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  19. Crystallographic characterization of cement pastes hydrated with NaCl; Caracterizacao cristalografica de pastas de cimento hidratadas com NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carina Gabriela de Melo e; Martinelli, Antonio Eduardo; Melo, Dulce Maria Araujo; Melo, Marcus Antonio de Freitas; Melo, Vitor Rodrigo de Melo e [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    One of the major current challenges faced by oil companies is the exploration of pre salt basins. Salt layers deposited upon the evaporation of ocean water and continental separation are mainly formed by NaCl and isolate immense oil reservoirs. The mechanical stability and zonal isolation of oil wells that run through salt layers must be fulfilled by cement sheaths saturated with NaCl to assure chemical compatibility between cement and salt layer. The present study aimed at evaluating the effect of NaCl addition on the hydration of oil well cement slurries as well as identifying the nature of crystalline phases present in the hardened cement. To that end, cement slurries containing NaCl were mixed, hardened and characterized by X-ray diffraction. The results revealed that the presence of NaCl affects the formation of hydration products by the presence of Friedel's salt. The intensity of the corresponding peaks increase as the contents of NaCl in the slurry increase. High concentrations of NaCl in Portland slurries increase the setting time of cement and the presence of Friedel's salt decreases the strength of the hardened cement. (author)

  20. Ayurvedic Amalaki Rasayana promotes improved stress tolerance

    Indian Academy of Sciences (India)

    Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus ... and some otheringredients, and is used for general good health and healthy aging. ... Wild-type larvae/flies rearedon AR-supplemented food survived the various ...

  1. Comparison of an antioxidant system in tolerant and susceptible wheat seedlings in response to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Feki, K.; Tounsi, S.; Brini, F.

    2017-07-01

    It has been demonstrated previously that the physiological and molecular analysis of seedlings of the tolerant (Om Rabia3) and susceptible (Mahmoudi) Tunisian wheat genotypes were different at short and long-term response to salinity. In this study, we examined the antioxidant defence system in seedlings of these two cultivars at short-term response to different NaCl concentrations. The findings showed that high salinity tolerance of cv. Om Rabia3, as manifested by lower decrease in its dry biomass, was associated with lower malondialdehyde and hydrogen peroxide contents, lower accumulation of the superoxide (O2⎯) in the roots and the shoots, and also lower decrease in ascorbate content than those in cv. Mahmoudi. Moreover, the expression of some genes coding for antioxidant enzymes such as the catalase, the superoxide dismutase and the peroxidase were enhanced by NaCl stress especially in the salt-tolerant cultivar. In parallel, their activities were increased in response to the same condition of stress and especially in the cv. Om Rabia3. Taken together, these data suggested that the capacity to limit oxidative damage is important for NaCl tolerance of durum wheat.

  2. Is salinity tolerance of rice lines concerned to endogenous ABA ...

    African Journals Online (AJOL)

    In this work we tested its putative relationship of Abscisic acid with the degree of tolerance to this abiotic stress. For this purpose, we have examined the responses of sensitive (IR29) and tolerant (IR651) varieties of indica rice (Oryza sativa L.) to a range of salinity (0 (control) and 90 mM NaCl. Shoot and root dry weight ...

  3. Genomic Selection Improves Heat Tolerance in Dairy Cattle

    Science.gov (United States)

    Garner, J. B.; Douglas, M. L.; Williams, S. R. O; Wales, W. J.; Marett, L. C.; Nguyen, T. T. T.; Reich, C. M.; Hayes, B. J.

    2016-01-01

    Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events. PMID:27682591

  4. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-[15M]-proline followed by 15N NMR

    International Nuclear Information System (INIS)

    Heyser, J.W.; Chacon, M.J.

    1989-01-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-[ 15 N]-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by 15 N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of 15 N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed

  5. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  6. Vegetative growth performance of five medicinal plants under NaCl salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Z; Hussain, F [University of Peshawar (Pakistan). Dept. of Botany

    2010-02-15

    Seeds of Lepidium sativum L., Linum usitatissimum L., Nigella sativa L., Plantago ovata Forssk, and Trigonella foenum-graecum L. were grown in pots containing loamy soil with 0.21(Control) 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl to see their salinity tolerance. Various concentrations of salt had a highly significant effect upon the survival %age, plant height, number of branches, shoot fresh and dry weight, root fresh and dry weight and root moisture contents. Number of leaves also varied significantly. However, leaf length and shoot moisture contents exhibited non-significant differences. Differences among the test species for all the parameters under consideration were also highly significant. The findings suggest that the test species are tolerant to moderate salinity i.e., 7.5 dS/m and might be tried on saline soils to obtain some biomass. (author)

  7. vegetative growth performance of five medicinal plants under NaCl salt stress

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.

    2010-01-01

    Seeds of Lepidium sativum L., Linum usitatissimum L., Nigella sativa L., Plantago ovata Forssk, and Trigonella foenum-graecum L. were grown in pots containing loamy soil with 0.21(Control) 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl to see their salinity tolerance. Various concentrations of salt had a highly significant effect upon the survival %age, plant height, number of branches, shoot fresh and dry weight, root fresh and dry weight and root moisture contents. Number of leaves also varied significantly. However, leaf length and shoot moisture contents exhibited non-significant differences. Differences among the test species for all the parameters under consideration were also highly significant. The findings suggest that the test species are tolerant to moderate salinity i.e., 7.5 dS/m and might be tried on saline soils to obtain some biomass. (author)

  8. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  9. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill under stress of NaCl and/or ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Hesham F. Alharby

    2016-11-01

    Full Text Available Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1 and ZnO-NPs (0, 15 and 30 mg L−1. Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD and glutathione peroxidase (GPX genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa. Keywords: Tomato, Salt stress, Nanoparticles, Gene expression, Real-time PCR, Polymorphism

  10. Diffusion of calcium in pure and doped NaCl; Diffusion du calcium dans NaCl pur et dope

    Energy Technology Data Exchange (ETDEWEB)

    Slifkin, L; Brebec, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have determined, by diffusion experiments of Ca in pure and doped NaCl, the activation energy for the calcium jumps and the binding energy between calcium ion and vacancy. (authors) [French] Nous avons determine, par des mesures de diffusion du Ca dans NaCl pur et NaCl dope avec CaCl{sub 2}, l'energie d'activation relative aux sauts du calcium et l'energie de liaison lacune-calcium. (auteurs)

  11. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    Science.gov (United States)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  12. Dry heat tolerance of the dry colony in Nostoc sp. HK-01 for useful usage in space agriculture

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Yamashita, Masamichi; Sato, Seigo; Katoh, Hiroshi

    Space agriculture producing foods is important as one of approach for space habitation. Nostoc sp. HK-01 is one of terrestrial cyanobacterium having a high dry tolerance and it has several ability, photosynthesis, nitrogen fixation and usefulness as a food, it is thought that it can be used for space agriculture. Besides, a study on each tolerance predicted at the time of introduction to space agriculture is necessary. Therefore, as one of the tolerance that are intended to space environment, dry heat ( 100(°) C, 10 h ) tolerance of dry colony in Nostoc sp. HK-01 has been investigated, but the detail function of them has not yet been elucidated. We focused on the extracellular polysaccharides ( EPS ) having the various tolerance, desiccation, low temperature, NaCl, and heavy particle beam. We will consider the function and useful usage of this cyanobacterum in space agriculture after the consideration of the results of contribution of the possibility that EPS improves dry heat tolerance under a dry condition.

  13. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    Ashok A. Nikam

    2015-02-01

    Full Text Available Gamma ray-induced in vitro mutagenesis and selection for salt (NaCl tolerance were investigated in sugarcane (Saccharum officinarum L.. Embryogenic callus cultures were irradiated (10 to 80 Gy and subjected to in vitro selection by exposure of irradiated callus to NaCl (0, 50, 100, 150, 200, and 250 mmol L− 1. Increasing NaCl concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+ and K+ concentration. Higher accumulation of proline and glycine betaine was observed in NaCl stressed callus irradiated at 20 Gy. Na+ concentration increased and K+ concentration decreased with increasing salt level. Irradiated callus showed 50–60% regeneration under NaCl stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%, number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.

  14. Proteomic analysis of the response to NaCl stress of Lactobacillus bulgaricus.

    Science.gov (United States)

    Li, Chun; Li, Pei-Zhao; Sun, Jin-Wei; Huo, Gui-Cheng; Liu, Li-Bo

    2014-11-01

    Lactobacillus bulgaricus is commonly used in dairy products as a starter culture. Its viability during freeze-drying is of commercial interest. Here a significant (p bulgaricus ATCC 11842 was achieved during freeze-drying when it was prestressed with 2 % (w/v) NaCl for 2 h in the late growth phase. To understand the mechanism of this stress-related viability improvement in L. bulgaricus, protein synthesis was analyzed by 2D difference gel electrophoresis. Nine protein spots were significantly altered by NaCl and were subsequently identified by peptide mass fingerprinting. The functions of the proteins included stress-related protein synthesis, amino acid biosynthesis, nucleotide biosynthesis, sugar metabolism, transport systems, and vitamin biosynthesis. These findings provide a considerable background regarding the NaCl stress response of L. bulgaricus.

  15. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.

    Science.gov (United States)

    Ruiz-Carrasco, Karina; Antognoni, Fabiana; Coulibaly, Amadou Konotie; Lizardi, Susana; Covarrubias, Adriana; Martínez, Enrique A; Molina-Montenegro, Marco A; Biondi, Stefania; Zurita-Silva, Andrés

    2011-11-01

    Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  17. Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042.

    Science.gov (United States)

    Gao, Xianli; Yin, Yiyun; Zhou, Cunshan

    2018-02-01

    A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.

  18. Dynamic Leg Exercise Improves Tolerance to Lower Body Negative Pressure

    Science.gov (United States)

    Watenpaugh, D. E.; Ballard, R. E.; Stout, M. S.; Murthy, G.; Whalen, R. T.; Hargens, A. R.

    1994-01-01

    These results clearly demonstrate that dynamic leg exercise against the footward force produced by LBNP substantially improves tolerance to LBNP, and that even cyclic ankle flexion without load bearing also increases tolerance. This exercise-induced increase of tolerance was actually an underestimate, because subjects who completed the tolerance test while exercising could have continued for longer periods. Exercise probably increases LBNP tolerance by multiple mechanisms. Tolerance was increased in part by skeletal muscle pumping venous blood from the legs. Rosenhamer and Linnarsson and Rosenhamer also deduced this for subjects cycling during centrifugation, although no measurements of leg volume were made in those studies: they found that male subjects cycling at 98 W could endure 3 Gz centrifugation longer than when they remained relaxed during centrifugation. Skeletal muscle pumping helps maintain cardiac filling pressure by opposing gravity-, centrifugation-, or LBNP-induced accumulation of blood and extravascular fluid in the legs.

  19. Kinetin Reversal of NaCl Effects

    Science.gov (United States)

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  20. Combined Effects of Boron and NaCl on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    ZHEN Mei-nan

    2015-08-01

    Full Text Available To investigate the combined effects of boron(Band NaCl on the growth of wheat, a pot experiment was conducted using wheat (Triticum aestivum Linn.seedlings. Boron concentrations of culture medium were set as 0, 50 mg·kg-1 and 100 mg·kg-1, and NaCl concentrations were 0, 1 g·kg-1 and 2 g·kg-1. The results showed that both boron and NaCl could significantly inhibit wheat growth. At 50 mg B·kg-1, NaCl aggravated growth inhibition caused by boron. At 100 mg B·kg-1, however, NaCl alleviated the inhibition caused by boron. The combined stress of boron and NaCl significantly increased the root to shoot ratio of wheat. NaCl inhibited the uptake of boron by wheat. It suggests that under severe boron stress, NaCl is able to alleviate boron toxicity in wheat by increasing root to shoot ratio and reducing boron uptake.

  1. Evaluation of Sugarcane (Saccharum officinarum L. Somaclonals Tolerance to Salinity Via In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    HAMID RAJABI MEMARI

    2011-06-01

    Full Text Available Tissue culture technique was used to obtain salt tolerant variants from embryogenic calluses of sugarcane (Saccharum sp. var. CP48-103 that cultured on a selective medium containing different levels of NaCl (0, 0.2, 0.4, 0.6, and 0.8% NaCl. A total of four plants regenerated from the tolerant calluses were selected but the best of them in vigor grown in in vitro and hydroponic systems under salinity stress to comparison with source variety. With increasing supply of NaCl in both systems, root growth was more adversely affected than was shoot growth. Chlorophyll contents showed a decreasing trend and dry matter yield of plants reduced but in a slow rate in tolerant somaclonal than source variety. The biochemical analysis showed that at high salt concentration, Cl- and Na+ content in shoot and root increased. With rising salt concentration from 0 to 0.8%, content of Cl- in shoot and root of tolerant variant changed lower than parent showed that this variant had genetic lowest ratio of shoot/root chloride and had minimum transport of Cl- to shoots. Also this variant had high content of Ca2+ in shoot and high K+/Na+ ratio at all salinity levels. Thus it probably has genetic potential to avoid harmful ions uptake.

  2. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  3. Electron scattering in graphene with adsorbed NaCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wołoś, Agnieszka [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pasternak, Iwona; Strupiński, Włodek [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  4. Electron scattering in graphene with adsorbed NaCl nanoparticles

    International Nuclear Information System (INIS)

    Drabińska, Aneta; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Pasternak, Iwona; Strupiński, Włodek; Krajewska, Aleksandra

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer

  5. Secretory NaCl and volume flow in renal tubules.

    Science.gov (United States)

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  6. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Comparison of saline tolerance among genetically similar species of Fusarium and Meloidogyne recovered from marine and terrestrial habitats

    Science.gov (United States)

    Elmer, W. H.; LaMondia, J. A.

    2014-08-01

    Successful plant pathogens co-evolve and adapt to the environmental constraints placed on host plants. We compared the salt tolerance of two salt marsh pathogens, Fusarium palustre and Meloidogyne spartinae, to genetically related terrestrial species, F. sporotrichioides and Meloidogyne hapla, to assess whether the salt marsh species had acquired selective traits for persisting in saline environments or if salt tolerance was comparable among Fusarium and Meloidogyne species. Comparisons of both species were made in vitro in vessels containing increasing concentration of NaCl. We observed that F. palustre was more tolerant to NaCl than F. sporotrichioides. The radial expansion of F. palustre on NaCl-amended agar plates was unaffected by increasing concentrations up to 0.3 M. F. sporotrichioides showed large reductions in growth at the same concentrations. Survival of M. hapla was greatest at 0 M, and reduced by half in a 0.3 M solution for 4 days. No juveniles survived exposure to 0.3 M NaCl for 12 days. M. spartinae survived at all NaCl concentrations tested, including 1.0 M for at least 12 days. These findings are consistent with the hypothesis that marine organisms in the upper tidal zone must osmoregulate to withstand a wide range of salinity and provide evidence that these pathogens evolved in saline conditions and are not recent introductions from terrestrial niches.

  8. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  9. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  10. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  11. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Michael J. Van Oosten

    2017-07-01

    Full Text Available Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP, a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl, respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching, protection of the photosynthetic system (improving quantum yield of photosystem II and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots. To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions.Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  12. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  13. Crop improvement for salinity and drought tolerance using nuclear and related techniques (abstract)

    International Nuclear Information System (INIS)

    Serraj, R.; Lagoda, P.J.

    2005-01-01

    Although drought and salinity stresses have long been recognised as major constraints of crop productivity, the genetic advances in breeding programs for drought-prone and saline environments have been slow. An important reason for this is that dry environments are often characterized by unpredictable and highly variable seasonal rainfall, and hence highly variable yields and genotype-by-environment interaction (G x E). Similarly, saline environments show large spatial and temporal variability in the nature and degree of sanotiazol. Another major constraint to the genetic improvement of drought and salinity tolerance traits is the lack of understanding of their complex physiological and genetic bases, and the difficulty in combining favourable alleles into adapted and high yielding genotypes. Many claims have been made for the improvement of drought and salinity tolerance through biotechnology and genetic engineering, but there have been few if any successful examples of these resulting in increased yields in farmers' fields. Conventional breeding for drought has been slightly successful, although for salinity only a few examples of improved cultivars have been released. Similarly, marker assisted breeding (MAB) can be effective in a trait-based approach to crop improvement for stress environments, as it allows the incorporation of quantitative trait loci (QTL) for superior expression of major yield components under stress, where there are regular associations between such components and overall grain yield. MAB provides opportunities for both the introgression of various individual physiological or biochemical tolerance traits and/or for selection for complex, whole crop responses involved In crop tolerance to stress. Systematically pyramiding tolerance traits, which individually may have only a limited effect on the overall phenotype, in selected genotypes can provide a significant cumulative effect on crop yield under stress. In view of the multigenic and

  14. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    Improving drought tolerance and productivity is one of the most difficult tasks for ... Keywords. Candidate gene; mapping population; polymerase chain reaction; single marker analysis. .... ple and the mean value computed. 2.4 Isolation of DNA.

  15. Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  16. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  17. Advances in improvement of stress tolerance by induced mutation and genetic transformation in alfalfa

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    In order to provide references for stress-tolerant breeding of alfalfa, genetic basis of stress-tolerant traits was briefly introduced and advanced in improvement of stress-tolerance by induced mutation and genetic transformation in alfalfa were reviewed. (authors)

  18. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.

    Science.gov (United States)

    Zheng, Dao-Qiong; Jin, Xin-Na; Zhang, Ke; Fang, Ya-Hong; Wu, Xue-Chang

    2017-05-01

    The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    Science.gov (United States)

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance. © 2015 John Wiley & Sons Ltd.

  20. Can bronchodilators improve exercise tolerance in COPD patients without dynamic hyperinflation?

    Directory of Open Access Journals (Sweden)

    Maria Enedina Aquino Scuarcialupi

    2014-04-01

    Full Text Available OBJECTIVE: To investigate the modulatory effects that dynamic hyperinflation (DH, defined as a reduction in inspiratory capacity (IC, has on exercise tolerance after bronchodilator in patients with COPD. METHODS: An experimental, randomized study involving 30 COPD patients without severe hypoxemia. At baseline, the patients underwent clinical assessment, spirometry, and incremental cardiopulmonary exercise testing (CPET. On two subsequent visits, the patients were randomized to receive a combination of inhaled fenoterol/ipratropium or placebo. All patients then underwent spirometry and submaximal CPET at constant speed up to the limit of tolerance (Tlim. The patients who showed ΔIC(peak-rest 0.05. In addition, both groups showed similar improvements in Tlim after bronchodilator (median [interquartile range]: 22% [3-60%] vs. 10% [3-53%]; p > 0.05. CONCLUSIONS: Improvement in TLim was associated with an increase in IC at rest after bronchodilator in HD- patients with COPD. However, even without that improvement, COPD patients can present with greater exercise tolerance after bronchodilator provided that they develop DH during exercise.

  1. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...... a week. Muscle fiber size, composition and capillary density were analyzed in biopsies obtained in the vastus lateralis muscle. Glucose tolerance and the insulin response were measured by a 2-hour oral glucose tolerance test. Results: All outcome measures remained unchanged during the control period....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...

  2. Insertion of a specific fungal 3'-phosphoadenosine-5'-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants.

    Science.gov (United States)

    Gašparič, Meti Buh; Lenassi, Metka; Gostinčar, Cene; Rotter, Ana; Plemenitaš, Ana; Gunde-Cimerman, Nina; Gruden, Kristina; Zel, Jana

    2013-01-01

    Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3'-phosphoadenosine-5'-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should

  3. Mind-Body Skills Training to Improve Distress Tolerance in Medical Students: A Pilot Study.

    Science.gov (United States)

    Kraemer, Kristen M; Luberto, Christina M; O'Bryan, Emily M; Mysinger, Erica; Cotton, Sian

    2016-01-01

    Medical students face rigorous and stressful work environments, resulting in high rates of psychological distress. However, there has been a dearth of empirical work aimed at modifying risk factors for psychopathology among this at-risk group. Distress tolerance, defined as the ability to withstand emotional distress, is one factor that may be important in promoting psychological well-being in medical students. Thus, the aim of the current mixed-methods study was (a) to describe changes in facets of distress tolerance (i.e., emotional tolerance, absorption, appraisal, regulation) for medical students who completed a mind-body skills training group, and a no-intervention control group of students; (b) to examine the relationship between changes in psychological variables and changes in distress tolerance; and (c) to report students' perceptions of the mind-body group, with an emphasis on how the group may have affected personal and professional functioning due to improvements in distress tolerance. The mind-body program was an 11-week, 2-hour skills training group that focused on introducing, practicing, and processing mind-body skills such as biofeedback, guided imagery, relaxation, several forms of meditation (e.g., mindfulness), breathing exercises, and autogenic training. Participants were 52 first- and second-year medical students (62.7% female, Mage = 23.45, SD = 1.51) who participated in a mind-body group or a no-intervention control group and completed self-report measures before and after the 11-week period. Students in the mind-body group showed a modest improvement in all distress tolerance subscales over time (ΔM = .42-.53, p = .01-.03, d = .44-.53), whereas the control group showed less consistent changes across most subscales (ΔM = .11-.42, p = .10-.65, d = .01-.42). Students in the mind-body group qualitatively reported an improved ability to tolerate affective distress. Overall, improvements in psychological symptoms were associated with

  4. Overexpression of BdMATE Gene Improves Aluminum Tolerance in Setaria viridis

    Directory of Open Access Journals (Sweden)

    Ana P. Ribeiro

    2017-06-01

    Full Text Available Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE, closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

  5. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    Science.gov (United States)

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.

  6. Genetic improvement of drought tolerance in semi-dwarf wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Laghari, K.A.

    2012-01-01

    Water stress is one of the main environmental constraints for the wheat crop. Drought stress from anthesis to maturity, especially if accompanied by heat stress, affects every morphological and physiological aspect of wheat plant and significantly reduces final yield. Genetic improvement for drought tolerance in wheat could be possible through conventional and mutation breeding tools. There is a dire need to identify stress tolerant genotypes which can grow and flourish well under harsh environments (low water requirements). Twelve newly evolved bread wheat genotypes alongwith 3 drought-tolerant commercial check varieties, viz., Sarsabz, Khirman and Chakwal-86 were screened under three water stresses (zero, single and two irrigations). Different yield associated traits were studied. At severe water stress (zero irrigation), six genotypes (BWM-3, NIA-8/7, NIA-9/5, NIA-28/4, NIA-25/5, MSH-36) produced significantly higher grain yield (ranged from 1522 to 2022 kg/ha) than check varieties. These genotypes had higher seed index and less spike sterility at severe stress, which indicated that these genotypes were less responsive to water stress and possessed more tolerance to drought stress. (author)

  7. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  8. Dispersion tolerance enhancement using an improved offset-QAM OFDM scheme.

    Science.gov (United States)

    Zhao, Jian; Townsend, Paul D

    2015-06-29

    Discrete-Fourier transform (DFT) based offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) without cyclic prefix (CP) was shown to offer a dispersion tolerance the same as that of conventional OFDM with ~20% CP overhead. In this paper, we analytically study the fundamental mechanism limiting the dispersion tolerance of this conventional scheme. It is found that the signal and the crosstalk from adjacent subcarriers, which are orthogonal with π/2 phase difference at back to back, can be in-phase when the dispersion increases to a certain value. We propose a novel scheme to overcome this limitation and significantly improve the dispersion tolerance to that of one subcarrier. Simulations show that the proposed scheme can support a 224-Gb/s polarization-division-multiplexed offset-4QAM OFDM signal over 160,000 ps/nm without any CP under 128 subcarriers, and this tolerance scales with the square of the number of subcarriers. It is also shown that this scheme exhibits advantages of greatly enhanced spectral efficiency, larger dispersion tolerance, and/or reduced complexity compared to the conventional CP-OFDM and reduced-guard-interval OFDM using frequency domain equalization.

  9. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  10. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  11. IRSL characteristics of NaCl and KCl relative to dosimeter

    International Nuclear Information System (INIS)

    Tanir, Guenes; Hicabi Boeluekdemir, M.; Catli, Serap; Tel, Eyyuep

    2007-01-01

    The aim of this work is to determine and compare the dosimetric properties of NaCl and KCl samples using infrared-stimulated luminescence (IRSL) technique. For a material to be used as dosimeter, both the IRSL temperature dependence and the radiation dose response have critical importance. In this work the IRSL characteristics from NaCl and KCl samples were experimentally investigated as a function of temperature and laboratory radiation doses. Dosimetric properties of NaCl and KCl samples were found significantly different. The IRSL signals displayed by NaCl were found to be more stable, reliable and agreeable than those of KCl

  12. Rapid evolution of tolerance to road salt in zooplankton.

    Science.gov (United States)

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl -  L -1 ). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl -  L -1 ). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl -  L -1 ) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl -  L -1 ). At the intermediate concentration (1300 mg Cl -  L -1 ), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl -  L -1 ) had higher survival than populations previously exposed to natural background levels (15 mg Cl -  L -1 ). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl -  L -1 ). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  13. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    KAUST Repository

    Awlia, Mariam

    2016-09-28

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.

  14. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    Science.gov (United States)

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  15. Genetic diversity of improved salt tolerant calli of maize (Zea mays L.) using RAPD

    Science.gov (United States)

    Saputro, Triono Bagus; Dianawati, Siti; Sholihah, Nur Fadlillatus; Ermavitalini, Dini

    2017-06-01

    Maize is one of important cultivated plants in the world, in terms of production rates, utilization rates and demands. Unfortunately, the increment of demands were not followed by the increase of production rates since the cultivation area were significantly decrease. Coastal area is the marginal land that have a good potential to extend the cultivation area. The main challenge of this area is the high content of salt. The aims of this research were try to induce a new varian of local maize through in vitro culture and observe its genetic variation using RAPD. Bluto variety from Madura island was used as an explant in callus induction. Induction of callus were conducted using MS basal medium supplemented with 3 mg/L of 2,4 D under dark condition. While the selection stage was conducted using MS basal medium supplemented with 3 mg/L of 2,4 D with the addition of various concentration of NaCl (0 mg/L; 2500 mg/L; 5000 mg/L; and 7500 mg/L). The research were arranged in a completely randomized design with three replications. The exposion of NaCl were significantly decrease the mass of maize callus. The highest addition of callus weight was 210 mgs in control treatment, while the lowest is in 7500 mg/L with 3 mgs. The RAPD technique was utilized to characterize the genotype of maize callus. Out of five primers, only three primers can produce polymorphic bands named OPA10, OPB07 and OPC02. Taken together, the surviving callus of Bluto varians can be further developed as potential somaclone that has high tolerance to salt stress.

