WorldWideScience

Sample records for important physics concepts

  1. Self-concept and physical activity in athletes with physical disabilities.

    Science.gov (United States)

    Martin, Jeffrey J; Whalen, Laurel

    2012-07-01

    Few researchers have examined multi-dimensional physical self-concept among athletes with disabilities despite extensive evidence indicating the value of such an approach. To describe multidimensional self-concept and to predict both physical activity (PA) and self-esteem using various dimensions of physical self-concept (e.g., endurance, strength). The study was a one-time cross-sectional design involving self-report questionnaires. Participants (n = 50) were adolescents and adult athletes with physical disabilities (M age = 26.5, SD = 10.1) who completed the short version of the Physical Self-Description Questionnaire (PSDQ-S). Athletes reported neutral to positive perceptions of multidimensional physical self-concept (M's ranging from 3.3 to 5.9 of 6). Using multiple regression analyses, we were able account for 29 and 47 percent of the variance in global self-concept and PA, respectively. Global physical self-concept and strength self-concept were important in predicting global self-concept and PA, respectively. These findings support the promotion of weight training programs specifically and PA programs more generally for people with disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Physical self-concept and physical fitness in elderly individuals.

    Science.gov (United States)

    Amesberger, G; Finkenzeller, T; Würth, S; Müller, E

    2011-08-01

    This investigation examined the relations between physical self-concept and physical fitness (endurance, balance, muscle strength, muscle power) for gaining knowledge about the interrelationship between subjective ratings and objective fitness scores in the elderly in three steps: (1) detecting correlations and changes in time, (2) clarifying the influence of gender, and (3) of a skiing intervention lasting 12 weeks. Physical self-concept was assessed using a modified version of the Physical Self-Concepts (PSK) scales (Stiller et al., 2004) reflecting three first-order factors (endurance, strength, general sportiness) and one second-order factor (global fitness). Objective fitness scores were obtained by VO(2 max), counter movement jump, concentric muscle strength, and static balance. The results reveal that elderly individuals' global physical self and general sportiness are mainly linked to VO(2 max) and concentric muscle strength. Global physical self is predicted by VO(2 max) in females and by physical strength (concentric muscle strength) in males, indicating gender differences. Over time, correlations between subjective ratings and objective fitness scores become stronger in the sense of convergent validity in the skiing intervention group, whereas convergent and divergent validity cannot be supported by data of the control group. In sum, physical self-concept is an important factor in the context of physical intervention programs in the elderly. © 2011 John Wiley & Sons A/S.

  3. What Do Pre-Service Physics Teachers Know and Think about Concept Mapping?

    Science.gov (United States)

    Didis, Nilüfer; Özcan, Özgür; Azar, Ali

    2014-01-01

    In order to use concept maps in physics classes effectively, teachers' knowledge and ideas about concept mapping are as important as the physics knowledge used in mapping. For this reason, we aimed to examine pre-service physics teachers' knowledge on concept mapping, their ideas about the implementation of concept mapping in physics…

  4. The concept of physical limitations in knee osteoarthritis

    DEFF Research Database (Denmark)

    Klokker, Louise; Osborne, Richard; Wæhrens, Eva Elisabet Ejlersen

    2015-01-01

    OBJECTIVE: To comprehensively identify components of the physical limitation concept in knee osteoarthritis (OA) and to rate the clinical importance of these using perspectives of both patients and health professionals. DESIGN: Concept mapping, a structured group process, was used to identify...... and organize data in focus groups (patients) and via a global web-based survey (professionals). Ideas were elicited through a nominal group technique and then organized using multidimensional scaling, cluster analysis, participant validation, rating of clinical importance, and thematic analyses to generate...... a conceptual model of physical limitations in knee OA. RESULTS: Fifteen Danish patients and 200 international professionals contributed to generating the conceptual model. Five clusters emerged: 'Limitations/physical deficits'; 'Everyday hurdles'; 'You're not the person you used to be'; 'Need to adjust way...

  5. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  6. An Investigation of Adolescent Girls' Global Self-Concept, Physical Self-Concept, Identified Regulation, and Leisure-Time Physical Activity in Physical Education

    Science.gov (United States)

    Beasley, Emily Kristin; Garn, Alex C.

    2013-01-01

    This study examined the relationships among identified regulation, physical self-concept, global self-concept, and leisure-time physical activity with a sample of middle and high school girls (N = 319) enrolled in physical education. Based on Marsh's theory of self-concept, it was hypothesized that a) physical self-concept would mediate the…

  7. Can We Feel Physics Concepts?

    Science.gov (United States)

    Su, Yucheng

    2010-01-01

    There are many ways to improve students' understanding of physics concepts. This article focused on drawing students' attention with picture-embedded questions. Pictures give students a direct impression or feeling about the corresponding concepts, which really makes a difference. However, the effects are limited. Some physics concepts are…

  8. Multidimensional Physical Self-Concept of Athletes with Physical Disabilities

    Science.gov (United States)

    Shapiro, Deborah R.; Martin, Jeffrey J.

    2010-01-01

    The purposes of this investigation were first to predict reported PA (physical activity) behavior and self-esteem using a multidimensional physical self-concept model and second to describe perceptions of multidimensional physical self-concept (e.g., strength, endurance, sport competence) among athletes with physical disabilities. Athletes (N =…

  9. Concepts in Thermal Physics

    CERN Document Server

    Blundell, Stephen J

    2006-01-01

    This modern introduction to thermal physics contains a step-by-step presentation of the key concepts. The text is copiously illustrated and each chapter contains several worked examples. - ;An understanding of thermal physics is crucial to much of modern physics, chemistry and engineering. This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics, and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as. diverse as stellar astrophysics, information and communication theory, condensed matter physics, and climate change. Each chapter concludes with detailed exercises. -

  10. Pre-Service Physics Teachers' Understanding of the Relational Structure of Physics Concepts: Organising Subject Contents for Purposes of Teaching

    Science.gov (United States)

    Koponen, Ismo; Nousiainen, Maija

    2013-01-01

    Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…

  11. Understanding physical (in-) activity, overweight, and obesity in childhood: Effects of congruence between physical self-concept and motor competence.

    Science.gov (United States)

    Utesch, T; Dreiskämper, D; Naul, R; Geukes, K

    2018-04-12

    Both the physical self-concept and actual motor competence are important for healthy future physical activity levels and consequently decrease overweight and obesity in childhood. However, children scoring high on motor competence do not necessarily report high levels of physical self-concept and vice versa, resulting in respective (in-) accuracy also referred to as (non-) veridicality. This study examines whether children's accuracy of physical self-concept is a meaningful predictive factor for their future physical activity. Motor competence, physical self-concept and physical activity were assessed in 3 rd grade and one year later in 4 th grade. Children's weight status was categorized based on WHO recommendations. Polynomial regression with Response surface analyses were conducted with a quasi-DIF approach examining moderating weight status effects. Analyses revealed that children with higher motor competence levels and higher self-perceptions show greater physical activity. Importantly, children who perceive their motor competence more accurately (compared to less) show more future physical activity. This effect is strong for underweight and overweight/obese children, but weak for normal weight children. This study indicates that an accurate self-perception of motor competence fosters future physical activity beyond single main effects, respectively. Hence, the promotion of actual motor competence should be linked with the respective development of accurate self-knowledge.

  12. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.

  13. Physical activity and physical self-concept in youth: systematic review and meta-analysis.

    Science.gov (United States)

    Babic, Mark J; Morgan, Philip J; Plotnikoff, Ronald C; Lonsdale, Chris; White, Rhiannon L; Lubans, David R

    2014-11-01

    Evidence suggests that physical self-concept is associated with physical activity in children and adolescents, but no systematic review of this literature has been conducted. The primary aim of this systematic review and meta-analysis was to determine the strength of associations between physical activity and physical self-concept (general and sub-domains) in children and adolescents. The secondary aim was to examine potential moderators of the association between physical activity and physical self-concept. A systematic search of six electronic databases (MEDLINE, CINAHL, SPORTDiscus, ERIC, Web of Science and Scopus) with no date restrictions was conducted. Random effects meta-analyses with correction for measurement were employed. The associations between physical activity and general physical self-concept and sub-domains were explored. A risk of bias assessment was conducted by two reviewers. The search identified 64 studies to be included in the meta-analysis. Thirty-three studies addressed multiple outcomes of general physical self-concept: 28 studies examined general physical self-concept, 59 examined perceived competence, 25 examined perceived fitness, and 55 examined perceived appearance. Perceived competence was most strongly associated with physical activity (r = 0.30, 95% CI 0.24-0.35, p self-concept (r = 0.25, 95% CI 0.16-0.34, p self-concept (p self-concept and its various sub-domains in children and adolescents. Age and sex are key moderators of the association between physical activity and physical self-concept.

  14. Definitions of Physical Concepts: A Study of Physics Teachers' Knowledge and Views. Research Report

    Science.gov (United States)

    Galili, Igal; Lehavi, Yaron

    2006-01-01

    A study was made of the ability of a population of high-school physics teachers to define physics concepts and of their views regarding the importance of such definitions. It was found possible to arrange the definitions accumulated in categories, and the classification so obtained was consonant with that of the philosophy of science. Although the…

  15. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    Science.gov (United States)

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  16. Exploring physics concepts among novice teachers through CMAP tools

    Science.gov (United States)

    Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.

    2018-03-01

    Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.

  17. Ash'arite's atomistic conception of the physical world: A restatement

    International Nuclear Information System (INIS)

    Pozi, Firdaus; Othman, Mohd Yusof; Mohamed, Faizal

    2013-01-01

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21 st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them

  18. Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate

    International Nuclear Information System (INIS)

    Sarwi, S; Linuwih, S; Supardi, K I

    2017-01-01

    The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory. (paper)

  19. A comparison of physical self-concept between physical education and non-physical education university students

    Directory of Open Access Journals (Sweden)

    Hamid ARAZI

    2013-06-01

    Full Text Available The purpose of this study was to compare physical self-concept between physical education and non-physical education university students. The target population of this study was all male and female physical education and non-physical education university students in Rasht city of Iran. After translating the Physical Self-Description Questionnaire (PSDQ and adjusting some of the questions, the questionnaire was evaluated by the specialists in the context of validity and the reliability achieved by test-retest (Cronbach Alpha value of 0.84. We then, according to the Odineski table selected 180 physical education and non-physical education males and 190 physical education and non-physical education females opportunistically. The collected data was analyzed by 2×2 MANOVA for determine differences between genders and major. The results showed mean vector scores of physical education in the following scales: physical activity; global physical; competence; sports; strength; endurance and flexibility were significantly (p<0.05 higher than that of non-physical education major students. Also, the results shows that mean vector scores of male in the following scales: health; coordination; physical activity; body fat; global physical; competence; sports; global physical self-concept and global esteem were significantly (p<0.05 higher than female. Based on the result of our study the physical self-concept non-physical education and female is lower, than that physical education and male. The results may reflect that male and physical major education students, who usually spend more time on physical activity and sport training to have better fitness and skill oriented self concept than their counterparts.

  20. Concepts in surface physics

    CERN Document Server

    Desjonquères, M -C

    1993-01-01

    This textbook is intended as an introduction to surface science for graduate students. It began as a course of lectures that we gave at the University of Paris (Orsay). Its main objectives are twofold: to provide the reader with a compre­ hensive presentation of the basic principles and concepts of surface physics and to show the usefulness of these concepts in the real world by referring to experiments. It starts at a rather elementary level since it only requires a knowledge of solid state physics, quantum mechanics, thermodynamics and statistical physics which does not exceed the background usually taught to students early in their university courses. However, since it finally reaches an advanced level, we have tried to render it as self-contained as possible so that it remains accessible even to an unexperienced reader. Furthermore, the emphasis has been put on a pedagogical level rather than on a technical level. In this spirit, whenever possible, models which are simplified, but which contain the featu...

  1. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  2. Advanced Level Physics Students' Conceptions of Quantum Physics.

    Science.gov (United States)

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  3. Alpine Skiing With total knee ArthroPlasty (ASWAP): physical self-concept, pain, and life satisfaction.

    Science.gov (United States)

    Amesberger, G; Müller, E; Würth, S

    2015-08-01

    Physical self-concept in the elderly is assumed to be structured in terms of different domains and to contribute substantially to life satisfaction. However, little is known about the role of the physical self-concept in older persons that are engaged in physical activity while suffering from typical age-related impairments or chronic diseases. The present study aimed to investigate the structure of physical self-concept in a group of older persons with total knee arthroplasty (TKA), its development throughout a 12-week skiing intervention, and its importance to life satisfaction. Factor analyses of the present data reveal that the physical self-concept consists of four dimensions addressing strength, flexibility/coordination, endurance, and sportiness. One higher order factor extracted by hierarchical factor analyses reflects a global physical self-concept. The 12-week skiing intervention had no substantial impact in terms of an improvement of self-concept. Life satisfaction is best predicted by positive changes in the subjective ratings between pre- and post-test (i.e., global physical self-concept, flexibility and coordination, and perceived sportiness) and not by objective physical performance (isokinetic strength, endurance, or coordination). Results support the assumption that physical self-concept of older people with TKA is only marginally sensitive to a 12-week skiing intervention. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparative study based on the physical self-concept in teenagers regarding gender and physical activity

    Directory of Open Access Journals (Sweden)

    David Molero López-Barajas

    2010-01-01

    Full Text Available The aims of this article are to evaluate the physical self-concept in adolescence and to get to know the outcomes in the perceptions of the different dimensions in the physical self-concept. Furthermore, we aim to check the existence of noticeable differences in the outcomes regarding gender variables and regarding the level of physical activity of those polled. The sample consists of 81 individuals divided in two groups: secondary school teenager students and swimmers in adolescence. We use the Physical Self-concept Questionnaire (PSQ as a tool for getting information; there are six scales: physical skills, physical conditions, physical charming, strength, and general physical self-concept. We use the Physical Self-concept Questionnaire (PSQ as an instrument of collection of information which consists of 6 different scales: physical skills, physical condition, physical attractiveness, strength and general self-concept. We will show the results in two different analysis of the variant. In the first one we have found remarkable differences as far as the statistic point of view is concerned in gender perceptions in the scales of physical skills, physical condition, strength and general physical self-concept in favour of men (p<0,05. In the second analysis we have checked the existence of noticeable differences between the two groups of young people within the scales of physical skills and strength in favour of those who practice physical activity regularly (p<0,05.

  5. Quirky quantum concepts physical, conceptual, geometric, and pictorial physics that didn't fit in your textbook

    CERN Document Server

    Michelsen, Eric L

    2014-01-01

    Quirky Quantum Concepts explains the more important and more difficult concepts in theoretical quantum mechanics, especially those which are consistently neglected or confusing in many common expositions. The emphasis is on physical understanding, which is necessary for the development of new, cutting edge science. In particular, this book explains the basis for many standard quantum methods, which are too often presented without sufficient motivation or interpretation. The book is not a simplification or popularization: it is real science for real scientists. Physics includes math, and this book does not shy away from it, but neither does it hide behind it. Without conceptual understanding, math is gibberish. The discussions here provide the experimental and theoretical reasoning behind some of the great discoveries, so the reader may see how discoveries arise from a rational process of thinking, a process which Quirky Quantum Concepts makes accessible to its readers. Quirky Quantum Concepts is therefore a s...

  6. Analysis of the most common concept inventories in physics: What are we assessing?

    Science.gov (United States)

    Laverty, James T.; Caballero, Marcos D.

    2018-06-01

    Assessing student learning is a cornerstone of educational practice. Standardized assessments have played a significant role in the development of instruction, curricula, and educational spaces in college physics. However, the use of these assessments to evaluate student learning is only productive if they continue to align with our learning goals. Recently, there have been calls to elevate the process of science ("scientific practices") to the same level of importance and emphasis as the concepts of physics ("core ideas" and "crosscutting concepts"). We use the recently developed Three-Dimensional Learning Assessment Protocol to investigate how well the most commonly used standardized assessments in introductory physics (i.e., concept inventories) align with this modern understanding of physics education's learning goals. We find that many of the questions on concept inventories do elicit evidence of student understanding of core ideas, but do not have the potential to elicit evidence of scientific practices or crosscutting concepts. Furthermore, we find that the individual scientific practices and crosscutting concepts that are assessed using these tools are limited to a select few. We discuss the implications that these findings have on designing and testing curricula and instruction both in the past and for the future.

  7. Developing skills versus reinforcing concepts in physics labs: Insight from a survey of students' beliefs about experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-06-01

    Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.

  8. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  9. IMPACT OF SELF-CONCEPT OF DISABLED LEARNERS ON INCLUSIVE PHYSICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Mohammed ALI,

    2012-08-01

    Full Text Available This paper examines the conceptual foundations of self-concept, self-esteem and the self as they relate to disabled students in the context of physical education. Disable school children experience severe discriminations in society and within the school system, especially if the school is the mainstream type. With increasing emphasis on inclusiveness in school to different groups of excluded children, the need to thoroughly examine the psychological frame of mind of these children is now more important than ever before. Consequently, this paper sought to uncover the fundamental tenets of self-concept of disabled learners and highlight the key characteristics of disabled children. The paper concludes by with an analysis of the major impacts that disabled learners self-concept has on participation in physical education activities.

  10. The Use of Energizers to Reinforce Nutrition Concepts and Encourage Physical Activity

    Science.gov (United States)

    Lovett, Kathleen; Johnson, Betsy; Caskey, Mary; Pleasants, Christopher; Hurtado, G. Ali

    2014-01-01

    Given the importance of including daily physical activity as a part of a healthy lifestyle, Extension educators should do as much as they can to incorporate physical activity into their educational programming. A University of Minnesota Extension team has created a set of activities that incorporate motion to reinforce nutrition concepts, which…

  11. Use of Physics Innovative Device for Improving Students‟ Motivation and Performance in Learning Selected Concepts in Physics

    Directory of Open Access Journals (Sweden)

    Virginia Songalia Sobremisana

    2017-11-01

    Full Text Available This research was focused on the development and evaluation of physics innovative device in enhancing students’ motivation and performance in learning selected concepts in physics. The Physics innovative device was developed based upon research on student difficulties in learning relevant concepts in physics and their attitudes toward the subject. Basic concepts in mechanics were also made as baselines in the development of the locally-produced Physics innovative learning device. Such learning devices are valuable resources when used either in lecture or demonstration classes. The developmental, descriptive and quasi-experimental research methods were utilized to determine the effectiveness, in terms of motivation and performance, of the innovative device in Physics. The instruments used for the data collection were the Instructional Materials Motivational Scale (IMMS developed by Keller and the students’ performance test. Pretest and posttest mean scores were measured to determine if there is a mean gain score difference between the experimental and control groups. The study revealed that the group taught with the Physics innovative device performed significantly better than those taught in the traditional method and also the use of Physics innovative device generally improved students’ understanding of concepts and led to higher academic achievements. Analysis of the students’ level of motivation showed that their interests were captured, the instructions they received were relevant to their personal goals and motives, their confidence to learn on their own were build-up, and learning for them was rewarding and important. In the four dimensions (ARCS of IMMS students were found to be attentive, confident, and in agreement in using the fun-learning tool having realize its applicability and relevance in learning their Physics lessons. Results of the study disclosed students and teachers consider the novel device acceptable because it is

  12. Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited

    Science.gov (United States)

    Koponen, Ismo T.; Huttunen, Laura

    2013-01-01

    In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…

  13. Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts

    Science.gov (United States)

    Lee, Young-Jin

    2015-01-01

    The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…

  14. Pre-Service Physics Teachers’ Concept Mastery and the Challenges of Game Development on Physics Learning

    Science.gov (United States)

    Saprudin, S.; Liliasari, L.; Prihatmanto, A. S.

    2017-09-01

    This study is a survey that aims to describe pre-service physics teachers’ concept mastery at a university in Ternate. Data were collected through test standard instrument for physics which used in the teacher certification program. Data were analyzed by using quantitative descriptive technique. Based on the results of data analysis, it was concluded that generally pre-service physics teachers’ concept mastery can be categorized on low category (25.4%). The map of concept mastery will be used as a reference to developing game design in the physics learning context for pre-service physics teachers.

  15. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  16. Promoting a Functional Physical Self-Concept in Physical Education: Evaluation of a 10-Week Intervention

    Science.gov (United States)

    Schmidt, Mirko; Valkanover, Stefan; Roebers, Claudia; Conzelmann, Achim

    2013-01-01

    Most physical education intervention studies on the positive effect of sports on self-concept development have attempted to "increase" schoolchildren's self-concept without taking the "veridicality" of the self-concept into account. The present study investigated whether a 10-week intervention in physical education would lead…

  17. Physical Self-Concept and Physical Activity Enjoyment in Elementary School Children

    Science.gov (United States)

    Lohbeck, Annette; Tietjens, Maike; Bund, Andreas

    2016-01-01

    The present study examined gender differences and relationships of seven specific domains of physical self-concept (PSC) ("Strength," "Endurance," "Speed," "Flexibility," "Coordination," "Global Sport Competence," and "Appearance") and physical activity enjoyment (PAE) in 447…

  18. Finnish Cooperating Physics Teachers' Conceptions of Physics Teachers' Teacher Knowledge

    Science.gov (United States)

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2010-01-01

    This article examines Finnish cooperating physics teachers' conceptions of teacher knowledge in physics. Six experienced teachers were interviewed. The data was analyzed to form categories concerning the basis of teacher knowledge, and the tradition of German Didaktik and Shulman's theory of teacher knowledge were used in order to understand the…

  19. Basic Concepts of Surface Physics

    Energy Technology Data Exchange (ETDEWEB)

    Degras, D A

    1974-07-01

    The basic concepts of surface physics are given in this paper which deals mainly with the thermodynamics of metal surfaces. one finds also a short review of vibrational and electronic properties. Written for a Summer School, the text provides numerous references.

  20. Organizational Data Classification Based on the Importance Concept of Complex Networks.

    Science.gov (United States)

    Carneiro, Murillo Guimaraes; Zhao, Liang

    2017-08-01

    Data classification is a common task, which can be performed by both computers and human beings. However, a fundamental difference between them can be observed: computer-based classification considers only physical features (e.g., similarity, distance, or distribution) of input data; by contrast, brain-based classification takes into account not only physical features, but also the organizational structure of data. In this paper, we figure out the data organizational structure for classification using complex networks constructed from training data. Specifically, an unlabeled instance is classified by the importance concept characterized by Google's PageRank measure of the underlying data networks. Before a test data instance is classified, a network is constructed from vector-based data set and the test instance is inserted into the network in a proper manner. To this end, we also propose a measure, called spatio-structural differential efficiency, to combine the physical and topological features of the input data. Such a method allows for the classification technique to capture a variety of data patterns using the unique importance measure. Extensive experiments demonstrate that the proposed technique has promising predictive performance on the detection of heart abnormalities.