  16. Effect of NaCl salinity on the germination and seedling growth of some medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Z; Hussain, F [University of Peshawar (Pakistan). Dept. of Botany

    2010-04-15

    Seeds of Lepidium sativum L., Linum usitatissimum L., Plantago ovata Forssk., and Trigonella foenum-graecum L. were tested in 0.05 (Control), 2.5, 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl. ANOVA revealed highly significant differences for plumule growth while germination percentage, radicle growth, seedling fresh and dry weight and moisture contents showed non-significant variation under various salt concentrations. However, the differences among the species for all the parameters studied were highly significant. The findings suggest that these medicinal species might tolerate moderate levels of salinity and can be tried for cultivation on marginal salted soils. (author)

  17. Effect of NaCl salinity on the germination and seedling growth of some medicinal plants

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.

    2010-01-01

    Seeds of Lepidium sativum L., Linum usitatissimum L., Plantago ovata Forssk., and Trigonella foenum-graecum L. were tested in 0.05 (Control), 2.5, 5.0, 7.5, 10.0, 12.5, or 15.0 dS/m concentration of NaCl. ANOVA revealed highly significant differences for plumule growth while germination percentage, radicle growth, seedling fresh and dry weight and moisture contents showed non-significant variation under various salt concentrations. However, the differences among the species for all the parameters studied were highly significant. The findings suggest that these medicinal species might tolerate moderate levels of salinity and can be tried for cultivation on marginal salted soils. (author)

  18. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    Science.gov (United States)

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  20. Highlighting the mechanisms by which proline can confer tolerance to salt stress in cakile maritima

    International Nuclear Information System (INIS)

    Messedi, D.; Farhani, F.; Hamed, K.B.; Trabelsi, N.; Ksouri, R.; Chedly Abdelly, C.; Athar, H.U.R.

    2016-01-01

    Cakile maritima is an oleaginous halophyte growing in the sandy dunes along the Tunisian coast. In order to investigate the role of proline in inducing high salinity tolerance (200 and 400 mM NaCl) in this halophyte, we studied several aspects of the salt responses of C. maritma under exogenous proline supply (20 mM). Salinity levels above 100 mM, reduced growth, photosynthetic activity, and quantum yield of photosystem II (FPSII), while increasing the non photochemical quenching (NPQ). Significant inhibition of the linear electron transport rate (ETR) was also observed in plants grown at 400 mM NaCl. In addition, polyphenol content, total antioxidant and DPPH scavenging activities increased due to increasing salinity stress, and the concentration of malondialdehyde (MDA) also increased. The application of proline counteracted all these adverse effects of salt stress in plants grown at 200 mM NaCl, while it improved some of these physiological attributes at 400 mM NaCl. In addition, contribution of Na+ for the osmotic adjustment decreased in the leaves of salt treated plants supplied with proline exogenously. Exogenous application of proline induced the accumulation of potassium, proline and soluble carbohydrates in salt stressed plants, particularly at 400 mM. This explained the reason of growth enhancement induced by proline application. All together, our Results showed that the beneficial effect of exogenous proline on the response of C. maritima to salinity was due to its role in the protection of chloroplast structures, antioxidant defenses and osmotic adjustment. (author)

  1. Polishing large NaCl windows on a continuous polisher

    International Nuclear Information System (INIS)

    Williamson, R.

    1979-01-01

    The Helios and Antares CO 2 fusion laser systems incorporate numerous large sodium chloride windows. These must be refinished periodically, making necessary a consistent and predictable polishing capability. A continuous polisher (or annular lap) which might at Kirtland's Developmental Optical Facility. Large NaCl windows had not been polished on this type of machine. The machine has proven itself capable of producing lambda/16 figures at 633 nm (HeNe) with extremely smooth surfaces on glass. Since then, we have been working exclusively on NaCl optics. Due to different polishing parameters between NaCl and glass, and the slight solubility of the pitch in the slurry, this phase presents new problems. The work on glass will be reviewed. Results on NaCl to date will be reported. The potential of this type of machine relative to prisms, thin and irregularly shaped optics will be discussed

  2. Manipulating Single Microdroplets of NaCl Solutions

    DEFF Research Database (Denmark)

    Utoft, Anders; Kinoshita, Koji; Bitterfield, Deborah

    2018-01-01

    fraction of S = 1.9, the saturation concentration of NaCl in aqueous solution as measured with nanograms of material (5.5 ± 0.1 M), the diffusion coefficient for water in octanol, D = (1.96 ± 0.10) × 10−6 cm2/s, and the effect of the solvent’s activity on dissolution kinetics. It is further shown...... growth are affected by changing the bathing medium from octanol to decane. A much slower loss of water-solvent and concomitant slower up-concentration of the NaCl solute resulted in a lower tendency to nucleate and slower crystal growth because much less excess material was available at the onset...... of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane...

  3. From genetics to functional genomics: Improvement in drought signaling and tolerance in wheat

    Directory of Open Access Journals (Sweden)

    Hikmet eBudak

    2015-11-01

    Full Text Available Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs, microRNAs (miRNAs, hormones, proteins, co-factors, ions and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs and quantitative trait loci (QTLs associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics and ionomics has helped to identify and characterize the genes, proteins, metabolites and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance

  4. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  5. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhao, Y L; Wang, H M; Shao, B X; Chen, W; Guo, Z J; Gong, H Y; Sang, X H; Wang, J J; Ye, W W

    2016-05-25

    The identification of simple sequence repeat (SSR) markers associated with salt tolerance in cotton contributes to molecular assisted selection (MAS), which can improve the efficiency of traditional breeding. In this study, 134 samples of upland cotton cultivars were selected. The seedling emergence rates were tested under 0.3% NaCl stress. A total of 74 SSR markers were used to scan the genomes of these samples. To identify SSR markers associated with salt tolerance, an association analysis was performed between salt tolerance and SSR markers using TASSEL 2.1, based on the analysis of genetic structure using Structure 2.3.4. The results showed that the seedling emergence rates of 134 cultivars were significantly different, and 27 salt-sensitive and 10 salt-tolerant cultivars were identified. A total of 148 loci were found in 74 SSR markers involving 246 allelic variations, which ranged from 2 to 7 with an average of 3.32 per SSR marker. The gene diversity ranged from 0.0295 to 0.4959, with the average being 0.2897. The polymorphic information content ranged from0.0290 to 0.3729, with the average being 0.2381. This natural population was classified into two subgroups by Structure 2.3.4, containing 89 and 45 samples, respectively. Finally, eight SSR sites associated with salt tolerance ware found through an association analysis, with the rate of explanation ranging from 2.91 to 7.82% and an average of 4.32%. These results provide reference data for the use MAS for salt tolerance in cotton.

  6. Progress in selection for sodium chloride, 2,4-D dichlorophenoxy acetic acid (2,4-D) and streptomycin tolerance in Citrus sinensis ovular callus lines

    International Nuclear Information System (INIS)

    Kochba, J.; Spiegel-Roy, P.

    1982-01-01

    Citrus sinensis (cultivar Shamouti) nucellar embryogenic callus lines with greatly increased tolerance to salinity (NaCl), 2,4-D and streptomycin were selected. Selected lines were found stable after removal of selection pressure. Gamma irradiation at 8-16 kR was also employed and found to speed up selections. Embryos from NaCl and 2,4-D tolerant lines also showed increased tolerance. Embryogenesis in selected lines, suppressed during selection procedures, was regained by growing cultures in the presence of galactose or lactose as the sole carbon source. A schedule was worked out furthering development of embryos into plantlets. Conditions for adventive shoot formation from embryonic shoot segments were established, thus allowing cloning of embryos. A procedure was worked out for suspension culture and agar plating of cell groups. (author)

  7. Using gamma irradiation for the improvement of MM106 and omara apple Malus domestica Borkh rootstocks to sodium chloride tolerance in Vitro

    International Nuclear Information System (INIS)

    Aljibouri, A.A.M.; Abdel-Hussen, M.A.; Salman, M.A.

    2010-01-01

    In vitro plant lets of MM106 and Omara apple rootstocks were irradiated with gamma ray doses (0, 5, 10, 15, 20, 25, 30, and 35 Gray). Shoot tips of irradiated plant lets with incremental doses were in vitro cultured on MS medium supplemented with different NaCl concentrations to study the effect of gamma rays and NaCl salt on shoot number, shoot length and rooting percentage. Results revealed that gamma rays treatment improved significantly the parameters investigated for both types of rootstocks, especially the doses of 15 and 20 Gy for MM106 and 25 Gy for Omara. On the other hand, salinity caused a significant reduction in all parameters measured with different trend between both types of rootstocks. The results also showed significant interaction between gamma rays doses and NaCl concentrations.

  8. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology

    Directory of Open Access Journals (Sweden)

    Hongyan eWang

    2016-02-01

    Full Text Available Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  9. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    Science.gov (United States)

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  10. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  11. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  12. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  13. Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L. Under Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Souguir, Maher

    2013-04-01

    Full Text Available Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L. under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control and five salinity solution (4,6,8,10 and 12 gl-1. Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions.

  14. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  15. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  16. Successful strategy to improve glucose tolerance in Thai obese youth.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Nakavachara, Pairunyar; Santiprabhob, Jeerunda; Kiattisakthavee, Pornpimol; Wongarn, Renu; Likitmaskul, Supawadee

    2010-11-01

    Childhood obesity is an emerging national health problem in Thailand. Our previous study found that one third of obese children and adolescents had impaired glucose tolerance (IGT) and 2.6 percent had already developed type 2 diabetes mellitus. An immediate strategy needs to be established in order to improve these metabolic problems. To determine whether diet and exercise education for lifestyle modification with or without metformin therapy in our diabetes clinic is enable to improve these metabolic problems. Twenty-six Thai obese children and adolescents with IGT, who received at least 6 months of treatment consisting of lifestyle modification alone or lifestyle modification and metformin (combined treatment) were enrolled into this study. Each patient underwent the second 2-hour oral glucose tolerance test (OGTT). Plasma glucose, insulin levels, HbA1C and lipid profiles were measured. The results were compared with historical pre-treatment data. Approximately 1 year after intervention, 19 out of 26 patients with IGT completed the second 2-hour OGTT. Sixteen patients (84.2%) successfully reversed to be normal glucose tolerance whereas 3 patients (15.8%) remained IGT. Body mass index (BMI), BMISDS, 2-hour plasma glucose, basal insulin level, 2-hour insulin level were significantly decreased after treatment in normal OGTT group (Ps youth is a reversible abnormality by lifestyle modification with or without metformin.

  17. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.

    Science.gov (United States)

    Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong

    2015-06-01

    Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.

  18. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  19. GmSALT3, which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl– Exclusion prior to Na+ Exclusion but does not Improve Early Vigour under Salinity

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-09-01

    Full Text Available Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3 has the potential to improve soybean yields in salinized conditions. To evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions, three sets of near isogenic lines (NILs, with genetic similarity 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties, 85-140 (salt-sensitive, S and Tiefeng 8 (salt-tolerant, T by using marker-assisted selection. Each NIL; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigour under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl– in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl– than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl– accumulation in soybean, and contributes to improved soybean yield through maintaining a

  20. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation.

    Science.gov (United States)

    Qin, Yu-Xiang; Qin, Fangyuan

    2016-02-01

    Dehydrins confer abiotic stress tolerance in seedlings, but few dehydrins have been studied by transgenic analysis under their own promoters in relation to abiotic stress tolerance. Also the inducible promoters for transgenic engineering are limited. In this study, we isolated from wheat three salt-induced YSK2 dehydrin genes and their promoters. The cDNA sequences were 711, 785, and 932 bp in length, encoding proteins containing 133, 166 and 231 amino acids, respectively, and were named TaDHN1, TaDHN2, and TaDHN3. TaDHN2 doesn't contain introns, while the other two genes each contain one. Semi-quantitative reverse transcription PCR analysis revealed all three dehydrin genes are substantially induced by ABA and NaCl, but only TaDHN2 is induced in seedlings by PEG and by cold (4 °C). Regulatory sequences upstream of the first translation codon (775, 1615 and 889 bp) of the three dehydrin genes were also cloned. Cis-element prediction indicated the presence of ABRE and other abiotic-stress-related elements. Histochemical analysis using GUS expression demonstrated that all three promoters were induced by ABA, cold or NaCl. Ectopic over-expression of TaDHN1 or TaDHN3 in Arabidopsis under their own inducible promoters enhanced NaCl- and drought-stress tolerance without growth retardation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Effect of Short Term NaCl Stress on Cultivars of S. lycopersicum: A Comparative Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-03-01

    Full Text Available Tomato is a crop plant with high fruit nutritive value and other useful properties. The cultivation of this species is dependent on many environmental factors, e.g. temperature, salinity, nutrients etc, affecting the yield and reproductive potential of the plant. Salinity in soil or water is of increasing importance to agriculture because it causes stress to crop plants. Plants exposed to an excess amount of salts such as NaCl undergo osmotic stress, water deficit and ionic imbalances and can increase production of reactive oxygen species(ROS. Higher plants possess very efficient enzymatic and non-enzymatic antioxidative defense mechanisms that allow the scavenging of ROS and protection of cellular components from oxidative damage. Studies were conducted to investigate the effect of short term salinity stress on some physiological alterations in three tomato cultivars Pusa Ruby(PR, Punjab Keshari (PK and Ailsa Craig(AC. Some biochemical parameters (anthocyanin and carotenoeid content, polyamines, proline, cysteine, peroxidase and malondialdehyde were set and applied at two month old stage of tomato plants. Three tomato cultivars were grown in 0.5xMS for 2 months and at this stage, they were treated with 0 and 200mM NaCl for a short period of six hours in hydroponic conditions. The genotypes exhibited different responses in terms of different osmoprotectant, antioxidant, and pigment level. The relationships among the salinity and accumulation of these compounds in leaf were then determined. It was concluded that, tomato cultivars under study responded differently showing their sensitivity or tolerance to salinity stress. Among three cultivars PK appeared to be more tolerant genotype than the other two cultivars PR and AC. PK could rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. The research was conducted in a completely randomized design with three replications.

  2. Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India

    Directory of Open Access Journals (Sweden)

    Swarnendu Roy

    2017-09-01

    Full Text Available The salt tolerance of 12 native forage grasses from the eastern part of Terai-Duar grasslands was assessed using a rapid method of leaf disc senescence bioassay. Samples of these grasses were grown in untreated water as well as 100 and 200 mM NaCl solutions for periods of 3, 6 and 9 days. Discs of fresh leaf were then placed in untreated water as well as in 100 and 200 mM NaCl solutions for 96 hours. Quantitative effects were measured as the effects on chlorophyll concentration in leaves in response to exposure to the varying solutions. From these results, the salt sensitivity index (SSI of the individual grasses was determined. The SSI values indicated that Imperata cylindrica, Digitaria ciliaris and Cynodon dactylon were most salt-tolerant of all grasses tested. Further characterization of the grasses was done by observing the changes in 6 biomarkers for salinity tolerance: relative water content, total sugar concentration, proline concentration, electrolyte leakage, membrane lipid peroxidation and H2O2 concentration following exposure to 100 and 200 mM NaCl concentrations for 3, 6 and 9 days. Finally, hierarchical cluster analysis using the software CLUSTER 3.0 was used to represent the inter-relations among the physiological parameters and to group the grasses on the basis of their salinity tolerance. The overall results indicated that Imperata cylindrica, Eragrostis amabilis, Cynodon dactylon and Digitaria ciliaris were potentially salt-tolerant grasses and should be planted on saline areas to verify our results. On the other hand, Axonopus compressus, Chrysopogon aciculatus, Oplismenus burmanni and Thysanolaena latifolia were found to be highly salt-sensitive and would be unsuitable for use in saline areas. 

  3. Can quinoa, a salt-tolerant Andean crop species, be used for phytoremediation of chromium-polluted soil?

    Science.gov (United States)

    Ruiz, Karina B.; Cicatelli, Angela; Guarino, Francesco; Jacobsen, Sven-Erik; Biondi, Stefania; Castiglione, Stefano

    2017-04-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean halophytic seed crop, exhibits exceptional resistance to salinity, drought, and cold. Consistent with the notion that such a resilient plant is likely to tolerate toxic levels of heavy metals as well and could, therefore, be employed for the clean-up of polluted soil (via phytoextraction or phytostabilization), the species' ability to take up, translocate, and tolerate chromium (CrIII) was investigated in a greenhouse pot experiment. A cultivar adapted to European conditions (cv. Titicaca) was grown on soil spiked with 500 mg kg-1 DW of Cr(NO3)3•9H2O, combined (or not) with 150 mM NaCl, or on soil grown with 150 mM NaCl alone. Plants were grown up to maturity (four months after sowing), and then plant biomass and concentrations of Na, Cr, and other elements (e.g., Fe and P) were evaluated in the plant organs. Soil Cr content (total and available fractions) was analysed at the start of the experiment, one week after the last addition of Cr and/or NaCl, and at the end of the trial. No visible toxic effects were observed under the different culture conditions. Results revealed that Cr was mainly accumulated in roots, while Na+ was translocated to the aerial parts. In order to compare plant stress responses under the different treatments (Cr, NaCl, Cr+NaCl), expression levels of several stress-related genes, together with those of a potential Cr transporter, were determined by quantitative real-time RT-PCR.

  4. Morpho- biochemical evaluation of Brassica rapa sub-species for salt tolerance

    Directory of Open Access Journals (Sweden)

    Jan Sohail Ahmad

    2016-01-01

    Full Text Available Salt stress is one of the key abiotic stresses that affect both the qualitative and quantitative characters of many Brassica rapa sub-species by disturbing its normal morphobiochemical processes. Therefore, the present research work was designed to study the effect of different NaCl events (0, 50,100 and 150 mmol on morphological and biochemical characters and to screen salt tolerant genotypes among brown, yellow and toria types of B. rapa sub-species. The plants were grown in test tubes with addition of four level of NaCl (0, 50,100 and 150 mmol. The effect of salinity on shoot and root length, shoot/ root fresh and dry weight, relative water content (RWC, proline and chlorophyll a, b, a+b contents was recorded after 4 weeks of sowing. The genotype 22861 (brown type showed excellent morphological and biochemical performance at all stress levels followed by Toria-Sathi and Toria-A respectively as compared to Check variety TS-1. The genotype 26158 (yellow type gave very poor performance and retard growth. The %RWC values and chlorophyll a, b and a+b contents were decreased several folds with the increase of salt concentration. While, the proline contents was increased with raising of salt stress. The brown and toria types showed maximum tolerance to salt stress at early germination stages as compare to yellows one. The present study will serve as model to develop quick salt tolerant genotypes among different plant sub-species against salt stress.

  5. Fault-tolerant control for current sensors of doubly fed induction generators based on an improved fault detection method

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    Fault-tolerant control of current sensors is studied in this paper to improve the reliability of a doubly fed induction generator (DFIG). A fault-tolerant control system of current sensors is presented for the DFIG, which consists of a new current observer and an improved current sensor fault...... detection algorithm, and fault-tolerant control system are investigated by simulation. The results indicate that the outputs of the observer and the sensor are highly coherent. The fault detection algorithm can efficiently detect both soft and hard faults in current sensors, and the fault-tolerant control...

  6. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  7. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    Science.gov (United States)

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C. dactylon) and their physiological responses to salt and drought stress.

    Science.gov (United States)

    Lu, Shaoyun; Peng, Xinxiang; Guo, Zhenfei; Zhang, Gengyun; Wang, Zhongcheng; Wang, Congying; Pang, Chaoshu; Fan, Zhen; Wang, Jihua

    2007-08-01

    A protocol was established for in vitro selection of salinity tolerant somaclonal variations from suspension cultured calli of triploid bermudagrass cv. TifEagle. To induce somaclonal variations the calli were subcultured for 18 months and were then subject to three-round selections for salt-tolerant calli by placing on solid medium containing 0.3 M NaCl for 10 days followed by a recovery for 2 weeks. The surviving calli were regenerated on regeneration medium containing 0.1 M NaCl. Three somaclonal variant lines (2, 71, and 77) were obtained and analyzed. The selected somaclonal lines showed higher relative growth and less injury than TifEagle under salt stress, indicating that they increased salt tolerance. In addition, they had higher relative water content and lower electrolyte leakage than TifEagle after withholding irrigation, indicating that they also increased drought tolerance. The three somaclonal variant lines had higher proline content than TifEagle under normal growth condition. The line 71 had a higher K(+)/Na(+) ratio, whereas the lines 2 and 77 had higher CAT activity under control and salt stress conditions, indicating that different mechanisms for salt tolerance might exist in these three lines.

  9. Stress-tolerant mutants induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Abe, Tomoko; Yoshida, Shigeo; Bae, Chang-Hyu; Ozaki, Takuo

    2000-01-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M 1 seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M 3 progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to 14 N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M 1 progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M 1 seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  10. Engineering yeast transcription machinery for improved ethanol tolerance and production.

    Science.gov (United States)

    Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory

    2006-12-08

    Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.

  11. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    Science.gov (United States)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  13. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  14. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress.

    Directory of Open Access Journals (Sweden)

    K C Babitha

    Full Text Available Basic helix-loop-helix (bHLH transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.

  15. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  16. Effects of Ge-132 and GeO2 on seed germination and seedling growth of Oenothera biennis L. under NaCl stress.

    Science.gov (United States)

    Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo

    2017-01-01

    To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO 2 ) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO 2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO 2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H 2 O 2 ) - by its electron configuration 4S 2 4P 2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO 2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO 2 on promoting salt tolerance of seed and seedling.

  17. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings.

    Science.gov (United States)

    Sang, Ting; Shan, Xi; Li, Bin; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-08-01

    Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings. Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.

  18. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    Science.gov (United States)

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  19. Phenotypic and genetic characteristics associated with Listeria monocytogenes food chain isolates displaying enhanced and diminished cold tolerance

    DEFF Research Database (Denmark)

    Hingston, P.; Chen, J.; Laing, C.

    between strains with varied cold tolerance. The objective of this study was to determine if Lm isolates with enhanced cold tolerance, exhibit other high risk characteristics that may add to their survival and/or pathogenicity. To accomplish this, 166 predominantly food/food plant Lm isolates were tested...... in brainheart infusion broth, for their ability to tolerate cold (4°C), salt (6% NaCl, 25°C), acid (pH 5, 25°C), and desiccation (33% RH, 20°C) stress. Isolates were considered tolerant or sensitive if they exhibited survival characteristics > or ... with a truncated version (n=47). Cold tolerant isolates were more likely to be tolerant to the other three stresses than intermediate and cold sensitive isolates. Similarly, cold sensitive isolates were more likely to be sensitive to the other stresses. Cold tolerant isolates had shorter (p=0.012) lag phases...

  20. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  1. Stress-tolerant mutants induced by heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomoko; Yoshida, Shigeo [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Bae, Chang-Hyu [Sunchon National University, Sunchon (Korea); Ozaki, Takuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Wang, Jing Ming [Akita Prefectural Univ. (Japan)

    2000-07-01

    Comparative study was made on mutagenesis in tobacco embryo induced by exposure to EMS (ethyl methane-sulfonate) ion beams during the fertilization cycle. Tobacco embryo cells immediately after pollination were exposed to heavy ion beam and the sensitivity to the irradiation was assessed in each developmental stage and compared with the effects of EMS, a chemical mutagen. Morphologically abnormality such as chlorophyll deficiency was used as a marker. A total of 17 salt-tolerant plants were selected from 3447 M{sub 1} seeds. A cell line showed salt resistance. The cell growth and chlorophyll content were each two times higher than that of WT cells in the medium containing 154 mM NaCl. Seven strains of M{sub 3} progeny of 17 salt-tolerant plants, showed strong resistance, but no salt tolerant progeny were obtained from Xanthi or Ne-ion irradiation. This shows that the sensitivity of plant embryo to this irradiation technique may vary among species. When exposed to {sup 14}N ion beam for 24-108 hours after pollination, various morphological mutants appeared at 18% in M{sub 1} progeny and herbicide tolerant and salt tolerant mutants were obtained. A strong Co-tolerant strain was obtained in two of 17 salt-tolerant strains and a total of 46 tolerant strains (0.2%) were obtained from 22,272 grains of M{sub 1} seeds. In these tolerant strains, the absorption of Co was slightly decreased, but those of Mg and Mn were increased. Mutants induced with ion-beam irradiation have potential not only for practical use in the breeding of stress-tolerant plants but also for gene analysis that will surely facilitate the molecular understanding of the tolerance mechanisms. (M.N.)

  2. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    Science.gov (United States)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  3. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  4. Arbuscular mycorrhizal fungi mitigates nacl induced adverse effects on solanum lycopersicum l

    International Nuclear Information System (INIS)

    Abeer, H.