  1. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  2. Main physics features driving design concept and physics design constraints

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Sugihara, Masayoshi; Yamamoto, Shin

    1987-07-01

    Major physics design philosophies are described, which are essential bases for a plasma design and may have significant impacts on a reactor design concept. Those design philosophies are classified into two groups, physics design drivers and physics design constraints. The design drivers are featured by the fact that a designer is free to choose and the choice may be guided by his opinion, such as ignition, a pulse length, an operation scenario, etc.. The design constraints may follow a physical law, such as plasma confinement, β-limit, density limit, and so on. (author)

  3. Physical self-concept of adolescents in Western Balkan countries: a pilot study.

    Science.gov (United States)

    Janić, Snežana Radisavljević; Jurak, Gregor; Milanović, Ivana; Lazarević, Dušanka; Kovač, Marjeta; Novak, Dario

    2014-10-01

    The aim of this study was to explore physical self-concept of adolescents of the Western Balkans (Serbia, Slovenia, Croatia, and Bosnia and Herzegovina) according to sex and country. The participants were 2,606 students, ages 13 and 14 years (M = 13.5, SD = 0.9). The Physical Self-Description Questionnaire (PSDQ) was used to assess multidimensional physical self-concept. The results show the interaction of sex and country for three dimensions of physical self-concept (Appearance, Global Physical Self-Concept, and Self-Esteem). It was shown that female and male adolescents' perception of physical appearance, self-esteem, and global physical self-concept is more susceptible to influences of socio-cultural factors in the monitored countries. In all other dimensions of Physical self-concept, sex differences were consistently manifested in favour of male adolescents, except in Flexibility. Regardless of adolescents' sex, under the increasing influence of Western culture in the Western Balkan countries, adolescents more critically evaluate their body and motor abilities.

  4. 'Who Thinks Abstractly?': Quantum Theory and the Architecture of Physical Concepts

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2011-01-01

    Beginning with its introduction by W. Heisenberg, quantum mechanics was often seen as an overly abstract theory, mathematically and physically, vis-a-vis classical physics or relativity. This perception was amplified by the fact that, while the quantum-mechanical formalism provided effective predictive algorithms for the probabilistic predictions concerning quantum experiments, it appeared unable to describe, even by way idealization, quantum processes themselves in space and time, in the way classical mechanics or relativity did. The aim of the present paper is to reconsider the nature of mathematical and physical abstraction in modern physics by offering an analysis of the concept of ''physical fact'' and of the concept of 'physical concept', in part by following G. W. F. Hegel's and G. Deleuze's arguments concerning the nature of conceptual thinking. In classical physics, relativity, and quantum physics alike, I argue, physical concepts are defined by the following main features - 1) their multi-component multiplicity; 2) their essential relations to problems; 3) and the interactions between physical, mathematical, and philosophical components within each concept. It is the particular character of these interactions in quantum mechanics, as defined by its essentially predictive (rather than descriptive) nature, that distinguishes it from classical physics and relativity.

  5. The importance of body satisfaction to physical self-concept and body mass index in Spanish adolescents.

    Science.gov (United States)

    Sánchez-Miguel, Pedro Antonio; González, Juan José Pulido; Sánchez-Oliva, David; Alonso, Diana Amado; Leo, Francisco Miguel

    2018-04-06

    This research examines the association between measured body mass index (BMI) and the perception of BMI by young students. Moreover, this research tests the importance of BMI and self-concept, in order to predict body dissatisfaction in high school students. The sample consisted of 2087 individuals from different high schools in Extremadura, Spain, both males (n = 1046) and females (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = 0.86). Initially, participants' BMIs were assessed through anthropometry. Later, all individuals were asked about their weight and height, and their self-reported BMI was calculated. Participants also answered a questionnaire about their perception of self-concept, as well as completed a test about body image perception using Stunkard images. Outcomes revealed that factors concerning self-concept and perceived BMI explained body dissatisfaction. Finally, results are discussed with the aim of improving knowledge in body dissatisfaction context. © 2018 International Union of Psychological Science.

  6. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  7. Ash'arite's atomistic conception of the physical world: A restatement

    Energy Technology Data Exchange (ETDEWEB)

    Pozi, Firdaus; Othman, Mohd Yusof [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia and Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia); Mohamed, Faizal [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21{sup st} century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  8. Conceptualizing physical activity parenting practices using expert informed concept mapping analysis

    Directory of Open Access Journals (Sweden)

    Louise C. Mâsse

    2017-06-01

    Full Text Available Abstract Background Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children’s participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items aimed at measuring physical activity parenting practices. Methods Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS analysis and a cluster analysis of the MDS solution of the Expert’s sorting which was qualitatively reviewed and commented on by the Experts. Results The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure. The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child’s physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. Conclusion The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity

  9. Conceptualizing physical activity parenting practices using expert informed concept mapping analysis.

    Science.gov (United States)

    Mâsse, Louise C; O'Connor, Teresia M; Tu, Andrew W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom

    2017-06-14

    Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children's participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items) aimed at measuring physical activity parenting practices. Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US)) sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures) and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS) analysis and a cluster analysis of the MDS solution of the Expert's sorting which was qualitatively reviewed and commented on by the Experts. The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure). The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child's physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity parenting practices and identified key constructs to include in

  10. Prospective Physics Teachers' Views on Their Knowledge about the New Concepts in Turkish High School Physics Curricula

    Science.gov (United States)

    Kapucu, Serkan; Yildirim, Ufuk

    2012-01-01

    The purpose of this study was to a) investigate prospective physics teachers' views on their knowledge about new physics concepts introduced in Turkish High School Physics Curricula; b) investigate the sources of their acquired knowledge about these new physics concepts; and c) explore if there were differences in views on knowledge about these…

  11. Unifying physical concepts of reality

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, T.L.

    1983-08-01

    Physics may be characterized as the science of matter and energy. It anchors the two ends of the frontiers of science: the frontier of the very small and the frontier of the very large. All of the phenomena that we observe and study at the frontiers of science - all external experiences - are manifestations of matter and energy. One may, therefore, use physics to exemplify both the diversity and unity of science. This theme will be developed in two separate examples: first by sketching, very briefly, the historical origins of frontiers of the very small and very large and the converging unity of these two frontiers; and then by describing certain unifying concepts that play a central role in physics and provide a framework for relating developments in different sciences.

  12. Unifying physical concepts of reality

    International Nuclear Information System (INIS)

    Gilbert, T.L.

    1983-01-01

    Physics may be characterized as the science of matter and energy. It anchors the two ends of the frontiers of science: the frontier of the very small and the frontier of the very large. All of the phenomena that we observe and study at the frontiers of science - all external experiences - are manifestations of matter and energy. One may, therefore, use physics to exemplify both the diversity and unity of science. This theme will be developed in two separate examples: first by sketching, very briefly, the historical origins of frontiers of the very small and very large and the converging unity of these two frontiers; and then by describing certain unifying concepts that play a central role in physics and provide a framework for relating developments in different sciences

  13. Why Physical Activity Is Important (for Girls)

    Science.gov (United States)

    ... Home Fitness Why physical activity is important Why physical activity is important You may wonder if being physically ... you are to be around. That's partly because physical activity gets your brain to make "feel-good" chemicals ...

  14. Pre-service teachers' metaphorical perceptions of "physics" as a concept

    Science.gov (United States)

    Aykutlu, Isil; Bayrak, Celal; Bezen, Sevim

    2018-02-01

    In this study, the aim is to reveal pre-service biology, chemistry and mathematics teachers' metaphorical perceptions for physics. This study was patterned by employing phenomenology, which is one of the qualitative research methods. Sampling of the study consists of 90 pre-service teachers enrolled at the departments of biology, chemistry, and mathematics education at the faculty of education of a state university in Ankara. A metaphor form was prepared to determine pre-service teachers' mental metaphors for the physics concept. Then, it was determined that a total of 80 pre-service teachers generated 34 different metaphors for physics concept. As a result of the study, 34 metaphors generated by pre-service teachers for "physics" concept were gathered under seven different categories. Also, it was determined that pre-service teachers express most frequently "life" (26,25%) and "a difficult to solve problem"(21,25%) which take place in conceptual categories.

  15. Influence of Physical Activity on Students' Physical Self-Concept and Satisfaction with Life: Physical and Non-Physical Education Students' Perspective

    OpenAIRE

    MEHDINEZHAD, Vali; GOLSANAMLOU, Masoumeh

    2014-01-01

    The purpose of this study was to find out the physical and non-physical education students' physical self-concept and satisfaction with life. 470 students were selected randomly as two sample groups (physical and non-physical education students). The valid sample of study was 449. The two questionnaires employed here were the Physical Self-Description Questionnaire (PSDQ-S) and the Satisfaction with Life Scale. SPSS 20 was used to produce the Mean; Standard Deviations; Pearson's Pro...

  16. Review of key concepts in magnetic resonance physics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael M. [Penn State Hershey Children' s Hospital, Department of Radiology, The Pennsylvania State College of Medicine, Hershey, PA (United States); Chung, Taylor [UCSF Benioff Children' s Hospital Oakland, Department of Diagnostic Imaging, Oakland, CA (United States)

    2017-05-15

    MR physics can be a challenging subject for practicing pediatric radiologists. Although many excellent texts provide very comprehensive reviews of the field of MR physics at various levels of understanding, the authors of this paper explain several key concepts in MR physics that are germane to clinical practice in a non-rigorous but practical fashion. With the basic understanding of these key concepts, practicing pediatric radiologists can build on their knowledge of current clinical MR techniques and future advances in MR applications. Given the challenges of both the increased need for rapid imaging in non-sedated children and the rapid physiological cardiovascular and respiratory motion in pediatric patients, many advances in complex MR techniques are being applied to imaging these children. The key concepts are as follows: (1) structure of a pulse sequence, (2) k-space, (3) ''trade-off triangle'' and (4) fat suppression. This review is the first of five manuscripts in a minisymposium on pediatric MR. The authors' goal for this review is to aid in understanding the MR techniques described in the subsequent manuscripts on brain imaging and body imaging in this minisymposium. (orig.)

  17. Review of key concepts in magnetic resonance physics.

    Science.gov (United States)

    Moore, Michael M; Chung, Taylor

    2017-05-01

    MR physics can be a challenging subject for practicing pediatric radiologists. Although many excellent texts provide very comprehensive reviews of the field of MR physics at various levels of understanding, the authors of this paper explain several key concepts in MR physics that are germane to clinical practice in a non-rigorous but practical fashion. With the basic understanding of these key concepts, practicing pediatric radiologists can build on their knowledge of current clinical MR techniques and future advances in MR applications. Given the challenges of both the increased need for rapid imaging in non-sedated children and the rapid physiological cardiovascular and respiratory motion in pediatric patients, many advances in complex MR techniques are being applied to imaging these children. The key concepts are as follows: (1) structure of a pulse sequence, (2) k-space, (3) "trade-off triangle" and (4) fat suppression. This review is the first of five manuscripts in a minisymposium on pediatric MR. The authors' goal for this review is to aid in understanding the MR techniques described in the subsequent manuscripts on brain imaging and body imaging in this minisymposium.

  18. Compendium of quantum physics. Concepts, experiments, history and philosophy

    International Nuclear Information System (INIS)

    Greenberger, Daniel; Hentschel, Klaus; Weinert, Friedel

    2009-01-01

    With contributions by many of today's leading quantum physicists, philosophers and historians, including three Nobel laureates, this comprehensive A to Z of quantum physics provides a lucid understanding of the key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional topics and newer areas such as quantum information and its relatives. The central concepts that have shaped contemporary understanding of the quantum world are clearly defined, with illustrations where helpful, and discussed at a level suitable for undergraduate and graduate students of physics, history of science, and philosophy of physics. All articles share three main aims: (1) to provide a clear definition and understanding of the term concerned; (2) where possible, to trace the historical origins of the concept; and (3) to provide a small but optimal selection of references to the most relevant literature, including pertinent historical studies. Also discussed are the often contentious philosophical implications derived from quantum theory and its associated experimental findings. This compendium will be an indispensable resource for all those seeking concise up-to-date information about the many facets of quantum physics. (orig.)

  19. Women, Physical Activity, and Quality of Life: Self-concept as a Mediator.

    Science.gov (United States)

    Gonzalo Silvestre, Tamara; Ubillos Landa, Silvia

    2016-02-22

    The objectives of this research are: (a) analyze the incremental validity of physical activity's (PA) influence on perceived quality of life (PQL); (b) determine if PA's predictive power is mediated by self-concept; and (c) study if results vary according to a unidimensional or multidimensional approach to self-concept measurement. The sample comprised 160 women from Burgos, Spain aged 18 to 45 years old. Non-probability sampling was used. Two three-step hierarchical regression analyses were applied to forecast PQL. The hedonic quality-of-life indicators, self-concept, self-esteem, and PA were included as independent variables. The first regression analysis included global self-concept as predictor variable, while the second included its five dimensions. Two mediation analyses were conducted to see if PA's ability to predict PQL was mediated by global and physical self-concept. Results from the first regression shows that self-concept, satisfaction with life, and PA were significant predictors. PA slightly but significantly increased explained variance in PQL (2.1%). In the second regression, substituting global self-concept with its five constituent factors, only the physical dimension and satisfaction with life predicted PQL, while PA ceased to be a significant predictor. Mediation analysis revealed that only physical self-concept mediates the relationship between PA and PQL (z = 1.97, p relationship between PQL, PA, and self-concept.

  20. Physical self-concept of normal-weight and overweight adolescents: Gender specificities

    Directory of Open Access Journals (Sweden)

    Lazarević Dušanka

    2011-01-01

    Full Text Available Previous researchers have described the relation between physical self-concept and body mass in adolescents, but those relationships have not been clearly specified by gender. The purpose of this study is to explore physical self-concepts of normal-weight and over-weight Serbian adolescents with respect to gender. The sample consisted of 417 primary school students (229 boys and 188 girls with the average age 13.6 (SD=0.73 years who were divided into normal-weight and overweight groups according to body mass index. To assess the multidimensional physical self-concept, Physical Self-Description Questionnaire (PSDQ was administered. Results showed that overweight adolescents had significantly lower scores than normal-weight on all PSDQ scales except Health and Strength. Differences were greater among girls than boys. Discriminant analysis showed that the scales Body Fat, Endurance and Sports Competence best differentiated normal-weight boys from other students. Also, discriminant analysis showed that, besides the scale Body Fat, scales Flexibility, Self-Esteem, and Coordination best differentiated normal-weight girls from other students. Results indicate that for better understanding of the relationship between adolescent’s physical self-concept and body mass one must take gender into account. Results are potentially valuable for preventing overweight through physical education.

  1. Concepts and models in particle physics

    International Nuclear Information System (INIS)

    Paty, M.

    1977-01-01

    The knowledge of Elementary Particle Physics is characterized by an object and a purpose which are both highly theoretical. This assessment is shown and analysed by some examples taken in recent achievements in the field. It is also tried to attempt an enonciation of some criteria of the reality for concepts and objects in this matter [fr

  2. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  3. Telesna samopodoba kot pomemben motivacijski dejavnik za gibalno/športno aktivnost otrok in mladostnikov: Physical self-conception as an important motivational factor for physical activity among children and adolescents:

    OpenAIRE

    Dolenc, Petra

    2010-01-01

    Self-conception is a multidimensional construct that refers to an individual’s perception of »self«. This percepion not only affects the psychological well-being of children and adolescents but also their motivation and behaviour. The formation of their self-conception represents an important developmental task in childhood and adolescence. Research findings suggest that one’s self conception becomes more varied and complex with age. The multidimensionality of self-conception em- phasizes tha...

  4. Physical Education as "Means without Ends:" Towards a New Concept of Physical Education

    Science.gov (United States)

    Vlieghe, Joris

    2013-01-01

    This article is concerned with the educational value of raising the human body at school. Drawing inspiration from the work of Giorgio Agamben, I develop a new perspective that explores the possibility of taking the concept of physical education in a literal sense. This is to say that the specific educational content of physical education (in…

  5. Statistical physics and thermodynamics an introduction to key concepts

    CERN Document Server

    Rau, Jochen

    2017-01-01

    Statistical physics and thermodynamics describe the behaviour of systems on the macroscopic scale. Their methods are applicable to a wide range of phenomena: from refrigerators to the interior of stars, from chemical reactions to magnetism. Indeed, of all physical laws, the laws of thermodynamics are perhaps the most universal. This text provides a concise yet thorough introduction to the key concepts which underlie statistical physics and thermodynamics. It begins with a review of classical probability theory and quantum theory, as well as a careful discussion of the notions of information and entropy, prior to embarking on the development of statistical physics proper. The crucial steps leading from the microscopic to the macroscopic domain are rendered transparent. In particular, the laws of thermodynamics are shown to emerge as natural consequences of the statistical framework. While the emphasis is on clarifying the basic concepts, the text also contains many applications and classroom-tested exercises,...

  6. Concepts of electroweak symmetry breaking and Higgs physics

    International Nuclear Information System (INIS)

    Gomez-Bock, M.; Zerwas, P.M.; RWTH Aachen; Univ. Paris- Sud, Orsay

    2007-12-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e + e - linear colliders are discussed. (orig.)

  7. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  8. The Effect of Weight on Self-Concept, and Psychosocial Correlates of Physical Activity in Youths

    Science.gov (United States)

    Welk, Gregory J.; Joens-Matre, Roxane

    2007-01-01

    Much more attention has been given to the health implications of overweight and obesity than to the psychosocial implications. In order to combat obesity effectively, it is important to understand the implications of overweight on self-concept, self-esteem, and physical activity levels. Youth obesity has been associated with negative psychosocial…

  9. Physical Self-Concept, Trait Depression and Readiness for Physical Activity of Obese Patients

    Science.gov (United States)

    Boros, Szilvia; Halmy, Laszlo

    2009-01-01

    Study aim: To assess the physical self-concept, trait depression and readiness for physical activity in relation to the degree of obesity. Material and methods: Obese (Grade I and II; n = 59) and morbidly obese (Grade III; n = 42) patients aged 30-66 years, as well as 83 non-obese college students aged 30 [plus or minus] 7.3 years were studied.…

  10. Amotivation in Physical Education: Relationships with Physical Self-Concept and Teacher Ratings of Attainment

    Science.gov (United States)

    Jackson-Kersey, Rachel; Spray, Christopher

    2013-01-01

    The aim of this study was to assess the reliability and validity of the Amotivation Inventory in Physical Education (AI-PE). In addition, the study sought to identify the relationships between students' amotivation, physical self-concept, and teacher ratings of National Curriculum attainment levels in PE. Students ("N" = 510) from a…

  11. Pre-Service Physics Teachers' Comprehension of Quantum Mechanical Concepts

    Science.gov (United States)

    Didis, Nilufer; Eryilmaz, Ali; Erkoc, Sakir

    2010-01-01

    When quantum theory caused a paradigm shift in physics, it introduced difficulties in both learning and teaching of physics. Because of its abstract, counter-intuitive and mathematical structure, students have difficulty in learning this theory, and instructors have difficulty in teaching the concepts of the theory. This case study investigates…

  12. Concepts in Physical Education with Laboratories and Experiments. Second Edition.

    Science.gov (United States)

    Corbin, Charles B.; And Others

    This text is designed for student use in introductory course of physical education at the college level and deals with the specific areas of physical activity, exercise, health, physical fitness, skill learning, and body mechanics. Twenty concepts and thirty accompanying laboratory exercises suitable for both men and women are presented. Two…

  13. High School Students' Approaches to Learning Physics with Relationship to Epistemic Views on Physics and Conceptions of Learning Physics

    Science.gov (United States)

    Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung

    2013-01-01

    Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…

  14. Psychometric properties of a shortened version of the Physical Self-Concept Questionnaire (PSQ-S).

    Science.gov (United States)

    Rodríguez-Fernández, Arantzazu; Axpe, Inge; Goñi, Alfredo

    2015-01-01

    The four-dimensional model of physical self-concept which differentiates the physical self-perceptions of ability, condition, attractiveness and strength is widely accepted. In the last two decades much research has been done on the physical self-concept and its relations with the psychological well-being/distress, anxiety disorders or Eating Behavior Disorders (EBD). To validate a shortened version of the Physical Self-Concept Questionnaire (PSQ-S) and verify its ability to discriminate between people with different levels of EBD. Responses of 1478 subjects between 13 and 21 years old to the shortened version of the PSQ were analyzed in order to check indexes of reliability and validity. Furthermore, the scores of 96 women aged 14 to 23 years old diagnosed of EBD were compared to 96 others without clinical diagnosis. The results indicate a reliability of 0.93 and confirm the tetrafactorial structure of the physical selfconcept. The highest physical self-concept is that of those without a clinical diagnosis of EBD. The Shortened-PSQ is a simple, reliable and suitable screening tool both for educational and clinical settings. It also provides a sufficient measure of physical self-concept for research purposes.

  15. School Leadership and Administration: Important Concepts, Case Studies and Simulations

    Science.gov (United States)

    Gorton, Richard; Alston, Judy; Snowden, Petra

    2006-01-01

    This text helps prospective and experienced principals, administrators, and supervisors increase their knowledge and skills through concepts, case-studies, and simulations. This book contains the following two parts and fifteen chapters. Part I presents important theoretical concepts and research findings that can improve educators'…

  16. Project Physics Tests 1, Concepts of Motion.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  17. A Study on Contingency Learning in Introductory Physics Concepts

    Science.gov (United States)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the

  18. Physical perceptions and self-concept in athletes with muscle dysmorphia symptoms.

    Science.gov (United States)

    González-Martí, Irene; Fernández Bustos, Juan Gregorio; Hernández-Martínez, Andrea; Contreras Jordán, Onofre Ricardo

    2014-01-01

    Individuals affected by Muscle Dysmorphia (MD; body image disorder based on the sub estimation of muscle size), practice weightlifting in order to alleviate their muscular dissatisfaction. Although physical activity is associated with increased physical self-perception, we assume that this was not reproduced in full in people with MD. The study sample consisted of 734 weightlifters and bodybuilders, 562 men and 172 women, who completed the Escala de Satisfacción Muscular, the Physical Self-Concept Questionnaire, and from whom measures of body fat and Fat -Free Mass Index (FFMI) were obtained. The results showed that people suffering from MD symptoms, overall, have poorer physical self-concept perceptions (F = 18.46 - 34.77, p < .01).

  19. Learning to Play: A "Hedgehog Concept" for Physical Education

    Science.gov (United States)

    Johnson, Tyler

    2014-01-01

    What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…

  20. Effect of Modeling Instruction on Concept Knowledge Among Ninth Grade Physics Students

    Science.gov (United States)

    Ditmore, Devin Alan

    A basic knowledge of physics concepts is the gateway to success through high-paying careers in science, technology, engineering, and mathematics (STEM). Many students show little understanding of concepts following traditional physics instruction. As an alternative to current lecture-based approaches for high school physics instruction, Piaget's theory of cognitive development supports using real scientific experiences to lead learners from concrete to formal understanding of complex concepts. Modeling instruction (MI) is a pedagogy that guides learners through genuine scientific experiences. This project study analyzed the effects of MI on 9th grade physics students' gains on the test measuring mastery of physics concepts, Force Concept Inventory (FCI). A quasi-experimental design was used to compare the FCI scores of a traditional lecture-taught control group to a treatment group taught using MI. A t test t(-.201) = 180.26, p = .841 comparing the groups and an analysis of variance F(2,181) = 5.20 comparing female to male students indicated MI had no significant positive effect on students. A partial eta squared of the effect size showed that 5.4% of the variance in FCI gains was accounted for by gender, favoring female participants for both groups. The significant relationship between content and gender bears further inquiry. A lesson plan guide was designed to help teachers use computer simulation technology within the MI curriculum. The project promotes positive social change by exploring further ways to help adolescents experience success in physics at the beginning of high school, leading to future success in all STEM areas.

  1. THE ASSOCIATION BETWEEN PHYSICAL SELF CONCEPT, SPORT AND GENDER IN ALGERIAN ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Farid Mouissi

    2017-06-01

    Full Text Available This study aims to clarify the impact of sport specialty in physical self concept and gender, and also the difference in the dimension of the physical self concept. A sample of research is made up of 169 sportsmen in different disciplines from Chlef ’s sport league with an average age of 18.3± 2.45 (soccer , volleyball, athleticism. The Physical self-description questionnaire (PSDQ was used to measure the concept of physical self-according to multidimensional perspectives. The research results have demonstrated that the kind of sport discipline practiced by high level players has an impact on their understanding of their physical selves, and the second results might assert the general approximation which we are about to speak about. Gender issue influences self-esteem in relation to individuals, yet in the field of sport, we realize that males and females are equal at the level of all other dimensions of the questioner.

  2. Validity and Responsiveness of Concept Map Assessment Scores in Physical Education

    Science.gov (United States)

    Lee, Yun Soo; Jang, Yongkyu; Kang, Minsoo

    2015-01-01

    Concept map assessment has been applied to many education areas to measure students' knowledge structure. However, the proper and valid use of concept map assessment has not been examined in physical education. The purpose of this study was to evaluate the evidence of validity and responsiveness of the concept map assessment scores in physical…

  3. A.V. Usova's Contribution to the Field of Concept Learning in Physics Classroom

    Science.gov (United States)

    Yavoruk, Oleg

    2015-01-01

    A.V. Usova (1921-2014) has always been one of the leading figures in Russian physics education. Her theory of physics concept formation was formulated during the 1970s and the 1980s and directly influenced the process of physics education in the 20th and the 21st century. Over the years there have been a lot of theories of concept formation. Her…

  4. Basic concepts in physics. From the cosmos to quarks

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Perez Rojas, H.

    2014-01-01

    A clear, concise and beautifully written presentation of modern physics. Readers will not only learn physics, they will learn to enjoy it. Self-contained and comprehensive History, concepts and formal treatment go hand-in-hand. Suppresses mathematical technicalities in favor of a wide scope of topics. Suited for class use, e.g. as a textbook for the course ''Modern Physics'', but also ideal for ''lone explorers'' and other newcomers to physics. ''Basic Concepts in Physics: From the Cosmos to Quarks'' is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book's fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.

  5. Becoming physics people: Development of physics identity in self-concept and practice through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor

    2016-03-01

    The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.

  6. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  7. Fundamental movement skills proficiency in children with developmental coordination disorder: does physical self-concept matter?

    Science.gov (United States)

    Yu, Jie; Sit, Cindy H P; Capio, Catherine M; Burnett, Angus; Ha, Amy S C; Huang, Wendy Y J

    2016-01-01

    The purpose of this study was to (1) examine differences in fundamental movement skills (FMS) proficiency, physical self-concept, and physical activity in children with and without developmental coordination disorder (DCD), and (2) determine the association of FMS proficiency with physical self-concept while considering key confounding factors. Participants included 43 children with DCD and 87 age-matched typically developing (TD) children. FMS proficiency was assessed using the Test of Gross Motor Development - second edition. Physical self-concept and physical activity were assessed using self-report questionnaires. A two-way (group by gender) ANCOVA was used to determine whether between-group differences existed in FMS proficiency, physical self-concept, and physical activity after controlling for age and BMI. Partial correlations and hierarchical multiple regression models were used to examine the relationship between FMS proficiency and physical self-concept. Compared with their TD peers, children with DCD displayed less proficiency in various components of FMS and viewed themselves as being less competent in physical coordination, sporting ability, and physical health. Physical coordination was a significant predictor of ability in object control skills. DCD status and gender were significant predictors of FMS proficiency. Future FMS interventions should target children with DCD and girls, and should emphasize improving object control skills proficiency and physical coordination. Children with DCD tend to have not only lower FMS proficiency than age-matched typically developing children but also lower physical self-concept. Self-perceptions of physical coordination by children with DCD are likely to be valuable contributors to development of object control skills. This may then help to develop their confidence in performing motor skills. Children with DCD need supportive programs that facilitate the development of object control skills. Efficacy of training

  8. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  9. Effect of Physical Attractiveness on Therapists' Initial Judgments of a Person's Self-concept

    Science.gov (United States)

    Hobfoll, Stevan E.; Penner, Louis A.

    1978-01-01

    Investigated effect of a person's physical attractiveness on a therapist's initial judgment of that person's self-concept. Videotapes and audiotapes were made of interviews with attractive and unattractive males and females. Physically attractive persons of both sexes were rated as having better self-concepts than unattractive persons. (Author)

  10. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  11. Secondary school physics teachers' conceptions of scientific evidence: A collective case study

    Science.gov (United States)

    Taylor, Joseph A.

    Engaging secondary school students in inquiry-oriented tasks that more closely simulate the scholarly activities of scientists has been recommended as a way to improve scientific literacy. Two tasks that are frequently recommended include students' design of original experiments, and students' evaluation of scientific evidence and conclusions. Yet, little is known about teachers' conceptions of experimentation. The principal aim of this study, therefore, was to describe the nature of prospective and practicing physics teachers' conceptions of scientific evidence. More specifically, the following research questions guided this study: (1) What types of issues related to the measurement reliability and experimental validity of scientific evidence do practicing and prospective physics teachers think about when designing experiments? (2) When presented with hypothetical scenarios that describe unsound experimental procedures or poorly supported conclusions (or both), what concerns will prospective and practicing physics teachers raise? And (3) When the participants' responses to parallel research prompts are compared across protocols, what similarities and differences exist? The nature of the teacher-participants' conceptions was described from an analysis of data collected from research prompts such as interviews and hand written artifacts. In these research prompts, the teachers "thought aloud" while designing experiments and critically evaluated student-collected evidence presented in hypothetical classroom scenarios. The data from this study suggested that the three teachers, while contemplating the reliability and validity of scientific evidence, frequently used their conceptions of evidence in conjunction with specific subject matter conceptions. The data also indicated that the relationship between subject matter knowledge and conceptions of evidence was more pronounced for some conceptions of evidence than for others. Suggestions for future research included

  12. Basic concepts in physics. From the cosmos to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chaichian, M.; Tureanu, A. [Helsinki Univ. (Finland). Dept. of Physics; Perez Rojas, H. [ICIMAF, La Habana (Cuba). Dept. of Theoretical Physics

    2014-08-01

    A clear, concise and beautifully written presentation of modern physics. Readers will not only learn physics, they will learn to enjoy it. Self-contained and comprehensive History, concepts and formal treatment go hand-in-hand. Suppresses mathematical technicalities in favor of a wide scope of topics. Suited for class use, e.g. as a textbook for the course ''Modern Physics'', but also ideal for ''lone explorers'' and other newcomers to physics. ''Basic Concepts in Physics: From the Cosmos to Quarks'' is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book's fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn

  13. Social phobia and self-concept: a correlational study with physical activity practice

    Directory of Open Access Journals (Sweden)

    Christi Noriko Sonoo

    2008-12-01

    Full Text Available The objective of this study was to analyze social phobia in teenagers aged 14 to 20 years and its possiblerelationship with regular practice of physical activity and their self-concept. This study enrolled 191 students from privateand public schools and the measurement instruments used were a test of social phobia, a test of self-concept and a physicalactivity questionnaire. The results indicate that students from private schools are shyer than students from public schools. Inrelation to self-concept, there were significant differences in security factor for boys and moral factor for girls. This indicatesthat boys are more stable, brave and secure, while girls are more influenced by moral and ethical rules. These resultsdemonstrate that no relationship was detected between social phobia and physical activity, but it was possible to observea relationship between social phobia and some of the self-concept factors, and a relationship between physical activityand some of the self-concept factors. It is therefore concluded that the negative influence of high levels of social phobia onthe receptivity and security factors of men and women suggests a need for further studies in the area, which could help inthe prevention and treatment of social phobia, which could worsen over the years and compromise these young people’sability to socialize.

  14. Some important questions in charmonium physics

    International Nuclear Information System (INIS)

    Seth, K.

    1994-01-01

    This paper is devoted to three propositions: (1) Some of the most basic questions in heavy-quark physics remain unanswered; (2) Charmonium physics is the best place to address those questions at the required level of precision; (3) A tau-charm factory, with a commensurate state-of-the-art detector, are mandatory for doing the job. While open-charm and tau physics will certainly be done at beauty factories, charmonium physics will not. It must, therefore, form an important part of the physics program at a tau charm factory. With this as an introduction, the author then reviews the status of charmonium studies at this point, and ongoing work, with its projected weaknesses

  15. Cognitive Architecture and the Epistemic Gap: Defending Physicalism without Phenomenal Concepts

    DEFF Research Database (Denmark)

    Fazekas, Peter

    2011-01-01

    The novel approach presented in this paper accounts for the occurrence of the epistemic gap and defends physicalism against anti-physicalist arguments without relying on so-called phenomenal concepts. Instead of concentrating on conceptual features, the focus is shifted to the special...... characteristics of experiences themselves. To this extent, the account provided is an alternative to the Phenomenal Concept Strategy. It is argued that certain sensory representations, as accessed by higher cognition, lack constituent structure. Unstructured representations could freely exchange their causal...... to pose a serious problem for contemporary physicalism. I conclude that if those concepts which are related to the phenomenal character of conscious experience are special in any way, their characteristics are derivative of and can be accounted for in terms of the cognitive and representational features...

  16. Opinions of Physical Education Teachers on the Concept of Sportsmanship

    Science.gov (United States)

    Koç, Yakup; Esentürk, Oguz Kaan

    2018-01-01

    The purpose of this study is to evaluate the opinions of physical education teachers on the concept of sportsmanship. This study, which has been based on the qualitative research paradigm, involves opinions of 13 physical education teachers (9 males and 4 females) which serve in public schools of Turkey and which have been specified through a…

  17. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    Science.gov (United States)

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  18. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  19. The concept of intelligibility in modern physics (1948).

    Science.gov (United States)

    Feyerabend, Paul K

    2016-06-01

    This is an English translation of Paul Feyerabend's earliest extant essay "Der Begriff der Verständlichkeit in der modernen Physik" (1948). In it, Feyerabend defends positivism as a progressive framework for scientific research in certain stages of scientific development. He argues that in physics visualizability (Anschaulichkeit) and intelligibility (Verständlichkeit) are time-conditioned concepts: what is deemed visualizable in the development of physical theories is relative to a specific historical context and changes over time. He concludes that from time to time the abandonment of visualizability is crucial for progress in physics, as it is conducive to major theory change, illustrating the point on the basis of advances in atomic theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. These concepts identify ways in which material accounting systems can be used to enable effective monitoring of authorized movement of nuclear material through physical protection boundaries. Concepts are also discussed for monitoring user access to nuclear material and for tagging user identification to material accounting transactions through physical protection functions. These result in benefits in detecting diversion and in positively tracing material movement. Finally, coordination of safeguards information from both subsystems in such an integrated system through a safeguards coordination center is addressed with emphasis on appropriate response in case of discrepancies

  1. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  2. Studies of Credit and Equity Markets with Concepts of Theoretical Physics

    CERN Document Server

    Münnix, Michael C

    2011-01-01

    Financial markets are becoming increasingly complex. The financial crisis of 2008 to 2009 has demonstrated that an improved understanding of the mechanisms embedded in the market is a key requirement for the estimation of financial risk. Recently, concepts of theoretical physics, in particular concepts of complex systems, have proven to be very useful in this regard. Michael C. Münnix analyses the statistical dependencies in financial markets and develops mathematical models using concepts and methods from physics. The author focuses on aspects that played a key role in the emergence of the recent financial crisis: estimation of credit risk, dynamics of statistical dependencies, and correlations on small time-scales. He visualizes the findings for various large-scale empirical studies of market data. The results give novel insights into the mechanisms of financial markets and allow conclusions on how to reduce financial risk significantly.

  3. The Framatome RCVS concept and physics

    International Nuclear Information System (INIS)

    Vallee, A.; Millot, J.P.; Bruna, G.

    1986-06-01

    We have tried through this presentation to emphasize on what FRAMATOME thinks to be the most specific problems of the advanced RCVS (Reactor core with spectral shift) core concept (Spectral shift, voidage, reactivity control). Besides, FRAMATOME is analysing the most important safety related topics typically LOCA and DNBR, and has launched developments on them, in connection with CEA. The core behaviour during a loss of Coolant Accident is quite similar to PWR's, the pitch between rods being sufficiently large for clad ballooning not to cause any damage. To conclude, the core improvements developed by FRAMATOME on the RCVS concept economize the use of fissile materials

  4. [Physical activity and its importance in the workplace].

    Science.gov (United States)

    Masala, Daniele; Mannocci, Alice; Sinopoli, Alessandra; D'Egidio, Valeria; Villari, Paolo; La Torre, Giuseppe

    2017-01-01

    The present study aims to highlight the importance of physical activity in the workplace and its fundamental role for the wellness of an individual. The relationship between sedentary lifestyle and health is supported by several epidemiological studies and inactivity is one of the main risk factors for cardiovascular disease, chronic conditions and cancer. According to the World Health Organization, physical activity represents: "any bodily movement produced by skeletal muscles that requires energy expenditure". The promotion of regular physical activity, including its promotion in the workplace is of fundamental importance since a close correlation exists between good health and physical activity. Moreover, regular physical activity improves psycho-physical performance, social relationships, work performance and reduces sickness, absenteeism from work and work injuries.

  5. ANALYSIS OF THE DIMENSIONS OF PHYSICAL SELF-CONCEPT BY SEX IN ADOLESCENTES FROM A TYPICAL SPANISH MEDITERRANEAN COMMUNITY

    Directory of Open Access Journals (Sweden)

    Juan Palomares Cuadros

    2016-04-01

    Full Text Available This study examined globally adolescents’ physical self-concept as a function of its components: physical appearance, physical ability, strength, balance, flexibility, and endurance, and as a function of their sex, in a population aged 12-15 from Jaén, Spain. The sample consisted of 296 participants with an average age of 13.03 years. As a measuring tool, an adaptation of the Marsh and Sutherland Physical Self-concept Scale was used. The results revealed that boys rated above girls in most of the items that showed positive self-concept aspects. Conversely, girls scored higher than boys in the majority of negative self-concept items. Our evidence showed significant gender differences related to teenagers’ physical self-concepts; where girls obtained more negative assessments regarding physical self-concepts than boys did, and the latter group was more interested in engaging in physical exercise than the former group. English translation by Jeannette Soto Segura

  6. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, Roger.

    1986-01-01

    The nearly endless variety of interesting and challenging problems makes physics research enjoyable. Most of us would choose to be physicists even if physics had no practical applications. However, physics does have practical applications. This workshop deals with one of those applications, namely ion beam fusion. Not all interesting and challenging atomic physics questions are important for ion beam fusion. This paper suggests some questions that may be important for ion beam fusion. It also suggests some criteria for determining if a question is only interesting, or both interesting and important. Importance is time dependent and, because of some restrictions on the flow of information, also country dependent. In the early days of ion beam fusion, it was important to determine if ion beam fusion made sense. Approximate answers and bounds on various parameters were required. Accurate, detailed answers were not needed. Because of the efforts of many people attending this workshop, we now know that ion beam fusion does make some sense. We must still determine if ion beam fusion truly makes good sense. If it does make good sense, we must determine how to make it work. Accurate detailed answers are becoming increasingly important. (author)

  7. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Rieman, Bruce; Dunham, Jason B.; Clayton, James

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.

  8. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  9. Marketing Communications as Important Segment of the Marketing Concept

    Directory of Open Access Journals (Sweden)

    Mirković Milena

    2016-06-01

    Full Text Available New frameworks operating at the international level have led to the need for a broader and more complex involvement of companies in international economic flows. In such circumstances, focus on the international and global markets becomes inevitable. Each segment companies must adapt and evolve in accordance with such conditions. Marketing as an important activity of the company in selling products or services is also changing and expanding its activities in line with international market. This leads to the creation of an international marketing concept and system as a specific approach to the processing of international economic relations. An important segment of implementation of the marketing concept is the marketing communication, which in terms of the limited number of international barriers. It is certainly possible to overcome with a well-defined marketing strategy. Clearly defined marketing strategy and well-prepared marketing mix remove barriers, to meet the set goals and lead to positive results for the company.

  10. Duhem’s Critical Analysis of Mechanicism and his Defense of a Formal Conception of Theoretical Physics

    Directory of Open Access Journals (Sweden)

    José R. N. Chiappin

    2017-06-01

    Full Text Available The aim of this paper is to present Duhem’s critical view of the dynamical development of mechanics according to two principles of his theory of the development of physics: the continuous and the rational development of physics. These two principles impose a formal conception of physics that aims at demarcating physics from the metaphysical view on the one hand and the pragmatist/conventionalist view on the other hand. Duhem pursues an intermediary conception of physics, a representational system of empirical laws based upon formal principles. This formal conception of physics will adjust to his idea of scientific progress in the form of a sequence of representational systems as structures of increasing comprehensiveness of empirical laws, which leads him to defend a convergent structural realism pointing to an ideal physical theory.

  11. Mikhail Geraskov (1874-1957 Methodological Concepts of Learning Physics.

    Directory of Open Access Journals (Sweden)

    Mariyana Ilieva

    2014-02-01

    Full Text Available Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions of learning. The aim of the research paper is to presents his ideas about particular methods of teaching Physics for high school. Geraskov assumes direct correlation between didactics and methodology. This paper focuses on his ideas about design, technology and methodological requirements for lessons of Physics. He believes that the appropriate methods are determined by the curriculum, set of educational goals and age characteristics, and capabilities of adolescents. In his methodical recommendations he focuses on teaching methods and forms that provoke students’ activity. Comparative analysis with publications on the issues set for development of the Bulgarian pedagogic science and the actuality in the modern education system.

  12. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  13. Physiological concepts in physical education and sports training: stress, homeostasis and allostasis

    Directory of Open Access Journals (Sweden)

    Tácito Pessoa de Souza Junior

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n2p206 The objective of this review article is to discuss the concepts of stress and homeostasis (homeos = equal; stasis = stable and to expose their limitations on the basis of recent evidence demonstrating that the supposed internal stability of living organisms is merely apparent, and is even independent of environmental factors. This internal instability is often observed by researchers investigating circadian rhythms (hormone secretion, temporal series (heart rate and behavior (hunger and satiety, who argue in favor of substituting the theory of homeostasis by the concept of allostasis (allo = different; stasis = stable. Indeed, these researchers suggest that the objective of regulation and control is not stability. There are two consequences for Physical Education and Sport if allostasis is accepted as a physiological paradigm: 1. Selye’s concept of stress requires a new defi nition and interpretation, with a clear impact on the concept of load and overload; 2. Noakes’ central governor hypothesis to explain the fatigue resulting from intense physical exercise loses its relevance, as will be discussed in this paper. Furthermore, it is very diffi cult for the model of stability by staying the same to explain why performance is improved by physical training or why we have a predisposition for this type of recognizedly anti-homeostatic activity. We intend to demonstrate the possibility that the allostatic concept of stability through change can explain these contradictions.

  14. Screen time, weight status and the self-concept of physical attractiveness in adolescents.

    Science.gov (United States)

    Suchert, Vivien; Hanewinkel, Reiner; Isensee, Barbara

    2016-04-01

    Adolescents in modern societies spend about 3 h per day in front of small recreational screens. The present study aims at investigating the relationships between screen time and different indicators of overweight. In addition, associations with the self-concept of physical attractiveness and perceived weight status will be examined. In a total sample of 1228 students (47.5% girls) aged 12-17 years (M = 13.74, SD = 0.68) cross-sectional associations were determined by conducting multiple linear regression analyses. Screen time showed a significant positive dose-response relationship with body mass index percentile, waist circumference, body fat, waist-to-height-ratio, and a negative association with self-concept of physical attractiveness independent of age, gender and moderate to vigorous physical activity. Thus, screen time seems to be associated with adolescent overweight, abdominal obesity, and body dissatisfaction. Reducing adolescents' screen time could be a promising approach for primary prevention of obesity and for the promotion of a positive physical self-concept. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  16. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  17. Prof. Ikeda’s important contributions to nuclear physics

    CERN Document Server

    Brink, D M

    2010-01-01

    Professor Ikeda has made many fundamental contributions to nuclear physics, especially to the theory of Gamow-Teller giant resonances, to nuclear cluster physics, to hypernuclear physics, and to the physics of neutron-rich nuclei. He also has played an important role in the education of young researchers in Japan and on the contacts between theoreticians and experimentalists.

  18. Students’ understanding and application of the area under the curve concept in physics problems

    Directory of Open Access Journals (Sweden)

    Dong-Hai Nguyen

    2011-06-01

    Full Text Available This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving the area under the curve concept. We found that only a few students could recognize that the concept of area under the curve was applicable in physics problems. Even when students could invoke the area under the curve concept, they did not necessarily understand the relationship between the process of accumulation and the area under a curve, so they failed to apply it to novel situations. We also found that when presented with several graphs, students had difficulty in selecting the graph such that the area under the graph corresponded to a given integral, although all of them could state that “the integral equaled the area under the curve.” The findings in this study are consistent with those in previous mathematics education research and research in physics education on students’ use of the area under the curve.

  19. Basic concepts in physics from the cosmos to quarks

    CERN Document Server

    Chaichian, Masud; Tureanu, Anca

    2014-01-01

    "Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear....

  20. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  1. Physical self-concept and its link to cardiopulmonary exercise tolerance among adolescents with mild congenital heart disease.

    Science.gov (United States)

    Chen, Chi-Wen; Su, Wen-Jen; Wang, Jou-Kou; Yang, Hsiao-Ling; Chiang, Yueh-Tao; Moons, Philip

    2015-06-01

    Due to medical advances, most children with congenital heart disease (CHD) are expected to survive into adulthood. Establishing adequate physical self-concept and cardiopulmonary tolerance during the adolescent period can primarily enhance overall well-being. The purpose of this study was to undertake a gender-specific evaluation of the domain of physical self-concept among adolescents with mild CHD, and to examine the relationships between physical self-concept and cardiopulmonary exercise tolerance among adolescents with mild CHD. Four hundred and thirteen adolescents 12-20 years of age, whose cardiologists had not recommended any limitation of exercise, completed Physical Self-Description Questionnaires and three-minute step tests in two outpatient cardiology departments. The male participants had significantly greater scores in measures of overall physical self-concept, competence in sports, physical appearance, body fat, physical activity, endurance, and strength than did the female participants. More than 80% of the participants had at least an average cardiopulmonary exercise tolerance index. The perception of not being 'too fat' and being more physically active were significant correlates of better cardiopulmonary exercise tolerance for adolescents with mild CHD. The results provided evidence for gender-specific evaluation of domains of physical self-concept among adolescents with mild CHD. The three-minute step test to measure cardiopulmonary exercise tolerance in adolescents with mild CHD may be an appropriate objective measure for use in future research. Continued efforts are needed in early intervention to promote cardiopulmonary exercise tolerance. © The European Society of Cardiology 2014.

  2. Ecology criteria as an important concept for emotive lingvoecology

    Directory of Open Access Journals (Sweden)

    Tarasova O. D.

    2016-05-01

    Full Text Available the article deals with a new linguistic research area – emotive lingvoecology and an important concept for its research – ecology criteria. The author outlines some problems in the concise defining of this category and expands on each of its features. Emotions, emotion nominees and cross-cultural differences of English and Russian are in the focus of attention.

  3. The importance of fats in food of persons physically active

    Directory of Open Access Journals (Sweden)

    Tomasz Włodarczyk

    2017-07-01

    Full Text Available A diet program of physically active individuals accounts for about 50% of the success in attaining the desired physical form. Patterns that include resting metabolism, physical activity, and daily energy expenditure, as needed: reduction, stabilization, weight gain, are used. Among those who practice sports for whom nutrition is of great importance in achieving their goal, recently, there has been a great deal of interest in ketogenic diets, low carbohydrates commonly called "fatty". Therefore, it is important to explain the importance, types and role of fats in the nutrition of physically active persons.