    2015-01-01

    The present study aimed to investigate the effects of AMF on the growth and physio-biochemical attributes, antioxidant enzyme activities, plant growth regulators and inorganic nutrients in tomato grown under salt stress condition. Tomato plants were exposed to different concentrations of NaCl alone (0, 50 and 150 mM) and in combination with AMF (0mM+AMF, 50mM+AMF and 150mM+AMF). Spore population and colonization, growth and biomass yield, pigments, membrane stability index and malondialdehyde were negatively affected. Exposure of plants to combination of NaCl and AMF showed positive impact on the above parameters. Proline and antioxidant enzyme activity increased with increasing concentration of NaCl and further increase was observed in plants treated with NaCl in combination with AMF. Acid and alkaline phosphatase, hydrolytic enzymes and pectinase are also affected with increasing concentration of salt. However plants treated with NaCl in combination with AMF balances the above enzymatic activity. Salt stress decreases the auxin concentration in plants but application of AMF has been shown to restore the auxin content. ABA increases with salt concentration but less accumulation of ABA have been found in plants treated with AMF. Regarding the nutrient uptake, Na+ and Na;K ratio increased and P, K, Mg and Ca decreases with increasing concentration of NaCl. Enhanced accumulation of P, K, Mg, Ca and K:N ratio and less uptake of Na+ was observed in presence of AMF. The results confirm that NaCl imposes threat to the survival of tomato plants and application of AMF mitigates the negative effect to an appreciable level. (author)

  5. Is salinity tolerance related to osmolytes accumulation in Lygeum spartum L. seedlings?

    Directory of Open Access Journals (Sweden)

    Bouzid Nedjimi

    2011-06-01

    Full Text Available Lygeum spartum L. (Poaceae is a plant of commercial relevance used as raw material for manufacturing paper. This species is a newly found salt tolerant species, but its physiological responses to salinity are poorly understood. The effect of salt stress (50 and 100 mM NaCl on growth, leaf water relations, soluble sugars and free amino acids in L. spartum has been investigated. Fresh and dry weights were reduced significantly above 50 mM NaCl. Transpiration, water potential (Ψω and osmotic potential (Ψπ decreased with elevated NaCl. No change was observed in the turgor potential (Ψτ. Subsequently, the composition of free amino acids estimated by high pressure liquid chromatography (HPLC indicated a significant increase in free amino acid content. It appears that valine was the main amino acid accumulated significantly by the plants for both NaCl treatments. However, tyrosine levels decrease by salt treatment compared to control. Contents of Na+ and Cl− increased with an increase in salinity. The concentration of Na+ of salinized plants (100 mM NaCl was ∼70-fold greater than that measured in control plants, and this was associated with significant reductions in leaf K+ and Ca2+ concentrations. In addition, a significant accumulation of soluble sugars, probably associated with osmotic adjustment and protection of membrane stability, occurred in roots of salinized plants. Based upon these results, a possible physiological role of soluble sugars and free amino acids was suggested in L. spartum to maintain turgor.

  6. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne

    2017-09-27

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  7. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne; Schilling, Rhiannon K.; Berger, Bettina; Garcia, Alexandre F.; Trittermann, Christine; Coventry, Stewart; Rabie, Huwaida; Brien, Chris; Nguyen, Martin; Tester, Mark A.; Roy, Stuart J.

    2017-01-01

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  8. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    Directory of Open Access Journals (Sweden)

    Muhammad Sarwar Khan

    2015-09-01

    Full Text Available Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols. Here, we report that ArDH expression in chloroplasts confers tolerance to NaCl (up to 400 mM. Transgenic plants compared to wild type survived for four to five weeks on 400 mM NaCl. Nevertheless, plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6% in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses.

  9. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain.

    Science.gov (United States)

    Vishnevetsky, Jane; White, Thomas L; Palmateer, Aaron J; Flaishman, Moshe; Cohen, Yuval; Elad, Yigal; Velcheva, Margarita; Hanania, Uri; Sahar, Nachman; Dgani, Oded; Perl, Avihai

    2011-02-01

    The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.

  10. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  11. Visible laser induced positive ion emissions from NaCl nanoparticles prepared by droplet rapid drying

    International Nuclear Information System (INIS)

    Sun, Mao-Xu; Guo, Deng-Zhu; Xing, Ying-Jie; Zhang, Geng-Min

    2012-01-01

    Highlights: ► NaCl nanoparticles were firstly prepared by heat induced explosion on silicon wafer. ► We found that laser induced ion emissions from NaCl nanoparticles are more prominent. ► We found that water adsorption can efficiently enhance laser induced ion emissions. ► The ultra-photothermal effect in NaCl nanoparticles was observed and explained. - Abstract: A novel convenient way for the formation of sodium chloride (NaCl) nanoparticles on silicon wafer is proposed by using a droplet rapid drying method. The laser induced positive ion emissions from NaCl nanoparticles with and without water treatment is demonstrated by using a laser desorption/ionization time-of-flight mass spectrometer, with laser intensity well below the plasma formation threshold. It is found that the positive ion emissions from NaCl nanoparticles are obviously higher than that from microsize NaCl particles under soft 532 nm laser irradiations, and water adsorption can efficiently enhance the ion emissions from NaCl nanoparticles. The initial kinetic energies of the emitted ions are estimated as 16–17 eV. The synergy of the ultra-thermal effect in nanomaterials, the defect-mediated multiphoton processes, and the existence of intermediate states in NaCl-water interfaces are suggested as the mechanisms.

  12. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    Science.gov (United States)

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  13. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    Science.gov (United States)

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  14. Influence of NaCl on Biochemical Parameters of Two Cultivars of Stevia rebaudiana Regenerated in vitro

    Directory of Open Access Journals (Sweden)

    Sharuti Rathore

    2014-05-01

    Full Text Available Soil salinity occupies a prominent place among the soil problems that threaten the sustainability of agriculture over a vast area in the world. It affects plant morpho-physiology and ultimately leads to reduction in productivity. It is essential to test important medicinal plants for their salinity tolerance as research efforts aim to explore economic benefits under saline conditions. Keeping in view the importance of Stevia and salinity, present study had been designed to investigate the effect of salinity on biochemical parameters in two Stevia genotypes. Two node microcuttings were subjected to MS media supplemented with different NaCl concentrations (0, 25, 50, 75, 100, 125 mM. Chlorophyll amount was observed to be decreased as compared to sugars, proline and phenols with increased salt concentrations.

  15. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  16. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Yao, Shuo

    2012-01-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...... the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UVinduced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more...

  17. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  18. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  19. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  20. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    Science.gov (United States)

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  1. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    International Nuclear Information System (INIS)

    Song, S.H.; Kim, K.; Lee, M.W.

    1994-01-01

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  2. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    Science.gov (United States)

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes

    Directory of Open Access Journals (Sweden)

    Mohammad Golam Kibria

    2017-05-01

    Full Text Available In order to elucidate the role of antioxidant responses in salinity tolerance in rice genotypes under salt stress, experiments were conducted using four rice varieties, including salt-sensitive BRRI dhan 28 and three salt-tolerant varieties BRRI dhan 47, BINA dhan 8 and BINA dhan 10. Thirty-day-old rice seedlings were transplanted into pots. At the active tillering stage (35 d after transplanting, plants were exposed to different salinity levels (0, 20, 40 and 60 mmol/L NaCl. Salt stress caused a significant reduction in growth for all the rice genotypes. Growth reduction was higher in the salt-sensitive genotype than in the salt-tolerant ones, and BINA dhan 10 showed higher salt tolerance in all measured physiological parameters. The reduction in shoot and root biomass was found to be minimal in BINA dhan 10. Chlorophyll content significantly decreased under salt stress except for BINA dhan 10. Proline content significantly increased in salt-tolerant rice genotypes with increased salt concentration, and the highest proline content was obtained from BINA dhan 10 under salt stress. Catalase and ascorbate peroxidase activities significantly decreased in salt-sensitive genotype whereas significantly increased in salt-tolerant ones with increasing salt concentration. However, salt stress significantly decreased guaiacol peroxidase activity in all the rice genotypes irrespective of salt tolerance. K+/Na+ ratio also significantly decreased in shoots and roots of all the rice genotypes. The salt-tolerant genotype BINA dhan 10 maintained higher levels of chlorophyll and proline contents as well as catalase and ascorbate peroxidase activities under salt stress, thus, this might be the underlying mechanism for salt tolerance.

  4. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    International Nuclear Information System (INIS)

    Lubelli, B.; Hees, R.P.J. van; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been observed in a few cases but has never been studied in a more systematic way. The aim of the research is to contribute to the modeling of this phenomenon. In the present paper the effect of NaCl on the hydric and hygric behavior of a lime-cement mortar is extensively studied. The results indicate that NaCl influences the hydric and hygric dilation behavior of the material. The material contaminated with NaCl shrinks during dissolution and dilates during crystallization of the salt. This dilation is irreversible and sufficient to damage the material after few dissolution/crystallization cycles. This behavior is not restricted to NaCl, but is observed in the presence of other salts as well (NaNO 3 and KCl). Outcomes of electron microscopy studies suggest that salts causing irreversible dilation tend to crystallize as layers on the pore wall

  5. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Small Intestinal Bypass Induces a Persistent Weight-Loss Effect and Improves Glucose Tolerance in Obese Rats.

    Science.gov (United States)

    Cao, Jiaqing; Ren, Quan; Tan, Cai; Duan, Jinyuan

    2017-07-01

    This study investigated the role of proximal small intestinal bypass (PSIB) and distal small intestinal bypass (DSIB) as well as their long-term effects on weight loss and glucose metabolism in high-sugar and high-fat diet-induced obese rats. Sprague-Dawley rats were divided into four groups: PSIB, bypassing 60% of the proximal small intestine length; DSIB, bypassing 60% of the distal small intestine length; sham-operated (Sham) animals; and control animals. All rats were fed a high-sugar and high-fat diet after surgery. The primary outcome measures were body weight, food intake, fasting blood glucose (FBG) levels, oral glucose tolerance test (OGTT), and the insulin tolerance test (ITT). Global body weight (BW) and food intake in the PSIB and DSIB groups were lower than those in the Sham group at postoperative week 2. BW and food intake in the PSIB group were lower than those in the DSIB group at postoperative week 24. The PSIB and DSIB groups exhibited improvement in glucose tolerance at postoperative weeks 4, 8, and 24. The PSIB and DSIB groups exhibited improvement in FBG at postoperative week 24, and only the DSIB group exhibited improvement in insulin sensitivity. This study provides experimental evidence that PSIB surgery induced a better and more persistent weight loss effect than DSIB surgery and that the two types of intestinal bypass surgeries yielded equivalent and stable long-term improvement in glucose tolerance in an obese rat model.

  7. Inter-Simple Sequence Repeat (ISSR Markers to Study Genetic Diversity Among Cotton Cultivars in Associated with Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Ali Akbar ABDI

    2012-11-01

    Full Text Available Developing salt-tolerant crops is very important as a significant proportion of cultivated land is salt-affected. Screening and selection of salt tolerant genotypes of cotton using DNA molecular markers not only introduce tolerant cultivars useful for hybridization and breeding programs but also detect DNA regions involved in mechanism of salinity tolerance. To study this, 28 cotton cultivars, including 8 Iranian cotton varieties were grown in pots under greenhouse condition and three salt treatments were imposed with salt solutions (0, 70 and 140 mM NaCl. Eight agronomic traits including root length, root fresh weight, root dry weight, chlorophyll and fluorescence index, K+ and Na+ contents in shoot (above ground biomass, and K+/Na+ ratio were measured. Cluster analysis of cultivars based on measured agronomic traits, showed �Cindose� and �Ciacra� as the most tolerant cultivars, and �B-557� and �43347� as the most sensitive cultivars of salt damage. A total of 65 polymorphic DNA fragments were generated at 14 inter-simple sequence repeat (ISSR loci. Plants of 28 cultivars of cotton grouped into three clusters based on ISSR markers. Regression analysis of markers in relation with traits data showed that 23, 33 and 30 markers associated with the measured traits in three salt treatments respectively. These markers might help breeders in any marker assisted selection program in order to improving cotton cultivars against salt stress.

  8. Composite coatings of titanium-aluminum nitride for steel against corrosion induced by solid NaCl deposit and water vapor at 600 °C

    Directory of Open Access Journals (Sweden)

    M.S. Li

    2004-03-01

    Full Text Available Composite coatings (Ti,AlN with different Al content were deposited on a wrought martensite steel 1Cr11Ni2W2MoV by reactive multi-arc ion plating. With the addition of Al to the coatings, the crystallographic structure of them changed from B1 NaCl to B4 ZnS, the relevant hardness and adhesive strength firstly increased then decreased and their oxidation-resistance was also dramatically improved. It was indicated that the introduction of Al was beneficial to (Ti,AlN coatings against corrosion induced by NaCl(s in wet oxygen at 600 °C as well as wet corrosion in NaCl solution at ambient temperature.

  9. Improvement of the chromatic dispersion tolerance in coherent optical OFDM systems using shifted DFT windows for ultra-long-haul optical transmission systems.

    Science.gov (United States)

    Sung, Minkyu; Kim, Hoon; Lee, Jaehoon; Jeong, Jichai

    2014-09-22

    In a high-capacity ultra-long-haul optical coherent orthogonal frequency-division multiplexing (CO-OFDM) system, the dispersion tolerance is determined by the length of cyclic extension (CE). In this paper, we propose a novel scheme to substantially improve the dispersion tolerance of CO-OFDM systems without increasing the CE length. Multiple time-shifted discrete Fourier transform (DFT) windows are exploited at the receiver, each demodulating only a part of the subcarriers. Effectively, the proposed scheme reduces the bandwidth of the OFDM signals under demodulation. Numerical simulations are performed to show the improved dispersion tolerance of the proposed scheme in comparison with the conventional CO-OFDM system. We show that the dispersion tolerance improves by a factor equal to the number of DFT windows. The tradeoff between the improved dispersion tolerance and increased receiver complexity is also presented.

  10. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  11. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Science.gov (United States)

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  12. The effect of NaCl substitution by KCl on telemea cheese properties

    Directory of Open Access Journals (Sweden)

    Mihai ANGHELOIU

    2016-12-01

    Full Text Available The effect of partial or total substitution of sodium chloride by potassium chloride on the chemical composition, texture profile and sensory properties of Telemea cheese during 28 days of ripening at 4°C was evaluated in the current study. Telemea cheese was ripened in 4 different brine solutions (20%, wt/wt made from different NaCl:KCl ratios as follows: (NaCl (A, KCl (B, 1NaCl:1KCl (C and 1NaCl:2KCl (D. The physicochemical properties of Telemea cheese (dry matter, fat, protein, ash, pH, total nitrogen (TN, water soluble nitrogen (WSN and ripening degree values were determined after 1, 7, 14, 21 and 28 days of ripening. Dry matter, pH and ripening degree values were significantly (p < 0.05 affected during ripening. The results of this study indicated that replacing 66% NaCl with KCl influenced the texture profile and sensorial characteristics of Telemea cheese.

  13. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes.

    Science.gov (United States)

    Pandey, Veena; Ansari, Mohammad W; Tula, Suresh; Yadav, Sandep; Sahoo, Ranjan K; Shukla, Nandini; Bains, Gurdeep; Badal, Shail; Chandra, Subhash; Gaur, A K; Kumar, Atul; Shukla, Alok; Kumar, J; Tuteja, Narendra

    2016-05-01

    This study demonstrates a dose-dependent response of Trichoderma harzianum Th-56 in improving drought tolerance in rice by modulating proline, SOD, lipid peroxidation product and DHN / AQU transcript level, and the growth attributes. In the present study, the effect of colonization of different doses of T. harzianum Th-56 strain in rice genotypes were evaluated under drought stress. The rice genotypes treated with increasing dose of T. harzianum strain Th-56 showed better drought tolerance as compared with untreated control plant. There was significant change in malondialdehyde, proline, higher superoxide dismutase level, plant height, total dry matter, relative chlorophyll content, leaf rolling, leaf tip burn, and the number of scorched/senesced leaves in T. harzianum Th-56 treated rice genotypes under drought stress. This was corroborated with altered expression of aquaporin and dehydrin genes in T. harzianum Th-56 treated rice genotypes. The present findings suggest that a dose of 30 g/L was the most effective in improving drought tolerance in rice, and its potential exploitation will contribute to the advancement of rice genotypes to sustain crop productivity under drought stress. Interaction studies of T. harzianum with three aromatic rice genotypes suggested that PSD-17 was highly benefitted from T. harzianum colonization under drought stress.

  14. The Salty Scrambled Egg: Detection of NaCl Toward CRL 2688

    Science.gov (United States)

    Highberger, J. L.; Thomson, K. J.; Young, P. A.; Arnett, D.; Ziurys, L. M.

    2003-08-01

    NaCl has been detected toward the circumstellar envelope of the post-AGB star CRL 2688 using the IRAM 30 m telescope, the first time this molecule has been identified in a source other than IRC +10216. The J=7-->6, 11-->10, 12-->11, and 18-->17 transitions of NaCl at 1, 2, and 3 mm have been observed, as well as the J=8-->7 line of the 37Cl isotopomer. The J=12-->11 line was also measured at the ARO 12 m telescope. An unsuccessful search was additionally conducted for AlCl toward CRL 2688, although in the process new transitions of NaCN were observed. Both NaCl and NaCN were found to be present in the AGB remnant wind, as suggested by their U-shaped line profiles, indicative of emission arising from an optically thin, extended shell-like source of radius ~10"-12". These data contrast with past results in IRC +10216, where the distribution of both molecules is confined to within a few arcseconds of the star. A high degree of excitation is required for the transitions observed for NaCl and NaCN; therefore, these two species likely arise in the region where the high-velocity outflow has collided with the remnant wind. Here the effects of shocks and clumping due to Rayleigh-Taylor instabilities have raised the densities and temperatures significantly. The shell source is thus likely to be clumpy and irregular. The chemistry producing the sodium compounds is consequently more complex than simple LTE formation. Abundances of NaCl and NaCN, relative to H2, are f~1.6×10-10 and ~5.2×10-9, respectively, while the upper limit to AlCl is f<2×10-9. These values differ substantially from those in IRC +10216, where AlCl has an abundance near 10-7. The NaCl observations additionally indicate a chlorine isotope ratio of 35Cl/37Cl=2.1+/-0.8 in CRL 2688, suggestive of s-process enhancement of chlorine 37.

  15. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  16. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  17. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  18. Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106.

    Science.gov (United States)

    Choi, H J; Lim, B R; Park, Y J; Joo, W H

    2017-08-01

    Solvent hypertolerant Pseudomonas sp. BCNU 106 still has some underlying growth limitation in solvents. Therefore, efficient mass cultivation methods are needed to pursue its applications in biotechnology. Pseudomonas sp. BCNU 106 was cultured in a medium supplemented with 0·05 mol l -1 glycerol and cell survival was monitored during its cultivation in the presence of 1% (v/v) toluene. Exogenously supplemented glycerol provided more protection against damage caused by toluene stress and conferred higher solvent tolerance of Pseudomonas sp. BCNU 106 to toluene compared to control Pseudomonas sp. BCNU 106 without the supplementation of glycerol. This low-cost mass cultivation method can be used to efficiently apply solvent-tolerant bacteria in biotransformation and biodegradation. Protection against toluene and improvement in bacterial cell growth by supplementation of glycerol in the presence of toluene are demonstrated in this study. This result can be used to solve growth-related hindrances of solvent-tolerant bacteria and establish their low-cost mass cultivation, thereby broadening their industrial and environmental applications. © 2017 The Society for Applied Microbiology.

  19. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  20. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    International Nuclear Information System (INIS)

    Sun Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x√(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x√(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  1. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaonan [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Silly, Fabien, E-mail: Fabien.silly@cea.fr [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); CEA, IRAMIS, SPCSI, Nanostructures and Organic Semiconductors Laboratory, F-91191 Gif-sur-Yvette (France); UPMC, IPCM, UMR CNRS 7201, 4 place Jussieu, F-75005 Paris (France)

    2010-01-15

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x{radical}(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x{radical}(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  2. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  3. Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L. by Designed QTL Pyramiding

    Directory of Open Access Journals (Sweden)

    Yunlong Pang

    2017-07-01

    Full Text Available Breeding of multi-stress tolerant rice varieties with higher grain yields is the best option to enhance the rice productivity of abiotic stresses prone areas. It also poses the greatest challenge to plant breeders to breed rice varieties for such stress prone conditions. Here, we carried out a designed QTL pyramiding experiment to develop high yielding “Green Super Rice” varieties with significantly improved tolerance to salt stress and grain yield. Using the F4 population derived from a cross between two selected introgression lines, we were able to develop six mostly homozygous promising high yielding lines with significantly improved salt tolerance and grain yield under optimal and/or saline conditions in 3 years. Simultaneous mapping using the same breeding population and tunable genotyping-by-sequencing technology, we identified three QTL affecting salt injury score and leaf chlorophyll content. By analyzing 32M SNP data of the grandparents and graphical genotypes of the parents, we discovered 87 positional candidate genes for salt tolerant QTL. According to their functional annotation, we inferred the most likely candidate genes. We demonstrated that designed QTL pyramiding is a powerful strategy for simultaneous improvement and genetic dissection of complex traits in rice.

  4. [Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr].

    Science.gov (United States)

    Wang, Li-Yan; Zhao, Ke-Fu

    2004-02-01

    Seedlings of Salicornia bigelovii Torr. were treated with different concentrations of NaCl (0, 100, 300, 600 mmol/L). Ion contents, Na(+) subcelluar localization, photosynthetic rate, ultrastructure of chloroplast and other parameters were measured. The data showed both fresh and dry weight of whole plant of Salicornia bigelovii Torr. under salinity were higher than the control. When NaCl concentration is about 300 mmol/L Salicornia bigelovii Torr. grow strongest. The contents of Na(+) and Cl(-) and c(Na)/c(K) in shoots increased with the salinity. Both Na(+) and Cl(-) were mainly transported to shoots. Ion X-ray microanalysis indicated Na(+) was mainly compartmentalized into vacuoles. Photosynthetic rate increased with the salinity under NaCl 100-300 mmol/L, but declined under NaCl 600 mmol/L. Ultrastructure of chloroplast was destroyed by NaCl 600 mmol/L.

  5. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  6. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12.

    Science.gov (United States)

    Vargas, Luis A; Olson, Douglas W; Aryana, Kayanush J

    2015-04-01

    Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco.

    Science.gov (United States)

    Sun, Xiudong; Lian, Haifeng; Liu, Xingchen; Zhou, Shumei; Liu, Shiqi

    2017-05-01

    To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.

  8. Ab initio interionic potentials for NaCl by multiple lattice inversion

    International Nuclear Information System (INIS)

    Zhang Shuo; Chen Nanxian

    2002-01-01

    Based on the Chen-Moebius lattice inversion and a series of pseudopotential total-energy curves, a different method is presented to derive the ab initio interionic pair potentials for B1-type ionic crystals. Comparing with the experimental data, the static properties of B1- and B2-type NaCl are well reproduced by the interionic potentials. Moreover, the phase stability of B1-NaCl has been described by the energy minimizations from the global deformed and disturbed states. The molecular-dynamics simulations for the molten NaCl indicate that the calculated mean-square displacements, radial distribution function, and diffusion coefficients gain good agreements with the experimental results. It can be concluded that the inversion pair potentials are valid over a wide range of interionic separations for describing the structural properties of B1-type ionic crystals

  9. The Use of Plant Growth Regulators to Improve the Traffic Tolerance and Repair of Overseeded Bermudagrass

    OpenAIRE

    Marshall, Christopher Scott

    2007-01-01

    An active football season during the fall acclimation period tests the traffic tolerance of bermudagrass. Exogenous applications of synthetic cytokinins or cytokinin-enhancing plant growth regulators (PGRs), such as trinexapac-ethyl, may improve the traffic tolerance of "Patriot" and "Tifsport" hybrid berudagrasses (Cynodon dactylon var. dactylon x Cynodon transvaalensis). This study was designed to mimic the agronomic practices and traffic stresses experienced at Virginia Tech's Worsham Fiel...

  10. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    Science.gov (United States)

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (pwater retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (pwater, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Science.gov (United States)

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.

    Science.gov (United States)

    Sghaier, Dhouha Belhaj; Duarte, Bernardo; Bankaji, Insaf; Caçador, Isabel; Sleimi, Noomene

    2015-08-01

    Trace metal elements can cause various environmental and health issues due to their accumulation and integration in the food chain. In the present study, we determined the major toxic effects of arsenic on physiological behaviour of plants. For this propose, several combinations of high salinity and arsenic (As) concentrations were applied to the halophytic shrub, Tamarix gallica, by growing for three months with an irrigation solution supplemented with different concentrations of As (0, 200, 500 and 800M) with and without 200mM NaCl. The effect of the combined stress conditions on growth, physiological patterns and biochemical parameters were also assessed. The results demonstrated that T. gallica is a tolerant plant regarding arsenic. The photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by As nor by As combined with salt. Likewise, pigment and nutrient (K(+), Ca(2+) and Mg(2+)) contents were not affected either. However, the study results revealed that As adversely and significantly influenced the growth with increasing the concentration of As. Despite shoots growth reduction, the present research demonstrates that T. gallica is able to cope with high external concentrations of As (under 500μM) alone or in combination with NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    Science.gov (United States)

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Time-dependent relation between smoking cessation and improved exercise tolerance in apparently healthy middle-age men and women.

    Science.gov (United States)

    Berkovitch, Anat; Kivity, Shaye; Klempfner, Robert; Segev, Shlomo; Milwidsky, Assi; Goldenberg, Ilan; Sidi, Yechezkel; Maor, Elad

    2015-06-01

    Smoking is an independent cardiovascular risk factor and correlates with reduced exercise tolerance. However, data on the time dependent effect of smoking cessation on exercise tolerance are limited. We investigated 17,115 men and women who were annually screened at the Institute for Medical Screening of the Chaim Sheba Medical Centre. All subjects had their smoking status documented and performed an exercise stress testing (EST) according to Bruce protocol at each visit. Subjects were divided at baseline into four groups: active smokers (N = 2858), recent quitters (smoking cessation ≤2 years before baseline EST; N = 861), remote quitters (smoking cessation >2 years before the baseline EST; N = 3856) and never smokers (N = 9810). Baseline and follow up EST duration were compared among the four groups. Recent quitters demonstrated a 2.4-fold improvement in their EST duration compared with active smokers (improvement of 24 ± 157 vs. 10 ± 157 s, respectively, p = 0.02). Multivariate logistic regression showed that recent quitters were 26% more likely to improve their exercise tolerance compared with active smokers (95% confidence interval (CI) 1.08-1.47, p = 0.003). Assessing smoking status as a time-dependent covariate during four consecutive visits demonstrated that recent quitters were 17% more likely to improve their exercise tolerance compared with active smokers (95% CI 1.02-1.34, p = 0.02), with a less pronounced benefit among remote quitters (hazard ratio = 1.11, 95% CI 1.02-1.21; p = 0.01). Smoking cessation is independently associated with improved exercise tolerance. The benefits of smoking cessation are evident within the first two years of abstinence. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Directory of Open Access Journals (Sweden)

    Imène Hichri

    2017-07-01

    Full Text Available Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.. WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass and photosynthesis (stomatal conductance and chlorophyll a content were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.

  16. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122.

    Science.gov (United States)

    Li, Shangyong; Hao, Jianhua; Sun, Mi

    2017-09-01

    ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides. Copyright © 2017. Published by Elsevier B.V.

  17. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  18. Effects of dilute aqueous NaCl solution on caffeine aggregation

    International Nuclear Information System (INIS)

    Sharma, Bhanita; Paul, Sandip

    2013-01-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl

  19. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet......-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...

  20. Mobility Tolerant Firework Routing for Improving Reachability in MANETs

    Directory of Open Access Journals (Sweden)

    Gen Motoyoshi

    2014-03-01

    Full Text Available In this paper, we investigate our mobility-assisted and adaptive broadcast routing mechanism, called Mobility Tolerant Firework Routing (MTFR, which utilizes the concept of potentials for routing and improves node reachability, especially in situations with high mobility, by including a broadcast mechanism. We perform detailed evaluations by simulations in a mobile environment and demonstrate the advantages of MTFR over conventional potential-based routing. In particular, we show that MTFR produces better reachability in many aspects at the expense of a small additional transmission delay and intermediate traffic overhead, making MTFR a promising routing protocol and feasible for future mobile Internet infrastructures.

  1. In situ AFM study on barite (0 0 1) surface dissolution in NaCl solutions at 30 °C

    International Nuclear Information System (INIS)

    Kuwahara, Yoshihiro; Makio, Masato

    2014-01-01

    Highlights: • We examined barite surface dissolution behavior in NaCl solutions by AFM. • Step retreat and step splitting behavior changed with the NaCl concentration. • Etch pit formation and development differed in each NaCl solution. • Step retreat and etch pit growth rates increased with the NaCl concentration. • We assessed the effects of temperature and NaCl concentration on these rates. - Abstract: This paper reports in situ observations on barite (0 0 1) surface dissolution behavior in 0.1–0.001 M NaCl solutions at 30 °C using atomic force microscopy (AFM). The step retreating on barite (0 0 1) surfaces changed with increasing NaCl solution concentrations. In solutions with a higher NaCl concentration (⩾0.01 M), many steps showed curved or irregular fronts during the later experimental stage, while almost all steps in solutions with a lower NaCl concentration exhibited straight or angular fronts, even during the late stage. The splitting phenomenon of the initial 〈h k 0〉 one-layer steps (7.2 Å) into two half-layer steps (3.6 Å) occurred in all NaCl solutions, while that of the initial [0 1 0] one-layer steps observed only in the 0.1 M NaCl solution. The step retreat rates increased with an increasing NaCl solution concentration. We observed triangular etch pit and deep etch pit formation in all NaCl solutions, which tended to form late in solutions with lower NaCl concentrations. The deep etch pit morphology changed with increasing NaCl solution concentrations. A hexagonal form elongated in the [0 1 0] direction was bounded by the {1 0 0}, {3 1 0}, and (0 0 1) faces in a 0.001 M NaCl solution, and a rhombic form was bounded by the {5 1 0} and (0 0 1) faces in 0.01 M and 0.1 M NaCl solutions. An intermediate form was observed in a 0.005 M NaCl solution, which was defined by {1 0 0}, a curved face tangent to the [0 1 0] direction, {3 1 0}, and (0 0 1) faces: the intermediate form appeared between the hexagonal and rhombic forms in

  2. Long-term adaptation of methanol-fed thermophilic (55°C) sulfate-reducing reactors to NaCl

    NARCIS (Netherlands)

    Vallero, M.V.G.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    A laboratory-scale upflow anaerobic sludge bed (UASB) reactor was operated during 273 days at increasing NaCl concentrations (0.5-12.5 g NaCl l(-1)) to assess whether the stepwise addition of the salt NaCl results in the acclimation of that sludge. The 6.5-1 thermophilic (55 degreesC), sulfidogenic

  3. Phosphorous Application Improves Drought Tolerance of Phoebe zhennan

    Directory of Open Access Journals (Sweden)

    Akash Tariq

    2017-09-01

    Full Text Available Phoebe zhennan (Gold Phoebe is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed and phosphorous (P fertilization treatment (with and without P to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought

  4. Improving performance with accident tolerant-fuels

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    After the Fukushima reactor accident, efforts to improve risk management in nuclear operations have included the intensification of research on accident-tolerant fuels (ATFs). In this investigation, the physical properties of recently developed ATFs were compared with those of the current standard fuel, UO 2 - Zr. The goals for innovative fuel design include a rigorous characterization of the thermal, mechanical, and chemical considerations. The intentions are to lengthen the burnup cycle, raise the power density, and improve safety. Fuels must have a high uranium density - above that supported by UO 2 - and possess a coating that exhibits better oxidation resistance than Zircaloys. ATFs such as U 3 Si 2 , UN, and UC contain a higher uranium density and thermal conductivity than UO 2 , providing significant benefits. The ideal combination of fuel and cladding must increase performance in a loss-of-coolant accident. However, U 3 Si 2 , UN, and UC have a disadvantage; their respective swelling rates are higher than that of UO 2 . These ATFs also have thermal conductivities approximately four times higher than that of UO 2 . A study was conducted investigating the hydrogen generated by the oxidation of zirconium alloys in contact with steam using cladding options such as Fe-Cr-Al and silicon carbide. It was confirmed that ferritic alloys offer a better response under severe conditions, because of their mechanical properties as creep rate. The findings of this study indicate that advanced fuels should replace UO 2 - Zr as the fuel system of choice. (author)

  5. Improving performance with accident tolerant-fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    After the Fukushima reactor accident, efforts to improve risk management in nuclear operations have included the intensification of research on accident-tolerant fuels (ATFs). In this investigation, the physical properties of recently developed ATFs were compared with those of the current standard fuel, UO{sub 2} - Zr. The goals for innovative fuel design include a rigorous characterization of the thermal, mechanical, and chemical considerations. The intentions are to lengthen the burnup cycle, raise the power density, and improve safety. Fuels must have a high uranium density - above that supported by UO{sub 2} - and possess a coating that exhibits better oxidation resistance than Zircaloys. ATFs such as U{sub 3}Si{sub 2}, UN, and UC contain a higher uranium density and thermal conductivity than UO{sub 2}, providing significant benefits. The ideal combination of fuel and cladding must increase performance in a loss-of-coolant accident. However, U{sub 3}Si{sub 2}, UN, and UC have a disadvantage; their respective swelling rates are higher than that of UO{sub 2}. These ATFs also have thermal conductivities approximately four times higher than that of UO{sub 2}. A study was conducted investigating the hydrogen generated by the oxidation of zirconium alloys in contact with steam using cladding options such as Fe-Cr-Al and silicon carbide. It was confirmed that ferritic alloys offer a better response under severe conditions, because of their mechanical properties as creep rate. The findings of this study indicate that advanced fuels should replace UO{sub 2} - Zr as the fuel system of choice. (author)

  6. Effect of NaCl and KCl on irradiated diploid yeast cells

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Lobachevskij, P.N.; Lyu Gvan Son

    1984-01-01

    Irradiated dipload yeast Saccharomyces cerevisiae kept in NaCl and KCl solutions died more readily than nonirradiated cells: the death rate was a functaon of radiation Jose and temperature of exposure. It was suggested that the radiation-induced injury to mass cell structures was responsible for the death rate. It was shown that the postirradiataon recovery of cells from radiation damages proceeded in KCl solution two-three times slower than mn water, and it was inhibited completely in NaCl solution

  7. Improvement of potato tolerance to salinity using tissue culture techniques and irradiation with in vitro selection

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Arabi, M. I. E.

    2006-01-01

    A mutation breeding program was conducted to improve potato (Solanum tuberosum) tolerance to salinity. In vitro cultured explants from potato cvs. Draga, Diamant, Spunta were irradiated with gamma doses 25, 30, and 35 Gy. Mutants were isolated to get rid of chimeral tissues and subsequently propagated for in vitro and pot selection pressure. Cultivar Sponta produced the highest number of tolerant plants (4) and only one plant was obtained from Diamant. (authors)

  8. Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo

    2007-08-01

    Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.

  9. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?

    Science.gov (United States)

    Monneveux, Philippe; Ramírez, David A; Pino, María-Teresa

    2013-05-01

    Drought tolerance is a complex trait of increasing importance in potato. Our knowledge is summarized concerning drought tolerance and water use efficiency in this crop. We describe the effects of water restriction on physiological characteristics, examine the main traits involved, report the attempts to improve drought tolerance through in vitro screening and marker assisted selection, list the main genes involved and analyze the potential interest of native and wild potatoes to improve drought tolerance. Drought tolerance has received more attention in cereals than in potato. The review compares these crops for indirect selection methods available for assessment of drought tolerance related traits, use of genetic resources, progress in genomics, application of water saving techniques and availability of models to anticipate the effects of climate change on yield. It is concluded that drought tolerance improvement in potato could greatly benefit from the transfer of research achievements in cereals. Several promising research directions are presented, such as the use of fluorescence, reflectance, color and thermal imaging and stable isotope techniques to assess drought tolerance related traits, the application of the partial root-zone drying technique to improve efficiency of water supply and the exploitation of stressful memory to enhance hardiness. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  11. Experimental study on oral sulfhydryl as an adjuvant for improving nitrate ester tolerance in an animal model.

    Science.gov (United States)

    Chen, L; Jiang, J-Q; Zhang, Y; Feng, H

    2018-03-01

    As an initial step in exploring the feasibility of oral sulfhydryl as an adjuvant for improving nitrate ester tolerance, this study was designed to experimentally test the adjuvant therapy in a rabbit model of atherosclerosis (AS). New Zealand white rabbits with induced AS were randomly divided into four groups: AS group, AS + nitrate ester group, AS + nitrate ester tolerance group, and AS + drug combination group. Additionally, four equivalent groups with healthy New Zealand white rabbits without AS were also conformed. After feeding the animals for 5 days, the concentrations of superoxide anion (•O2-), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and endothelin-1 (ET-1) in blood and the relaxation response of the aortic ring were determined in each subject. The vascular plaques in different treatment groups were assessed by Hematoxylin and eosin (HE) staining to investigate the therapeutic value of sulfhydryl as coadjuvant for improving nitrate ester tolerance, and changes in blood vessels in different treatment groups were studied by immunohistochemical assays. Our results showed no significant differences through time in the concentrations of •O2-, SOD, MDA, NO, ET-1 between the healthy control and the nitrate ester groups (p > 0.05). The levels of SOD and MDA in the nitrate ester tolerance group increased with time, however, the levels of •O2-, NO and ET-1 decreased gradually (p tolerance groups were significantly decreased, but SOD and MDA were significantly increased (p tolerance, and this strategy was safe and looks promising for humans.

  12. Impact of salt stress (NaCl on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.

    Directory of Open Access Journals (Sweden)

    Kaouther Zhani

    2012-11-01

    Full Text Available Salinity is considered as the most important abiotic stress limiting crop production and plants are known to be able continuing survive under this stress by involving many mechanisms. In this content, the present study was carried out to evaluate the impact of NaCl on some physiological and biochemical parameters in five Tunisian chili pepper (Capsicum frutescens L. cultivars: Tebourba (Tb, Somaa (Sm, Korba (Kb, Awald Haffouzz (AW and Souk jedid (Sj. Thus, an experiment of five months was carried out under greenhouse at Higher Institute of Agronomy, Chott Meriem, Tunisia and stress is induced by NaCl at 7 concentrations (0, 2, 4, 6, 8, 10 and 12g/l. Results showed that increasing salinity stress, for all cultivars, had a negative impact on roots (length, fresh and dry weights and leaves (number and area. Also, chlorophyll (a and b amount in addition to quantium yield (Fv/Fm decreased significantly. However, biosynthesis of proline in leaves is activated. Awlad Haffouzz and Korba cultivars succefully tolerated highest salinity level by accumulating more proline in leaves and maintaining usually higher values in all parameters in opposition to Souk jedid cultivar. Taken together, our data partly explain the mechanism used to ovoid salt stress by pepper plants when excessive in the culture medium.

  13. Improved flooding tolerance and carbohydrate status of flood-tolerant plant Arundinella anomala at lower water temperature.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Ye

    Full Text Available Operation of the Three Gorges Reservoir (TGR, China imposes a new water fluctuation regime, including a prolonged winter submergence in contrast to the natural short summer flooding of the rivers. The contrasting water temperature regimes may remarkably affect the survival of submerged plants in the TGR. Plant survival in such prolonged flooding might depend on the carbohydrate status of the plants. Therefore, we investigated the effects of water temperature on survival and carbohydrate status in a flood-tolerant plant species and predicted that both survival and carbohydrate status would be improved by lower water temperatures.A growth chamber experiment with controlled water temperature were performed with the flood-tolerant species Arundinella anomala from the TGR region. The plants were submerged (80 cm deep water above soil surface with a constant water temperature at 30°C, 20°C or 10°C. The water temperature effects on survival, plant biomass and carbohydrate content (glucose, fructose and sucrose and starch in the viable and dead tissues were investigated.The results showed that the survival percentage of A.anomala plants was greatly dependent on water temperature. The two-month submergence survival percentage was 100% at 10°C, 40% at 20°C and 0% at 30°C. Decreasing the water temperature led to both later leaf death and slower biomass loss. Temperature decrease also induced less reduction in glucose, fructose and sucrose in the roots and leaves (before decay, p 0.05. Different water temperatures did not alter the carbon pool size in the stems, leaves and whole plants (p > 0.05, but a clear difference was found in the roots (p < 0.05, with a larger pool size at a lower temperature.We concluded that (1 A. anomala is characterized by high flooding tolerance and sustained capability to mobilize carbohydrate pool. (2 The survival percentage and carbohydrate status of submerged A. anomala plants were remarkably improved by lower water

  14. Improving abiotic stress tolerance of quinoa

    DEFF Research Database (Denmark)

    Yang, Aizheng

    Global food security faces the challenges of rapid population growth and shortage of water resources. Drought, heat waves and soil salinity are becoming more frequent and extreme due to climatic changes in many regions of the world, and resulting in yield reduction of many crops. It is hypothesized...... that quinoa has the potential to grow under a range of abiotic stresses, tolerating levels regarded as stresses in other crop species. Therefore cultivation of quinoa (Chenopodium quinoa Willd.) could be an alternative option in such regions. Even though quinoa is more tolerant to abiotic stress than most...... other crops, its productivity declines under severe drought, high salt conditions and harsh climate conditions. Different management approaches including water-saving irrigation methods (such as deficit irrigation, DI and alternate root-zone drying irrigation, ARD), inoculating crop seeds with plant...

  15. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.

    Science.gov (United States)

    Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu

    2018-01-01

    Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Clofibrate improves glucose tolerance in fat-fed rats but decreases hepatic glucose consumption capacity

    NARCIS (Netherlands)

    Gustafson, LA; Kuipers, F; Wiegman, C; Sauerwein, HP; Romijn, JA; Meijer, AJ

    2002-01-01

    Background/Aims: High-fat (HF) diets cause glucose intolerance. Fibrates improve glucose tolerance. We have tried to obtain information on possible hepatic mechanisms contributing to this effect. Methods: Rats were fed a HF diet, isocaloric with the control diet, for 3 weeks without or with

  17. Genome shuffling of Saccharomyces cerevisiae through recursive population mating to evolve tolerance to inhibitors of Spent Sulfite Liquor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.J.J.; Pinel, D.J.; D' aoust, F. [Concordia Univ., Montreal, PQ (Canada). Dept. of Biological Sciences; Bajwa, P.K.; Trevors, J.T.; Lee, H. [Guelph Univ., ON (Canada). Dept. of Environmental Biology

    2009-07-01

    The biochemical steps in the conversion of cellulosics to biofuels include the pretreatment, hydrolysis and fermentation of substrates into a final product. Fermentation of lignocellulosic substrates derived from waste biomass requires metabolic engineering. A biochemical flow chart from the Tembec Biorefinery plant was presented in which Spent Sulfite Liquor (SSL) was used to add value to the pulp and paper industry. The sugars contained in this carbohydrate-rich effluent from sulfite pulping were used to produce ethanol. A robust, ethanologenic microorganism that can withstand the substrate toxicity was needed. Saccharomyces cerevisiae is currently used for the production of ethanol from SSL. This yeast will succumb to toxicity and inhibition, particularly in the most inhibitor rich forms of SSL such as hardwood SSL (HWSSL). A genome shuffling method was therefore developed to create a better SSL fermenting strain. This method was designed to improve polygenic traits by generating pools of mutants with improved phenotypes, followed by iterative recombination between their genomes. Through 5 rounds of recursive mating and screening, 3 strains that could survive and grow in undiluted HWSSL were obtained. The study demonstrated that the tolerance of these strains to SSL translates into an increased capacity to produce ethanol over time using this substrate, due to continued viability of the yeast population. Phenotypic analysis of the three strains revealed that the genome shuffling approach successfully co-evolved tolerance to acetic acid, NaCl (osmotic) and HMF. A systems biology analysis of strain R57 was initiated in order to establish the genetic basis for HWSSL tolerance. tabs., figs.

  18. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  19. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Wenli Wu

    2017-06-01

    Full Text Available Brassinosteroids (BR regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR's impact on salt stress tolerance in perennial ryegrass (Lolium perenne L. The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl. The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL, malondialdehyde (MDA, and reduced photosynthetic rate (Pn. Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs. The EBR applications also alleviated decline of superoxide dismutase (SOD and catalase (CAT and ascorbate peroxidase (APX activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA and gibberellin A4 (GA4 content but reduced indole-3-acetic acid (IAA, zeatin riboside (ZR, isopentenyl adenosine (iPA, and salicylic acid (SA. Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+ content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+ in perennial ryegrass.

  20. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  1. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    Science.gov (United States)

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  2. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  3. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.

    2018-03-01

    Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.

  4. Mechanisms of Orthostatic Tolerance Improvement Following Artificial Gravity Exposure Differ Between Men and Women

    Science.gov (United States)

    Evans, J. M.; Stenger, M. B.; Ferguson, C. R.; Ribiero, L. C.; Zhang, Q.; Moore, F. B.; Serrador, J.; Smith, J. D.; Knapp, C. F.

    2014-01-01

    We recently determined that a short exposure to artificial gravity (AG) improved the orthostatic tolerance limit (OTL) of cardiovascularly deconditioned subjects. We now seek to determine the mechanisms of that improvement in these hypovolemic men and women. Methods. We determined the orthostatic tolerance limit (OTL) of 9 men and 8 women following a 90 min exposure to AG compared to 90 min of head down bed rest (HDBR). In both cases (21 days apart), subjects were made hypovolemic (low salt diet plus 20 mg intravenous furosemide). Orthostatic tolerance was determined from a combination of head up tilt and increasing lower body negative pressure until presyncope. Mean values and correlations with OTL were determined for heart rate, blood pressure, stroke volume, cardiac output and peripheral resistance (Finometer), cerebral artery blood velocity (DWL), partial pressure of carbon dioxide (Novametrics) and body segmental impedance (UFI THRIM) were measured during supine baseline, during OTL to presyncope and during supine recovery Results. Orthostatic tolerance of these hypovolemic subjects was significantly greater on the day of AG exposure than on the HDBR day. Regression of OTL on these variables identified significant relationships on the HDBR day that were not evident on the AG day: resting TPR correlated positively while resting cerebral flow correlated negatively with OTL. On both days, women's resting stroke volume correlated positively with orthostatic tolerance. Higher group mean values of stroke volume and cerebral artery flow and lower values of blood pressure, peripheral vascular and cerebrovascular resistance both at control and during OTL testing were observed on the AG day. Even though regression of OTL on resting stroke volume was significant only in women, presyncopal stroke volume reached the same level on each day of study for both men and women while the OTL test lasted 30% longer in men and 22% longer in women. Cerebral artery flow appeared to

  5. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  6. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  7. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

    Directory of Open Access Journals (Sweden)

    Mohamad Al Hassan

    2017-08-01

    Full Text Available We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to “recovery of germination” tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves, and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl− to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the

  8. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    Science.gov (United States)

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  9. Pré-condicionamento in vitro de plantas de cana-de-açúcar (Saccharum spp. para tolerância ao estresse salino

    Directory of Open Access Journals (Sweden)

    Gemima M. de Melo

    Full Text Available RESUMO Avaliou-se a capacidade de adaptação à salinidade de mudas de cana-de-açúcar da variedade RB98710 após pré-condicionamento (priming in vitro com cloreto de sódio (NaCl. O experimento foi conduzido no período de maio a outubro de 2013. Plantas foram micropropagadas em biorreatores de imersão temporária, com tratamentos de priming caracterizados pela adição de 25 mM de NaCl, durante 0, 12, 24 e 36 horas. Concluídos os períodos de priming, as plantas foram cultivadas em meio de enraizamento sem NaCl, aclimatizadas e submetidas a tratamento salino gradativo: S0 = sem NaCl; S1 = regas com 20→40→60 mM de NaCl acrescido à solução nutritiva, durante 30 dias. Procedeu-se à supressão do NaCl e avaliaram-se as plantas 15 dias depois. As variáveis foram: matéria seca da parte aérea (MSPA e radicular (MSR, número de perfilhos, estimativa de clorofila (Chl, conteúdo hídrico relativo e dano de membrana. As plantas pré-condicionadas não reduziram a MSPA quando submetidas ao NaCl. O efeito do estresse salino sobre a MSR foi anulado nas plantas submetidas ao priming por 24 h. O priming favoreceu o perfilhamento das plantas dos tratamentos por 24 ou 36 h. A recuperação após o estresse, avaliado 15 dias após a supressão do NaCl, não diferiu entre plantas submetidas ou não ao priming. De acordo com os resultados, o priming utilizado na variedade RB98710, pode favorecer a tolerância à salinidade.

  10. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR......), shoot fresh weight (SFW), shoot-root ratio, and K+:Na+ ratio, compared to the most salt sensitive genotypes (S-9189 and S-9476). Superoxide dismutase (SOD) and catalase (CAT) increased significantly in SARC-1 and SARC-2 with increasing salt stress, while there was no difference in S-9189 and S- 9476....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...

  11. Physiological responses to salinity in solanum lycopersicum l. varieties

    International Nuclear Information System (INIS)

    Amador, B.M.; Montiel, L.G.H.; Perez, J.J.R.; Puente, E.O.R.

    2017-01-01

    Worldwide over 30% of irrigated and 7% of rainfed agriculture has been limited by salinity stress. Tolerance of crops to salinity varies and negatively affects agricultural productivity. Despite the plethora of information on NaCl tolerance mechanisms, it is still not completely elucidated. The purpose of this research was to determine NaCl tolerance of eight tomato varieties (Tropic, Feroz, Ace, Super Rio Grande, Yaqui, Missouri, Vita and Floradade) by evaluating their physiological traits. These varieties were exposed to salinity stress by the addition of NaCl (0, 50, 100, 150 and 200 mM). The physiological variables measured were stomatal conductance, water potential, chlorophyll a, b, total, indirect chlorophyll content, leaf temperature, transpiration and relative water content. The results showed differences in tolerance between varieties in terms of NaCl concentrations and there was interaction between varieties * NaCl in the majority of physiological variables. Symptoms of NaCl stress in the tomato plants were leaf wilting, desiccation, necrosis, and death. All measured variables decreased as salinity increased, except for relative water content and leaf temperature, values of both these variables increased with higher concentrations of NaCl. Physiological traits may be used as an effective means for screening for salinity tolerance in tomato varieties. Amongst the tomato varieties evaluated were Missouri the most tolerant, and Rio Grande the least tolerant. The results indicate that the varieties best tolerant to NaCl conditions from most to least tolerant in successive orderare: Missouri, followed by Ace, Yaqui, Tropic, Floradade, Feroz, Vita and Rio Grande. (author)

  12. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    Science.gov (United States)

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Effects of different NaCl Concentrations on germination and ...

    African Journals Online (AJOL)

    USER

    Salinity refers to the salt content of any given system. By nature, arid .... Effect of varying concentrations of NaCl on seed germination of Amaranthus hybridus in percentages. .... Osmotic differences could explain this phenomenon where by ...

  14. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    Science.gov (United States)

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L

    2017-09-10

    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nano-sized precipitated formations in irradiated NaCl

    NARCIS (Netherlands)

    Sugonyako, Anton V.

    2007-01-01

    The interest in the formation of radiation damage in alkali halides and in particular, in NaCl, is stimulated by the fact that rock-salt in stable geological formations is a prominent candidate medium for storage of high-level waste (HLW) of nuclear power plants. Since the 1950s, scientists and

  16. The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine vibrio isolated from Salar de Atacama

    Directory of Open Access Journals (Sweden)

    Karem Gallardo

    2016-12-01

    Full Text Available The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C in the absence of NaCl, and the range was expanded into cold temperature (4-49°C in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation.