  4. The Importance of High School Physics Teachers for Female Students' Physics Identity and Persistence

    Science.gov (United States)

    Hazari, Zahra; Brewe, Eric; Goertzen, Renee Michelle; Hodapp, Theodore

    2017-01-01

    Given the historic and continued underrepresentation of women in physics, it is important to understand the role that high school physics might play in attracting female students to physics careers. Drawing on data from over 900 female undergraduates in physics, we examine when these women became interested in physics careers and different sources…

  5. Importance of facial physical attractiveness of audiovisual models in descriptions and preferences of children and adolescents.

    Science.gov (United States)

    Ruiz, Cristina; Conde, Elena; Torres, Esteban

    2005-08-01

    We performed a cross-sectional study with three age groups (8, 14, and 17 years) to evaluate developmental differences in stereotyped beliefs about physical attractiveness and the value of this as perceived by the participants. Given the current importance of television in the development of social knowledge, television models were used. The children and adolescents were asked to evaluate, using bipolar open scales, the physical attractiveness, likeableness, generosity, intelligence, fun, and altruism of 12 television models of both sexes, previously selected by judges, as well as the desire to resemble or feel close to the models. Analysis showed developmental differences across age groups both in the concept of physical attractiveness and in stereotyped beliefs about this. As in other areas of social knowledge, the younger children's responses were bipolar, global, and much more stereotyped, while the adolescents introduced subtle distinctions and elaborated their responses. Nevertheless, physical attractiveness appeared a desirable characteristic for all age groups.

  6. Encoding of Physics Concepts: Concreteness and Presentation Modality Reflected by Human Brain Dynamics

    OpenAIRE

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentati...

  7. Explorations in Mathematical Physics The Concepts Behind an Elegant Language

    CERN Document Server

    Koks, Don

    2006-01-01

    Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You'll see how the accelerated frames of special relativity tell us about gravity. On the journey, you'll discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis buil...

  8. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  9. On the conception of fundamental time asymmetries in physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Daniel

    2013-02-05

    The investigation is divided in 7 chapters and aims to argue for the realizability of a new conception of 'fundamental time asymmetries' in physics. After an introduction (chapter 1) in the field of interest, the investigation continues by developing a conception of fundamentality for time asymmetries in chapter 2. Chapter 3 shows that this conception is realized in classical cosmology and chapter 4 demonstrates, by taking in to account the result from chapter 3, that classical electrodynamics is understandable as a time asymmetric theory. Chapter 5 focuses on time asymmetries in quantum cosmology as well as quantum thermodynamics and demonstrates - as in the classical case - that a fundamental time asymmetry is imbedded in those fields. The considerations, contained in chapter 6, are focused on non relativistic quantum mechanics (NRQM). Here the main aim is to demonstrate that NRQM can be understood as a time asymmetric theory - even without using the measurement-process for that purpose. Chapter 7 summarized the main arguments and conclusions.

  10. On the conception of fundamental time asymmetries in physics

    International Nuclear Information System (INIS)

    Wohlfarth, Daniel

    2013-01-01

    The investigation is divided in 7 chapters and aims to argue for the realizability of a new conception of 'fundamental time asymmetries' in physics. After an introduction (chapter 1) in the field of interest, the investigation continues by developing a conception of fundamentality for time asymmetries in chapter 2. Chapter 3 shows that this conception is realized in classical cosmology and chapter 4 demonstrates, by taking in to account the result from chapter 3, that classical electrodynamics is understandable as a time asymmetric theory. Chapter 5 focuses on time asymmetries in quantum cosmology as well as quantum thermodynamics and demonstrates - as in the classical case - that a fundamental time asymmetry is imbedded in those fields. The considerations, contained in chapter 6, are focused on non relativistic quantum mechanics (NRQM). Here the main aim is to demonstrate that NRQM can be understood as a time asymmetric theory - even without using the measurement-process for that purpose. Chapter 7 summarized the main arguments and conclusions.

  11. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  12. Neutrino physics today, important issues and the future

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J.; /Fermilab

    2010-10-01

    The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.

  13. Students' affordance of teleologic explanations and antrhropomorphic language in eliciting concepts in physics

    Directory of Open Access Journals (Sweden)

    Romiro Gordo Bautista

    2015-03-01

    Full Text Available This study ascertains the students’ affordance of teleologic explanations and anthropomorphic language in eliciting concepts in Physics as influenced by their age and learning exposure and experience. Using Explicative-Reductive Method of Descriptive Research, this study focused on the determinants of students’ affordance of teleologic-anthropomorphic reasoning to select concepts in Physics: Kinematics, Dynamics, Statics and Introduction to Thermodynamics.  It was found out that the respondents had intermittently committed teleologic-anthropomorphic languages across age and nature of their secondary education. Furthermore, teleologic-anthropomorphic languages were found correctible by classroom interventions as indicated by the test results on age and curricular exposure.

  14. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    Science.gov (United States)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  15. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  16. A short German Physical-Self-Concept Questionnaire for elementary school children (PSCQ-C): Factorial validity and measurement invariance across gender.

    Science.gov (United States)

    Lohbeck, Annette; Tietjens, Maike; Bund, Andreas

    2017-09-01

    Research on children's physical self-concept (PSC) is increasingly recognised as an important field of psychology. However, there is a lack of instruments suitable for younger children at elementary school age. In the present study, a short German 21-item Physical Self-Concept-Questionnaire for children (PSCQ-C) was tested measuring seven specific facets of elementary school children's PSC (strength, endurance, speed, flexibility, coordination, physical appearance, global sport competence). A number of 770 elementary school children aged 8-12 years completed the PSCQ-C. Results showed good psychometric properties and high reliabilities of the seven scales. Confirmatory factor analysis revealed that the presumed 7-factor model fitted the data best compared to a global 1- and 2-factor model. Also, full measurement invariance was strongly established. Correlations among the seven scales were mainly moderate. Gender differences were suggestive of developmental trends that are consistent with prior studies. These results provide support that the PSCQ-C is a confidential instrument with sound psychometric properties measuring seven specific facets of elementary school children's PSC.

  17. Physical, technical and engineer concept of ultradeep nuclear geoprobes

    International Nuclear Information System (INIS)

    Vaschenko, V.; Vachev, B.; Pisarenko, T.

    2009-01-01

    This report presents information on the results of works dedicated to theoretical, physical and technical justification of contact thermal melting method of low thermal conductivity substances and to prospects of its practical realization as autonomous geoprobe for penetrating into deep Earth interior. The following problems and tasks were investigated and solved by the authors: 1) Investigation of processes of heat and mass transfer by contact melting in near-bore region due to movement of heat source of arbitrary form. 2) Development of methods and estimate of principal engineer parameters of contact thermal penetrating in low heat conducting environment. 3) Analysis of modern high-temperature materials and element base for construction of autonomous ultra deep thermoprobe. 4) Investigation of ecological consequences of possible emergency in case nuclear thermal heat source loss of sealing. 5) Mathematical problem formulation of ultra deep contact thermal penetrating by melting the environment for heat source of arbitrary form moving under gravity force and propose approach to its solution. 6) Formulation and solution of contact thermal penetration process optimization problem. 7) Development of methods of main engineering parameters of contact thermal melting of low heat conducting substances estimate. 8) Development of base of physical, engineering and technical concept of autonomous geoprobe for ultra deep penetrating into Earth interior. It is important that the results obtained may be used in engineering and constructing development of ultra deep geoprobe and also for calculation of technological apparatus and processes that use contact thermal melting of low thermal conducting materials

  18. Concepts in particle physics a concise introduction to the standard model

    CERN Document Server

    Nair, V Parameswaran

    2018-01-01

    The 2013 discovery of the Higgs boson posed a challenge to both physics undergraduates and their instructors. Since particle physics is seldom taught at the undergraduate level, the question "what is the Higgs and why does its discovery matter?" is a common question among undergraduates. Equally, answering this question is a problem for physics instructors. This book is an attempt to put the key concepts of particle physics together in an appealing way, and yet give enough extra tidbits for students seriously considering graduate studies in particle physics. It starts with some recapitulation of relativity and quantum mechanics, and then builds on it to give both conceptual ideas regarding the Standard Model of particle physics as well as technical details. It is presented in an informal lecture style, and includes "remarks" sections where extra material, history, or technical details are presented for the interested student. The last lecture presents an assessment of the open questions, and where the future...

  19. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Science.gov (United States)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  20. Physical Activity and Obesity: Biomechanical and Physiological Key Concepts

    Directory of Open Access Journals (Sweden)

    Julie Nantel

    2011-01-01

    Full Text Available Overweight (OW and obesity (OB are often associated with low levels of physical activity. Physical activity is recommended to reduce excess body weight, prevent body weight regain, and decrease the subsequent risks of developing metabolic and orthopedic conditions. However, the impact of OW and OB on motor function and daily living activities must be taken into account. OW and OB are associated with musculoskeletal structure changes, decreased mobility, modification of the gait pattern, and changes in the absolute and relative energy expenditures for a given activity. While changes in the gait pattern have been reported at the ankle, knee, and hip, modifications at the knee level might be the most challenging for articular integrity. This review of the literature combines concepts and aims to provide insights into the prescription of physical activity for this population. Topics covered include the repercussions of OW and OB on biomechanical and physiological responses associated with the musculoskeletal system and daily physical activity. Special attention is given to the effect of OW and OB in youth during postural (standing and various locomotor (walking, running, and cycling activities.

  1. Impact of Self-Concept of Disabled Learners on Inclusive Physical Education

    Science.gov (United States)

    Ali, Mohammed Y.

    2012-01-01

    This paper examines the conceptual foundations of self-concept, self-esteem and the self as they relate to disabled students in the context of physical education. Disable school children experience severe discriminations in society and within the school system, especially if the school is the mainstream type. With increasing emphasis on…

  2. Concept of probability in statistical physics

    CERN Document Server

    Guttmann, Y M

    1999-01-01

    Foundational issues in statistical mechanics and the more general question of how probability is to be understood in the context of physical theories are both areas that have been neglected by philosophers of physics. This book fills an important gap in the literature by providing a most systematic study of how to interpret probabilistic assertions in the context of statistical mechanics. The book explores both subjectivist and objectivist accounts of probability, and takes full measure of work in the foundations of probability theory, in statistical mechanics, and in mathematical theory. It will be of particular interest to philosophers of science, physicists and mathematicians interested in foundational issues, and also to historians of science.

  3. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    Science.gov (United States)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve

  4. The amazing graphene: an educational bridge connecting different physics concepts

    Science.gov (United States)

    Persano Adorno, Dominique; Bellomonte, Leonardo; Pizzolato, Nicola

    2018-01-01

    The purpose of this work is to present a learning workshop covering various physics concepts aimed at strengthening physics/engineering student understanding about the remarkable properties of two dimensional materials, graphene in particular. At the basis of this learning experience is the idea of blending and interconnecting separate pieces of knowledge already acquired by undergraduates in different courses and to help them visualize and link the concepts lying beyond separate chunks of information or equations. Graphene represents an appropriate unifying framework to achieve this task in view of its monatomic structure and various exotic processes peculiar to this and some other two dimensional crystals. We first discuss essential elements of group theory and their application to the symmetry properties of graphene with the aim of presenting to physics/electronic engineering undergraduates that in a system characterized by symmetry properties such as a crystal, the acquisition of the solutions of the Schrödinger equation is simpler and easier to visualize than when these properties are ignored. We have then selected and discussed some remarkable properties of graphene: the linear electron energy-momentum dispersion relation in proximity of some edge points of the Brillouin zone; the consequential massless Dirac behaviour of the electrons; their tunnelling behaviour and the related Klein paradox; the chiral behaviour of electrons and holes; the fractional quantum Hall effect in massless particles; and the quantum behaviour of correlated quasiparticles observable at macroscopic level. These arguments are presented in a context covering related pieces of knowledge about classical, quantum and relativistic mechanics. Finally, we mention current applications and possible future ones with the aim of providing students with an expertise that could be useful for further work experiences and scientific investigations regarding new materials, having far

  5. The integral fast reactor (IFR) concept: Physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  6. The integral fast reactor (IFR) concept: physics of operation and safety

    International Nuclear Information System (INIS)

    Wade, D.C.; Chang, Y.I.

    1987-01-01

    The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed

  7. Perceived difficulty, importance, and satisfaction with physical function in COPD patients

    Directory of Open Access Journals (Sweden)

    Berry Michael J

    2004-03-01

    Full Text Available Abstract Background Research suggests that patients' satisfaction with their physical functioning (SPF is a critical component of HRQL. This study was designed to examine the extent to which perceptions of physical function and the value placed on physical function are related to satisfaction ratings. The sample consisted of older adults suffering from a progressively debilitating disease, chronic obstructive pulmonary disease (COPD. Methods During baseline assessments, COPD patients participating in a randomized controlled physical activity trial completed measures of SPF, perceived difficulty, and perceived importance. Results An ANCOVA controlling for age and gender indicated that perceived difficulty, perceived importance, and their interaction accounted for 43% of the variance in SPF. Additionally, participants were most satisfied with important tasks that they performed with little difficulty. Participants were least satisfied with important tasks that they perceived as highly difficult. Conclusion The results of the present study indicate that not being able to perform valued tasks produces discontent that is reflected in lower rating of satisfaction with physical functioning. Clearly, the significance of loss in function to individual patients is related to the importance of the functional activities that may be compromised. These data have implications for the scope of patient assessment in clinical care and for the conceptual basis of future research in the area of physical functioning.

  8. Physical protection concepts of nuclear materials. The French experience

    International Nuclear Information System (INIS)

    Arnaud, G.; Artaud, R.

    1995-01-01

    As the nuclear energy was being developed, it appeared necessary to set up protections against its potential hazards, that should be more complete and elaborate than those implemented on the other industrial installations. This had to be done both in the safety field to prevent the environment and the populations from the consequences of severe casualties, and in the security field to avoid the risk of proliferation and limit to an acceptable level the results of voluntarily provoked accidents and sabotages. Taking advantage of the gathered experience, this document gives consideration to the concepts used in France in order to ensure the physical protection of the nuclear materials. The following topics are tackled: context inside which are envisaged the specific measures, coherence with the general dispositions taken to protect industrial installations, importance and limitations of the part played by the regulations, respective responsibilities of the plant operators and the public authorities, compromise between objectives in view and means to implement, adjustment between the physical protection system and the operating requirements. In addition, the ways in which these systems should be implemented are discussed, underlining the necessity to make progressive steps under a permanent will, in order, first, to update and bring under conformity the old installations, and second, to ensure the maintenance of the systems, taking account of the evolutions of needs and techniques. Those points are commented on examples taken among the different types of installations to be found in France, showing the differences in approach coming from the type and the age of the facilities, and giving the present trends for the new plants. (authors). 1 annexe

  9. When being a girl matters less: accessibility of gender-related self-knowledge in single-sex and coeducational classes and its impact on students' physics-related self-concept of ability.

    Science.gov (United States)

    Kessels, Ursula; Hannover, Bettina

    2008-06-01

    Establishing or preserving single-sex schooling has been widely discussed as a way of bringing more girls into the natural sciences. We test the assumption that the beneficial effects of single-sex education on girls' self-concept of ability in masculine subjects such as physics are due to the lower accessibility of gender-related self-knowledge in single-sex classes. N=401 eighth-graders (mean age 14.0 years) from coeducational comprehensive schools. Random assignment of students to single-sex vs. coeducational physics classes throughout the eighth grade. At the end of the year, students' physics-related self-concept of ability was measured using a questionnaire. In a subsample of N=134 students, the accessibility of gender-related self-knowledge during physics classes was assessed by measuring latencies and endorsement of sex-typed trait adjectives. Girls from single-sex physics classes reported a better physics-related self-concept of ability than girls from coeducational classes, while boys' self-concept of ability did not vary according to class composition. For both boys and girls, gender-related self-knowledge was less accessible in single-sex classes than in mixed-sex classes. To the extent that girls' feminine self-knowledge was relatively less accessible than their masculine self-knowledge, their physics-related self-concept of ability improved at the end of the school year. By revealing the importance of the differential accessibility of gender-related self-knowledge in single- and mixed-sex settings, our study clarifies why single-sex schooling helps adolescents to gain a better self-concept of ability in school subjects that are considered inappropriate for their own sex.

  10. Pathways from fear of falling to quality of life: the mediating effect of the self-concept of health and physical independence.

    Science.gov (United States)

    Hsu, Yawen; Alfermann, Dorothee; Lu, Frank J H; Lin, Linda L

    2013-01-01

    Fear of falling leads to many adverse consequences and may compromise the quality of life of older adults. Psychological factors are potential mediators between the fear of falling and quality of life, but have yet to be explored in detail. This study presents results from examining the mediating effect of the self-concept of health and physical independence. Data from Western and Eastern countries were compared. Concerns about falling, the level of participation in physical activities, the self-concept of health and physical independence, and health-related quality of life were measured using samples from Taiwan (n = 193) and Germany (n = 182). Multiple regression models were used to test the mediating effects. The relationship between fear of falling and quality of life was partially mediated through participation in physical activities and the self-concept of health and physical independence in both the Taiwanese and German samples. In particular, the self-concept of health and physical independence of the Taiwanese sample resulted in the strongest mediating effect. Potential mediating mechanisms through both participation in physical activities and the self-concept of health and physical independence provide useful information for understanding related theories and for explicating interventions. Cultural factors should also be accounted for when conducting research and programs related to the fear of falling.

  11. Quantum mechanics and the physical reality concept

    International Nuclear Information System (INIS)

    von Borzeszkowski, H.H.; Wahsner, R.

    1988-01-01

    The difference between the measurement bases of classical and quantum mechanics is often interpreted as a loss of reality arising in quantum mechanics. In this paper it is shown that this apparent loss occurs only if one believes that refined everyday experience determines the Euclidean space as the real space, instead of considering this space, both in classical and quantum mechanics, as a theoretical construction needed for measurement and representing one part of a dualistic space conception. From this point of view, Einstein's program of a unified field theory can be interpreted as the attempt to find a physical theory that is less dualistic. However, if one regards this dualism as resulting from the requirements of measurements, one can hope for a weakening of the dualism but not expect to remove it completely

  12. Physical self-concept in a sample of primary students and its relationship with gender and out of school sport practice

    Directory of Open Access Journals (Sweden)

    Bernardino Javier Sánchez-Alcaraz Martínez

    2014-10-01

    Full Text Available The aims of this article are to evaluate the physical self-concept in adolescence and to get to know the outcomes in the different dimensions in the physical self-concept and to check the influence of the variables gender and level of physical activity. 125 students in Primary Education took part, aged between 11 and 13 years, and answered the Children Physical Self Questionnaire. Results in relation to gender indicated that boys had higher levels of self-perceived competence (p=.003, physical appearance (p=.000 and self-confidence (p=.029. With regard to sport practice, those participants who practice sports habitually obtain higher values at self-perceived competence (p=.000, physical appearance (p=.000, physical strength (p=.001 and self-confidence (p=.000. Therefore, according to the reached results, it can be concluded that, among the participants of this study, gender as well as sport practice have influence on the development of a positive physical self-concept.

  13. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  14. [The importance of physical activity and fitness for human health].

    Science.gov (United States)

    Brandes, M

    2012-01-01

    The decline of physical activity is considered to play an important role in the deterioration of health predictors, such as overweight, and the associated increase of cardiovascular and all-cause mortality. Therefore, most interventional strategies aim for increasing physical activity. Instead of physical activity, some studies use physical fitness as a key variable. Though physical fitness is influenced by genetic factors, physical fitness has to be developed by physical activity. As recent reports demonstrate the prospective associations between physical fitness and health and mortality, these associations are not reported for physical activity. Due to the fact that physical fitness-in contrast to physical activity-is evaluated with standardized laboratory measurements, it appears advisable to assess physical fitness for prospective health perspectives. Although physical fitness is determined by genetics, physical activity is the primary modifiable determinant for increasing physical fitness and should be aimed for to improve physical fitness in interventional strategies.

  15. An intelligent tutoring system for teaching fundamental physics concepts

    Science.gov (United States)

    Albacete, Patricia Lucia

    1999-12-01

    Students in traditional elementary mechanics classes can master problem solving of a quantitative nature but not those of a qualitative type. Moreover, students' naive conceptions of physics remain unchanged after completing their class. A few approaches have been implemented to improve this situation however none have met with great success. Since elementary mechanics is the foundation for all of physics and it is a required course for most science majors there is a clear need to improve the instruction of the subject. To address this problem I developed a intelligent tutoring system, called the Conceptual Helper, which coaches students during homework problem solving. The tutor uses a unique cognitive based approach to teaching physics, which presents innovations in three areas. (1) The teaching strategy, which focuses on teaching those links among the concepts of the domain that are essential for conceptual understanding yet are seldom learned by the students. (2) The manner in which the knowledge is taught, which is based on a combination of effective human tutoring techniques (e.g., hinting), effective pedagogical methods (e.g., a microscopic view of matter), and less cognitively demanding approaches (e.g., anthropomorphism). (3) The way in which misconceptions are handled which uses the underlying scientific correct line of reasoning to describe to the student the phenomenon that is the basis for the misconception. From a technological point of view the Conceptual Helper was implemented as a model-tracing tutor which intervenes when students make errors and after completion of each problem, at which time the tutor scaffolds the students on post-problem reflection. The remediation is guided by probabilistic assessment of mastery and the interventions are adapted to the errors. The thesis also presents the results of the evaluation of the system which revealed that the gain scores of the experimental group were statistically significantly higher than those of

  16. The Abraham Pais Prize Lecture: The historical Development of the Physical Concept of Time

    Science.gov (United States)

    Jammer, Max

    2007-04-01

    The Irish physicist and mathematician John Lighton Synge once (1959) proclaimed that of all physical measurements that of time is the most fundamental and its theory ``the most basic theory of all.'' Twenty years later the Belgian physicist and chemist Ilya Prigogine declared that ``the concept of time is much more complex than we thought.'' Indeed, having studied the basic notions in physics like space, mass, force, simultaneity and written on each of them a detailed monograph, I always postponed a similar treatment of the concept of time because I realized that just by being the ``most basic'' it is also the most ``complex'' of all notions in physics and therefore a rather complicated subject of research. In fact, time, as perceived by us, is both ``flowing'' and ``enduring'' and its ``passing'' always ``lasts.'' If I venture nevertheless to offer herewith a survey of the conceptual development of the notion of time, I do so because I delimit myself to the role of time only in physics and ignore as far as possible general metaphysical, psychological or biological issues. The presentation thus ignores the history of the notion of time as conceived in the myths and religions of ancient civilizations and begins, after some brief remarks about the Pythagoreans, with the theories of time as proposed by the Pre-Socratics, Plato and Aristotle. After a critical discourse on the early proponents of an idealistic interpretation of the notion of time, like that of St. Augustine, medieval theories of time, like those which proposed the atomicity of time, are discussed. After a presentation of sixteenth century discussions of time, like that by Bruno or Gassendi, Isaac Barrow's and Isaac Newton's theories of physical time are critically analyzed. This is followed by a brief study of the conceptions of time by Locke and Berkeley and subsequently by Leibniz, who is often regarded as the first proponent of a relational or causal theory of time. Following some brief remarks about

  17. The effect of obesity on the physical self-concept of urban school ...

    African Journals Online (AJOL)

    Nonparametric t-test was employed to test significant di fferences between boys and girls among the three groups. Analysis of variance (ANOVA) and Tukey post -hoc test were calculated to examine the effect of obesity on the children's physical self-concept. The results showed that overweight and obese children were tal ...

  18. Physical self-concept in adolescents from Seville in relation with gender and the evolution of sport career

    Directory of Open Access Journals (Sweden)

    Francis Ries

    2011-01-01

    Full Text Available The aim of this study was to examine the physical capacities and the physical attractiveness of Seville adolescent athletes and whether these perceptions vary by gender and sport career development. 90 adolescents from 12 to 18 years (50 girls and 40 boys completed a Spanish adaptation of the Physical Self Description Questionnaire (Marsh, Richards, Johnson, Roche y Tremaye, 1994; Tomás, 1998 and a scale to collect physical attractiveness perceived (Alfermann, Saborowski y Würth, 1997. The results show that males have a more positive physical self-concept than females. There were no relationships of the variables with the level of sports performance. The follow-up survey, one year later, noted an increase in some subdomains of self-concept in terms of positive developments in the sport career. In this study the physical changes associated with maturation in adolescence seem to have fewer influences on the perception of the body as it has been reported in other studies

  19. A history of the work concept from physics to economics

    CERN Document Server

    Oliveira, Agamenon R E

    2014-01-01

    This  book traces the history of the concept of work from its earliest stages and shows that its further formalization leads to equilibrium principle and to the principle of virtual works, and so pointing the way ahead for future research and applications. The idea that something remains constant in a machine operation is very old and has been expressed by many mathematicians and philosophers such as, for instance, Aristotle. Thus,  a concept of energy developed. Another important  idea in machine operation is Archimedes' lever principle. In modern times the concept of work is analyzed in the context of applied mechanics mainly in Lazare Carnot mechanics and the mechanics of the new generation of polytechnical engineers like Navier, Coriolis and Poncelet. In this context the word "work" is finally adopted. These engineers are also responsible for the incorporation of the concept of work into the discipline of economics when they endeavoured to combine the study  of the work of machines and men together.

  20. A Concept Lattice for Semantic Integration of Geo-Ontologies Based on Weight of Inclusion Degree Importance and Information Entropy

    Directory of Open Access Journals (Sweden)

    Jia Xiao

    2016-11-01

    Full Text Available Constructing a merged concept lattice with formal concept analysis (FCA is an important research direction in the field of integrating multi-source geo-ontologies. Extracting essential geographical properties and reducing the concept lattice are two key points of previous research. A formal integration method is proposed to address the challenges in these two areas. We first extract essential properties from multi-source geo-ontologies and use FCA to build a merged formal context. Second, the combined importance weight of each single attribute of the formal context is calculated by introducing the inclusion degree importance from rough set theory and information entropy; then a weighted formal context is built from the merged formal context. Third, a combined weighted concept lattice is established from the weighted formal context with FCA and the importance weight value of every concept is defined as the sum of weight of attributes belonging to the concept’s intent. Finally, semantic granularity of concept is defined by its importance weight; we, then gradually reduce the weighted concept lattice by setting up diminishing threshold of semantic granularity. Additionally, all of those reduced lattices are organized into a regular hierarchy structure based on the threshold of semantic granularity. A workflow is designed to demonstrate this procedure. A case study is conducted to show feasibility and validity of this method and the procedure to integrate multi-source geo-ontologies.

  1. Longitudinal relationships between self-concept for physical activity and neighborhood social life as predictors of physical activity among older African American adults.

    Science.gov (United States)

    Sweeney, Allison M; Wilson, Dawn K; Lee Van Horn, M

    2017-05-22

    Engaging in regular physical activity (PA) as an older adult has been associated with numerous physical and mental health benefits. The aim of this study is to directly compare how individual-level cognitive factors (self-efficacy for PA, self-determined motivation for PA, self-concept for PA) and neighborhood perceptions of the social factors (neighborhood satisfaction, neighborhood social life) impact moderate-to-vigorous physical activity (MVPA) longitudinally among older African American adults. Data were analyzed from a sub-set of older African American adults (N = 224, M age  = 63.23 years, SD = 8.74, 63.23% female, M Body Mass Index  = 32.01, SD = 7.52) enrolled in the Positive Action for Today's Health trial. MVPA was assessed using 7-day accelerometry-estimates and psychosocial data (self-efficacy for PA, self-determined motivation for PA, self-concept for PA, neighborhood satisfaction, neighborhood social life) were collected at baseline, 12-, 18-, and 24-months. Multilevel growth modeling was used to examine within- and between-person effects of individual-level cognitive and social environmental factors on MVPA. At the between-person level, self-concept (b = 0.872, SE = 0.239, p self-concept (b = 0.294, SE = 0.145, p = 0.043) and neighborhood social life (b = 0.270, SE = 0.113, p = 0.017) were associated with increased MVPA. These results suggest that people with a higher average self-concept for PA and a more positive social life engaged in greater average MVPA. Additionally, changes in perceptions of one's neighborhood social life and one's self-concept for PA were associated with greater MVPA over 2 years. These factors may be particularly relevant for future interventions targeting long-term change and maintenance of MVPA in older African Americans. ClinicalTrials.Gov # NCT01025726 registered 1 December 2009.

  2. The perceived importance of physical activity: associations with psychosocial and health-related outcomes.

    Science.gov (United States)

    Wójcicki, Thomas R; Szabo, Amanda N; White, Siobhan M; Mailey, Emily L; Kramer, Arthur F; McAuley, Edward

    2013-03-01

    The purpose of this study was to assess the extent to which participation in a 12-month exercise program changed the degree of importance that older adults attached to physical activity. In addition, associations among changes in physical activity importance and health-related and psychosocial outcomes were examined. Community-dwelling older adults (N = 179) were recruited to participate in a 12-month exercise trial examining the association between changes in physical activity and fitness with changes in brain structure and psychological health. Participants were randomly assigned to a walking condition or a flexibility, toning, and balance condition. Physical, psychological, and cognitive assessments were taken at months 0, 6, and 12. Involvement in a 12-month exercise program increased the importance that participants placed on physical activity; this positive change was similar across exercise condition and sex. Changes in importance, however, were only associated with changes in physical health status and outcome expectations for exercise midway through the intervention. There were no significant associations at the end of the program. Regular participation in physical activity can positively influence the perceived importance of the behavior itself. Yet, the implications of such changes on physical activity-related outcomes remain equivocal and warrant further investigation.

  3. Educacao Fisica Escolar: A Construcao de um Conceito (School Physical Education: The Construction of a Concept).

    Science.gov (United States)

    Colpas, Ricardo Ducatti

    2000-01-01

    Seeks to understand school physical education praxis in light of the human development theories of Lev Vygotsky. Develops a methodology of teaching and a conception of learning that enables students to recognize physical education as a school discipline connected to a dynamic curriculum. (BT)

  4. Students' Affordance of Teleologic Explanations and Anthropomorphic Language in Eliciting Concepts in Physics

    Science.gov (United States)

    Bautista, Romiro G.

    2015-01-01

    This study ascertains that the students' affordance of teleologic explanations and anthropomorphic language in eliciting concepts in Physics is influenced by their age and learning exposure and experience. Using Explicative-Reductive Method of Descriptive Research, this study focused on the determinants of students' affordance of…

  5. The Origins of the Field Concept in Physics

    Science.gov (United States)

    McMullin, Ernan

    The term, ``field,'' made its first appearance in physics as a technical term in the mid-nineteenth century. But the notion of what later came to be called a field had been a long time in gestation. Early discussions of magnetism and of the cause of the ocean tides had long ago suggested the idea of a ``zone of influence'' surrounding certain bodies. Johannes Kepler's mathematical rendering of the orbital motion of Mars encouraged him to formulate what he called ``a true theory of gravity'' involving the notion of attraction. Isaac Newton went on to construct an eminently effective dynamics, with attraction as its primary example of force. Was his a field theory? Historians of science disagree. Much depends on whether a theory consistent with the notion of action at a distance ought qualify as a ``field'' theory. Roger Boscovich and Immanuel Kant later took the Newtonian concept of attraction in new directions. It was left to Michael Faraday to propose the ``physical existence'' of lines of force and to James Clerk Maxwell to add as criterion the presence of energy as the ontological basis for a full-blown ``field theory'' of electromagnetic phenomena.

  6. [Aerobic capacity, weight status and self-concept in schoolchildren].

    Science.gov (United States)

    Gálvez Casas, Arancha; Rodríguez García, Pedro Luis; Rosa Guillamón, Andrés; García-Cantó, Eliseo; Pérez Soto, Juan José; Tárraga López, Pedro; Tárraga Marcos, Loreto

    2016-01-01

    To analyze the relationship between self-concept, aerobic capacity and weight status in schoolchildren. Relational descriptive design in which was assessed the weight status and aerobic capacity of 256 schoolchildren among 8-11 years. Aerobic capacity (low vs high) and the body mass index (normal-weight vs overweight-obesity) were categorized using standard criteria. The self-concept was assessed through the Piers Harris self-concept scale for children. Schoolchildren with normal-weight and high fitness level showed better levels of conductual self-concept (P=.030), physical (Pself-concept (P=.002). The schoolchildren with normal-weight show higher levels of conductual self-concpt (P=.016), intellectual (P=.050), physical (Pself-concept (P=.001). The schoolchildren with a higher fitness level showed better conductual self-concept (P=.024), physical (P=.004), lack of anxiety (P=.011), social (P=.024), and global (P=.003). The results of the study strengthen the importance to transmit to the educative community the knowledge of the relationship between the variables analyzed aiming to improve the schoolchildren self-concept. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  7. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-01-01

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  8. The Viewpoints of Physics Teacher Candidates towards the Concepts in Special Theory of Relativity and Their Evaluation Designs

    Science.gov (United States)

    Turgut, Umit; Gurbuz, Fatih; Salar, Riza; Toman, Ufuk

    2013-01-01

    In this study, the viewpoints of physics teacher candidates at undergraduate level towards the concepts in special theory of relativity and the interpretations they made about these concepts were investigated. The viewpoints of the teacher candidates towards the concepts in the subject of special theory of relativity were revealed with six open…

  9. The development of the physical conceptions of the FBR type reactors control methods

    International Nuclear Information System (INIS)

    Matveev, V.I.; Ivanov, A.P.

    1984-01-01

    The physical concepts and specific problems of the control elements for LMFBR type reactors are discussed in this paper. Typical temperature coefficient of reactivity, its dependency on reactor power and burnup level are given. The authors give us the most advisable methods of the reactivity coefficient compensation

  10. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  11. Environmental physics

    CERN Document Server

    Smith, Clare

    2001-01-01

    Environmental Physics is a comprehensive introduction to the physical concepts underlying environmental science. The importance and relevance of physics is emphasised by its application to real environmental problems with a wide range of case studies. Applications included cover energy use and production, global climate, the physics of living things, radioactivity, environmental remote sensing, noise pollution and the physics of the Earth. The book makes the subject accessible to those with little physics background, keeping mathematical treatment straightforward. The text is lively and informative, and is supplemented by numerous illustrations, photos, tables of useful data, and a glossary of key terms.

  12. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    International Nuclear Information System (INIS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-01-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers. (paper)

  13. The use of three orthogonal time-dimensions for concept reconciliation in physics

    International Nuclear Information System (INIS)

    Lewis, B.L.

    1981-01-01

    This paper uses logic and documented experimental results to show that there is overwhelming evidence to prove that time is multidimensional but that man can only perceive (measure) one of these dimensions. This paper attempts to demonstrate that man has enough experimental clues to permit him to develop a useful multidimensional time concept that will allow him to relate and explain observable physical phenomena. To demonstrate this, a multidimensional time concept is developed and used to explain and relate the following: the wave particle duality of nature, electromagnetic phenomena, intrinsic angular momentum, time dilation, Lorentz contraction and gravity. In the process, electrons are related to photons, protons to neutrinos and all four to tachyons. (Auth.)

  14. Scientific Thinking in Islamic Thought: Concept and its Importance

    Directory of Open Access Journals (Sweden)

    Alias Azhar

    2017-02-01

    Full Text Available God’s revelations, as the main source of knowledge, do not deny, in any way our brain’s functional capabilities. The Quran acknowledges the necessity and importance of the brain. Islamic epistemology regards the brain as the second source of knowledge after the revelations. The holistic perspective on knowledge that is gained by mankind is that it is constructed by man in the context of their thinking culture, education and social concepts. Therefore, in this regard, thinking method directly relates to the objectives of Islam and its Sharia, and gives a significant implication towards understanding and developing Sharia as a dynamic knowledge area. This study combines three (3 methods, content analysis; historical method and comparison of the review of the history of the construction of Islamic thought and the review of screening methods Sociology Society background. The discussion this article covers the definition and concept of scientific thinking skills and scientific Islamic thought and the approaches of critical thinking in Islamic scientific thought. In reality, Muslims are not prohibited by their religion to think scientifically through scientific thinking methods, provided that it does not contradict with Islam. Some knowledge which is built through scientific thinking can be used to understand the Quranic texts more profoundly. Also, undeniably, the eminence of God’s revelations has been made evident and exploited to proof the existence of Allah.

  15. Feyerabend's 'The concept of intelligibility in modern physics' (1948).

    Science.gov (United States)

    Kuby, Daniel

    2016-06-01

    This essay introduces the transcription and translation of Paul Feyerabend's Der Begriff der Verständlichkeit in der modernen Physik [The concept of intelligibility in modern physics] (1948), which is an early essay written by Paul Feyerabend in 1948 on the topic of intelligibility (Verständlichkeit) and visualizability (Anschaulichkeit) of physical theories. The existence of such essay was likely. It is listed in his bibliography as his first publication. Yet the content of the essay was unknown, as no original or copy is extant in Feyerabend's Nachlass and no known published version was available to the community-until now. The essay has both historical and philosophical interest: it is, as far as our current knowledge goes, Feyerabend's earliest extant publication. It documents Feyerabend's philosophical interest as a physicist-to-be, in what he himself called his "positivist" phase; and it gives a rare if fragmentary insight into the early discussions of the 'Third Vienna Circle' and, more generally, the philosophical culture of discussion in Vienna. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    Directory of Open Access Journals (Sweden)

    Kevin Lai

    Full Text Available Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal or concreteness (abstract vs. concrete of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  17. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    Science.gov (United States)

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  18. Perceptions of Important Characteristics of Physical Activity Facilities: Implications for Engagement in Walking, Moderate and Vigorous Physical Activity.

    Science.gov (United States)

    Heinrich, Katie M; Haddock, Christopher K; Jitnarin, Natinee; Hughey, Joseph; Berkel, LaVerne A; Poston, Walker S C

    2017-01-01

    Although few United States adults meet physical activity recommendations, those that do are more likely to access to physical activity facilities. Additionally, vigorous exercisers may be more likely to utilize a nearby physical activity facility, while light-to-moderate exercisers are less likely to do so. However, it is unclear what characteristics of those facilities are most important as well as how those characteristics are related to activity intensity. This study examined relationships between self-reported leisure-time physical activities and the use of and perceived characteristics of physical activity facilities. Data were from a cross-sectional study in a major metropolitan area. Participants ( N  = 582; ages 18-74, mean age = 45 ± 14.7 years) were more likely to be female (69.9%), Caucasian (65.6%), married (51.7%), and have some college education (72.8%). Household surveys queried leisure-time physical activity, regular physical activity facility use, and importance ratings for key facility characteristics. Leisure-time physical activity recommendations were met by 41.0% of participants and 50.9% regularly used a physical activity facility. Regular facility use was positively associated with meeting walking ( p  = 0.036), moderate ( p  importance on facility quality ( p  = 0.022), variety of physical activity options offered ( p  = 0.003), and availability of special equipment and resources ( p  = 0.01). The facility characteristics of low or free cost ( p  = 0.02) and offering childcare ( p  = 0.028) were barriers for walking, and being where friends and family like to go were barriers for moderate leisure-time physical activity ( p  = 0.013). Findings offer insights for structuring interventions using the social ecological model as well as for improving existing physical activity facilities.

  19. [Importance of history and physical examination for the care of nurses].

    Science.gov (United States)

    Santos, Neuma; Veiga, Patrícia; Andrade, Renata

    2011-01-01

    The history and physical examination are part of data collection of the Nursing Process. Its implementation is aimed at individualized care, holistic, humane and scientific foundation. The literature review was carried out in indexed databases as LILACS and SciELO, books and journals available in local libraries as published between the years 2000 to 2009. The aim is to describe the importance of clinical history and physical examination in the care provided by nurses. The results of this research will enable nursing students and health professionals can better understand the importance of history taking and physical examination to their professional practice, implement properly all stages of NAS and arouse interest in research on this topic.

  20. Teacher Explanation of Physics Concepts: A Video Study

    Science.gov (United States)

    Geelan, David

    2013-01-01

    Video recordings of Year 11 physics lessons were analyzed to identify key features of teacher explanations. Important features of the explanations used included teachers' ability to move between qualitative and quantitative modes of discussion, attention to what students require to succeed in high stakes examinations, thoughtful use of…

  1. The importance of the food and physical activity environments.

    Science.gov (United States)

    Oppert, Jean-Michel; Charreire, Hélène

    2012-01-01

    There is increasing interest in identifying characteristics of neighborhood environments (physical, social, economical) that might favor unhealthy dietary and physical activity patterns leading to excess weight at population level. Measurement of characteristics of the physical environment in relation to food and physical activity has greatly improved in recent years. Methods based on assessment of perceptions by residents of their neighborhood or on objective assessment of the actual built environment (such as provided by Geographic Information Systems tools) would benefit to be combined. A number of recent systematic reviews have updated our knowledge on relationships of food and physical activity environments with relevant behaviors and obesity. Available evidence appears to show more consistent evidence of association between built environment characteristics related to physical activity ('walkability' indices, land use mix, variety of transports. . .) with physical activity behavior than with weight status. In contrast, built environment characteristics related to food habits (accessibility to different types of food outlets, availability of healthy foods. . .) would be more consistently associated with weight status than with eating behavior. The need for data from different countries and cultures is emphasized, as much as the importance of transdisciplinary research efforts for translation of these findings into our living environment. Copyright © 2012 Nestec Ltd., Vevey/S. Karger AG, Basel.

  2. Importance of Health-Related Fitness Knowledge to Increasing Physical Activity and Physical Fitness

    Science.gov (United States)

    Ferkel, Rick C.; Judge, Lawrence W.; Stodden, David F.; Griffin, Kent

    2014-01-01

    Physical inactivity is expanding across all ages in the United States. Research has documented a deficiency in health-related fitness knowledge (HRFK) among elementary- through college-aged students. The need for a credible and reliable resource that provides research-based information regarding the importance of HRFK is significant. The purpose…

  3. The Relationship of Self-Concept and Perceived Athletic Competence to Physical Activity Level and Gender among Turkish Early Adolescents.

    Science.gov (United States)

    Kosar, F. Hulya Asci S. Nazan; Isler, Ayse Kin

    2001-01-01

    Examined self-concept and perceived athletic competence of Turkish early adolescents in relation to physical activity level and gender. Multivariate analysis of variance revealed significant main effects for gender and physical activity level but no significant gender by physical activity interaction. Univariate analysis demonstrated significant…

  4. The Grasp of Physics Concepts of Motion: Identifying Particular Patterns in Students' Thinking

    Science.gov (United States)

    Obaidat, Ihab; Malkawi, Ehab

    2009-01-01

    We have investigated the grasp of some of the basic concepts of motion by students taking the introductory physics course in Mechanics at United Arab Emirates University (UAEU). We have developed a short research-based multiple-choice test where we were able to extract some information about the state of knowledge of the students. In general, the…

  5. [Physical self-concept and teenagers with intellectual disability: age, sex, and weight category effects].

    Science.gov (United States)

    Bégarie, Jérôme; Maïano, Christophe; Ninot, Grégory

    2011-03-01

    To study the effects of age, sex, weight, and their interactions on global self-esteem (GSE) and physical self-concept in teenagers with intellectual disability (ID). A sample of 353 teenagers with ID, aged 12 to 18 years, participated in this study. The Very Short Form of the Physical Self-Inventory—for adolescents with ID (PSI-VSF-ID) was used to assess GSE and physical self-perceptions (physical value perceived [PVP], sport skills [SS], physical condition, physical appearance, and strength). Multivariate covariance analyses show: (i) lower GSE and physical self levels (except for PVP) in females, compared with males; (ii) reduced GSE, PVP, SS, and perceived physical appearance (PPA) scores during adolescence; (iii) lower GSE, PVP, and PPA scores in obese adolescents, compared with overweight or normal weight peers; and (iv) lower PPA scores in obese females, compared with other teenagers. The sex and age results are almost identical to those for the general population, according to the literature. However, they are far from the main effect in the weight category.

  6. Perceptions of Important Characteristics of Physical Activity Facilities: Implications for Engagement in Walking, Moderate and Vigorous Physical Activity

    Directory of Open Access Journals (Sweden)

    Katie M. Heinrich

    2017-11-01

    Full Text Available BackgroundAlthough few United States adults meet physical activity recommendations, those that do are more likely to access to physical activity facilities. Additionally, vigorous exercisers may be more likely to utilize a nearby physical activity facility, while light-to-moderate exercisers are less likely to do so. However, it is unclear what characteristics of those facilities are most important as well as how those characteristics are related to activity intensity.PurposeThis study examined relationships between self-reported leisure-time physical activities and the use of and perceived characteristics of physical activity facilities.MethodsData were from a cross-sectional study in a major metropolitan area. Participants (N = 582; ages 18–74, mean age = 45 ± 14.7 years were more likely to be female (69.9%, Caucasian (65.6%, married (51.7%, and have some college education (72.8%. Household surveys queried leisure-time physical activity, regular physical activity facility use, and importance ratings for key facility characteristics.ResultsLeisure-time physical activity recommendations were met by 41.0% of participants and 50.9% regularly used a physical activity facility. Regular facility use was positively associated with meeting walking (p = 0.036, moderate (p < 0.001, and vigorous (p < 0.001 recommendations. Vigorous exercisers were more likely to use a gym/fitness center (p = 0.006 and to place higher importance on facility quality (p = 0.022, variety of physical activity options offered (p = 0.003, and availability of special equipment and resources (p = 0.01. The facility characteristics of low or free cost (p = 0.02 and offering childcare (p = 0.028 were barriers for walking, and being where friends and family like to go were barriers for moderate leisure-time physical activity (p = 0.013.ConclusionFindings offer insights for structuring interventions using the social ecological

  7. Physics: quantum mechanics

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1983-01-01

    From important experiment descriptions (sometimes, intentionally simplified), the essential concepts in Quantum Mechanics are first introduced. Wave function notion is described, Schroedinger equation is established, and, after applications rich in physical signification, quantum state and Hilbert space formalism are introduced, which will help to understand many essential phenomena. Then the quantum mechanic general formulation is written and some important consequences are deduced. This formalism is applied to a simple physical problem series (angular momentum, hydrogen atom, etc.) aiming at assimilating the theory operation and its application [fr

  8. Fusion Concept Exploration Experiments at PPPL

    International Nuclear Information System (INIS)

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-01-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively

  9. Didactical contract: An analytical concept to facilitate successful implementation of open-ended physics labs

    DEFF Research Database (Denmark)

    Jacobsen, Lærke Bang; Johannsen, Bjørn Friis; Rump, Camilla Østerberg

    outcomes of alternative laboratory work in secondary and tertiary physics education we decided to approach the underlying cause of the problem. Framed in the theory of Didactical Situations in mathematics we adapt the concept of the didactical contract to the physics education context to locate aspects...... of the traditional laboratory learning environment that would lead to resistance from those involved if faced with alternatives. We conclude that both teachers and students lean heavily on a type of algorithm that ensures an appearance of having successfully completed the assigned tasks. This algorithmic didactical...... contract permeates through secondary education into university physics education. Our results allow for a better renegotiation of didactical contracts and thus for avoiding typical problems related to the implementation of alternative tasks. One might expect physics students to be special in their explicit...