  17. Pathogenic ability and saline stress tolerance of two Fusarium isolates from Odontesthes bonariensis eggs.

    Science.gov (United States)

    Pacheco Marino, Suani G; Cabello, Marta N; Dinolfo, María I; Stenglein, Sebastián A; Saparrat, Mario C N; Salibián, Alfredo

    2016-01-01

    Several fungal species represent a potential risk to embryos of Odontesthes bonariensis (Cuvier and Valenciennes, 1835), a euryhaline freshwater fish that lives in the Pampean inland waters and has potential economic relevance. To identify two fungi isolated from O. bonariensis eggs exposed to saline conditions and to characterize their pathogenicity and tolerance to sodium chloride solutions. The isolates were identified by morphological features, and a preliminar phylogenetic analysis using sequences of translation elongation factor 1-alpha (EF-1α) and calmodulin (CAM) was performed. Koch's postulates were tested to identify the causative agent of fungal infection. The influence of NaCl on the fungal growth was evaluated in in vitro assays. The isolates LPSC 1001 and 1002 were identified as representatives of the genus Fusarium, and belonging to the Fusarium incarnatum-Fusarium equiseti species complex (FIESC) and the Fusarium solani species complex (FSSC), respectively. Histological observations on eggs exposed in vitro to both isolates in infectivity assays confirmed the ability of the fungal isolates to penetrate to egg's chorionic membrane, leading to the death of embryos. Increasing NaCl concentration in the culture medium reduced the growth of the isolates LPSC 1001 and 1002, being completely inhibited at 160 and 120g/l NaCl respectively. The isolates LPSC 1001 (FIESC) and 1002 (FSSC) were identified as fungal pathogens to O. bonariensis eggs. The use of NaCl solutions as antifungal treatment was not effective to control the infection with these strains. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  18. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  19. Enhancement of salinity tolerance in wheat through soil applied calcium carbide

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2009-05-01

    Full Text Available Calcium carbide (CaC2 has been reported to increase growth and yield of crops under normal soil conditions. This study assessed its capacity to enhance salinity tolerance in wheat (Triticum aestivum L.; cv- 1076 under saline conditions. Three levels of salinity: 0, 7 and 12 dS m-1 were created using NaCl. Nitrogen, phosphorus and potassium were applied as ammonium sulphate and KH2PO4 at 50 and 25 mg kg-1 soil, respectively. The encapsulated calcium carbide (ECC at 45 mg kg-1 soil produced 1291.8 µmols of acetylene (C2H2 and 257.5 µmols of its product ethylene (C2H4 over a period of 80 days. The results of the pot study indicated that ECC increased the weight of spike, weight of grains per spike, length of spike, total water concentration, root/shoot ratio and relative leaf water content up to 17, 23, 22, 35, 33 and 3%, respectively, over the control. Contrary to this, salinity (at 12 dS m -1 decreased all these parameters up to 68, 60, 26, 30, 28 and 8%, respectively, compared to the control. These results indicate that ECC enhances salinity tolerance in wheat by improving uptake of nutrients through enhanced root growth, increased hydraulic conductivity and hormonal action of ethylene released by ECC. Total water concentration was positively correlated (0.73 with grains spike-1 at P ≤ 0.05

  20. Reactions of metal oxides with molten NaPO3 + NaCl mixtures

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    We consider the dissolution mechanism for iron (III), europium(III), and tin(IV) oxides in molten NaPO 3 + NaCl that are responsible for the peak solubilities. We chose Fe 2 O 3 as the basic material since this occurs in large amounts around damaged metal structures in rock salt mines in a proposed zone for storing vitrified radioactive wastes. Solubility measurement and paper chromatography show that Fe 2 O 3 dissolves in molten NaPO 3 + NaCl in air by reaction with the solvent to give double iron and sodium diphosphates and monophosphates in accordance with the initial solution-in-the-melt composition, the degree of equilibration, and the temperature. The elevated solubilities for initial NaCl contents close to 30 mole % are due to sodium triphosphates and tricyclophosphates present in these melts. Moessbauer spectroscopy confirms that double iron, europium and tin diphosphates and monophosphates containing sodium occur in these chloride-polyphosphate melts

  1. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage

    Directory of Open Access Journals (Sweden)

    Sumitahnun Chunthaburee

    2016-07-01

    Full Text Available Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT, a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.

  2. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  3. A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilin [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Lu, Zhansheng [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2016-12-15

    Highlights: • The mechanism of CO tolerance and oxidation on Pt{sub ML}/WC(0001) is clarified. • The high tolerance of Pt{sub ML}/WC(0001) to CO originate from the weak adsorption. • The minimum energy path and the rate-determining step are identified. • The activity of Pt{sub ML}/WC(0001) to CO oxidation is comparable to that of Pt(111). • Some probable strategies are proposed to improve the activity of Pt{sub ML}/WC(0001). - Abstract: The deposition of platinum on the tungsten carbide (Pt/WC) have been achieved and proved with high stability, activity and CO-tolerance toward some reactions in experiments. Although a lot of experimental efforts have been focused on understanding the activity, stability and CO-tolerance of Pt/WC, the relevant theoretical works related to the CO-tolerance mechanism are still scarce. In current study, the adsorption and oxidation of CO on the Pt monolayer supported on WC(0001) surface (Pt{sub ML}/WC(0001)) are investigated using density functional theory calculations. It is found that the oxidation of CO on Pt{sub ML}/WC(0001) proceeds preferably along the Langmuir-Hinshelwood mechanism. The energy barrier of 1.06 eV for the rate-determining step of OOCO formation is almost equal to that (1.05 eV) for CO oxidation by atomic O on Pt(111), while the adsorption energy of 1.59 eV for CO on Pt{sub ML}/WC(0001) is smaller than that on Pt(111) (1.85 eV), indicating that the high resistance to CO poisoning of Pt{sub ML}/WC(0001) may originate from the weak interaction between them. To further improve the CO tolerance, some probable strategies are proposed based on the relevant kinetics results. The current results are helpful to understanding the origin of the highly resistant to CO poisoning of Pt{sub ML}/WC(0001) and rationally designing catalysts to improve the CO oxidation activity.

  4. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants.

    Science.gov (United States)

    Kudo, Madoka; Kidokoro, Satoshi; Yoshida, Takuya; Mizoi, Junya; Todaka, Daisuke; Fernie, Alisdair R; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-04-01

    Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology

  5. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  6. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  7. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance.

    Science.gov (United States)

    Ma, Qinsi; Jin, Kai; Peng, Guoxiong; Xia, Yuxian

    2015-10-01

    In fungi, ENA ATPases play key roles in osmotic and alkaline pH tolerance, although their functions in thermo- and UV-tolerances have not been explored. Entomopathogenic fungi are naturally widespread and have considerable potential in pest control. An ENA ATPase gene, MaENA1, from the entomopathogenic fungus Metarhizium acridum was functionally analyzed by deletion. MaENA1-disruption strain (ΔMaENA1) was less tolerant to NaCl, heat, and UV radiation than a wild-type strain (WT). Digital Gene Expression profiling of conidial RNAs resulted in 281 differentially expressed genes (DEGs) between the WT and ΔMaENA1 strains. Eighty-five DEGs, 56 of which were down-regulated in the ΔMaENA1 strain, were shown to be associated with heat/UV tolerance, including six cytochrome P450 superfamily genes, 35 oxidoreductase genes, 24 ion-binding genes, seven DNA repair genes, and five other genes. In addition, eight genes were components of stress responsive pathways, including the Ras-cAMP PKA pathway, the RIM101 pathway, the Ca(2+)/calmodulin pathway, the TOR pathway, and the HOG/Spc1/Sty1/JNK pathway. These results demonstrated that MaENA1 influences fungal tolerances to Na(+), heat, and UV radiation in M. acridum, and is involved in multiple mechanisms of stress tolerance. Therefore, MaENA1 is required for the adaptation and survival of entomopathogenic fungi in stressful conditions in the environment and in their hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    Science.gov (United States)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-18

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  9. Regeneration and acclimatization of salt-tolerant arachis hypogaea plants through tissue culture

    International Nuclear Information System (INIS)

    Ghauri, E.G.

    2006-01-01

    Excised embryos of Arachis hypogaea were cultured on Murashige and Skoog's medium (MS medium) supplemented with different combinations of growth hormones. The highest frequency of callus proliferation (80%) was recorded on MS medium mixed with 1.0 mg/1 of 2,4-D and 0.5 mg/1 of BAP. These cultures were treated with 0.65 mg/l of trans-4-hydroxy-L-proline (HyP) a:1d various concentrations (0.1-0.5%) of NaCl. In all cases the presence of salt reduced the fresh mass of callus. Shoot regeneration in the cultures took place when transferred to MS medium supplemented with 1.0 mg/1 of kinetin (Kin) and 0.5 mg/1 of 6-benzyl aminopurine (BAP). Percentage of shoot regeneration decreased with the increase of NaCl (0.1- 0.5%) in the shoot regeneration medium. Root formation in these cultures took place when the cultures were nurtured on MS medium free of growth hormones. Regeneration, hardening and acclimatization of the salt tolerant plants was conducted. (author)

  10. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  11. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Xiangrong Dong

    Full Text Available PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  12. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  13. Improvement of CMOS VLSI rad tolerance by processing technics

    International Nuclear Information System (INIS)

    Guyomard, D.; Desoutter, I.

    1986-01-01

    The following study concerns the development of integrated circuits for fields requiring only relatively low radiation tolerance levels, and especially for the civil spatial district area. Process modifications constitute our basic study. They have been carried into effects. Our work and main results are reported in this paper. Well known 2.5 and 3 μm CMOS technologies are under our concern. A first set of modifications enables us to double the cumulative dose tolerance of a 4 Kbit SRAM, keeping at the same time the same kind of damage. We obtain memories which tolerate radiation doses as high as 16 KRad(Si). Repetitivity of the results, linked to the quality assurance of this specific circuit, is reported here. A second set of modifications concerns the processing of gate array. In particular, the choice of the silicon substrate type, (epitaxy substrate), is under investigation. On the other hand, a complete study of a test vehicule allows us to accurately measure the rad tolerance of various components of the Cell library [fr

  14. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-10-01

    As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  16. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  17. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    Science.gov (United States)

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  18. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    International Nuclear Information System (INIS)

    Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W.

    2011-01-01

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: →Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. →DSE alleviated the deleterious effect of excessive heavy metals on maize. →DSE restricted the transfer of heavy metals from the roots to shoots in maize. →DSE colonization improved the tolerance of their host plants to heavy metals.

  19. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.; Liu, M.J.; Zhang, X.T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhang, H.B. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Department of Biology, Yunnan University, Kunming, 650091 Yunnan (China); Sha, T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhao, Z.W., E-mail: zhaozhw@ynu.edu.cn [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China)

    2011-02-15

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: {yields}Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. {yields}DSE alleviated the deleterious effect of excessive heavy metals on maize. {yields}DSE restricted the transfer of heavy metals from the roots to shoots in maize. {yields}DSE colonization improved the tolerance of their host plants to heavy metals.

  20. A Novel EPO Receptor Agonist Improves Glucose Tolerance via Glucose Uptake in Skeletal Muscle in a Mouse Model of Diabetes

    Directory of Open Access Journals (Sweden)

    Michael S. Scully

    2011-01-01

    Full Text Available Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of 14C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude.

  1. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco.

    Science.gov (United States)

    George, Suja; Parida, Ajay

    2011-03-01

    Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.

  2. The Effects of Cation Ratios on Root Lamella Suberization in Rice (Oryza sativa L. with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    M. R. Momayezi

    2012-01-01

    Full Text Available Rice is an important produced cereal in the world. We evaluated the effect of salt compositions including NaCl and Na2SO4 on suberin lamellae as a major barrier to radial ion and water movements in two rice genotypes representing contrasting salt tolerance levels under salinity stress. Two rice genotypes, Fajr as salt tolerant and Khazar as salt sensitive, were transplanted in sand culture under glasshouse condition. Rice seedlings were treated with five salt compositions including NaCl, Na2SO4, 1 : 1, 1 : 2, and 2 : 1 molar ratios for 40 days. It was proven that suberin lamellae in endodermis of root cell wall were thickened with Na2SO4 treatment. The results demonstrated that the number of passage cells was higher in Fajr genotype than that in Khazar genotype under saline condition. Calcium concentration in root tissue decreased as the SO42- concentration in root media increased. It can be concluded that Fajr genotype is able to keep some passage cells open to maintain Ca2+ uptake. The Ca2+/Na+ ratio in shoot tissue can be also a reliable index for the early recognition of salt stress in these rice genotypes.

  3. The equation of state of B2-type NaCl

    International Nuclear Information System (INIS)

    Ono, S

    2010-01-01

    The equation of state (EOS) of B2-type NaCl has been investigated to 270 GPa and 3000 K using the first-principles molecular dynamics method and high-pressure experiments in a diamond anvil cell. We used the high-pressure experimental data to determine the compressibility at room temperature, and used the generalized gradient approximation (GGA) and the projector augmented-wave method (PAW) in simulations to calculate the thermal pressure. A Vinet EOS fitted to the room temperature data yielded an isothermal bulk modulus of B T0 = 39.25 GPa and a pressure derivative of B T0 ' = 4.72. The high-temperature data from the first-principles calculations were fitted to the thermal pressure EOS. The resulting calculated parameters of the thermal pressure, αB T (V 0 ,T) and (δB T /δT) V , were 3.28 x 10 -3 (GPa/K) and 4.3 x10 -4 (GPa/K), respectively. A small volume dependence of the thermal pressure of B2-type NaCl was revealed from the analysis of our data. A significant temperature dependence of the calculated Grueneisen parameters was confirmed. This indicates that the conventional approach using the Mie-Grueneisen approximation is likely to have a significant uncertainty in determining the EOS for B2-type NaCl, and that an intrinsic anharmonicity should be considered to analyze the EOS.

  4. Effect of NaCl on the hydric and hygric dilation behaviour of lime-cement mortar

    NARCIS (Netherlands)

    Lubelli, B.; van Hees, R.P.J.; Huinink, H.P.

    2006-01-01

    The mechanism of damage due to NaCl crystallization has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the decay. Irreversible dilation during NaCl crystallization has been observed in a few cases but has never been studied in a systematic

  5. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution

    Indian Academy of Sciences (India)

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various ... parameter, χ, were calculated and found to decrease with increase in [NaCl]. Collective ..... in other words, increase in hydrophilicity.

  6. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    Science.gov (United States)

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  7. Plant plasma membrane proteomics for improving cold tolerance

    Directory of Open Access Journals (Sweden)

    Daisuke eTakahashi

    2013-04-01

    Full Text Available Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation. One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  8. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    International Nuclear Information System (INIS)

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Leonard Watkins, G.; Breeman, Wouter A.P.

    2013-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [ 68 Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time ( 97%), and specific activity (>40 MBq nmole −1 [ 68 Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. - Highlights: ► A NaCl based automated production of Ga-68-radiopharmaceuticals is described. ► Using 5 M NaCl for pre-purification of 68Ga eliminates the need for organic solvents. ► The method provides for high efficiency, specific activity, and radiochemical purity. ► The new method eliminates the need for the quality control by gas chromatography

  9. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. A study of wild tomatoes endemic to the Galapagos Islands as a source for salinity tolerance traits

    KAUST Repository

    Pailles Galvez, Claudia Yveline

    2017-11-01

    Salinity is a major concern in agriculture since it adversely affects plant growth, development, and yield. Domestication of crops exerted strong selective pressure and reduced their genetic diversity. Meanwhile, wild species continued to adapt to their environment becoming valuable sources of genetic variation, with the potential for enhancing modern crops performance in today’s changing climate. Some wild species are found in highly saline environments; remarkable examples are the endemic wild tomatoes from the Galapagos Islands, forming the Solanum cheesmaniae and Solanum galapagense species (hereafter termed Galapagos tomatoes). These wild tomatoes adapted to thrive in the coastal regions of the Galapagos Islands. The present work includes a thorough characterization of a collection of 67 accessions of Galapagos tomatoes obtained from the Tomato Genetics Resource Center (TGRC). Genotyping-by-sequencing (GBS) was performed to establish the population structure and genetic distance within the germplasm collection. Both species were genetically differentiated, and a substructure was found in S. cheesmaniae dividing the accessions in two groups based on their origin: eastern and western islands. Phenotypic studies were performed at the seedling stage, subjecting seedlings to 200 mM NaCl for 10 days. Various traits were recorded and analysed for their contribution to salinity tolerance, compared to control conditions. Large natural variation was found across the collection in terms of salt stress responses and different possible salt tolerant mechanisms were identified. Six accessions were selected for further work, based on their good performance under salinity. This experiment included scoring several plant growth and yield-related traits, as well as RNA sequencing (RNAseq) at the fruit-ripening stage, under three different NaCl concentrations. Accession LA0421 showed an increased yield of almost 50% in mild salinity (150 mM NaCl) compared to control conditions

  11. Recovery of phenol of industrial wastewaters with NaCl treatment

    International Nuclear Information System (INIS)

    Serna, Iveth; Torres, Jesus; Hoyos Bibian

    2003-01-01

    A technique for phenol recovery from residual wastewater, which has been made in an empiric way in some local industries, is explored in this work. It was carried out an experimental design that takes into account the concentration of NaCl as the entrance variable and the phenol recovery percentage as the exit variable. The statistical analysis of data determined that the best operation point is 25 Celsius degrade, with a initial ph between 2 and 3, an initial concentration of 6% and 21,5% for phenol and NaCl respectively, achieving a phenol recovery of 79 % with a phenol concentration in the organic phase of 83%. Besides the experimental part some theories are exposed dealing with the separation of a no electrolyte and water by salt addition

  12. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  13. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    OpenAIRE

    Qiyan Jiang; Zheng Hu; Hui Zhang; Youzhi Ma

    2014-01-01

    The transcription factor dehydration-responsive element binding protein (DREB) is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L.) and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed...

  14. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  15. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  16. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    Science.gov (United States)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  17. Effect of hypovolemia, infusion, and oral rehydration on gradual onset +Gz acceleration tolerance

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1976-01-01

    The purpose of this study was to determine the effect of blood withdrawal, blood infusion, and oral fluid intake on +Gz tolerance at an acceleration rate of 0.5 G/min. Six healthy men aged 21-27 yr were centrifuged after the withdrawal of 400 ml of blood (hypovolemia) from each man; they were centrifuged again following blood infusion (Phase I). Three weeks later the men were accelerated after similar hypovolemia and again after consuming 800 ml of an isotonic NaCl drink (Phase II). Phase I hypovolemia resulted in a reduction in tolerance in all subjects from a mean control level of 6.42 + or - 0.35 min to 5.45 + or - 0.17 min (-15.1%, p less than 0.05). Both infusion and drinking returned tolerances to control levels. During acceleration there were significant (p less than 0.05) increases in plasma vasopressin levels to 35 pg/ml; these were not influenced appreciably by infusion or drinking. In all acceleration runs there was an obligatory shift (loss) of plasma volume and electrolytes, especially potassium, regardless of the experimental treatments. Oral rehydration is shown to be as effective as blood replacement in restoring +Gz acceleration tolerance decrements due to hypovolemia.

  18. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  19. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  20. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  1. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Science.gov (United States)

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  2. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars.

    Science.gov (United States)

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-09-01

    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Effect of hypovolemia, infusion, and oral rehydration on plasma electrolytes, ADH, renin activity, and +G/z/ tolerance

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1977-01-01

    Effects on plasma volume, electrolyte shifts, and +G(z) tolerance induced by: (1) blood withdrawal; (2) blood infusion; and (3) oral fluid intake, were determined at 0.5 G/min in centrifugation tests of six ambulatory male patients, aged 21 to 27 yrs. Hypovolemia induced by withdrawal of 400 ml blood, blood infusion followed by repeated centrifugation, effects of consuming an isotonic drink (0.9% NaCl) to achieve oral rehydration, and donning of red adaptation goggles were studied for effects on acceleration tolerance, pre-acceleration and post-acceleration plasma renin activity (PRA) and plasma vasopressin levels. No significant changes in post-acceleration PRA compared to pre-acceleration PRA were found, and administration of oral rehydration is found as effective as blood replacement in counteracting hypovolemic effects.

  4. Selection on resilience improves disease resistance and tolerance to infections

    NARCIS (Netherlands)

    Mulder, H.A.; Rashidi, H.

    2017-01-01

    Response to infection in animals has 2 main mechanisms: resistance (ability to control pathogen burden) and tolerance (ability to maintain performance given the pathogen burden). Selection on disease resistance and tolerance to infections seems a promising avenue to increase productivity of animals

  5. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  6. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  7. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance.

    Science.gov (United States)

    Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U

    2015-01-01

    Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.

  8. Salt tolerances of some mainland tree species select as through nursery screening.

    Science.gov (United States)

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.

  9. Enhancing drought tolerance in C(4) crops.

    Science.gov (United States)

    Lopes, Marta S; Araus, Jose Luis; van Heerden, Philippus D R; Foyer, Christine H

    2011-05-01

    Adaptation to abiotic stresses is a quantitative trait controlled by many different genes. Enhancing the tolerance of crop plants to abiotic stresses such as drought has therefore proved to be somewhat elusive in terms of plant breeding. While many C(4) species have significant agronomic importance, most of the research effort on improving drought tolerance has focused on maize. Ideally, drought tolerance has to be achieved without penalties in yield potential. Possibilities for success in this regard are highlighted by studies on maize hybrids performed over the last 70 years that have demonstrated that yield potential and enhanced stress tolerance are associated traits. However, while our understanding of the molecular mechanisms that enable plants to tolerate drought has increased considerably in recent years, there have been relatively few applications of DNA marker technologies in practical C(4) breeding programmes for improved stress tolerance. Moreover, until recently, targeted approaches to drought tolerance have concentrated largely on shoot parameters, particularly those associated with photosynthesis and stay green phenotypes, rather than on root traits such as soil moisture capture for transpiration, root architecture, and improvement of effective use of water. These root traits are now increasingly considered as important targets for yield improvement in C(4) plants under drought stress. Similarly, the molecular mechanisms underpinning heterosis have considerable potential for exploitation in enhancing drought stress tolerance. While current evidence points to the crucial importance of root traits in drought tolerance in C(4) plants, shoot traits may also be important in maintaining high yields during drought.

  10. Plasma membrane and salinity tolerance of barley plants

    International Nuclear Information System (INIS)

    Al-Rahmani, F. H.; Al-Mashhadani, M. S.; Al-Delemee, N. H.

    1997-01-01

    Barley cultivar, California Mario ut, was grown in a nutrient solution containing increasing Nacl concentrations up to 250 mm. The effect of Nacl on growth, mineral compost ion ant integrity of the plasma membrane was studied. Growth of the shoot'and root was stimulated or little affected by 10 and 20 ml Nacl. Further increase in Nacl concentrations depressed the growth. The depression was conspicuous between 100 and 250 mm Nacl. Increasing Nacl concentration decreased potassium content in the shoots and roots and led to steep increase in sodium accumulation. The integrity of the plasma membrane was measured in term of potassium leakage from the root tips. Rapid leakage of potassium was obtained at Nacl concentrations ranging from 100 to 250 mm. At the same concentrations of Nacl, adenosine triphosphatase activity in the root tips was increased. Results indicate that the plasma membrane of root cells was damaged by the increased levels of salinity. It was concluded that the plasma membrane of root cells is the primary site of salinity toxicity. (authors). 40 refs., 5 tabs. 3 figs

  11. Genetically modified plants for salinity stress tolerance (abstract)

    International Nuclear Information System (INIS)

    Sopory, S.K.; Singia-Pareek, S.I.; Kumar, S.; Rajgopal, D.; Aggarwal, P.; Kumar, D.; Reddy, K.M.

    2005-01-01

    Several recent reports have indicated that the area under salinity is on the increase and currently very few genotypes of important crop plants are available for cultivation under these conditions. In this regard, identification of novel stress responsive genes and transgenic approach offers an important strategy to develop salt tolerant plants. Using an efficient PCR-based cDNA subtraction method a large number of genes upregulated under salinity and dehydration stress have been identified also in rice and Pennisetum. Functional analysis of some of these genes is being done using transgenic approach. Earlier, we reported on the role of one of the stress regulated genes, glyoxalse I in conferring salinity tolerance. We now show that by manipulating the expression of both the genes of the glyoxalse pathway, glyoxalse I and II together, the ability of the double transgenic plants to tolerate salinity stress is greatly enhanced as compared to the single transgenic plants harbouring either the glyoxalse I or glyoxalse II. The cDNA for glyoxalse II was cloned from rice and mobilized into pCAMBIA vector having hptII gene as the selection marker. The seedlings of the T1 generation transgenic plants survived better under high salinity compared to the wild type plants; the double transgenics had higher limits of tolerance as compared to the lines transformed with single gene. A similar trend was seen even when plants were grown in pots under glass house conditions and raised to maturity under the continued presence of NaCl. In this, the transgenic plants were able to grow, flower and set seeds. The overexpression of glyoxalse pathway was also found to confer stress tolerance in rice. We have also isolated a gene encoding vacuolar sodium/proton antiporter from Pennisetum and over expressed in Brassica juncea and rice. The transgenic plants were able to tolerate salinity stress. Our work along with many others' indicates the potential of transgenic technology in developing

  12. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  13. An Improved PRoPHET Routing Protocol in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Seung Deok Han

    2015-01-01

    Full Text Available In delay tolerant network (DTN, an end-to-end path is not guaranteed and packets are delivered from a source node to a destination node via store-carry-forward based routing. In DTN, a source node or an intermediate node stores packets in buffer and carries them while it moves around. These packets are forwarded to other nodes based on predefined criteria and finally are delivered to a destination node via multiple hops. In this paper, we improve the dissemination speed of PRoPHET (probability routing protocol using history of encounters and transitivity protocol by employing epidemic protocol for disseminating message m, if forwarding counter and hop counter values are smaller than or equal to the threshold values. The performance of the proposed protocol was analyzed from the aspect of delivery probability, average delay, and overhead ratio. Numerical results show that the proposed protocol can improve the delivery probability, average delay, and overhead ratio of PRoPHET protocol by appropriately selecting the threshold forwarding counter and threshold hop counter values.

  14. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route

    International Nuclear Information System (INIS)

    Jha, Nidhi; Mondal, D.P.; Dutta Majumdar, J.; Badkul, Anshul; Jha, A.K.; Khare, A.K.

    2013-01-01

    Highlights: ► NaCl crystals has been used as space holder. ► Variation of NaCl:Ti ratio varies porosity (65–80%). ► NaCl is cubic but the cells are spherical. ► Two types of pores: micro and macro pores are obtained. ► Foams are suitable for bones scaffolds and engineering applications. - Abstract: Open cell Titanium-foam (Ti-foam) with varying porosities (65–80%) was prepared using sodium chloride (NaCl) particles as space holder through powder metallurgy route. In order to ensure sufficient handling strength in cold compacted pallets, 2 wt.% polyvinyl alcohol (PVA) solutions (5 wt.% PVA in water) was mixed with the mixture of Ti and NaCl powders prior to cold compaction. After sintering, NaCl salt was removed by dissolving it in hot water. Detailed Energy dispersive X-ray (EDX) analysis and X-ray diffraction studies of the prepared Ti-foams were conducted to examine any physical and chemical changes in the phase constituents. The micro-architectural characteristics, density vis-a-vis porosity, and compressive deformation behavior of the synthesized foams were evaluated to examine their suitability as biomaterial and engineering applications

  15. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    Science.gov (United States)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  16. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  17. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    Science.gov (United States)

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  18. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    Science.gov (United States)

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  20. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhonghao Jiang

    Full Text Available Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+ concentration ([Ca(2+]i via Ca(2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS. It is well established that ROS also triggers increases in [Ca(2+]i. However, the relationship and interaction between salinity stress-induced [Ca(2+]i increases and ROS-induced [Ca(2+]i increases remain poorly understood. Using an aequorin-based Ca(2+ imaging assay we have analyzed [Ca(2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+ channels and H2O2-gated Ca(2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

  1. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate

    Directory of Open Access Journals (Sweden)

    Khalaf Ali Fayez

    2014-01-01

    Full Text Available Growth and physiological activities of barley (Hordeum vulgare L. cv. Gustoe grown in soil cultures were evaluated to recognize the ameliorative role of salicylic acid (SA and KNO3 against the negative effects of salt and water deficit stresses. Barley plants were subjected to three levels of NaCl (50, 100 and 150 mM, three levels of water stress (80%, 70% and 50% of the soil water content (SWC and the combination of 150 mM NaCl + 50 μM SA, 150 mM NaCl + 10 mM KNO3, 50% SWC + 50 μM SA and 50% SWC + 10 mM KNO3 for two weeks. Salt and water deficit stresses reduced the shoot growth, leaf photosynthetic pigments, K+ contents and provoked oxidative stress in leaves confirmed by considerable changes in soluble carbohydrate, proline, malondialdehyde (MDA, total phenolic compounds, antioxidant activity and Na+ contents. Leaf soluble protein of salt and water deficit treated plants was unaffected. The Na+/K+ ratio increased with increasing salt and water deficit treated plants. Application of 50 μM SA or 10 mM KNO3 to150 mM NaCl and/or 50% SWC treated plants improved these attributes under salt and water stresses. Soluble carbohydrates in stressed plants may have a significant role in osmotic adjustment. It can be concluded that the addition of SA or KNO3 can ameliorate the oxidative stress in barley stressed plants. This ameliorative effect might be maintained through low MDA contents and decreased Na+/K+ ratio in leaves. This study also provided evidence for the ability of barley cultivation in salt and water deficit soils due to its capacity for osmotic adjustment.

  2. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants.

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S; Biswas, Dipul K; Sahoo, Ranjan K; Kunchge, Nandkumar S; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  3. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  4. Overexpression of yeast ArDH gene in chloroplasts confers salinity tolerance in plants (abstract)

    International Nuclear Information System (INIS)

    Khan, M.S.; Kanwal, B.; Khalid, A.M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    Water stress due to salinity and drought is the main limiting factor for plant growth, productivity and quality. A common response to water deficit is the accumulation of osmoprotectants such as sugars and amino acids. In yeast, arabitol dehydrogenase is found responsible for the production of arabitol from ribulose-5-phosphate. All plants synthesize ribulose-5-phosphate via pentose pathway in chloroplasts.. Therefore, osmotolerance of the plants could be enhanced through metabolic engineering of chloroplasts by introducing ArDH gene into the plastome, which is responsible for the conversion of ribulose-5- phosphate to arabitol. Here we report high-level expression of arabitol dehydrogenase (ArDH) in chloroplasts. Homoplasmic transgenic plants were recovered on spectinomycin-containing regeneration medium. Transformed tobacco plants survived whereas non-transformed were severely stressed or killed when two weeks old seedlings were exposed to NaCl (up to 400 mM), suggesting a role for arabitol in salt tolerance. Seedlings survived up to five weeks on medium containing high salt concentrations (350-400 mM). Nevertheless, seedlings remained green and grew normal on concentrations up to 350 mM NaCl for several weeks. Hypothesis that membranes are protected under stress conditions due to the arabitol accumulation in chloroplasts, seedlings were grown in liquid medium containing polyethylene glycol (PEG, up to 6%). Seedlings were tolerant to 6% PEG, suggesting that ArDH enzyme protects membranes integrity under stress. Therefore, it is concluded that ArDH gene could be expressed in crop plants to withstand abiotic stresses. (author)

  5. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    Science.gov (United States)

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the differences between processed normal and WB meat products. © 2017 Poultry Science Association Inc.

  6. PEMANFAATAN LIMBAH CAIR GARAM BAHAN BAKU 30˚ Be UNTUK PENGASINAN IKAN GABUS RENDAH NACl DAN MENGANDUNG Mg

    Directory of Open Access Journals (Sweden)

    Nilawati Nilawati

    2014-12-01

    Full Text Available Pengasinan merupakan metode pengawetan yang sudah lama dengan menggunakan garam krosok namun pengasinan dengan  limbah cair garam 30˚ Be belum banyak dilakukan. Keuntungan dengan metode ini akan menghasilkan produk ikan asin yang rendah NaCl dan tinggi kandungan Mg. Penelitian ini menggunakan 1 variabel yaitu konsentrasi limbah cair garam 30˚ Be  yaitu B0 (0 persen- kontrol, B10 (10 persen. B20 (20 persen, B30 (30 persen,  B40(40 persen, B50 (50 persen  dan kontrol  B100 (100 persen  serta kontrol pembanding penggaraman kering dengan garam bahan baku G100 (100 persen atau dikenal garam krosok. Hasil penelitian diperoleh kandungan NaCl murni pada pemakaian larutan 30˚ Be sebanyak 10 persen  sebesar 6,952 persen. Dan pada konsentrasi limbah cair garam 30˚ Be dengan konsentrasi   50 persen diperoleh kndungan NaCl murni sebesar 15,478 persen, namun untuk kontrol yang menggunakan garam krosok maka NaCl nya paling tinggi, sedangkan kontrol dengan 100 persen larutan 30˚ Be kandungan NaCl murninya sampai 25,134 persen, yang menggunakan garam bahan baku  kandungan NaCl sebesar 43,864 persen.  Perlakuan yang terbaik diperoleh pada pemakaian larutan garam 30˚ Be pada konsentrasi 40 persen. Kandungan Magnesium pada     penelitian ini berkisar antara 0,387 Sampai  3,444  persen.  Perlakuan mulai konsentrasi 30 persen keatas   penampakan ikan asin putih kecoklatan , empuk, bersih, namun kalau dibawah 30 persen penampakannya kecoklatan muda, daging liat agak keras namun NaCl nya rendah

  7. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  8. Effects of NaCl on Fermentative Metabolism of Mature Green Tomatoes cv. Ailsa Craig in Brine

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2010-01-01

    Full Text Available The effect of osmotic strength on gene expression and activity of the major enzymes of fermentative metabolism of mature green tomato fruit (Solanum lycopersicum cv. Ailsa Craig has been studied by exposing fruit to brine containing 0 (water, 5 and 10 % NaCl. The fruits were surface sterilized prior to treatment to prevent the growth of microbes naturally present on the skin of the fruit. Changes in fruit expression of fermentation genes and the activity of the respective enzymes as well as physicochemical quality characteristics (soluble solid content, titratable acidity, pH and firmness were studied in both fruit and brine for 0.5, 1, 1.5, 2, 3, 7 and 14 days. Discrepancies in responses that resulted from the different salt concentrations were obtained at molecular and quality levels. The complex kinetics of solutes between the fruit and the surrounding solution due to osmotic potential has led to different responses of the tissue to fermentation. Tomato fruit showed cracking soon after storage in water; water-stored fruit had higher titratable acidity, lower soluble solid content, and higher induction of anaerobic metabolism as indicated by the expression or the activity of the fermentation enzymes compared to fruit stored in brine with 5 or 10 % NaCl. No cracking was observed in fruit stored in 5 (isotonic or 10 % NaCl (hypertonic brine, though in the latter, signs of dehydration were observed. The presence of salt in brine reduced the intensity of fermentative metabolism as indicated by the lower gene expression and enzyme activity. However, fruit stored in brine with 5 % NaCl survived longer than with 0 or 10 % NaCl. The presence of 5 % NaCl in brine caused mild changes of both the fermentative metabolism and the physicochemical characteristics and prevented fruit deterioration during storage.

  9. Genetic studies towards elucidation of drought tolerance of potato

    NARCIS (Netherlands)

    Tessema, Biructa Bekele

    2017-01-01

    Drought is a major threat to agricultural production, which makes drought tolerance a prime target for breeding approaches towards crop improvement. Drought is a complex polygenic trait and poses a challenge for drought tolerance breeding. Improving crops for drought tolerance at least requires

  10. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  11. Accurate thermoelastic tensor and acoustic velocities of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Michel L., E-mail: michel@if.usp.br [Physics Institute, University of Sao Paulo, Sao Paulo, 05508-090 (Brazil); Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455 (United States); Shukla, Gaurav, E-mail: shukla@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, 55455 (United States); Minnesota supercomputer Institute, University of Minnesota, Minneapolis, 55455 (United States); Silveira, Pedro da [Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455 (United States); Wentzcovitch, Renata M., E-mail: wentz002@umn.edu [Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455 (United States); Minnesota supercomputer Institute, University of Minnesota, Minneapolis, 55455 (United States)

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  12. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44.

    Science.gov (United States)

    Qi, Jiakun; Caiyin, Qinggele; Wu, Hao; Tian, Kairen; Wang, Binbin; Li, Yanni; Qiao, Jianjun

    2017-08-01

    Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.

  14. Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on proliferation and autolysis of DL-starter cultures.

    Science.gov (United States)

    Søndergaard, Lise; Ryssel, Mia; Svendsen, Carina; Høier, Erik; Andersen, Ulf; Hammershøj, Marianne; Møller, Jean R; Arneborg, Nils; Jespersen, Lene

    2015-11-20

    Reduction of sodium chloride (NaCl) in cheese manufacturing is a challenge for the dairy industry. NaCl has a profound role on microbial development influencing cheese sensory and technological properties. The purpose of this work was to investigate how proliferation, distribution and autolysis of two commercial DL-starter cultures (C1 and C2) used in the production of Danish semi-hard Samsoe cheeses were affected by reduced NaCl levels. Cheeses containing autolysis were monitored during ripening, as well as the impact of NaCl content and autolysis on the formation of free amino acids (FAA). Reduction of NaCl resulted in higher LAB counts at the early stages of ripening, with differences between the two DL-starter cultures. The unsalted cheeses produced with C1 had retained a significantly higher number of the initial LAB counts (cfu/g) after 1 and 2 weeks of ripening (i.e. 58% and 71%), compared to the normal-salted cheeses (i.e. 22% and 21%), whereas no significant difference was found between the reduced-salt (i.e. 31% and 35%) and normal-salted cheeses. At the later stages of ripening (i.e. 7 and 11 weeks) NaCl had no significant influence. For cheeses produced with C2, a significant influence of NaCl was only found in cheeses ripened for 7 weeks, where the unsalted and reduced-salt cheeses had retained a significantly higher number of the initial LAB counts (cfu/g) (i.e. 39% and 38%), compared to the normal-salted cheeses (i.e. 21%). In the Samsoe cheeses, bacteria were organized as single cells, in groups of 2-3 cells or in groups of ≥4 cells. During ripening the decrease in the number of viable bacteria was mainly due to a reduction in the number of viable bacteria organized in groups of ≥4 cells. A negative correlation between NaCl content and PepX activity was observed. At the end of ripening the total FAA content was lower in the unsalted cheeses, compared to the reduced- and normal-salted cheeses. In conclusion, NaCl had a significant influence on

  15. Growth, structure and magnetic properties of FePt nanostructures on NaCl(001) and MgO(001)

    International Nuclear Information System (INIS)

    Liscio, F; Maret, M; Doisneau-Cottignies, B; Makarov, D; Albrecht, M; Roussel, H

    2010-01-01

    A comparison of the structural and magnetic properties of FePt nanostructures grown at different temperatures on NaCl(001) and MgO(001) substrates is presented. A strong influence of the deposition temperature on the epitaxial growth as well as on the size distribution of FePt nanostructures grown on NaCl substrates is observed. In spite of a large lattice mismatch between FePt and NaCl, a 'cube-over-cube' growth of nanostructures with a narrow size distribution was achieved at 520 K. Moreover, the growth of FePt nanostructures on NaCl(001) is not preceded by the formation of a wetting layer as observed on MgO(001). The higher degree of L1 0 chemical ordering in FePt nanostructures grown on MgO(001) accompanied by the absence of L1 0 variants with an in-plane tetragonal c-axis indicates that the tensile epitaxial stress induced by the MgO substrate is a key factor in the formation of the L1 0 phase with an out-of-plane c-axis. Superparamagnetic behavior is revealed for the FePt nanostructures grown on NaCl(001) due to their small size and relatively poor chemical order.

  16. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  17. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  18. Reaction of metal oxides with molten mixtures NaPO3+NaCl

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    By methods of solubility determination and paper chromatography it is shown, that Fe 2 O 3 solution in NaPO 3 +NaCl melts in the air relizes due to its chemical interaction with solvent resulting in formation of iron and sodium binary di- and monophosphates depending on melt-solvent initial composition, its attainment of equilibrium state and experiment temperature. It is established, that oxides increased solubility in melts with NaCl initial content ∼30 mol.% is specified by sodium tri- and tricyclophosphates presence in the melts. On this basis of NGR-spectroscopy data the presence of iron, europium, tin and sodium binary di- and monophosphates in some chloride-polyphosphate melts is confirmed

  19. Induced mutation of new cotton lines tolerant to verticillium wilt with improved characters

    International Nuclear Information System (INIS)

    Rastegary, G.; Hoseiny Neghad, Z.

    1998-01-01

    Induction of mutation for genetic variation has been used in crop improvement for many years. The mutant lines can be used either directly or as a new genetic source in cross breeding. In cotton 'eleven' and 'two' mutant varieties as new genetic sources have been evolved directly and indirectly, respectively. One of the major obstacles in cotton production in northern region of Iran, Gorgan and Gonbad (where they are known as the main cultivation area of this crop), is the presence of verticillium wilt fungal disease. Since this fungus is soil-born, and can not be controlled chemically, the most efficient way of combating against the disease is to breed for the tolerance/resistance of the species. For this purpose, a mutation breeding technique was applied using gamma radiation as mutagen. The seeds of four varieties (Shirpan, Tashkand, Bakhtegan, and Sahel) were irradiated after reaching a proper absorbed humidity. The radiation doses of 150 to 350 Gy were applied and the seeds were cultivated in two different locations (Varamin and Kordkuy) as M1 generation. The cotton balls of each individual healthy plant was harvested to attain the seeds of M2 rows. In M2, the plants with different degrees of tolerance to the disease were compared to the selected parents (taking into consideration that the soil was contaminated). The good yielding lines with different level of tolerance were taken up to the 5th generation, yielding 70 lines of superior qualitative and quantitative traits. (author)

  20. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    International Nuclear Information System (INIS)

    Dorokhov, A.; Bertolone, G.; Baudot, J.; Brogna, A.S.; Colledani, C.; Claus, G.; De Masi, R.; Deveaux, M.; Doziere, G.; Dulinski, W.; Fontaine, J.-C.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I.

    2010-01-01

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) . Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10μm pitch device was found to be ∼10 13 n eq /cm 2 , while it was only 2x10 12 n eq /cm 2 for a 20μm pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10 14 ) n eq /cm 2 . This goal relies on a fabrication process featuring a 15μm thin, high resistivity (∼1kΩcm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages ( 13 n eq /cm 2 ), making evidence of a significant extension of the radiation tolerance limits of MAPS.

  1. Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum).

    Science.gov (United States)

    Sharma, Manorma; Sharma, Vinay; Tripathi, Bhumi Nath

    2016-05-01

    The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in terms of the accumulation of H2O2 and lipid peroxidation compared to the Al-sensitive genotype (RSG 945). The accumulation of Al by roots of both genotypes was almost equal at 96 and 144 h after Al treatment; however, it was higher in Al-tolerant than Al-sensitive genotype at 48 h after Al treatment. Further, the Al-mediated induction of superoxide dismutase (SOD) activity was significantly higher in Al-tolerant than Al-sensitive genotype. Ascorbate peroxidase (APX) activity was almost similar in both genotypes. Al treatment promptly activated catalase activity in Al-tolerant genotype, and it was remarkably higher than that of Al-sensitive genotype. As another important Al detoxification mechanism, citrate efflux was almost equal in both genotypes except at 1000 μM Al treatment for 96 and 144 h. Further, citrate carrier and anion channel inhibitor experiment confirmed the contribution of citrate efflux in conferring Al tolerance in Al-tolerant genotype. Based on the available data, the present study concludes that rapid activation of catalase (also SOD) activity followed by citrate efflux effectively improves Al tolerance in chick pea.

  2. Improved clinical tolerance to chronic lactose ingestion in subjects with lactose intolerance: a placebo effect?

    Science.gov (United States)

    Briet, F; Pochart, P; Marteau, P; Flourie, B; Arrigoni, E; Rambaud, J

    1997-01-01

    Background—Uncontrolled studies of lactose intolerant subjects have shown that symptom severity decreases after chronic lactose consumption. Adaptation of the colonic flora might explain this improvement. 
Aims—To compare the effects of regular administration of either lactose or sucrose on clinical tolerance and bacterial adaptation to lactose. 
Methods—Forty six lactose intolerant subjects underwent two 50 g lactose challenges on days 1 and 15. Between these days they were given 34 g of lactose or sucrose per day, in a double blind protocol. Stool samples were obtained on days 0 and 14, to measure faecal β-galactosidase and pH. Symptoms, breath H2 excretion, faecal weight and electrolytes, and orofaecal transit time were assessed. 
Results—Except for faecal weight, symptoms were significantly milder during the second challenge in both groups, and covariance analysis showed no statistical difference between them. In the lactose group, but not in the sucrose group, faecal β-galactosidase activity increased, pH dropped, and breath H2 excretion decreased. 
Conclusion—Bacterial adaptation occurred when lactose intolerant subjects ingested lactose for 13 days, and all symptoms except diarrhoea regressed. Clinical improvement was also observed in the control group which displayed no signs of metabolic adaptation. This suggests that improved clinical tolerance may be just a placebo effect. 

 Keywords: lactose; lactose intolerance; colonic adaptation; lactase deficiency PMID:9414969

  3. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.

    Science.gov (United States)

    Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro

    2017-06-01

    In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na + ) in their roots, thus avoiding excessive Na + accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K + ), calcium (Ca 2+ ), chloride ion (Cl - ) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Salt tolerance at single cell level in giant-celled Characeae

    Directory of Open Access Journals (Sweden)

    Mary Jane eBeilby

    2015-04-01

    Full Text Available Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i very large cell size, (ii position on phylogenetic tree near the origin of land plants and (iii continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt-sensitive Chara australis succumbs to 50 - 100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells

  5. Evaluation of Potential Effects of NaCl and Sorbic Acid on Staphylococcal Enterotoxin A Formation

    Directory of Open Access Journals (Sweden)

    Nikoleta Zeaki

    2015-09-01

    Full Text Available The prophage-encoded staphylococcal enterotoxin A (SEA is recognized as the main cause of staphylococcal food poisoning (SFP, a common foodborne intoxication disease, caused by Staphylococcus aureus. Studies on the production of SEA suggest that activation of the SOS response and subsequent prophage induction affect the regulation of the sea gene and the SEA produced, increasing the risk for SFP. The present study aims to evaluate the effect of NaCl and sorbic acid, in concentrations relevant to food production, on SOS response activation, prophage induction and SEA production. The impact of stress was initially evaluated on steady state cells for a homogenous cell response. NaCl 2% was found to activate the SOS response, i.e., recA expression, and trigger prophage induction, in a similar way as the phage-inducer mitomycin C. In contrast, sorbic acid decreased the pH of the culture to a level where prophage induction was probably suppressed, even when combined with NaCl stress. The impact of previous physiological state of the bacteria was also addressed on cells pre-exposed to NaCl, and was found to potentially affect cell response upon exposure to further stress. The results obtained highlight the possible SFP-related risks arising from the use of preservatives during food processing.

  6. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    Science.gov (United States)

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  7. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  8. Charging induced emission of neutral atoms from NaCl nanocube corners

    International Nuclear Information System (INIS)

    Ceresoli, Davide; Zykova-Timan, Tatyana; Tosatti, Erio

    2008-01-01

    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero-energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct

  9. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.

    Directory of Open Access Journals (Sweden)

    Jianli Duan

    Full Text Available Late embryogenesis abundant (LEA proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa using the Rapid Amplification of cDNA Ends (RACE method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.

  10. The individual tolerance concept is not the sole explanation for the probit dose-effect model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M.C.; McCloskey, J.T.

    2000-02-01

    Predominant methods for analyzing dose- or concentration-effect data (i.e., probit analysis) are based on the concept of individual tolerance or individual effective dose (IED, the smallest characteristic dose needed to kill an individual). An alternative explanation (stochasticity hypothesis) is that individuals do not have unique tolerances: death results from stochastic processes occurring similarly in all individuals. These opposing hypotheses were tested with two types of experiments. First, time to stupefaction (TTS) was measured for zebra fish (Brachydanio rerio) exposed to benzocaine. The same 40 fish were exposed during five trials to test if the same order for TTS was maintained among trials. The IED hypothesis was supported with a minor stochastic component being present. Second, eastern mosquitofish (Gambusia holbrooki) were exposed to sublethal or lethal NaCl concentrations until a large portion of the lethally exposed fish died. After sufficient time for recovery, fish sublethally exposed and fish surviving lethal exposure were exposed simultaneously to lethal NaCl concentrations. No statistically significant effect was found of previous exposure on survival time but a large stochastic component to the survival dynamics was obvious. Repetition of this second type of test with pentachlorophenol also provided no support for the IED hypothesis. The authors conclude that neither hypothesis alone was the sole or dominant explanation for the lognormal (probit) model. Determination of the correct explanation (IED or stochastic) or the relative contributions of each is crucial to predicting consequences to populations after repeated or chronic exposures to any particular toxicant.

  11. Identification and Selection for Salt Tolerance in Alfalfa (Medicago sativa L. Ecotypes via Physiological Traits

    Directory of Open Access Journals (Sweden)

    Hassan MONIRIFAR

    2009-12-01

    Full Text Available Salt stress is a serious environmental problem throughout the world which may be partially relieved by breeding cultivars that can tolerate salt stress. Plant breeding may provide a relatively cost effective short-term solution to the salinity problem by producing cultivars able to remain productive at low to moderate levels of salinity. Five alfalfa cultivars, �Seyah-Roud�, �Ahar-Hourand�, �Oskou�, �Malekan� and �Sefida-Khan� were assessed for salt tolerance at mature plant stage. A greenhouse screening system was used to evaluate individual alfalfa plants grown in perlit medium, and irrigated with water containing different amounts of NaCl. Three salt levels were achieved by adding 0, 100 and 200 mM NaCl to Hoagland nutrient solution, respectively. Forage yield, sodium and potassium contents and K/Na ratio was determined. Also, leaf samples were analyzed for proline and chlorophyll contents. The ecotypes Seyha-Roud and �Sefida-Khan� had comparatively less sodium contents than �Oskou�, �Ahar-Hourand� and �Malekan� ecotypes, also potassium content increased under saline condition. Forage yield of different alfalfa ecotypes was significantly influenced by the salinity. The ecotypes �Malekan�, Ahar- Hourand and �Oskou� were successful in maintaining forage yield under salinity stress. Sodium contents increased due to salinity in all alfalfa ecotypes however ecotypes �Ahar-Hourand� and �Malekan� maintained the highest leaf Na concentration. They showed higher content of K than other ecotypes but had lower K/Na ratio. It was concluded that, two ecotypes �Malekan� and �Ahar-Hourand� were better.

  12. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl2 Simulated Carbon Storage Brines.

    Science.gov (United States)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2017-06-20

    Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include

  13. Incorporating Fault Tolerance Tactics in Software Architecture Patterns

    NARCIS (Netherlands)

    Harrison, Neil B.; Avgeriou, Paris

    2008-01-01

    One important way that an architecture impacts fault tolerance is by making it easy or hard to implement measures that improve fault tolerance. Many such measures are described as fault tolerance tactics. We studied how various fault tolerance tactics can be implemented in the best-known

  14. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Hill Colin

    2008-10-01

    Full Text Available Abstract Background The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS organism Lactococcus lactis NZ9000. Results In vitro bile tolerance of both strains was significantly enhanced (P Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P n = 5, following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Conclusion Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract.

  15. Isolation and charactarization of T-DNA-insertion Mutants of Arabidopsis thaliana that are Tolerant to Salt

    International Nuclear Information System (INIS)

    Njoroge, N.C.; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    In order to provide an insight into physiological mechanisms underlying salt tolerance in plants,T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were screened on media containing 150-175 millimolar sodium chloride (mM Nacl) for an ability to germinate with formation of two green expanded cotyledons.Under these saline conditions the wild-type (WT) seeds of A.thaliana do not germinate. Two different mutants,NN3 and NN143 were isolated. Genetic analysis of the F1 and F2 generations indicates that the salt tolerance trait in mutant NN3 is recessive and dominant in mutant NN143. Allelism test indicates that mutants NN3 and NN143 are not allelic to each other, but they are alleic to aba and abi mutants respectively. When subjected to water stress imposed by 175mM Nacl for two weeks,kanamycin homozygous seeds of mutants NN3 and NN143 attained germination levels of 97% and 65% respectively. At this concentration of salt, the wild-type seeds are incapable of germination. On 300mM mannitol, a non-ionic osmoticum, mutants NN143 and NN3 and wild type attained a germination levels of 77%, 95% and 2% respectively. The biomass of mutant NN3 seedlings grown on a medium containing 150 mM NaCl was significanlly greater than that of mutant NN143.Between 104 and 145 hours after germination on media containing 175 mM NaCl and 300mM mannitol,germination levels of mutant NN3 were significantly higher than those of mutant NN143.However, both attain the same level of germination after 200 hours. Mutant NN43 is capable of germination on a medium containing 2-6 μM (micromolar) abscisic acid (ABA) with germination ranging from 11to100%. After two weeks on 2 μ ABA, it attained 100% germination and the wild type and mutant NN3 did not germinate. The biomass of NN143 seedlings grown on ABA-free medium and those grown on 2 μM ABA were not significantly different. In presence of both 1μABA and 250mM mannitol, mutant NN143 seedlings achieved 60% germination compared to 93

  16. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    Science.gov (United States)

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  17. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Shabbir, Rana Nauman; Waraich, E A; Ali, H; Nawaz, F; Ashraf, M Y; Ahmad, R; Awan, M I; Ahmad, S; Irfan, M; Hussain, S; Ahmad, Z

    2016-02-01

    The recent food security issues, combined with the threats from climate change, demand future farming systems to be more precise and accurate to fulfill the ever increasing global food requirements. The role of nutrients such as nitrogen (N), phosphorous (P), and potassium (K) in stimulating plant growth and development is well established; however, little is known about their function, if applied in combination, in improving crop yields under environmental stresses like drought. The aim of this study was to evaluate the effects of combined foliar spray of supplemental NPK (NPKc) on physiological and biochemical mechanisms that enhance the drought tolerance potential of wheat for improved yield. Foliar NPKc markedly influenced the accumulation of osmoprotectants and activity of both nitrogen assimilation and antioxidant enzymes. It significantly improved the concentration of proline (66 %), total soluble sugars (37 %), and total soluble proteins (10 %) and enhanced the activity of nitrate reductase, nitrite reductase, catalase, and peroxidase by 47, 45, 19, and 8 %, respectively, with respect to no spray under water-deficit conditions which, in turn, improve the yield and yield components. The accumulation of osmolytes and activity of antioxidant machinery were more pronounced in drought tolerant (Bhakkar-02) than sensitive genotype (Shafaq-06).