  10. Profiles of self-concept, goal orientation, and self-regulation in students with physical, intellectual, and multiple disabilities: Implications for instructional support.

    Science.gov (United States)

    Varsamis, Panagiotis; Agaliotis, Ioannis

    2011-01-01

    The present study explored physical self-concept, goal orientation in sport, and self-regulation in regard to a motor task, in 75 secondary students with physical, intellectual, and multiple disabilities, who were educated in the same special education units. It was found that students with intellectual disabilities generally presented a positive profile in all three psychosocial constructs, whereas students with physical disabilities presented low scores in most measures. Students with multiple disabilities did not differ essentially from students with intellectual disability in regard to physical self-concept and goal orientation; however, they compared unfavorably to them regarding self-regulation. The delineation of a distinct and defendable profile of self-concept, goal orientation, and self-regulation for each disability group allows the formulation of proposals for the implementation of appropriate instructional programs for students belonging to the above mentioned categories. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Evaluation of Standard Concepts Design of Library Interior Physical Environment

    Directory of Open Access Journals (Sweden)

    Debri Harindya Putri

    2018-01-01

    Full Text Available Currently the function of a room is not only used as a shelter, the function of the room itself to be increased as a refreshing or relaxation area for users to follow the development of creativity and technology in the field of design. The comfortable factor becomes the main factor that indicates a successful process of creating a space. No exception library. The nature of library seemed stiff because of its function as a place to read, now can be developed and made into more dynamic with the special design concepts or color patterns used. Libraries can be created a special concept that suits the characteristics of the users themselves. Most users of the library, especially in college libraries are teenagers. Naturally, teenagers like to gather with their friends and we have to facilitate this activity in our library design concept. In addition we can also determine the needs of users through research by questionnaire method. The answers of users can be mapped and drawn conclusions. To explore the research, the author reviewed some literature about library interior design and observed the library of Ma Chung University as a case study. The combined results of the method can be concluded and the discovery of ideal standards of physical environment. So, the library can be made as a comfortable reading environment so as to increased interest in reading behavior and the frequent visits of students in the library

  12. Introductory concepts

    International Nuclear Information System (INIS)

    Barnes, W.E.

    1983-01-01

    Physical theories are commonly classified as being either ''classical'' or ''modern''. The reasons for this distinction are both historical and substantive. Limited in the sophistication of their measuring instruments, early scientists proposed theories appropriate for the description of the simplest and most accessible physical phenomena, e.g., the trajectories of the planets. Because of the class of phenomena observed, certain beliefs came to underlie all classical theories with regard to the nature of time, space, matter, etc. For example, the idea was undisputed that an object has at all times both a definite position and velocity. Not until the interior of the atom and the nature of electromagnetic radiation were explored was it discovered that the concepts of classical physics are inadequate to deal with many phenomena. A reassessment of fundamental postulates led to the formulation of modern physics which, it is believed, successfully treats the behavior of all physical systems. To gain an understanding of the rudiments of modern physics, one proceeds as the early scientists did by first mastering the classical concepts that emerge from their intuitive picture of the world. Modifications of these concepts are subsequently introduced which allow a more accurate treatment of physical phenomena, particularly atomic and nuclear systems

  13. The relationship between self-esteem and sexual self-concept in people with physical-motor disabilities.

    Science.gov (United States)

    Salehi, Mehrdad; Kharaz Tavakol, Hooman; Shabani, Maede; Ziaei, Tayebe

    2015-01-01

    Self-esteem is the value that the individuals give themselves, and sexual self-concept is also a part of individuality or sexual-self. Impairment or disability exists not only in the physical body of disabled people but also in their attitudes. Negative attitudes affect the mental health of disabled people, causing them to have lower self-esteem. This study aimed to examine the relationship between self-esteem and sexual self-concept in people with physical-motor disabilities. This cross-sectional study was conducted on 200 random samples with physical-motor disabilities covered by Isfahan Welfare Organization in 2013. Data collection instruments were the Persian Eysenck self-esteem questionnaire, and five domains (sexual anxiety, sexual self-efficacy, sexual self-esteem, sexual fear and sexual depression) of the Persian multidimensional sexual self-concept questionnaire. Because of incomplete filling of the questionnaires, the data of 183 people were analyzed by the SPSS 16.0 software. Data were analyzed using the t-test, Man-Whitney and Kruskal-Wallis tests and Spearman correlation coefficient. The mean age was 36.88 ± 8.94 years for women and 37.80 ± 10.13 for men. The mean scores of self-esteem among women and men were 15.80 ± 3.08 and 16.2 ± 2.90, respectively and there was no statistically significance difference. Comparison of the mean scores of sexual anxiety, sexual self-efficacy, sexual self-esteem, sexual fear and sexual depression among men and women showed that women scored higher than men in all domains. This difference was statistically significant in other domains except the sexual self-esteem (14.92 ± 3.61 vs. 13.56 ± 4.52) (P self-esteem, there was a statistical difference between other domains of people's sexual self-concept and degree of disability (P self-esteem and sexual self-efficacy with their self-esteem. This correlation was positive in sexual anxiety and negative in two other domains. Lack of difference in self-esteem of disabled

  14. Reciprocal effects of exercise and nutrition treatment-induced weight loss with improved body image and physical self-concept.

    Science.gov (United States)

    Annesi, James J; Porter, Kandice J

    2015-01-01

    Improvements in self-image and mood are often reported as outcomes of obesity interventions. However, they may also concurrently influence weight loss, suggesting a reciprocal effect. Although previously reported for overweight women, such relationships were untested in morbidly obese women whose psychosocial responses to treatment may be different, and health-risks greater. Women (N = 161, Meanage = 42 years) with morbid obesity (MeanBMI = 45.1 kg/m(2)) participated in a 6-month, behaviorally based physical activity and nutrition treatment. Significant within-group improvements in weight-loss behaviors (physical activity and eating), weight, body satisfaction, physical self-concept, and depression were found. After controlling for age, mediation analyses indicated that, as a result of the treatment, weight loss was both an outcome and mediator of improvements in body-areas satisfaction and physical self-concept (reciprocal effects), but not depression. Results replicated findings from women with lower degrees of overweight, and suggested that weight-loss treatments emphasize changes in self-perception.

  15. Social-class differences in self-concept clarity and their implications for well-being.

    Science.gov (United States)

    Na, Jinkyung; Chan, Micaela Y; Lodi-Smith, Jennifer; Park, Denise C

    2018-06-01

    A consistent/stable sense of the self is more valued in middle-class contexts than working-class contexts; hence, we predicted that middle-class individuals would have higher self-concept clarity than working-class individuals. It is further expected that self-concept clarity would be more important to one's well-being among middle-class individuals than among working-class individuals. Supporting these predictions, self-concept clarity was positively associated with higher social class. Moreover, although self-concept clarity was associated with higher life satisfaction and better mental health, the association significantly attenuated among working-class individuals. In addition, self-concept clarity was not associated with physical health and its association with physical health did not interact with social class.

  16. Control theory in physics and other fields of science concepts, tools and applications

    CERN Document Server

    Schulz, Michael

    2006-01-01

    This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.

  17. Physics holo.lab learning experience: using smartglasses for augmented reality labwork to foster the concepts of heat conduction

    Science.gov (United States)

    Strzys, M. P.; Kapp, S.; Thees, M.; Klein, P.; Lukowicz, P.; Knierim, P.; Schmidt, A.; Kuhn, J.

    2018-05-01

    Fundamental concepts of thermodynamics rely on abstract physical quantities such as energy, heat and entropy, which play an important role in the process of interpreting thermal phenomena and statistical mechanics. However, these quantities are not covered by human visual perception, and since heat sensation is purely qualitative and easy to deceive, an intuitive understanding often is lacking. Today immersive technologies like head-mounted displays of the newest generation, especially HoloLens, allow for high-quality augmented reality learning experiences, which can overcome this gap in human perception by presenting different representations of otherwise invisible quantities directly in the field of view of the user on the experimental apparatus, which simultaneously avoids a split-attention effect. In a mixed reality (MR) scenario as presented in this paper—which we call a holo.lab—human perception can be extended to the thermal regime by presenting false-color representations of the temperature of objects as a virtual augmentation directly on the real object itself in real-time. Direct feedback to experimental actions of the users in the form of different representations allows for immediate comparison to theoretical principles and predictions and therefore is supposed to intensify the theory–experiment interactions and to increase students’ conceptual understanding. We tested this technology for an experiment on thermal conduction of metals in the framework of undergraduate laboratories. A pilot study with treatment and control groups (N = 59) showed a small positive effect of MR on students’ performance measured with a standardized concept test for thermodynamics, pointing to an improvement of the understanding of the underlying physical concepts. These findings indicate that complex experiments could benefit even more from augmentation. This motivates us to enrich further experiments with MR.

  18. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  19. The electrocardiogram as an electronic filter and why ac circuits are important for pre-health physics students

    Science.gov (United States)

    Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf

    2015-01-01

    We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.

  20. Nuclear physics and neutronics

    International Nuclear Information System (INIS)

    Paya, D.

    1997-01-01

    After a brief review of the beginnings of the nuclear reaction physics in France in the 40's and 50's, the experimentation neutronics and nuclear physics studies are related and their uses presented, which aims were to provide data for the study of the various reactor concepts and to study fundamental physics. Progressively, pure nuclear physics lost its links with neutronics, and its influence decreases more or less. Long life radioactive waste reprocessing is an important domain where it could regain its contribution

  1. The Importance of Monitoring Skills in Physics Problem Solving

    Science.gov (United States)

    Ali, Marlina; Talib, Corrienna-Abd; Hasniza Ibrahim, Nor; Surif, Johari; Halim Abdullah, Abdul

    2016-01-01

    The purpose of this paper is to show how important "monitoring" is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on…

  2. History and Evolution of Concepts in Physics

    Science.gov (United States)

    Varvoglis, Harry

    The history of any discipline is always based on written texts. In this way, to restrict ourselves to texts of Antiquity, the history of the Jewish people is based on the books of the Old Testament, the history of the Persian Wars on the books by Herodotus and the history of the Peloponnesian War on the books by Thucydides. Even the history of the Trojan War is based on Homer's written work, although this was based, in turn, on earlier oral traditions of the Greeks of Homer's time. This rule, of course, cannot find an exemption in the history of physics. This is the main reason why the history of physics, and hence the evolution of concepts in this science, necessarily starts from the ancient Greeks. It is certain that other people of historical times were also involved in scientific activities, such as the Babylonians, who developed astronomy, and the Egyptians, who developed geometry. But their aim was to solve practical problems of their everyday life and not to understand nature and its laws. The geometry of the ancient Egyptians was developed for the purpose of redistributing land after the annual flooding of Nile, while Babylonian astronomy was limited to the simple recording of astronomical observations, with a few surviving examples of predictions of future events. Instead, the interpretation of nature and its laws, in both these nations, was the responsibility of priests and kings. In other words, the interpretation of nature for them was not a result of rational thinking; it was based on truth by revelation. The "truth" was revealed to rulers, nobles and priests, and accepted, without questioning, by the rest of the people. This truth was closely related to the religion of each nation.

  3. [Physical exercise and mental health: cognition, anxiety, depression and self-concept].

    Science.gov (United States)

    Sun, Yan-Lin; Wang, John; Yao, Jia-Xin; Ji, Cheng-Shu; Dai, Qun; Jin, Ya-Hong

    2014-10-01

    This review focuses on the benefits of regular physical activity participation have mainly focused on cognitive functioning, anxiety and depression, and self-concept. It is well documented that ex- ercise can enhance cognitive functioning, improve executive function at old age, and improve mental abil- ity of children labeled as educational subnormal or disability. Regular exercise has been used to reduce stress and ward off anxiety and feelings of depression. In addition, exercise can improve self-esteem and positive outlook in life. Studies in these three main areas were reviewed and issues and future directions were highlighted.

  4. Understanding the Importance, Dimensions and Settings for Developing Children’s Physical Activity Behaviour

    OpenAIRE

    Hyndman, Brendon

    2015-01-01

    Promotion of regular physical activity during childhood within schools, home and community settings is important as childhood forms the foundation for physical activity habits that can track into adulthood. Despite childhood being a crucial period for developing physical activity behaviour, there is a limited understanding of the physical activity behaviours of school-aged children. The aim of this research report is to facilitate understanding of children’s physical activity behaviours by ou...

  5. Inertial confinement: concept and early history

    International Nuclear Information System (INIS)

    Linhart, J.G.

    1986-01-01

    The concept of inertial confinement is linked to the general theme of energy compression and staging. It is shown how it arose from the ideas and experiments on dynamic pinches towards the end of the fifties and how the important key concept of a linear was further developed during the sixties. THe various attempts at driving linears to speeds in excess of 1 cm/μs are reviewed in chronological order, mentioning the important impetus given to this field by the consideration of laser as a driver. It is concluded that the field of inertial confinement fusion (ICF) is becoming ever richer in possibilities, and the understanding of the physics of high-energy density has reached now a satisfactory level

  6. The Correlation Study of Interest at Physics and Knowledge of Mathematics Basic Concepts towards the Ability to Solve Physics Problems of 7th Grade Students at Junior High School in Ambon Maluku Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Izaak Hendrik Wenno

    2015-01-01

    Full Text Available The purpose of the study is to determine the relation between interest at Physics and knowledge of Mathematics basic concepts with the ability to solve Physics problems. The populations are all students in the 7th grade at the junior high school in Ambon, Maluku, Indonesia. The used sample schools are Junior High Schools 8, 9, and 10 during 2013/2014 academic year with 44 students per school. Two independent variables and one dependent variable are studied. The independent variables are the interest at Physics (X1 and the knowledge of Mathematics basic concepts (X2, while the dependent variable is the ability to solve Physics problems (Y. Data collection technique for X1 is an interview with questionnaire instrument, while for the X2 and Y is using the test technique with test items instrument. The obtained data from the measurements were analyzed with descriptive analysis and inferential analysis. The results show that there is a positive relation between interest at Physics and knowledge of Mathematics basic concepts with students’ ability to solve Physics problems.

  7. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved With and Without Concept Maps

    Science.gov (United States)

    Martínez, Guadalupe; Pérez, Ángel Luis; Suero, María Isabel; Pardo, Pedro J.

    2013-04-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a measuring instrument. The sample included 114 university students from the School of Industrial Engineering who were divided into two equivalent homogeneous groups of 57 students each. The amount of learning attained by the students in each group was compared, with the independent variable being the teaching method; the experimental group (E.G.) used concept maps, while the control group (C.G.) did not. We performed a crossover study with the two groups of students, with one group acting as the E.G. for the topic of optical fibers and as the C.G. for the topic of the fundamental particles of matter and vice versa for the other group. For each of the two topics studied, the evaluation instrument was a test of 100 dichotomous items. The resulting data were subjected to a comparative statistical analysis, which revealed a significant difference in the amount of learning attained by the E.G. students as compared with the C.G. students. The results allow us to state that for the use of concept maps, the average increment in the E.G. students' learning was greater than 19 percentage points.

  8. CUSTOMER RELATIONSHIP MANAGEMENT: CONCEPT AND IMPORTANCE FOR BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    Marko Laketa

    2015-12-01

    Full Text Available Customer Relationship Management concept is tendency of banking sector to establish and maintain long-term relationships with customers in order to provide value for customers and banks. This concept allows bank to identify, segment, communicate and build long-term relationships with customers on individual basis. In today's business environment, banks have aim to identify customers and to adjust offer to meet customer`s needs, in order to maximize profits. Using modern technologies, Customer Relationship Management is becoming a method to maintain existing structure and development of high quality customer base. It involves development of marketing strategy through a better understanding of the entire customer base, understanding needs and attitudes of customers, as well as more efficient consideration of profitability and added value that each customer have for the bank. The aim of research, presented in this paper, is to assess to benefits of introducing Customer Relationship Management concept in banking sector, by defining strategies, adjustment of organizational structure, culture and internal processes with help of modern technology. The paper presents methods of measuring success of Customer Relationship Management concept and problems which banks have when implementing a new business philosophy.

  9. Can dual processing theory explain physics students’ performance on the Force Concept Inventory?

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-07-01

    Full Text Available According to dual processing theory there are two types, or modes, of thinking: system 1, which involves intuitive and nonreflective thinking, and system 2, which is more deliberate and requires conscious effort and thought. The Cognitive Reflection Test (CRT is a widely used and robust three item instrument that measures the tendency to override system 1 thinking and to engage in reflective, system 2 thinking. Each item on the CRT has an intuitive (but wrong answer that must be rejected in order to answer the item correctly. We therefore hypothesized that performance on the CRT may give useful insights into the cognitive processes involved in learning physics, where success involves rejecting the common, intuitive ideas about the world (often called misconceptions and instead carefully applying physical concepts. This paper presents initial results from an ongoing study examining the relationship between students’ CRT scores and their performance on the Force Concept Inventory (FCI, which tests students’ understanding of Newtonian mechanics. We find that a higher CRT score predicts a higher FCI score for both precourse and postcourse tests. However, we also find that the FCI normalized gain is independent of CRT score. The implications of these results are discussed.

  10. The Relationship Between Self-Esteem and Sexual Self-Concept in People With Physical-Motor Disabilities

    Science.gov (United States)

    Salehi, Mehrdad; Kharaz Tavakol, Hooman; Shabani, Maede; Ziaei, Tayebe

    2015-01-01

    Background: Self-esteem is the value that the individuals give themselves, and sexual self-concept is also a part of individuality or sexual-self. Impairment or disability exists not only in the physical body of disabled people but also in their attitudes. Negative attitudes affect the mental health of disabled people, causing them to have lower self-esteem. Objectives: This study aimed to examine the relationship between self-esteem and sexual self-concept in people with physical-motor disabilities. Patients and Methods: This cross-sectional study was conducted on 200 random samples with physical-motor disabilities covered by Isfahan Welfare Organization in 2013. Data collection instruments were the Persian Eysenck self-esteem questionnaire, and five domains (sexual anxiety, sexual self-efficacy, sexual self-esteem, sexual fear and sexual depression) of the Persian multidimensional sexual self-concept questionnaire. Because of incomplete filling of the questionnaires, the data of 183 people were analyzed by the SPSS 16.0 software. Data were analyzed using the t-test, Man-Whitney and Kruskal-Wallis tests and Spearman correlation coefficient. Results: The mean age was 36.88 ± 8.94 years for women and 37.80 ± 10.13 for men. The mean scores of self-esteem among women and men were 15.80 ± 3.08 and 16.2 ± 2.90, respectively and there was no statistically significance difference. Comparison of the mean scores of sexual anxiety, sexual self-efficacy, sexual self-esteem, sexual fear and sexual depression among men and women showed that women scored higher than men in all domains. This difference was statistically significant in other domains except the sexual self-esteem (14.92 ± 3.61 vs. 13.56 ± 4.52) (P self-esteem, there was a statistical difference between other domains of people’s sexual self-concept and degree of disability (P self-esteem and sexual self-efficacy with their self-esteem. This correlation was positive in sexual anxiety and negative in two other

  11. Environmental physics as a teaching concept

    International Nuclear Information System (INIS)

    Boeker, Egbert; Grondelle, Rienk van; Blankert, Piet

    2003-01-01

    Environmental physics is understood as the physics connected with analysing and mitigating environmental problems. It draws on most sub-disciplines of physics and provides a way of making physics relevant. In this paper the motivation of teaching environmental physics is discussed and examples of course content and supporting student work are given, based on work in the authors' department

  12. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    Science.gov (United States)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  13. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    International Nuclear Information System (INIS)

    Elena, Ivanova

    2016-01-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us. (paper)

  14. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    Science.gov (United States)

    Elena, Ivanova

    2016-08-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.

  15. How Does Physical Activity Intervention Improve Self-Esteem and Self-Concept in Children and Adolescents? Evidence from a Meta-Analysis

    Science.gov (United States)

    Liu, Mingli; Wu, Lang; Ming, Qingsen

    2015-01-01

    Objective To perform a systematic review and meta-analysis for the effects of physical activity intervention on self-esteem and self-concept in children and adolescents, and to identify moderator variables by meta-regression. Design A meta-analysis and meta-regression. Method Relevant studies were identified through a comprehensive search of electronic databases. Study inclusion criteria were: (1) intervention should be supervised physical activity, (2) reported sufficient data to estimate pooled effect sizes of physical activity intervention on self-esteem or self-concept, (3) participants’ ages ranged from 3 to 20 years, and (4) a control or comparison group was included. For each study, study design, intervention design and participant characteristics were extracted. R software (version 3.1.3) and Stata (version 12.0) were used to synthesize effect sizes and perform moderation analyses for determining moderators. Results Twenty-five randomized controlled trial (RCT) studies and 13 non-randomized controlled trial (non-RCT) studies including a total of 2991 cases were identified. Significant positive effects were found in RCTs for intervention of physical activity alone on general self outcomes (Hedges’ g = 0.29, 95% confidence interval [CI]: 0.14 to 0.45; p = 0.001), self-concept (Hedges’ g = 0.49, 95%CI: 0.10 to 0.88, p = 0.014) and self-worth (Hedges’ g = 0.31, 95%CI: 0.13 to 0.49, p = 0.005). There was no significant effect of intervention of physical activity alone on any outcomes in non-RCTs, as well as in studies with intervention of physical activity combined with other strategies. Meta-regression analysis revealed that higher treatment effects were associated with setting of intervention in RCTs (β = 0.31, 95%CI: 0.07 to 0.55, p = 0.013). Conclusion Intervention of physical activity alone is associated with increased self-concept and self-worth in children and adolescents. And there is a stronger association with school-based and gymnasium

  16. How Does Physical Activity Intervention Improve Self-Esteem and Self-Concept in Children and Adolescents? Evidence from a Meta-Analysis.

    Science.gov (United States)

    Liu, Mingli; Wu, Lang; Ming, Qingsen

    2015-01-01

    To perform a systematic review and meta-analysis for the effects of physical activity intervention on self-esteem and self-concept in children and adolescents, and to identify moderator variables by meta-regression. A meta-analysis and meta-regression. Relevant studies were identified through a comprehensive search of electronic databases. Study inclusion criteria were: (1) intervention should be supervised physical activity, (2) reported sufficient data to estimate pooled effect sizes of physical activity intervention on self-esteem or self-concept, (3) participants' ages ranged from 3 to 20 years, and (4) a control or comparison group was included. For each study, study design, intervention design and participant characteristics were extracted. R software (version 3.1.3) and Stata (version 12.0) were used to synthesize effect sizes and perform moderation analyses for determining moderators. Twenty-five randomized controlled trial (RCT) studies and 13 non-randomized controlled trial (non-RCT) studies including a total of 2991 cases were identified. Significant positive effects were found in RCTs for intervention of physical activity alone on general self outcomes (Hedges' g = 0.29, 95% confidence interval [CI]: 0.14 to 0.45; p = 0.001), self-concept (Hedges' g = 0.49, 95%CI: 0.10 to 0.88, p = 0.014) and self-worth (Hedges' g = 0.31, 95%CI: 0.13 to 0.49, p = 0.005). There was no significant effect of intervention of physical activity alone on any outcomes in non-RCTs, as well as in studies with intervention of physical activity combined with other strategies. Meta-regression analysis revealed that higher treatment effects were associated with setting of intervention in RCTs (β = 0.31, 95%CI: 0.07 to 0.55, p = 0.013). Intervention of physical activity alone is associated with increased self-concept and self-worth in children and adolescents. And there is a stronger association with school-based and gymnasium-based intervention compared with other settings.