  18. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Growth responses of NaCl stressed rice (Oryza sativa. L.) plants ... 2008), which is a real threat to human's food security. Existed situation may ..... content and composition of essential oil and minerals in black cumin. (Nigella ...

  19. Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on development and autolysis of DL-starter cultures

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Ryssel, Mia; Svendsen, Carina

    2015-01-01

    of two commercial DL-starter cultures (C1 and C2) used in the production of Danish semi-hard Samsoe cheeses were affected by reduced NaCl levels. Cheeses containing .... Lactic acid bacteria (LAB), distribution of bacteria as single cells or microcolonies, their viability in the cheeses and cell autolysis were monitored during ripening, as well as the impact of NaCl content and autolysis on the formation of free amino acids (FAA). Reduction of NaCl resulted in higher LAB...

  20. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    Science.gov (United States)

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  1. Irradiation induced creep in whiskers of NaCl

    International Nuclear Information System (INIS)

    Khan, J.A.A.

    1977-09-01

    Whiskers of NaCl have been grown and irradiated under flexion by X-rays (approximately 2x10 7 R/h) at room temperature and the residual curvature measured. Complete recovery of the initial form of the whisker within an hour's annealing at 400 0 C proves clearly that the observed deformation (creep) is due to the presence of dislocation loops. The choice of NaCl extremely simplifies the experiment and its interpretation since X-rays create point defects one by one. Moreover, this mode of irradiation, at room temperature, produces a very simple situation: perfect interstitial dislocation loops and immobile point defects which are little influenced by the applied stress. The flexion leads to a stress system which hardly differs from an uniaxial stress. One can study separately the preferential nucleation of dislocation loops and their differential growth by carrying out an irradiation under stress followed by an irradiation without stress and vice versa. It is shown that the induced creep is mostly due to the preferential nucleation of dislocation loops and is little affected by the differential growth of these loops. The nucleation period of the loops is very short: a dose of approximately 10 -5 d.p.a. is largely sufficient for the quasi completion of dislocation loops in a crystal having an impurity concentration of approximately 10 -3 [fr

  2. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  3. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.).

    Science.gov (United States)

    Wang, Ying; Guo, Shirong; Wang, Lei; Wang, Liwei; He, Xueying; Shu, Sheng; Sun, Jin; Lu, Na

    2018-04-24

    High-temperature stress inhibited the growth of cucumber seedlings. Foliar spraying of 1.0 mmol·L - 1 exogenous spermidine (Spd) to the sensitive cucumber cultivar 'Jinchun No. 2' grown at high-temperature (42 °C/32 °C) in an artificial climate box improved the high-temperature tolerance. Although there have been many reports on the response of microRNAs (miRNAs) to high-temperature stress, the mechanism by which exogenous Spd may mitigate the damage of high-temperature stress through miRNA-mediated regulation has not been studied. To elucidate the regulation of miRNAs in response to exogenous Spd-mediated improvement of high-temperature tolerance, four small RNA libraries were constructed from cucumber leaves and sequenced: untreated-control (CW), Spd-treated (CS), high-temperature stress (HW), and Spd-treated and high-temperature stress (HS). As a result, 107 known miRNAs and 79 novel miRNAs were identified. Eight common differentially expressed miRNAs (miR156d-3p, miR170-5p, miR2275-5p, miR394a, miR479b, miR5077, miR5222 and miR6475) were observed in CS/CW, HW/CW, HS/CW and HS/HW comparison pairs, which were the first set of miRNAs that responded to not only high-temperature stress but also exogenous Spd in cucumber seedlings. Five of the eight miRNAs were predicted to target 107 potential genes. Gene function and pathway analyses highlighted the integral role that these miRNAs and target genes probably play in the improvement of the high-temperature tolerance of cucumber seedlings through exogenous Spd application. Our study identified the first set of miRNAs associated with the exogenous Spd-mediated improvement of high-temperature tolerance in cucumber seedlings. The results could help to promote further studies on the complex molecular mechanisms underlying high-temperature tolerance in cucumber and provide a theoretical basis for the high-quality and efficient cultivation of cucumber with high-temperature resistance.

  4. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  5. Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces

    Directory of Open Access Journals (Sweden)

    A. P. Pérez-Fortes

    2017-10-01

    Full Text Available The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.

  6. Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces

    International Nuclear Information System (INIS)

    Pérez-Fortes, A.F.; Varas-Muriel, M.J.; Castiñeiras, P.

    2017-01-01

    The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly. [es

  7. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    International Nuclear Information System (INIS)

    Yokota, Yuui; Yanagida, Takayuki; Fujimoto, Yutaka; Nikl, Martin; Yoshikawa, Akira

    2010-01-01

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce 3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce 3+ 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  8. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    Science.gov (United States)

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  9. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  10. Grafting improves cucumber water stress tolerance in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdulaziz R. Al-Harbi

    2018-02-01

    Full Text Available Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F1 cucumber cultivar (Cucumis sativus L. was grafted onto Affyne (Cucumis sativus L. and Shintoza A90 (Cucurbitamaxima × C. moschata rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc, which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant−1 in non-grafted treatment to 6.149 kg plant−1 in grafted treatment under moderate -water stress, total soluble solid contents (13%, titratable acidity (39% and vitamin C (33%. The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  11. Grafting improves cucumber water stress tolerance in Saudi Arabia.

    Science.gov (United States)

    Al-Harbi, Abdulaziz R; Al-Omran, Abdulrasoul M; Alharbi, Khadiga

    2018-02-01

    Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F 1 cucumber cultivar ( Cucumis sativus L.) was grafted onto Affyne ( Cucumis sativus L.) and Shintoza A90 ( Cucurbitamaxima × C. moschata ) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F 1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant -1 in non-grafted treatment to 6.149 kg plant -1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  12. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    Science.gov (United States)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  13. Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals

    International Nuclear Information System (INIS)

    Addala, S.; Bouhdjer, L.; Halimi, O.; Boudine, B.; Sebais, M.; Chala, A.; Bouhdjar, A.

    2013-01-01

    A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV—visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV—visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (ΔE g = 1 eV) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement. (interdisciplinary physics and related areas of science and technology)

  14. Evaluation of NaCl Salinity Stress Using Three Different Laboratory Methods

    Directory of Open Access Journals (Sweden)

    S Laleh

    2012-02-01

    Full Text Available To investigate the effects of different salinity levels of NaCl on germination of safflower (cv. Esfahan 24 seeds under three different incubation methods, a factorial experiment was carried out based on a complete randomize design with three replications. Salinity levels were 0, 5, 10, 15 and 20 dSm-1 (NaCl and incubation methods were sandwich method, and using petri dishes with open or closed doors. The results showed that among investigated traits, including germination percentage and rate, length, fresh and dry weight of root and shoot, salinity had the highest negative correlation with germination percentage. There was not a significant difference in germination percentage between 5 dSm-1 and control, but increasing salinity levels to 10, 15 and 20 dSm-1 led to 13, 23.50 and 39.74 % reduction in germination percentage, respectively, compared to control (P

  15. The Mechanisms of Salinity Tolerance in the Xero-halophyte Blue Panicgrass (Panicum antidotale Retz

    Directory of Open Access Journals (Sweden)

    Hamid R. ESHGHIZADEH

    2012-05-01

    Full Text Available Identifying the physiological traits associated with salt tolerance is important in optimal management of biosaline systems and optimum utilization of saline water resources in dry and saline areas. Therefore, some indices of photosynthetic activity, dry matter production and accumulation of sodium and potassium ions in Blue panicgrass (Panicum antidotale Retz were evaluated in five levels of salinity treatment (0, 70, 140, 210 and 280 mM NaCl solution under greenhouse conditions. The results showed that at 28 and 35 days after salt stress, plant leaf area reduced in the highest salinity treatment, 93 and 96% respectively, compared with control. Leaf stomatal conductance, CO2 fixation and quantum efficiency of photosystem II were decreased by increasing salinity. It caused also a reduction in chlorophyll content (Chl a, Chl b in leaves of Blue panicgrass. Content of carotenoids showed binary patterns to different salinity levels, slightly increased in 70-140 mM NaCl and decreased again in 210-280 mM, respectively. Increasing levels of salinity, increased sodium content in both roots and shoots but the shoots potassium content decreased. Decline in photosynthesis indices caused the reduction of root and shoot dry weight. This decrease resulted from lower leaf area (r=0.91**, lower stomatal conductance (r=0.78**, lower CO2 fixed in photosynthesis (r=0.63**, lower quantum efficiency of photosystem II (r=0.54** and lower Chl a (r=0.45**, respectively. Data analysis base on using stepwise regression introduced leaf area (?=0.560, chlorophyll a content (?=0.245 and shoot potassium content (?= 0.264 as main effective components of salinity tolerance in Blue panicgrass.

  16. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Hulshoff Pol, L.W.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    The effect of NaCl on thermophilic (55degreesC) methanol conversion in the presence of excess of sulfate (COD/SO42-=0.5) was investigated in two 6.5L lab-scale upflow anaerobic sludge bed reactors inoculated with granular sludge previously not adapted to NaCl
    The effect of NaCl on thermophilic

  17. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Overexpression of Bacterial mtlD Gene in Peanut Improves Drought Tolerance through Accumulation of Mannitol

    Directory of Open Access Journals (Sweden)

    Tengale Dipak Bhauso

    2014-01-01

    Full Text Available In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L. crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated.

  19. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    Science.gov (United States)

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to

  20. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    DEFF Research Database (Denmark)

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.

    2013-01-01

    at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study...... in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well...... as development of gut immunity and that this window may disappear after weaning....

  2. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  3. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yuui, E-mail: y-yokota@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Nikl, Martin [Institute of Physics, Academy of Sciences of the Czech Republic/6253, Prague (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan)

    2010-03-15

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce{sup 3+} ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce{sup 3+} 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  4. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  5. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  6. Effect of NaCl on Asparagus Quality, Production and Mineral Leaching

    NARCIS (Netherlands)

    Kruistum, van G.; Poll, J.T.K.; Meijer, J.W.

    2008-01-01

    Previous research has shown that the incidence of Fusarium oxysporum and F. redolens on asparagus roots was reduced by field applications of NaCl. F. oxysporum and F. redolens are important diseases in asparagus crops causing physiological rust (brown discoloration on the harvested spears), reduced

  7. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    Science.gov (United States)

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  8. The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt

    Science.gov (United States)

    Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng

    2016-02-01

    The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.

  9. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    Science.gov (United States)

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  10. Neuromuscular electrical stimulation improves exercise tolerance in chronic obstructive pulmonary disease patients with better preserved fat-free mass

    Directory of Open Access Journals (Sweden)

    Lara Maris Nápolis

    2011-01-01

    Full Text Available BACKGROUND: High-frequency neuromuscular electrical stimulation increases exercise tolerance in patients with advanced chronic obstructive pulmonary disease (COPD patients. However, it is conceivable that its benefits are more prominent in patients with better-preserved peripheral muscle function and structure. OBJECTIVE: To investigate the effects of high-frequency neuromuscular electrical stimulation in COPD patients with better-preserved peripheral muscle function. Design: Prospective and cross-over study. METHODS: Thirty COPD patients were randomly assigned to either home-based, high-frequency neuromuscular electrical stimulation or sham stimulation for six weeks. The training intensity was adjusted according to each subject's tolerance. Fat-free mass, isometric strength, six-minute walking distance and time to exercise intolerance (Tlim were assessed. RESULTS: Thirteen (46.4% patients responded to high-frequency neuromuscular electrical stimulation; that is, they had a post/pre Δ Tlim >10% after stimulation (unimproved after sham stimulation. Responders had a higher baseline fat-free mass and six-minute walking distance than their seventeen (53.6% non-responding counterparts. Responders trained at higher stimulation intensities; their mean amplitude of stimulation during training was significantly related to their fat-free mass (r = 0.65; p<0.01. Logistic regression revealed that fat-free mass was the single independent predictor of Tlim improvement (odds ratio [95% CI] = 1.15 [1.04-1.26]; p<0.05. CONCLUSIONS: We conclude that high-frequency neuromuscular electrical stimulation improved the exercise capacity of COPD patients with better-preserved fat-free mass because they tolerated higher training stimulus levels. These data suggest that early training with high-frequency neuromuscular electrical stimulation before tissue wasting begins might enhance exercise tolerance in patients with less advanced COPD.

  11. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems.

    Directory of Open Access Journals (Sweden)

    Hajara Idris

    Full Text Available The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user's Quality of Service (QoS requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user's QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time.

  12. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    Science.gov (United States)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (Pbody temperature with Glu infusion must affect avenues of heat dissipation.

  13. Use of Carbon Isotope Discrimination as Tool for Improving Drought Tolerance of Wheat

    International Nuclear Information System (INIS)

    Al Hakimi, A. S.

    2004-01-01

    As in many countries of the region, agriculture in Yemen has been strongly affected by drought conditions, and cereal production is the most concerned. So to this regard, two approaches could be adopted to solve this problem; enhancement of irrigated areas, but negative effects can also be noted as salinity (e.g. Marib, area) and development of foliar diseases. The second approaches is improvement of water use and drought resistance of wheat cultivars: this long-term strategy, which is a part of a general approach giving more attention to the sustainability of farming systems, is at the basis of the present study. Several morphophysiological mechanisms of drought tolerance involved in dehydration tolerance, As for other morphophysiological traits, the possibility of using carbon isotope discrimination (Δ) in breeding for water use efficiency (WUE) in drought prone environments is related to i) the facility of measurement, ii) the existence of variability, iii) high values of heritability, and iv) a good knowledge of eventual associations between Δ and other phenological or morphophysiological traits. The use of stable isotopes has until recently been limited because of the cost of mass spectrometers designed and the requirements for sample preparation. However, the recent linkage of an automatic gas sample preparation apparatus with a dual-inlet mass spectrometer has made the technique more convenient for fast and accurate analysis of stable isotope composition of the most important elements. The present study has been conducted to evaluate the interest of (Δ) in mature kernels as a criterion for the improvement of water use efficiency and yield under drought in tetraploid wheat species. For this purpose, T. durum Om Rabi 5 was crossed by T. polonicum 9 (Tp9) which had been found to be more droughts tolerant and to have a lower □ value of the grain. The F2 population showed a wide segregation for this last trait. Further, divergent selections were made among

  14. Response of Eucalyptus occidentais to water stress induced by NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Itai, C.

    1978-01-01

    Eucalyptus occidentalis plants were exposed to NaCl in their culture solution for various time. Determination of cytokinin, abscisic acid, /sup 14/C leucine incorporation of E. occidentalis, a xerophyte, does not differ from the response of mesophytes to such treatments. 13 references, 1 figure, 4 tables.

  15. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L., E-mail: josorio@ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, U. P. Adolfo Lopez Mateos, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-07-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  16. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    International Nuclear Information System (INIS)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L.

    2013-01-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  17. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  18. Regeneration of plantlets under NaCl stress from NaN3 treated ...

    African Journals Online (AJOL)

    use

    2011-11-16

    Nov 16, 2011 ... plant regeneration under NaCl stressed conditions was assessed in some sugarcane ( ... cell is a useful work for the establishment of pure form of ... balance. The relative water contents (RWC) were calculated .... J. Life Sci.

  19. Seleção de genótipos de arroz tolerantes à salinidade durante a fase vegetativa Selection of genotypes of salinity tolerance rice during the vegetative phase

    Directory of Open Access Journals (Sweden)

    Palmira Cabral Sales de Melo

    2006-02-01

    Full Text Available O objetivo deste trabalho foi avaliar o grau de tolerância e sensibilidade à salinidade de genótipos de arroz durante a fase vegetativa da planta. O experimento foi conduzido sob condições de telado, nas dependências da Empresa Pernambucana de Pesquisa Agropecuária-IPA (Recife-PE, em 1996. Foram avaliados doze genótipos de arroz, sendo dez tolerantes e dois sensíveis à salinidade no estádio de desenvolvimento vegetativo. O delineamento experimental foi em blocos ao acaso com arranjo fatorial (doze genótipos x quatro níveis de NaCl, em três repetições. Os resultados constataram existência de variabilidade entre os genótipos de arroz na população estudada para tolerância e sensibilidade à salinidade. As linhagens PR492, PR504, CNA8250, CNA8262 e CNA8267 são tolerantes e a CNA8270, CNA8258, CNA8269, PR475 e PR477 são sensíveis à salinidade dos solos durante a fase vegetativa.The objective of this work was to evaluate the degree of tolerance and sensibility to the salinity of genoty,pes of rice (Oryza sativa L. during the vegetative phase of the plant. The experiment was lead under greenhouse conditions at IPA (Empresa Pernambucana de Pesquisa Agropecuária, in 1996. Twelve genotypes of rice had been evaluated, being ten tolerant and two sensible ones to salinity in the vegetative development stadium. The randomized blocks design were performed into three repetitions of factorials arrangements (twelve genotypes x four levels of NaCl. Results had evidenced variability existence among the genotypes of rice, in the specific population, for tolerance and sensitivity to the salinity. Samples PR492, PR504, CNA8250, CNA8262 and CNA8267 can be considered tolerant to salinity, while the genotypes CNA8270, CNA8258, CNA8269, PR475 and PR477 are sensible to salinity of soil during the vegetative phase.

  20. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice.

    Science.gov (United States)

    Ochiai, Kumiko; Shimizu, Akifumi; Okumoto, Yutaka; Fujiwara, Toru; Matoh, Toru

    2011-07-01

    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity.

  1. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  2. Tolerant Paternalism: Pro-ethical Design as a Resolution of the Dilemma of Toleration.

    Science.gov (United States)

    Floridi, Luciano

    2016-12-01

    Toleration is one of the fundamental principles that inform the design of a democratic and liberal society. Unfortunately, its adoption seems inconsistent with the adoption of paternalistically benevolent policies, which represent a valuable mechanism to improve individuals' well-being. In this paper, I refer to this tension as the dilemma of toleration. The dilemma is not new. It arises when an agent A would like to be tolerant and respectful towards another agent B's choices but, at the same time, A is altruistically concerned that a particular course of action would harm, or at least not improve, B's well-being, so A would also like to be helpful and seeks to ensure that B does not pursue such course of action, for B's sake and even against B's consent. In the article, I clarify the specific nature of the dilemma and show that several forms of paternalism, including those based on ethics by design and structural nudging, may not be suitable to resolve it. I then argue that one form of paternalism, based on pro-ethical design, can be compatible with toleration and hence with the respect for B's choices, by operating only at the informational and not at the structural level of a choice architecture. This provides a successful resolution of the dilemma, showing that tolerant paternalism is not an oxymoron but a viable approach to the design of a democratic and liberal society.

  3. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    Science.gov (United States)

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.

    2017-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time ( 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223

  4. Use of arbuscular mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G.

    Science.gov (United States)

    Zarik, Lamia; Meddich, Abdelilah; Hijri, Mohamed; Hafidi, Mohamed; Ouhammou, Ahmed; Ouahmane, Lahcen; Duponnois, Robin; Boumezzough, Ali

    2016-01-01

    In this study, we investigated whether indigenous arbuscular mycorrhizal (AM) fungi could improve the tolerance of Cupressus atlantica against water deficit. We tested a gradient of watering regime spanning from 90% to 25% of soil retention capacity of water on mycorhized and non-mycorhized seedlings in pot cultures with sterilized and non-sterilized soils. Our result showed a positive impact of AM fungi on shoot height, stem diameter and biomass as well as on the growth rate. We also observed that inoculation with AM fungi significantly improved uptake of minerals by C. atlantica in both sterilized and non-sterilized soils independently of water regimes. We found that mycorhized plants maintained higher relative water content (RWC) and water potential compared with non-mycorhized plants that were subjected to drought-stress regimes (50% and 25% of soil retention capacity). The contents of proline and of soluble sugars showed that their concentrations decreased in non-mycorhized plants subjected to DS. Superoxide dismutase (SOD) and catalase (CAT) activities also decreased in non-mycorhized plants submitted to DS compared to mycorhized plants. The same pattern was observed by measuring peroxidase (POD) enzyme activity. The results demonstrated that AM fungal inoculation promoted the growth and tolerance of C. atlantica against DS in pot cultures. Therefore, mycorrhizal inoculation could be a potential solution for the conservation and reestablishment of C. atlantica in its natural ecosystem. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  6. Improvement of Salt Tolerance in Trigonella foenum-graecum L. var. PEB by Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    Anjali Ratnakar

    2014-05-01

    Full Text Available The crop yield is reduced under saline conditions and this hampers agricultural productivity. The incorporation of plant growth regulators (PGRs during presoaking treatments in many crops has improved seed performance under saline conditions. In order to study the ameliorative effect of plant growth regulators, experiments were conducted to study the variation in organic constituents in the leaves of Trigonella foenum-graecum L. var.PEB, where the seeds were primed with different plant growth regulators and grown under NaCl salinity. After a pre-soaking treatment of six hours in 20 mg L-1 solutions of gibberllic acid (GA3, 6-furfuryladenine (Kinetin and benzyl adenine (BA, the seeds were allowed to germinate and grow for forty-five days under saline conditions. On the analysis of mature leaves, it was observed that chlorophyll a and b, total chlorophyll and protein showed an increase in PGR-treated plants compared to the untreated set. The accumulation of the stress metabolite such as proline and sugars, which increase under saline conditions, showed a significant decrease in the plants pretreated with PGRs.

  7. Mechanical tolerance stackup and analysis

    CERN Document Server

    Fischer, Bryan R

    2011-01-01

    Use Tolerance Analysis Techniques to Avoid Design, Quality, and Manufacturing Problems Before They Happen Often overlooked and misunderstood, tolerance analysis is a critical part of improving products and their design processes. Because all manufactured products are subject to variation, it is crucial that designers predict and understand how these changes can affect form, fit, and function of parts and assemblies--and then communicate their findings effectively. Written by one of the developers of ASME Y14.5 and other geometric dimension and tolerancing (GD&T) standards, Mechanical Tolerance

  8. Short-pulse CO2-laser damage studies of NaCl and KCl windows

    International Nuclear Information System (INIS)

    Newnam, B.E.; Nowak, A.V.; Gill, D.H.

    1979-01-01

    The damage resistance of bare surfaces and the bulk interior of NaCl and KCl windows was measured with a short-pulse CO 2 laser at 10.6 μm. Parametric studies with 1.7-ns pulses indicated that adsorbed water was probably the limiting agent on surface thresholds in agreement with previous studies at long pulsewidths. Rear-surface thresholds up to 7 J/cm 2 were measured for polished NaCl windows, whereas KCl surfaces damaged at approximately 60% of this level. The breakdown electric-field thresholds of exit surfaces were only 50% of the value of the bulk materials. The pulsewidth dependence of surface damage from 1 to 65 ns, in terms of incident laser fluence, increased as t/sup 1/3/

  9. Genetic analysis of aluminum tolerance in Brazilian barleys

    Directory of Open Access Journals (Sweden)

    Minella Euclydes

    2002-01-01

    Full Text Available Aluminum (Al toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.

  10. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    NARCIS (Netherlands)

    Sun, Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22 x root 3) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22 x

  11. Expression pattern of salt tolerance-related genes in Aegilops cylindrica.

    Science.gov (United States)

    Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit

    2018-02-01

    Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.

  12. Improved training tolerance by supplementation with α-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Liu Yuefei

    2012-08-01

    Full Text Available Abstract Background Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS on training tolerance, training effect, and stress-recovery state. Methods Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session. Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9, branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12 or isocaloric placebo (control group, n = 12 daily. Results The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, Prd week of training increased significantly in the control group (P Conclusions Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation.

  13. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  14. Tolerance based algorithms for the ATSP

    NARCIS (Netherlands)

    Goldengorin, B; Sierksma, G; Turkensteen, M; Hromkovic, J; Nagl, M; Westfechtel, B

    2004-01-01

    In this paper we use arc tolerances, instead of arc costs, to improve Branch-and-Bound type algorithms for the Asymmetric Traveling Salesman Problem (ATSP). We derive new tighter lower bounds based on exact and approximate bottleneck upper tolerance values of the Assignment Problem (AP). It is shown

  15. Aerobic Exercise Training Improves Orthostatic Tolerance in Aging Humans.

    Science.gov (United States)

    Xu, Diqun; Wang, Hong; Chen, Shande; Ross, Sarah; Liu, Howe; Olivencia-Yurvati, Albert; Raven, Peter B; Shi, Xiangrong

    2017-04-01

    This study was designed to test the hypothesis that aerobic exercise training of the elderly will increase aerobic fitness without compromising orthostatic tolerance (OT). Eight healthy sedentary volunteers (67.0 ± 1.7 yr old, four women) participated in 1 yr of endurance exercise training (stationary bicycle and/or treadmill) program at the individuals' 65%-75% of HRpeak. Peak O2 uptake (V˙O2peak) and HRpeak were determined by a maximal exercise stress test using a bicycle ergometer. Carotid baroreceptor reflex (CBR) control of HR and mean arterial pressure (MAP) were assessed by a neck pressure-neck suction protocol. Each subject's maximal gain (Gmax), or sensitivity, of the CBR function curves were derived from fitting their reflex HR and MAP responses to the corresponding neck pressure-neck suction stimuli using a logistic function curve. The subjects' OT was assessed using lower-body negative pressure (LBNP) graded to -50 mm Hg; the sum of the product of LBNP intensity and time (mm Hg·min) was calculated as the cumulative stress index. Training increased V˙O2peak (before vs after: 22.8 ± 0.92 vs 27.9 ± 1.33 mL·min·kg, P stress index was increased from 767 ± 68 mm Hg·min pretraining to 946 ± 44 mm Hg·min posttraining (P Aerobic exercise training improved the aerobic fitness and OT in elderly subjects. An improved OT is likely associated with an enhanced CBR function that has been reset to better maintain cerebral perfusion and cerebral tissue oxygenation during LBNP.