  17. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  18. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  19. New concepts in particle physics from solution of an old problem

    International Nuclear Information System (INIS)

    Schroer, Bert

    1999-11-01

    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on off-shell quantities in particle physics: in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons which hitherto were related with Killing horizons in curved spacetime than with localization aspects in Minkowski particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert spacetime than with localization aspects in Minkowski space particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d= 1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). Although different from string theory, some of its concepts originated as string theory in the aftermath of the ill-fated S-matrix bootstrap of the 60 ies . Some remarks on the relation to string theory can be found at the end. (author)

  20. New concepts in particle physics from solution of an old problem

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-11-01

    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on off-shell quantities in particle physics: in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons which hitherto were related with Killing horizons in curved spacetime than with localization aspects in Minkowski particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert spacetime than with localization aspects in Minkowski space particle physics. The scope of this framework is wide and ranges from providing a conceptual basis for the d= 1+1 bootstrap-form factor program for factorable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). Although different from string theory, some of its concepts originated as string theory in the aftermath of the ill-fated S-matrix bootstrap of the 60{sup ies}. Some remarks on the relation to string theory can be found at the end. (author)

  1. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  2. Basic concepts in computational physics

    CERN Document Server

    Stickler, Benjamin A

    2016-01-01

    This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the read...

  3. [Concept analysis of workplace bullying].

    Science.gov (United States)

    Ma, Shu-Ching; Wang, Hsiu-Hung; Chen, Jih-Yuan

    2011-08-01

    Workplace bullying is a complicated and imprecise concept. Research findings have highlighted it as an important issue in the nursing environment worldwide. Workplace bullying arises due to malfunctions in workplace organizational and cultural related antecedents and manifests in various forms. Many studies have reported that nurses experiencing workplace bullying face increased levels of physical, psychological and social distress, may adopt suicidal thoughts and negativity towards the nursing profession, and may even abandon the nursing profession completely. Although a large number of papers have discussed the antecedents, forms and interventions related to workplace bullying, there has yet been no systematic concept analysis of workplace bullying. This paper applied Walker and Avant's concept analysis process to verify concept definitions, identify defining attributes, antecedents, and consequences, and provide examples of model, borderline, and contrary cases. Findings can help nursing administrators understand and clarify the meaning of workplace bullying in order to take appropriate measures to improve the working environment for nursing professionals.

  4. Importance of enjoyment when promoting physical exercise.

    Science.gov (United States)

    Hagberg, L A; Lindahl, B; Nyberg, L; Hellénius, M-L

    2009-10-01

    The purpose of this study was to investigate the importance of enjoyment of exercise in a health care-based intervention aimed at promoting physical exercise in primary health care patients. In a controlled study design, the intervention group was offered a wide range of group exercises over 3 months, followed by support in designing their own exercise program. The control group received usual care. Enjoyment of exercise and exercise level were measured. Associations between enjoyment and exercise level were analyzed using Spearman's rank correlation coefficients. Changes in enjoyment between and within study groups were analyzed by the independent and paired t-test. Associations were found between enjoyment and exercise level (r=0.36, Pexercise level (r=0.34, Pexercise was 25% higher in the intervention group than in the control group (Phealth care patients, enjoyment of exercise was associated with exercise level. Enjoyment of exercise seems to be a mediator of exercise level. Furthermore, health care-based interventions seem to be able to affect enjoyment of exercise. Enjoyment of exercise may be important for the long-term effectiveness, of health care-based interventions.

  5. Discussion on the concepts of "coordination" and "agility" in terms of physical education

    Directory of Open Access Journals (Sweden)

    V.A. Zaporozhanov

    2015-03-01

    Full Text Available In the scientific and methodological literature and practice of physical education concepts of "coordination" and "agility" are often used synonymously. And discussion about the appropriateness distinguish these concepts is mainly analytical character. Purpose : to evaluate the nature of the relationship metrically between indicators kinesthesia (which characterize the internal processes of interaction in the neuro-muscular system - coordination and the efficient delivery of a complex exercise (in cooperation man in the external environment of physical education - agility. Material : 77 students surveyed. Students performed on 100 strikes the ball into the goal in terms of golf (10 control measurements. The experiment was conducted for 8 months. 7700 measurement precision of centimeters processed statistically. Calculated reliability of measurements: 100 comparability repetitive beats, accuracy hitting the ball into the goal and the pace of learning in terms of the impact of blows. Results : the total volume measurements was characterized by high variability (V% = 53,5, indicating that the low status of kinesthesia surveyed. This reduces the reliability of the correlation coefficients according to 30 and then 10 of the best students in the general rank in terms of reliability of measurements. Significant correlation occurred only in terms of performance beats the purpose of learning the technique and pace (0,417; n = 30, p <0,05; and 0,677; n = 10, p <0,05. Conclusions : Overall, the results of our study showed that the concept of "coordination" and "agility" should still be distinguished. In some cases, students with a good level of kinesthesia occurred and high mobility in complex locomotion. If we recognize it expedient to continue this discussion, then we must rely on objective, metric information. This information should be obtained in studies with a broad contingent surveyed, consistently show good concentration and high reliability

  6. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S. A. H.; Afarideh, H.; Shahriari, M.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor

  7. Gender and Physics: a Theoretical Analysis

    Science.gov (United States)

    Rolin, Kristina

    This article argues that the objections raised by Koertge (1998), Gross and Levitt (1994), and Weinberg (1996) against feminist scholarship on gender and physics are unwarranted. The objections are that feminist science studies perpetuate gender stereotypes, are irrelevant to the content of physics, or promote epistemic relativism. In the first part of this article I argue that the concept of gender, as it has been developed in feminist theory, is a key to understanding why the first objection is misguided. Instead of reinforcing gender stereotypes, feminist science studies scholars can formulate empirically testable hypotheses regarding local and contested beliefs about gender. In the second part of this article I argue that a social analysis of scientific knowledge is a key to understanding why the second and the third objections are misguided. The concept of gender is relevant for understanding the social practice of physics, and the social practice of physics can be of epistemic importance. Instead of advancing epistemic relativism, feminist science studies scholars can make important contributions to a subfield of philosophy called social epistemology.

  8. Embodied Germ Cell at Work: Building an Expansive Concept of Physical Mobility in Home Care

    Science.gov (United States)

    Engestrom, Yrjo; Nummijoki, Jaana; Sannino, Annalisa

    2012-01-01

    This article presents a process of collective formation of a new concept of mobility between home care workers and their elderly clients, who are at risk of losing physical mobility and functional capacity. A new tool called mobility agreement was introduced to facilitate the inclusion of regular mobility exercises in home care visits and in the…

  9. Determining Vulnerability Importance in Environmental Impact Assessment

    International Nuclear Information System (INIS)

    Toro, Javier; Duarte, Oscar; Requena, Ignacio; Zamorano, Montserrat

    2012-01-01

    The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIA has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: ► The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. ► The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. ► A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. ► Results in Colombia highlight the usefulness and objectivity of this method.

  10. CERN: Important summer for LEAR physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-12-15

    An integral part of CERN's comprehensive antiproton facilities is the LEAR low energy antiproton ring which came into action for physics in 1983 and has gone on to host many experiments looking at a wide range of physics topics. With CERN's big SPS proton-antiproton collider now in what could be its final production physics run after an illustrious career which began in 1981, the face of antiproton physics at CERN will change over the next few years. However LEAR runs independently of high energy antiproton operations, and any phasing out of collider operations has no direct impact on LEAR.

  11. The Importance of Physical Literacy for Physical Education and Recreation

    Science.gov (United States)

    Basoglu, Umut Davut

    2018-01-01

    As the basis of characteristics, qualifications, behaviors, awareness, knowledge and understanding of the development of healthy active living and physical recreation opportunities Physical Literacy (PL); has become a global concern in the fields of physical education and recreation since its first use as a term. Experts from different countries…

  12. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  13. CERN: Important summer for LEAR physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    An integral part of CERN's comprehensive antiproton facilities is the LEAR low energy antiproton ring which came into action for physics in 1983 and has gone on to host many experiments looking at a wide range of physics topics. With CERN's big SPS proton-antiproton collider now in what could be its final production physics run after an illustrious career which began in 1981, the face of antiproton physics at CERN will change over the next few years. However LEAR runs independently of high energy antiproton operations, and any phasing out of collider operations has no direct impact on LEAR

  14. Understanding the physical and chemical changes on the three levels of the presentation of chemical concepts in students primary education

    OpenAIRE

    Bregar, Anja

    2017-01-01

    Physical and chemical changes are learning contents that address the essential chemical concepts in processes at particle level. When explaining chemical concepts at particle level, it is necessary to use various and appropriate visualization elements, such as (1) pictures, (2) photographs, (3) film excerpts (4) 2D or 3D stationary submicroscopic representations, (5) 2D and 3D dynamic contamination schemes, etc. This way, teachers can explain and interpret a chemical concept on three presenta...

  15. A Study on Identifying the Misconceptions of Pre-Service and In-Service Teachers about Basic Astronomy Concepts

    Science.gov (United States)

    Kanli, Uygar

    2014-01-01

    Nowadays, the importance given to astronomy teaching in science and physics education has been gradually increasing. At the same time, teachers play an important role in remediating the misconceptions about astronomy concepts held by students. The present study aims to determine the misconceptions of pre-service physics teachers (n = 117),…

  16. Alternative Conceptions: Turning Adversity into Advantage

    Science.gov (United States)

    Ferreira, Annalize; Lemmer, Miriam; Gunstone, Richard

    2017-08-01

    While a vast body of research has identified difficulties in students' understanding about forces and acceleration and their related alternative conceptions, far less research suggests ways to use students' alternative conceptions to enhance conceptual understanding of a specific fundamental concept. This study focused on distinguishing between students' conceptual understanding of the Newtonian concept of gravitational acceleration being the same for all objects and students' alternative conception that heavy objects fall faster. A multiple choice questionnaire was distributed to first year physics students for three consecutive years at a university in South Africa. The results indicate that changing the direction of motion and the physics quantity asked in paired questions revealed practically significant inconsistencies in students' reasoning and conceptions. This research contributes to the body of knowledge in proposing how the alternative conception of mass-related gravitational acceleration can be used in instruction to enhance conceptual understanding of the force-mass-acceleration relationship. Understanding of this relationship not only promotes conceptual understanding of the basic Newtonian concepts of the laws of motion which forms the critical foundation on which more advanced physics courses are built, but also contributes towards students' perception of physics as a set of coherent ideas applicable in all contexts.

  17. Ideas Exchange: "How Important Is Activity in Young Children (Preschool) to a Lifetime of Physical Activity?"

    Science.gov (United States)

    Hushman, GLenn; Morrison, Jaime; Mally, Kristi; McCall, Renee; Corso, Marjorie; Kamla, Jim; Magnotta, John; Chase, Melissa A.; Garrahy, Deborah A.; Lorenzi, David G.; Barnd, Sue

    2009-01-01

    This article presents the opinions of several professionals who were asked: "How important is activity in young children (preschool) to a lifetime of physical activity?" These professionals point out the importance of physical activity to young children.

  18. A historical analysis of the construction of physical meanings to the concept of vector potential in classical electromagnetism

    Directory of Open Access Journals (Sweden)

    Aldo Aoyagui Gomes Pereira

    2017-12-01

    Full Text Available Currently, the concept of vector potential is usually treated in textbooks and taught in university courses of electromagnetism as a mathematical device for the calculation of electric and magnetic fields. However, the historical  investigation  of  the  origin  and  development  of  this  concept, especially in the works of Michael Faraday and James Clerk Maxwell, gave  us  indications  that  these  scientists  attributed  physical   and  mechanical analogical meanings to the quantities that currently receive the  denomination  of  vector  potential.  In  the  contexto  in  which  these scientists worked in the second half of the nineteenth century, the scientific community considered that electromagnetic phenomena occurred in an ether with mechanical properties and that electromagnetic quantities should  have  mechanical  analogues. At the  end  of  this  century,  some physicists, including Oliver Heaviside and Heinrich Hertz reformulated Maxwell's theory, abandoning the physical interpretation given by Maxwell to the vector potential. In this paper, we discuss in a syntactic way  how  this  process  of  change  occurred.  For  this,  we  conducted  a historical study based on primary and secondary sources on the subject and,  finally,  investigated  the  approach  used  in  some  textbooks  of electromagnetism in teaching this concept. We also present indications that the abandonment of physical interpretation of the concept of vector potential  has  been  associated  with  philosophical  and  methodological positions as well as with the interest in solving practical problems in the recent telegraph cable industry in nineteenth-century Britain.

  19. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  20. How Do Students Learn to See Concepts in Visualizations? Social Learning Mechanisms with Physical and Virtual Representations

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…

  1. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor

  2. Gender and motor competence affects perceived likelihood and importance of physical activity outcomes among 14 year olds.

    Science.gov (United States)

    Hands, B; Parker, H E; Rose, E; Larkin, D

    2016-03-01

    Perceptions of the effects of physical activity could facilitate or deter future participation. This study explored the differences between gender and motor competence at 14 years of age in the perceptions of likelihood and importance of physical activity outcomes. The sample comprised 1582 14-year-old adolescents (769 girls) from the Western Australian Pregnancy Cohort (Raine) Study. Four motor competence groups were formed from a standardized Neuromuscular Developmental Index score (McCarron 1997). Perceptions of the likelihood and the importance of 15 physical activity outcomes were measured by a questionnaire developed for the NSW Schools Fitness and Physical Activity Survey (Booth et al. 1997). Gender (two) × motor competence (four) analyses of variance and Tukey post hoc were conducted on outcome scores (P importance of physical activity outcomes within competition, social friendships and injury domains. Motor competence was significant in the perceived likelihood of physical health (P importance was perceived for academic outcomes for 14 year olds categorized with low compared with high motor competence (P importance. Although level of motor competence at 14 years affected the perceived likelihood of health, social and fun outcomes from future participation in physical activity, adolescents highly valued these outcomes, whereas gender affected competition and winning, outcomes that were less valued. Physical activity that promotes these key and valued outcomes may encourage young people's ongoing involvement in physical activity, especially for those at risk of low participation. © 2015 John Wiley & Sons Ltd.

  3. The Impact of Gymnastics on Children's Physical Self-Concept and Movement Skill Development in Primary Schools

    Science.gov (United States)

    Rudd, J. R.; Barnett, L. M.; Farrow, D.; Berry, J.; Borkoles, E.; Polman, Remco

    2017-01-01

    This study evaluated the effectiveness of an 8-week gymnastics curriculum on children's movement competence and their physical self-concept. There were 113 children (46% girls, 49% intervention) with a mean age of 9.4 years (SD = 1.8) that participated. Intervention children underwent 8 weeks of gymnastics and the comparison group continued with…

  4. Self-Concept and Sport Participation in Sixth Grade Basic School Students

    Directory of Open Access Journals (Sweden)

    Špela Virag

    2016-04-01

    Full Text Available The purpose of the study was to examine self-concept in relation to sport participation among basic school children. The sample included 109 sixth grade students of different Slovenian basic schools. The participants completed the Slovenian version of the SelfPerception Profile for Children – SPPC. The results show significant gender differences in some specific components of self-concept. Boys exhibited higher scores in perceived physical appearance and athletic competence, whereas girls exhibited higher levels in perceived behavioural conduct. Mean values show that students, engaged in organized sport practice, reported higher scores in all self-concept subscales than their inactive peers, although significant differences between these two groups were found in perceived scholastic competence and athletic competence. The study offers a detailed insight into the multidimensional self-perceptions of sixth grade basic school students. The results highlight the importance of physical/sports activity in the self-concept development and can be useful in promoting an active lifestyle among youth.

  5. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    International Nuclear Information System (INIS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (ε F ). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper. (paper)

  6. Rest and the associated benefits in restorative sleep: a concept analysis.

    Science.gov (United States)

    Helvig, Ashley; Wade, Sonya; Hunter-Eades, Lee

    2016-01-01

    To report an analysis of the concept of rest. Consistency in the literature to describe the concept and use of rest is limited. Concept analysis may be advantageous in rendering an operational definition in the health care setting. This analysis is important to examine the concept of rest for structure and function to promote an understanding of the phenomenon. Rest is a vital component of restorative sleep which has implications for physical, mental and spiritual well-being. Concept analysis. A literature search was conducted in the following databases: PubMed, CINAHL, Medline, ProQuest and an online Internet search with the majority of articles published between 1995-2015. This concept analysis was implemented using the eight step approach developed by Walker and Avant. In health care, rest incorporates the cessation of activity used to promote physical and mental health. Defining attributes of rest include a pathway to calm, inner tranquillity and mental health; base of support; and stillness. Antecedents for rest are time, suitable environment and willingness. Resulting consequences include renewed physical energy, mental clarity and improved health. Rest is a concept that is used frequently in the discipline of nursing but also in various other disciplines. Rest is a basic necessity for restorative sleep to enhance well-being through the restoration of the body, mind and spirit. Defining the concept of rest in the practice of patient care is necessary for consistent use of the term in the development of holistic, patient-centred therapies. © 2015 John Wiley & Sons Ltd.

  7. Comparison of changes in physical self-concept, global self-esteem, depression and anxiety following two different psychomotor therapy programs in nonpsychotic psychiatric inpatients.

    Science.gov (United States)

    Knapen, Jan; Van de Vliet, Peter; Van Coppenolle, Herman; David, Ans; Peuskens, Joseph; Pieters, Guido; Knapen, Koen

    2005-01-01

    The first objective of this study was to compare the changes in physical self-concept, global self-esteem, depression and anxiety after participation in one of two 16-week psychomotor therapy programs for nonpsychotic psychiatric inpatients. The second objective was to study the relationship between changes in these variables. One hundred and ninety-nine inpatients were randomly assigned to either a personalized psychomotor fitness program, consisting of aerobic exercise and weight training, or a general program of psychomotor therapy, consisting of different forms of physical exercises and relaxation training. Physical self-concept was evaluated using the Dutch version of the Physical Self-Perception Profile at baseline, after 8 weeks, and after completion of the 16-week interventions. At the same time points, additional variables of global self-esteem, depression and anxiety were assessed by means of the Rosenberg Self-Esteem Inventory, the Beck Depression Inventory and the Trait Anxiety Inventory, respectively. After 16 weeks, both groups showed significant improvements in all outcome measures (p values ranged from 0.01 to self-esteem and decreased depression and anxiety levels (p self-esteem, depression and anxiety supports the potential role of the physical self-concept in the recovery process of depressed and anxious psychiatric inpatients. Copyright (c) 2005 S. Karger AG, Basel.

  8. Mathematical and physical theory of turbulence

    CERN Document Server

    Cannon, John

    2006-01-01

    Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...

  9. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  10. The importance of health-related physical fitness

    Directory of Open Access Journals (Sweden)

    Maria Fátima Glaner

    2003-12-01

    Full Text Available Mechanization and automation, swift communication and transport, computer usage and television viewing have reduced the need for vigorous occupations and discouraged involvement in leisure-time recreational activity. Studies have reported that there is a causal relationship between the risk of chronic disease incidence and mortality and physical activity and/or physical fi tness. Therefore, the aim of this review is to summarize and synthesize the association between health-related physical fi tness (aerobic endurance, fl exibility, strength/ endurance, body fat and chronic diseases. The papers reviewed demonstrate that higher and moderate levels of aerobic endurance, fl exibility, muscular strength/endurance, and desirable body fat levels, are very important for promoting health at all ages, and to avoid early development of chronic diseases. RESUMO A mecanização e a automação, o transporte e a comunicação rápidos, o uso do computador e da televisão têm diminuído atividades vigorosas, inclusive no tempo livre. Estudos reportam que a relação entre o risco de incidência de doenças crônico-degenerativas e a atividade física e/ou a aptidão física é causal. Portanto, o objetivo desta revisão é resumir e sintetizar a associação entre aptidão física relacionada à saúde (aptidão cardiorrespiratória, fl exibilidade, força/resistência muscular e gordura corporal e as doenças crônicodegenerativas. Os estudos mostram que altos e moderados níveis de aptidão cardiorrespiratória, fl exibilidade, força/resistência muscular, e um nível adequado de gordura são muito importantes para promover a saúde em todas idades, bem como evitar o desenvolvimento precoce de doenças crônico-degenerativas.

  11. Improving student learning and views of physics in a large enrollment introductory physics class

    Science.gov (United States)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction

  12. Students’ conceptions analysis on several electricity concepts

    Science.gov (United States)

    Saputro, D. E.; Sarwanto, S.; Sukarmin, S.; Ratnasari, D.

    2018-05-01

    This research is aimed to analyse students’ conceptions on several electricity concept. This is a descriptive research with the subjects of new students of Sebelas Maret University. The numbers of the subject were 279 students that consisted of several departments such as science education, physics education, chemistry education, biology education and mathematics education in the academic year of 2017/2018. The instrument used in this research was the multiple-choice test with arguments. Based on the result of the research and analysis, it can be concluded that most of the students still find misconceptions and do not understand electricity concept on sub-topics such as electric current characteristic in the series and parallel arrangement, the value of capacitor capacitance, the influence of the capacitor charge and discharge towards the loads, and the amount of capacitor series arrangement. For the future research, it is suggested to improve students’ conceptual understanding with appropriate learning method and assessment instrument because electricity is one of physics material that closely related with students’ daily life.

  13. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    International Nuclear Information System (INIS)

    Slessarev, I.

    2001-01-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  14. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  15. Let's Get Physical: Teaching Physics Through Gymnastics

    Science.gov (United States)

    Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.

    2018-01-01

    The concept of embodied learning—that we can learn with our bodies and with our minds—is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of exploring physical phenomena through body movements. Sport has long served as a guide for both illustrating and experiencing physical concepts and phenomena, with a particularly relevant example being the sport of gymnastics. Here, the practitioner is subjected to a wide range of forces and torques, and experiences translational and rotational motions, all guided by control of body positioning, shape, strength, and leverage. Smith provides a comprehensive study of the mechanics used to analyze gymnastic movements, which includes core concepts such as force balance, leverage and torque, center of mass and stability, moment of inertia, ballistic motion, pendulum motion, and circular motion. For life science majors, gymnastics also provides relevant physical examples of biomechanics and the physical limits of biological materials (skin, bones, ligaments). The popularity of gymnastics—consider the phenomenon of Simone Biles—makes it broadly accessible and engaging, particularly across genders.

  16. Physics student ideas on quantum state and its formal representations

    International Nuclear Information System (INIS)

    Zuccarini, G.

    2014-01-01

    Developing a quantum way of thinking is a core and challenging task for physics students. The concept of quantum state, whose physical meaning is connected to the formal structure of the theory, plays an important role in the construction of a quantum perspective and in student difficulties elicited by research. A questionnaire and interview protocol were devised to explore student understanding of the state concept in connection to the properties of its formal representations and to quantum behavior. Results of a calibration of research instruments performed on 6 physics students from different universities are here presented.

  17. Practical implementation of the concept of "Culture of Health" in the process of physical education teachers.

    Directory of Open Access Journals (Sweden)

    Verbludov I.B.