  16. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  17. Color kinetics and acrylamide formation in NaCl soaked potato chips

    DEFF Research Database (Denmark)

    Pedreschi, Franco; Bustos, Oscar; Mery, Domingo

    2007-01-01

    The objective of this work was to study the kinetics of color development in blanched and blanched-NaCl impregnated potato slices during frying by using the dynamic method and also to evaluate the effect of NaCl in reducing acrylamide formation in potato chips. The measurement of color was done b...

  18. Combinations of nisin with salt (NaCl) to control Listeria ...

    African Journals Online (AJOL)

    This study evaluated the effect of combinations of nisin with salt (NaCl) to control Listeria monocytogenes on sheep natural sausage casings. Casings were inoculated with 3.0 x 105 cfu/g final inocula of L. monocytogenes, stored at 6°C in different solutions of nisin at 0, 100, 150 and 200 ìg/g. Each combined with salt at 0, 4, ...

  19. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  20. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Science.gov (United States)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  1. Magnetoplastic effect in irradiated NaCl and LiF crystals

    International Nuclear Information System (INIS)

    Al'shitz, V.I.; Darinskaya, E.V.; Kazakova, O.L.

    1997-01-01

    The effect of low x-ray irradiation doses (≅10 2 rad) on the magnetoplastic effect - the detachment of dislocations from paramagnetic centers under the action of an external magnetic field B - in alkali-halide crystals has been investigated. The measurements were performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The dependence of the mean free path l of the dislocations on the rotational frequency ν of a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated crystals this dependence is a single-step dependence and is characterized by a critical frequency ν c ∝B 2 above which the magnetoplastic effect is not observed. The frequency ν c depends only on the type of paramagnetic centers, and not on their density. Even the lowest irradiation dose employed ( c2 , that is insensitive to the irradiation dose, and that corresponds to the appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical frequency ν c1 , as a rule, also varies with the dose, reflecting the change in state of the impurity complexes (Ca in NaCl and Mg in LiF). Specifically, it is shown for NaCl(Ca) crystals that as the irradiation dose increases, the frequency ν c1 increases, gradually approaching the value ν c2 , so that by the time the dose is ≅300 rad, the dependence l(ν) once again becomes a single-step dependence, dropping sharply only for ν≥ν c2 . It is shown that the addition of a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the critical frequency ν c1 corresponding to them initially equals ν c2 for crystals with no Ni. The recombination kinetics of radiation defects in the case in which the samples are irradiated under a tungsten lamp was investigated. A possible physical model of the observed dependences is discussed

  2. Development of an air bleeding technique and specific duration to improve the CO tolerance of proton-exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Chung, Chen-Chung; Chen, Chiun-Hsun; Weng, De-Zheng

    2009-01-01

    This study investigated transient CO poisoning of a proton-exchange membrane fuel cell under either a fixed cell voltage or fixed current density. During CO poisoning tests, the cell performance decreases over time. Experiments were performed to identify which method yields better performance in CO poisoning tests. The results revealed that a change in cell voltage did not affect the stable polarization behavior after CO poisoning of the cell. On the other hand, a higher fixed current density yielded better tolerance of 52.7 ppm CO. The air bleeding technique was then applied using different timings for air introduction during CO poisoning tests. Air bleeding significantly improved the CO tolerance of the cell and recovered the performance after poisoning, regardless of the timing of air introduction. The effects of different anode catalyst materials on cell performance were also investigated during poisoning tests. Without air bleeding, a Pt-Ru alloy catalyst exhibited better CO tolerance than a pure Pt catalyst. However, the air bleeding technique can effectively increase the CO tolerance of cells regardless of the type of catalyst used.

  3. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Inducing salt tolerance in sweet corn by magnetic priming

    Directory of Open Access Journals (Sweden)

    Soheil Karimi

    2017-01-01

    Full Text Available This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM, after exposing the seeds to weak (15 mT or strong (150 mT magnetic fields (MF for different durations (0, 6, 12, and 24 hours. Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H2O2 accumulation and membrane thermostability (MTI was found after MF treatments, which revealed that MF primed the plant for salinity by H2O2 signaling. However, over-accumulation of H2O2 after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.

  5. Genetic ablation of phosphatidylcholine transfer protein/StarD2 in ob/ob mice improves glucose tolerance without increasing energy expenditure.

    Science.gov (United States)

    Krisko, Tibor I; LeClair, Katherine B; Cohen, David E

    2017-03-01

    Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is highly expressed in liver and oxidative tissues. PC-TP promotes hepatic glucose production during fasting and aggravates glucose intolerance in high fat fed mice. However, because PC-TP also suppresses thermogenesis in brown adipose tissue (BAT), its direct contribution to obesity-associated diabetes in mice remains unclear. Here we examined the effects of genetic PC-TP ablation on glucose homeostasis in leptin-deficient ob/ob mice, which exhibit both diabetes and altered thermoregulation. Mice lacking both PC-TP and leptin (Pctp -/- ;ob/ob) were prepared by crossing Pctp -/- with ob/+ mice. Glucose homeostasis was assessed by standard assays, and energy expenditure was determined by indirect calorimetry using a comprehensive laboratory animal monitoring system, which also recorded physical activity and food intake. Body composition was determined by NMR and hepatic lipids by enzymatic assays. Core body temperature was measured using a rectal thermocouple probe. Pctp -/- ;ob/ob mice demonstrated improved glucose homeostasis, as evidenced by markedly improved glucose and pyruvate tolerance tests, without changes in insulin tolerance. However, there were no differences in EE at any ambient temperature. There were also no effects of PC-TP expression on physical activity, food intake or core body temperature. Improved glucose tolerance in Pctp -/- ;ob/ob mice in the absence of increases in energy expenditure or core body temperature indicates a direct pathogenic role for PC-TP in diabetes in leptin deficient mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Heteroepitaxial strain in alkali halide thin films: KCl on NaCl

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1999-01-01

    We have pet-formed Monte Carlo simulations of the properties of a NaCl (001) surface covered by full or partial layers of KCl, for coverages up to 5 monolayers (ML). A wide variety of structures of the film is found. For integer ML coverages we find the continuous, so-called floating mode rumple ...

  7. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  8. Classification of some Linseed (Linum usitatissimum L. Genotypes for Salinity Tolerance using Germination, Seedling Growth, and Ion Content Clasificación de algunos Genotipos de Linaza (Linum usitatissimum L. para Tolerancia a Salinidad usando Germinación, Crecimiento de Plántulas y Contenido de Iones

    Directory of Open Access Journals (Sweden)

    Mehmet Demir Kaya

    2012-03-01

    Full Text Available Salinity reduces germination, delays emergence, and inhibits seedling growth of linseed (Linum usitatissimum L. while some varieties are less affected by salinity than others. In this study, we aimed to determine the effects of NaCl levels (0, 5, 10, 20 and 30 dS m-1 on germination and seedling growth of 10 linseed genotypes (lines 87, 89, 104, 114, 193, 194, 209, 215, C-90 and cv. San-85 and to classify the genotypes for salinity tolerance using germination and seedling characteristics. Germination percentage, mean germination time, root and shoot length, seedling fresh and dry weight, Na+ content and Na:K ratio of seedlings were investigated. Classification of linseed genotypes for salinity tolerance was done according to (i combination of Principal Component and Cluster Analysis, (ii Na+ content, and (iii Na:K ratio of seedling. The results showed that the highest values were obtained from lines 193, 194 and 215 except for mean germination time, while germination percentage was not adversely influenced by NaCl up to 20 dS m-1. Seedling growth was inhibited at 20 dS m-1 although genotypes exhibited varying responses. Na+ content was enhanced by NaCl, but seedling from lines 194, 193 and 215 had the lowest Na+ content at all NaCl levels. Cluster analysis performed by multiple parameters revealed three groups for salinity tolerance. It was concluded that lines 193, 194, and 215 were tolerant, lines 87, 209, C-90, and cv. Sari-85 were moderately tolerant and lines 89, 104, and 114 were salt-sensitive genotypes. Classification of genotypes for Na+ content and Na:K ratio showed similar result for tolerant genotypes while different genotypes for sensitive group were detected.La salinidad reduce germinación, retrasa emergencia, e inhibe el crecimiento de plántulas de lino (Linum usitatissimum L. mientras algunas variedades son menos afectadas por la salinidad que otras. El objetivo de este estudio fue determinar los efectos de niveles de NaCl (0, 5

  9. Aluminum-Tolerant Pisolithus Ectomycorrhizas Confer Increased Growth, Mineral Nutrition, and Metal Tolerance to Eucalyptus in Acidic Mine Spoil

    Directory of Open Access Journals (Sweden)

    Louise Egerton-Warburton

    2015-01-01

    Full Text Available Ectomycorrhizal fungi (ECM may increase the tolerance of their host plants to Al toxicity by immobilizing Al in fungal tissues and/or improving plant mineral nutrition. Although these benefits have been demonstrated in in vitro (pure culture or short-term nutrient solution (hydroponic experiments, fewer studies have examined these benefits in the field. This study examined the growth, mineral nutrition, and Al levels in two Eucalyptus species inoculated with three Pisolithus ecotypes that varied in Al tolerance (in vitro and grown in mine spoil in the greenhouse and field. All three ecotypes of Pisolithus improved Eucalyptus growth and increased host plant tolerance to Al in comparison to noninoculated plants. However, large variations in plant growth and mineral nutrition were detected among the Pisolithus-inoculated plants; these differences were largely explained by the functional properties of the Pisolithus inoculum. Seedlings inoculated with the most Al-tolerant Pisolithus inoculum showed significantly higher levels of N, P, Ca, Mg, and K and lower levels of Al than seedlings inoculated with Al-sensitive ecotypes of Pisolithus. These findings indicate an agreement between the fungal tolerance to Al in vitro and performance in symbiosis, indicating that both ECM-mediated mineral nutrient acquisition and Al accumulation are important in increasing the host plant Al tolerance.

  10. Thermoluminescence analysis of co-doped NaCl at low temperature irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E., E-mail: ecruz@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Ortiz, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Circne Gianicolense 15-17, 00153 Rome (Italy); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-02-15

    The thermoluminescent response and kinetics parameters of NaCl, doubly activated by Ca-Mn and Cd-Mn ions, exposed to gamma radiation are analyzed. The doped NaCl samples were irradiated at relative low temperature, i.e. at the liquid nitrogen temperature (LNT) and at dry ice temperature (DIT), and the glow curves obtained after 2 Gy of gamma irradiation were analyzed using the computerized glow curve deconvolution (CGCD). An evident variation in the glow curve structure after LNT and DIT was observed. It seems that different kinds of trapping levels are activated at relative low temperature. The original two prominent peaks in compositions A (Ca,Mn) and B (Ca,Mn) have been changed in only one main peak with satellites in the low temperature side of the glow curves. In compositions C (Cd,Mn) and D (Cd,Mn), low temperature peaks become stronger and prominent than the high temperature peaks; this effect could be explained considering that the trapping probability for low temperature traps, the one very close to the conduction band, is enhanced by low temperatures during irradiation.

  11. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  12. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  13. Recuperación de fenol de aguas residuales industriales por tratamiento con NaCl

    Directory of Open Access Journals (Sweden)

    Iveth Serna

    2003-01-01

    Full Text Available En el presente trabajo se explora una técnica para la recuperación de fenol de aguas residuales que hasta el momento se ha realizado en forma empírica en algunas industrias locales. Se realizó un diseño experimental donde se tomó la concentración de NaCl como variable de entrada del proceso y el porcentaje de recuperación de fenol como variable de salida. El análisis estadístico de los datos muestra que la concentración de NaCl es una variable de suma importancia en el proceso. Se determinó que el mejor punto de operación está a 25º C, con un pH inicial entre 2 y 3, una concentración inicial de fenol de 6% y concentración inicial de NaCl de 21,5%, logrando una recuperación del fenol del 79 % con una concentración de fenol en la fase orgánica del 83 %. Además de la parte experimental, en el trabajo se exponen algunas teorías desarrolladas acerca de la separación de una solución de no electrolito y agua por adición de sal.

  14. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.

    Science.gov (United States)

    Yang, Yanjuan; Yu, Li; Wang, Liping; Guo, Shirong

    2015-08-15

    Previously, we found that the amelioration of photosynthetic capacity by bottle gourd (Lagenaria siceraria Standl.) rootstock in watermelon seedlings (Citrullus lanatus [Thunb.] Mansf.) with salt treatment might be closely related to the enzymes in Calvin cycle such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Yang et al., 2012). We confirmed this and showed more details in this study that improved photosynthesis of watermelon plants by bottle gourd rootstock was associated with the decreased stomata resistance and the increased photochemical activity and photosynthetic metabolism with or without 100mM NaCl stress for 3 days. The analysis of gas exchange parameters showed that self-grafted plants suffered serious non-stomatal limitation to photosynthesis under salt stress while rootstock-grafted plants were mainly affected by stomata limitation in stress conditions. Further, results showed that NaCl stress markedly reduced the chlorophyll content, damaged the structure of photosynthetic apparatus, and inhibited photochemical activity and CO2 assimilation in self-grafted plants. In contrast, rootstock-grafting increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosystem II (PSII) reaction center and the thylakoids structure induced by NaCl stress. Furthermore, rootstock-grafting enhanced the content and activity of Rubisco and thus elevated carbon fixation in the leaves of watermelon scions under salt stress. The gene expressions of enzymes related to ribulose-1,5-bisphosphate (RuBP) regeneration were also up-regulated by rootstock and this probably guaranteed the sufficient supply of RuBP for the operation of Calvin cycle in watermelon scions under salt stress. Thus, bottle gourd rootstock promoted photosynthesis by the activation of stomatal and non-stomatal abilities, especially the regulation of a variety of photosynthetic enzymes, including Rubisco in grafted watermelon plants under NaCl stress

  15. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    Science.gov (United States)

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities

    International Nuclear Information System (INIS)

    Blasius, B.J.; Merritt, R.W.

    2002-01-01

    Short-term exposure to road salt did not significantly affect stream macro-invertebrate communities. - Field and laboratory experiments were conducted to examine the effects of road salt (NaCl) on stream macroinvertebrates. Field studies investigated leaf litter processing rates and functional feeding group composition at locations upstream and downstream from point source salt inputs in two Michigan, USA streams. Laboratory studies determined the effects of increasing NaCl concentrations on aquatic invertebrate drift, behavior, and survival. Field studies revealed that leaves were processed faster at upstream reference sites than at locations downstream from road salt point source inputs. However, it was sediment loading that resulted in partial or complete burial of leaf packs, that affected invertebrate activity and confounded normal leaf pack colonization. There were no significant differences that could be attributed to road salt between upstream and downstream locations in the diversity and composition of invertebrate functional feeding groups. Laboratory drift and acute exposure studies demonstrated that drift of Gammarus (Amphipoda) may be affected by NaCl at concentrations greater than 5000 mg/l for a 24-h period. This amphipod and two species of limnephilid caddisflies exhibited a dose response to salt treatments with 96-h LC 50 values of 7700 and 3526 mg NaCl/l, respectively. Most other invertebrate species and individuals were unaffected by NaCl concentrations up to 10,000 mg/l for 24 and 96 h, respectively

  17. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage

    Directory of Open Access Journals (Sweden)

    Taieb Tounekti

    2015-09-01

    Full Text Available Aim: The purpose of this study was to evaluate how increasing NaCl salinity in the medium can affects the essential oils (EOs composition and phenolic diterpene content and yield in leaves of Salvia officinalis L. The protective role of such compounds against NaCl stress was also argued with regard to some physiological characteristics of the plant (water and ionic relations as well as the leaf gas exchanges. Materials and Methods: Potted plants were exposed to increasing NaCl concentrations (0, 50, 75 and 100 mM for 4 weeks during July 2012. Replicates from each treatment were harvested after 0, 2, 3 and 4 weeks of adding salt to perform physiological measurements and biochemical analysis. Results: Sage EOs were rich in manool, viridiflorol, camphor, and borneol. Irrigation with a solution containing 100 mM NaCl for 4 weeks increased considerably 1.8-cineole, camphor and beta-thujone concentrations, whereas lower concentrations (50 and 75 mM had no effects. On the contrary, borneol and viridiflorol concentrations decreased significantly under the former treatment, while manool and total fatty acid concentrations were not affected. Leaf extracts contained also several diterpenes such as carnosic acid (CA, carnosol (CAR and 12- and #1054;-methoxy carnosic acid (MCA. The concentrations and total contents of CA and MCA increased after 3 weeks of irrigation with 75 or 100 mM NaCl. The 50 mM NaCl had no effect on these diterpenes. Our results suggest a protective role for CA against salinity stress. Conclusion: This study may provide ways to manipulate the concentration and yield of some phenolic diterpenes and EOs in sage. In fact soil salinity may favour a directional production of particular components of interest. [J Intercult Ethnopharmacol 2015; 4(3.000: 208-216

  18. Coordinated Fault Tolerance for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Bosilca, George; et al.

    2013-04-08

    Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

  19. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of); Choi, Kyoung-Hee [Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Jeollabuk 570-749 (Korea, Republic of); Lee, Ju-Woon, E-mail: sjwlee@kaeri.re.k [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of)

    2010-04-15

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D{sub 10} values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P<0.05) as irradiation dose increased, and no differences (P>=0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D{sub 10} values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  20. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Science.gov (United States)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  1. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

  2. Preclinical safety profile of trastuzumab emtansine (T-DM1): Mechanism of action of its cytotoxic component retained with improved tolerability

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Kirsten Achilles, E-mail: achilles.kirsten@gene.com [Genentech, Inc., South San Francisco, CA (United States); Flagella, Kelly; Beyer, Joseph [Genentech, Inc., South San Francisco, CA (United States); Tibbitts, Jay [UCB, Brussels (Belgium); Kaur, Surinder; Saad, Ola; Yi, Joo-Hee; Girish, Sandhya; Dybdal, Noel; Reynolds, Theresa [Genentech, Inc., South San Francisco, CA (United States)

    2013-12-01

    Trastuzumab emtansine (T-DM1) is the first antibody-drug conjugate (ADC) approved for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. The therapeutic premise of ADCs is based on the hypothesis that targeted delivery of potent cytotoxic drugs to tumors will provide better tolerability and efficacy compared with non-targeted delivery, where poor tolerability can limit efficacious doses. Here, we present results from preclinical studies characterizing the toxicity profile of T-DM1, including limited assessment of unconjugated DM1. T-DM1 binds primate ErbB2 and human HER2 but not the rodent homolog c-neu. Therefore, antigen-dependent and non-antigen-dependent toxicity was evaluated in monkeys and rats, respectively, in both single- and repeat-dose studies; toxicity of DM1 was assessed in rats only. T-DM1 was well tolerated at doses up to 40 mg/kg (∼ 4400 μg DM1/m{sup 2}) and 30 mg/kg (∼ 6000 μg DM1/m{sup 2}) in rats and monkeys, respectively. In contrast, DM1 was only tolerated up to 0.2 mg/kg (1600 μg DM1/m{sup 2}). This suggests that at least two-fold higher doses of the cytotoxic agent are tolerated in T-DM1, supporting the premise of ADCs to improve the therapeutic index. In addition, T-DM1 and DM1 safety profiles were similar and consistent with the mechanism of action of DM1 (i.e., microtubule disruption). Findings included hepatic, bone marrow/hematologic (primarily platelet), lymphoid organ, and neuronal toxicities, and increased numbers of cells of epithelial and phagocytic origin in metaphase arrest. These adverse effects did not worsen with chronic dosing in monkeys and are consistent with those reported in T-DM1-treated patients to date. - Highlights: • T-DM1 was well tolerated in preclinical studies in rats and cynomolgus monkeys. • T-DM1 is associated with bone marrow/hematologic, hepatic, and neuronal toxicities. • T-DM1 toxicities are related to DM1 mechanisms of action and pharmacologic

  3. Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics

    Directory of Open Access Journals (Sweden)

    Arbind K. Choudhary

    2018-04-01

    Full Text Available Chickpea (Cicer arietinum L. and pigeonpea [Cajanus cajan L. (Millsp.] play an important role in mitigating protein malnutrition for millions of poor vegetarians living in regions of the semi-arid tropics. Abiotic stresses such as excess and limited soil moisture (water-logging and drought, heat and chilling (high and low temperature stresses, soil salinity, and acidity are major yield constraints, as these two crops are grown mostly under rainfed conditions in risk-prone marginal and degraded lands with few or no inputs. Losses due to such stresses vary from 30% to 100% depending on their severity. The literature abounds in basic information concerning screening techniques, physiological mechanisms, and genetics of traits associated with resistance/tolerance to abiotic stresses in these two crops. However, the final outcome in terms of resistant/tolerant varieties has been far from satisfactory. This situation calls for improving selection efficiency through precise phenotyping and genotyping under high-throughput controlled conditions using modern tools of genomics. In this review, we suggest that an integrated approach combining advances from genetics, physiology, and biotechnology needs to be used for higher precision and efficiency of breeding programs aimed at improving abiotic stress tolerance in both chickpea and pigeonpea.

  4. Efecto del NaCl en plántulas de curarí (Tabebuia serratifolia en condiciones de laboratorio

    Directory of Open Access Journals (Sweden)

    Maribel Ramírez

    Full Text Available El objetivo de este trabajo fue evaluar el efecto del cloruro de sodio (NaCl durante la germinación y el desarrollo inicial de las plántulas de curarí (Tabebuia serratifolia, en condiciones de laboratorio. Las semillas se colocaron en cinco concentraciones de NaCl: 2, 4, 6, 8 y 10 dS m-1, y en agua destilada (testigo, con una conductividad eléctrica entre 0,02 y 0,04 dS m-1. Se empleó un diseño experimental completamente al azar, con cinco repeticiones, y se aplicó un análisis de varianza. Se determinó el porcentaje de germinación (PG y la tasa de germinación (TG; y se midió la longitud del tallo (LT, la longitud de la raíz (LR, el área cotiledonal (AC, la biomasa fresca (BF y la biomasa seca (BS. La concentración de NaCl mostró efectos significativos para las variables PG, TG, BS, LT, LR y AC. Se obtuvo un 79,6 % de germinación y una TG de 1,66 días, cuando las semillas se sometieron a 6 dS m-1 de NaCl. Las concentraciones de 8 y 10 dS m-1 disminuyeron significativamente el PG, la LT y el AC de las plántulas, y retardaron la TG. Se concluye que las plántulas de curarí mostraron tolerancia a la condición salina del NaCl hasta 6 dS m-1, por lo que esta especie se puede utilizar con fines agroforestales en los sistemas de producción agropecuaria, así como en la recuperación de áreas que presenten problemas moderados de salinidad.

  5. Composite mechanisms for improving Bubble Rap in delay tolerant networks

    Directory of Open Access Journals (Sweden)

    Sweta Jain

    2014-01-01

    Full Text Available Delay tolerant networks (DTNs are a subset of mobile ad hoc networks where connections are sparse and intermittent. This often results in a network graph which is rarely connected which introduces a challenge in message forwarding because of a lack of end-to-end connectivity towards the destination. Recently, social-based forwarding algorithms are gaining popularity because of the social nature displayed by the node movements in a DTN, especially in application areas like the pocket switched networks. The social-based metrics like community, similarity, centrality etc. are used to determine the carrier to which a node has to forward its message. Composite methods are used to improve the performance of Bubble Rap social-based forwarding algorithm. In the proposed mechanism, a new social metric termed ‘friendship’ has been introduced along with a time-to-live (TTL-based ‘threshold’ and acknowledgement (ACK IDs. Real trace data and working day movement models are used for simulations in the opportunistic network environment simulator to demonstrate that the proposed algorithm gives better delivery ratio than the original Bubble Rap algorithm.

  6. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhov, A., E-mail: Andrei.Dorokhov@IReS.in2p3.f [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Bertolone, G.; Baudot, J.; Brogna, A.S.; Colledani, C.; Claus, G.; De Masi, R. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Deveaux, M. [Goethe-Universitaet Frankfurt am Main, Senckenberganlage 31, 60325 Frankfurt am Main (Germany); Doziere, G.; Dulinski, W. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Fontaine, J.-C. [Groupe de Recherche en Physique des Hautes Energies (GRPHE), Universite de Haute Alsace, 61, rue Albert Camus, 68093 Mulhouse (France); Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2010-12-11

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) . Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10{mu}m pitch device was found to be {approx}10{sup 13}n{sub eq}/cm{sup 2}, while it was only 2x10{sup 12}n{sub eq}/cm{sup 2} for a 20{mu}m pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10{sup 14}) n{sub eq}/cm{sup 2}. This goal relies on a fabrication process featuring a 15{mu}m thin, high resistivity ({approx}1k{Omega}cm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages (<5V) is similar to the layer thickness. Measurements with m.i.p.s show that the charge collected in the seed pixel is at least twice larger for the depleted epitaxial layer than for the undepleted one, translating into a signal-to-noise ratio (SNR) of {approx}50. Tests after irradiation have shown that this excellent performance is maintained up to the highest fluence considered (3x10{sup 13}n{sub eq}/cm{sup 2}), making evidence of a significant extension of the radiation tolerance limits of MAPS.

  7. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis

    DEFF Research Database (Denmark)

    Pagter, Majken; Bragato, Claudia; Malagoli, Mario

    2009-01-01

    Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange....... Plants were supplied with a control standard nutrient solution (Ψ = -0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of -0.50, -1.09 or -1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S...... and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non...

  8. Radiation inactivation of angiotensin-converting enzyme in solutions. Communication 3. The effect of NaCl

    International Nuclear Information System (INIS)

    Orlova, M.A.; Kost, O.A.; Nikol'skaya, I.I.; Troshina, N.N.; Binevskij, P.V.

    1999-01-01

    The effect of 0-0.15 M NaCl on the dose response of angiotensin-converting enzyme is described. The data represented at three-dimensional surfaces demonstrate the existence of special areas where definite mechanisms of dose response are predominant. In acidic and alkaline media, the regions of high values of enzyme activation can be emphasized; moreover, the oscillations of enzyme activity can also be detected. At pH 7.5, when angiotensin-converting enzyme conformation is less rigid, activation peaks on the three-dimensional surface are less pronounced indicating the decreasing effect of NaCl on dose response at this pH value [ru

  9. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em