    2011-04-01

    Full Text Available The article explains the usefulness and methodology of the use of psychotherapy in the formation of inner psycho-physiological mechanisms of personality that characterize the concept of "Culture of Health". Also, the article highlights the use of extra-curricular activities for physical education students of pedagogical universities to address problem. In experiment took part 178 male and female students.

  18. Unified Technical Concepts. Module 8: Force Transformers.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This concept module on force transformers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  19. The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept

    Directory of Open Access Journals (Sweden)

    Supurwoko Supurwoko

    2017-02-01

    Full Text Available Indonesian new Curriculum for senior high school students required student-centered learning. One of the curriculum implementation constraint was the difficulty of providing learning media. PhET simulations media is one of the options that can help implementation of new curriculum on learning. However, the use of this media in Indonesia still needs to be studied comprehensively. The learning was conducted on students of physics education Study Program in sebelas maret university in 2013. The sample consisted of 62 students that was taking quantum physics course. The method that was used in the research was descriptive qualitative.  The method that was used in learning was demonstration’s method that used PhET media and accompanied by a question and answer and groups discussion. The data was collected using multiple choice test and interview through email. We found that any students still did not understand about photoelectric effect concept. They were confused when asked about the thick material and cross section of the targets as related with the regardless of electrons in the photoelectric effect event. Other than that, the concept of the waves as a particle and its relation with the kinetic energy of the electrons was not understood by most students.

  20. The geometric phase in quantum systems foundations, mathematical concepts, and applications in molecular and condensed matter physics

    CERN Document Server

    Böhm, Arno; Koizumi, Hiroyasu; Niu, Qian; Zwanziger, Joseph

    2003-01-01

    Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics) The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them

  1. Teaching Einsteinian physics at schools: part 3, review of research outcomes

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    This paper reviews research results obtained from Einsteinian physics programs run by different instructors with Years 6, 9, 10 and 11 students using the models and analogies described in parts 1 and 2. The research aimed to determine whether it is possible to teach Einsteinian physics and to measure the changes in student attitudes to physics engendered by introducing the modern concepts that underpin technology today. Results showed that students easily coped with the concepts of Einsteinian physics, and considered that they were not too young for the material presented. Importantly, in all groups, girls improved their attitude to physics considerably more than the boys, generally achieving near parity with the boys.

  2. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  3. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  4. Time Perspective and Physical Activity among Central Appalachian Adolescents

    Science.gov (United States)

    Gulley, Tauna

    2013-01-01

    Time perspective is a cultural behavioral concept that reflects individuals' orientations or attitudes toward the past, present, or future. Individuals' time perspectives influence their choices regarding daily activities. Time perspective is an important consideration when teaching adolescents about the importance of being physically active.…

  5. Correspondence Between Physical Self-Concept and Participation in, and Fitness Change After, Biweekly Body Conditioning Classes in Sedentary Women.

    Science.gov (United States)

    Aasa, Ulrika; Paulin, Johan; Madison, Guy

    2017-02-01

    Aasa, U, Paulin, J, and Madison, G. Correspondence between physical self-concept and participation in, and fitness change after, biweekly body conditioning classes in sedentary women. J Strength Cond Res 31(2): 451-461, 2017-The aims of the study were (a) to investigate the effects of participation in low impact body conditioning classes on physical fitness in sedentary women at different ages and (b) to examine the correspondence between physical self-concept and participation in, and fitness change after, the participation. Ninety-two sedentary women (mean age 44.2 years) participated in 11 weeks of biweekly classes that included cardiovascular, strength, core, endurance, and mobility exercises, all performed in synchrony with music. Cardiorespiratory fitness, maximal lifting strength, mobility, and balance tests were performed before and after the exercise period and the short-form of the Physical Self-Description Questionnaire (PSDQ-S) was completed. Zero-order Spearman correlation analyses showed that women who rated the PSDQ-S dimension sport competence higher participated in a larger number of sessions (rs = 0.24, p = 0.040). At posttests, all participants had increased their balance, the participants aged 20-34 years had increased their lifting strength, and the participants aged 35-65 years had increased their cardiorespiratory fitness and mobility. Most PSDQ-S dimensions did not affect performance change, but the perception of being physically active was related to increased cardiovascular fitness. We conclude that women with a sedentary lifestyle who wish to increase their physical capacity benefit from music exercise and that inquiries about perceived sport competence and physical activity can improve recommendations made by strength and conditioning professionals.

  6. Panorama of the nuclear physics

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1981-01-01

    A summary of the topics covered by the nuclear physics, as disciplinary basis of the nuclear engineering, is presented, including from the fundamentals of modern physics used in nuclear physics, to the methods and more important applications, with the nucleus structure as central topic of the nuclear physics. In addition to a survey of the essential historical development in the different areas, this survey summarizes the basic concepts, postulates, laws and processes, which are the starting points, as in every scientific discipline for the understanding, interpretation and prediction of the variety of nuclear phenomena observed by methods increasingly improved and more complex, although such experimental methods are not discussed. (author) [es

  7. The Concept of "Ubuntu": Africa's Most Important Contribution to Multicultural Education?

    Science.gov (United States)

    Le Roux, Johann

    2000-01-01

    Examines the African concept of "ubuntu", which indicates an inner state of almost complete humanization and is the essence of community and commonality. Discusses how ubuntu could contribute to multi-cultural education. Central to the concept of ubuntu, and much like the philosophy underlying multi-cultural education, is that caring for…

  8. The Africa Yoga Project: A Participant-Driven Concept Map of Kenyan Teachers' Reported Experiences.

    Science.gov (United States)

    Klein, Jessalyn E; Cook-Cottone, Catherine; Giambrone, Carla

    2015-01-01

    The Africa Yoga Project (AYP) trains and funds Kenyans to teach community yoga classes. Preliminary research with a small sample of AYP teachers suggested the program had a positive impact. This study used concept mapping to explore the experiences of a larger sample. Participants brainstormed statements about how practicing and/or teaching yoga changed them. They sorted statements into self-defined piles and rated them in terms of perceived importance. Multidimensional scaling (MDS) of sort data calculated statement coordinates wherein each statement is placed in proximity to other statements as a function of how frequently statements are sorted together by participants. These results are then and mapped in a two-dimensional space. Hierarchical cluster analysis (HCA) of these data identified clusters (i.e., concepts) among statements. Cluster average importance ratings gave the concept map depth and indicated concept importance. Bridging analysis and researchers' conceptual understanding of yoga literature facilitated HCA interpretive decisions. Of 72 AYP teachers, 52 and 48 teachers participated in brainstorming and sorting/rating activities, respectively. Teachers brainstormed 93 statements about how they had changed. The resultant MDS statement map had adequate validity (stress value = .29). HCA created a 12-cluster solution with the following concepts of perceived change: Identity as a Yoga Teacher; Prosocial Development; Existential Possibility; Genuine Positive Regard; Value and Respect for Others (highest importance); Presence, Acceptance, and Competence; Service and Trust; Non-judgment and Emotion Regulation (lowest importance); Engagement and Connection; Interpersonal Effectiveness; Psychosocial Functioning; and Physical Competence and Security. Teachers perceived the AYP as facilitating change across physical, mental, and spiritual domains. Additional research is needed to quantify and compare this change to other health promotion program outcomes.

  9. Imagery, intuition and imagination in quantum physics education

    Science.gov (United States)

    Stapleton, Andrew J.

    2018-03-01

    In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area of contemporary physics—special relativity—I highlight concepts that require an ontological change, namely a shift beyond the reality of everyday Newtonian experience such as time dilation and length contraction, as being troublesome concepts that can present barriers to learning with students often asking "is it real?". Similarly, the domain of quantum physics requires students to move beyond "common sense" perception as it brings into sharp focus the difference between what is experienced via the sense perceptions and the mental abstraction of phenomena. And it's this issue that highlights the important role imagery and creativity have both in quantum physics and in the evolution of physics more generally, and lies in stark contrast to the apparent mathematical focus and lack of opportunity for students to explore ontological issues evident in the authors' research. By reflecting on the authors' observations of a focus on mathematical formalisms and problem solving at the expense of alternative approaches, I explore the dialectic between Heisenberg's highly mathematical approach and Schrödinger's mechanical wave view of the atom, together with its conceptual imagery, at the heart of the evolution of quantum mechanics. In turn, I highlight the significance of imagery, imagination and intuition in quantum physics, together with the importance of adopting an epistemological pluralism—multiple ways of knowing and thinking—in physics education. Again drawing parallels with the authors' work and my own, I identify the role thought experiments have in both quantum physics education and in physics more generally. By

  10. Self-Concept Is a Concept Worth Considering

    Science.gov (United States)

    Shields, Nora

    2009-01-01

    There is a growing recognition of the importance of self-concept in the pediatric rehabilitation research literature. There also is confusion and inconsistency in the definitions of and the terminology used to describe self-concept. What is agreed is that self-concept is multidimensional, comprising a child's perception of their personal…

  11. The relative importance of physical and biological energy in landscape evolution

    Science.gov (United States)

    Turowski, J. M.; Schwanghart, W.

    2017-12-01

    Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary

  12. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  13. The education of Physics in elementary school: conceptions of the teaching staff practice

    Directory of Open Access Journals (Sweden)

    Cleci Werner da Rosa

    2007-12-01

    Full Text Available This present study sought to investigate the Sciences education developed in the Elementary school, emphasizing the identification of the physical presence in the curricular subjects at this school level. For this reason, interviews were accomplished with thirty four teachers in order to allow a mapping about the current science education before the sample selected for the research. Besides the identification of the subjects approached in Sciences, the research made the investigation, in such a more specific way, of physics in the curricular programs of elementary classes possible, as well as the way this subject was present during the graduation process of the teachers were being investigated. The results of the investigation pointed to the following issues: the contents of the curricular subject of Sciences, for the level being investigated, include fairly exclusive Biology topics; the lack of experimental activities; an education linked to the concepts and methodologies presented in graduation courses of the teaching staff; the conscientiousness of these teaching staff that the national legislation gives them freedom in curricular planning and organizing, even so, they feel themselves stuck into programs previously established by Education Secretariats or by educational books; and moreover, that the difficulties to discuss Physics in Elementary school are related to its graduating process.

  14. Objectives for an HTR R and D physics programme

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, I; Scott, J A

    1973-10-15

    The paper reviews important objectives for an HTR R and D programme and the importance of particular characteristics for safety and reactor performance is discussed. Uncertainties in the physics characteristics influence reactor design through the inclusion of design margins and contingency allowances and may even eliminate certain design variants. The paper discusses quantitatively the relationship between some important uncertainties and reactor design and operating costs and derives targets for the precision with which it should be possible to compute the corresponding physics characteristics. To extrapolate to power reactor conditions, the need for a comprehensive computational scheme validated by an adequate experimental programme is emphasised. The reduction in uncertainty as the theoretical and experimental reactor physics development proceeds in order to meet the desired target uncertainty is illustrated with respect to the UK's programme in support of the low enriched HTR concept. The current situation for this concept is discussed and compared briefly with that for the Th cycle HTR for which somewhat less zero energy experimental data are available. (auth)

  15. Scholar-activating teaching materials on quantum physics. Pt. 3. Foundations of atomic physics

    International Nuclear Information System (INIS)

    Huebel, Horst

    2010-01-01

    Traditionally in the center of the interest on quantum physics referring to schools the question lies, whether electrons or photons are now particles or waves, a question, which is often characterized by the phrase ''wave-particle dualism'', which notoriously not exists in its original meaning. Against that by the author - on the base of important preparatory works of Kueblbeck and Mueller - a new concept of quantum physics for the school was proposed, which puts ''basic facts'' in the foreground, comparable with the Kueblbeck-Mueller ''characteristic features''. The ''basic facts'' are similar to axioms of quantum physics, by means of them a large number of experiments and phenomena can be ''explained'' at least qualitatively - in a heuristic way -. Instead of the so-called ''wave-particle dualism'' uncertainty and complementarity are put in the foreground. The new concept is in the Internet under http://www.forphys.de extensively presented with many further materials. In the partial volumes of this publication manifold and carefully elaborated teaching materials are presented, by which scholars can get themselves the partial set of quantum physics referring to schools by different methods like learning at stations, short referates, Internet-research, group puzzle, the query-sheet or the card-index method etc. In the present 3. part materials are prepared, by which scholars can get foundations of atomic physics and interpret in the sense of the ''basic facts or quantum physics''. Here deals it thus with discrete energy levels, the linear potential box, with atomic models, the atomic structure, the tunnel effect, and - because curricula it often require - also with the Schroedinger equation. The materials can also be usefully applied in other concepts.

  16. Gender Differences in Both Force Concept Inventory and Introductory Physics Performance

    Science.gov (United States)

    Docktor, Jennifer; Heller, Kenneth

    2008-10-01

    We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.

  17. Between physics and metaphysics: structure as a boundary concept.

    Science.gov (United States)

    Tau, Ramiro

    2015-03-01

    The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.

  18. Children's conceptions of physical events: explicit and tacit understanding of horizontal motion.

    Science.gov (United States)

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2014-06-01

    The conceptual understanding that children display when predicting physical events has been shown to be inferior to the understanding they display when recognizing whether events proceed naturally. This has often been attributed to differences between the explicit engagement with conceptual knowledge required for prediction and the tacit engagement that suffices for recognition, and contrasting theories have been formulated to characterize the differences. Focusing on a theory that emphasizes omission at the explicit level of conceptual elements that are tacitly understood, the paper reports two studies that attempt clarification. The studies are concerned with 6- to 10-year-old children's understanding of, respectively, the direction (141 children) and speed (132 children) of motion in a horizontal direction. Using computer-presented billiards scenarios, the children predicted how balls would move (prediction task) and judged whether or not simulated motion was correct (recognition task). Results indicate that the conceptions underpinning prediction are sometimes interpretable as partial versions of the conceptions underpinning recognition, as the omission hypothesis would imply. However, there are also qualitative differences, which suggest partial dissociation between explicit and tacit understanding. It is suggested that a theoretical perspective that acknowledges this dissociation would provide the optimal framework for future research. © 2013 The British Psychological Society.

  19. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs

    2001-07-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  20. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  1. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  2. Teamwork: a concept analysis.

    Science.gov (United States)

    Xyrichis, Andreas; Ream, Emma

    2008-01-01

    This paper is a report of an analysis of the concept of teamwork. Teamwork is seen as an important facilitator in delivering quality healthcare services internationally. However, research studies of teamwork in health care are criticized for lacking a basic conceptual understanding of what this concept represents. A universal definition for healthcare settings and professionals is missing from published literature. Walker and Avant's approach was used to guide this concept analysis. Literature searches used bibliographic databases (Medline, CINAHL, Web of Science, Proquest CSA), internet search engines (GoogleScholar), and hand searches. Literature published between 1976 and 2006 was reviewed but only material in English was included. Based on the analysis undertaken, teamwork is proposed as a dynamic process involving two or more healthcare professionals with complementary backgrounds and skills, sharing common health goals and exercising concerted physical and mental effort in assessing, planning, or evaluating patient care. This is accomplished through interdependent collaboration, open communication and shared decision-making, and generates value-added patient, organizational and staff outcomes. Praising the value of teamwork without a common understanding of what this concept represents endangers both research into this way of working and its effective utilization in practice. The proposed definition helps reconcile discrepancies between how this concept is understood by nurses and doctors, as well as allied health professionals. A common understanding can facilitate communication in educational, research and clinical settings and is imperative for improving clarity and validity of future research.

  3. Physics Essentials For Dummies

    CERN Document Server

    Holzner, Steven

    2010-01-01

    For students who just need to know the vital concepts of physics, whether as a refresher, for exam prep, or as a reference, Physics Essentials For Dummies is a must-have guide. Free of ramp-up and ancillary material, Physics Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in an introductory physics course, from force and motion to momentum and kinetics. This guide is also a perfect reference for parents who need to review critical physics concepts as they help high school students with homework assignments, as we

  4. Scholar-activating instructional materials on quantum physics. Pt. 1. On the way to quantum physics

    International Nuclear Information System (INIS)

    Huebel, Horst

    2008-01-01

    Traditionally in the interest on quantum physics referring to school the question holds the spotlight, whether electrons of photons are now particles ore waves, a formulation of the question, which is often characterized by the phrase ''Wave-particle dualism'', which as is known not exists in its original meaning. Contrarily by the author - starting from important preparations of Kueblbeck and Mueller - a new concept for the treatment of quantum physics for the school is proposed, which puts fundamental facts in the foreground, comparable with Kueblbeck-Mueller's ''Wesenzuege''. The fundamental facts are similar to axioms of quantum physics, by means of which a large number of experiments and phenomena of quantum physics can at least qualitatively - in a heuristic way - be explained. Instead of the mentioned wave-particle dualism here undeterminism and complementarity are put in the foreground. The new concept is in the internet extensively presented under http://www.forphys.de with may further materials. In the partial volumes of this publication manifold and carefully elaborated instructional materials are presented, by which the scholars can themselves elaborate the partial set of quantum physics referred to school by different methods like learning at stations, short referates, internet research, group puzzle, the query-sheet or the card-index method etc. In the present 1. part materials for prestages of quantum physics are provided, so to interference trials, which-way experiments, trials on the particle conception of quantum theory, on photons, and on Planck's action quantum. A section is also dedicated to the so-called ''model-philosophy'' as preliminary interpretation of quantum physics, which corresponds more to tradiational ways of proceeding

  5. The Effects of Physical Education and Sports on the Self - Concept of the Children with Mild Mental Disabilities

    Directory of Open Access Journals (Sweden)

    Gülşen Filazoğlu - ÇOKLUK

    2015-07-01

    Full Text Available The primary purpose of this study was to evaluate the effects of a 10 - week research - based Special Physical Education Program (SPEP on the self - concept levels of students with mild mental disabilities (MMR aged between 8 and 16 from the perspectives of Sp ecial Education and Physical Education by taking their socio - demographic characteristics into consideration. The sample of the research was comprise of 145 students with MR (57 in control and 88 in experimental group who lived in the city center of Antak ya Province and within the city borders, attended to special education centers. The participants were selected by the school psychologists out of the students whose IQs ranged between 50 and 70. The research was designed in a pre test - post - test control gro up model. Socio demographic forms and Pierre - Harris Self - Concept Scale were used in order to collect quantitative data in the present research. The study results demonstrated that after participating SPEP, control group had improved total and sub - scale sc ores in Pierre - Harris Self - Concept Scale. Before SPEP, levels of anxiety among female participants were higher than their male counterparts. After a 10 week SPEP intervention, boys improved their perception of success (p<0.01, while girls increased thei r scores on Behavioral Adjustment(p<0.05 compare to the other gender.

  6. Analysis of motivational profiles of satisfaction and importance of physical education in high school adolescents.

    Science.gov (United States)

    Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Pérez-Quero, Francisco J; Ortiz-Camacho, Maria M; Bracho-Amador, Clara

    2012-01-01

    The purpose of this study was to analyze the motivational profiles of satisfaction with and importance of physical education in high school students and its relation with gender and the practice of sport. The sample comprised 2002 students aged from 12 to 19 who completed the Sport Motivation Scale (Núñez et al., 2006), the Sport Satisfaction Instrument (Baena-Extremera et al., 2012) and the Importance of Physical Education Scale (Moreno et al., 2009). Descriptive analyzes, correlations between the scales, a cluster analysis for profiles, and a MANOVA were conducted to examine differences by gender. Three clusters (profiles) were identified. The first profile identified was "moderate" motivation (n = 463) and was associated with boys who practice physical activity for less than 3 hours per week. The second profile identified was "low" motivation (n = 545) and was associated mainly with girls who practice physical activity for less than 3 hours per week. And lastly the third profile identified was "high" motivation (n = 910), which was found to be greater in boys who practiced physical exercise for more than 3 hours a week.

  7. Importance measures

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  8. Introduction to mathematical physics methods and concepts

    CERN Document Server

    Wong, Chun Wa

    2013-01-01

    Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages...

  9. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    Science.gov (United States)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-03-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.

  10. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    Science.gov (United States)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  11. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  12. Lay Concepts of the Relative Importance of Different Influences on Health; Are There Major Socio-Demographic Variations?

    Science.gov (United States)

    Macintyre, Sally; McKay, Laura; Ellaway, Anne

    2006-01-01

    There is an extensive literature within anthropology, sociology and psychology about lay concepts of determinants of health and illness. Many of these studies have used single sex or social class samples, often in narrow age bands, and many are qualitative in approach. We asked respondents in a health survey to say how important (on a five-point…

  13. The Analysis of High School Students' Conceptions of Learning in Different Domains

    Science.gov (United States)

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  14. Mechatronic Systems Design Methods, Models, Concepts

    CERN Document Server

    Janschek, Klaus

    2012-01-01

    In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of th...

  15. Temporary physical protection systems

    International Nuclear Information System (INIS)

    Williams, J.D.; Gangel, D.J.; Madsen, R.W.

    1991-01-01

    Terrorism and other aspects of world political instability have created a high demand for temporary physical protection systems within the nuclear materials management community. They can be used when vehicles carrying important assets are away from their permanent fixed site location, around areas where experiments are being temporarily conducted, around construction areas and one portions of a fixed site physical security system which is temporarily inoperable. Physical security systems can be grouped into four categories: tactical, portable, semi-permanent, and fixed. The resources and experience gained at Sandia National Laboratories in over forty years of developing and implementing security systems for protecting nuclear weapons and fixed nuclear facilities is now being applied to temporary physical security systems. This paper emphasizes temporary physical security systems and their component parts that are presently available and identify additional system-subsystem objectives, requirements, and concepts

  16. The importance of life cycle concepts for the development of safe nanoproducts

    DEFF Research Database (Denmark)

    Som, Claudia; Berges, Markus; Chaudhry, Qasim

    2010-01-01

    concept – may be used to assess the relative environmental sustainability performance of nanoproducts in comparison with their conventional equivalents. Other less formalized life cycle concepts in the framework of prospective technology assessment may uncover further detailed and prospective knowledge...

  17. The formation of a systemic view of the notional content of physics

    International Nuclear Information System (INIS)

    Ciascai, L.; Predescu, C.

    1993-01-01

    Unlike the previous ones the new physics curricula will have to draw the teachers' attention upon a very important objective of their teaching: the formation of a systemic, unitary view of a notional content of physics. Starting from the definition of a system (Restian 1989) the system called the Notional Content of Physics at a certain level (educational cycle, year of study, theme, etc) is defined as the set of concepts referring to the various physical systems, phenomena, processes, quantities devices studied at the respective level. The unitary character of the system is guaranteed by the fact that all these concepts are explained on the bases of the four fundamental physical interactions: gravitational, electromagnetic, strong nuclear and weak nuclear. (Author)

  18. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    Science.gov (United States)

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  19. ANALYSIS OF MOTIVATIONAL PROFILES OF SATISFACTION AND IMPORTANCE OF PHYSICAL EDUCATION IN HIGH SCHOOL ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Antonio Granero-Gallegos

    2012-12-01

    Full Text Available he purpose of this study was to analyze the motivational profiles of satisfaction with and importance of physical education in high school students and its relation with gender and the practice of sport. The sample comprised 2002 students aged from 12 to 19 who completed the Sport Motivation Scale (Núñez et al., 2006, the Perception of Success Scale (Martínez et al., 2006, the Sport Satisfaction Instrument (Baena-Extremera et al., 2012 and the Importance of Physical Education Scale (Moreno et al., 2009. Descriptive analyzes, correlations between the scales, a cluster analysis for profiles, and a MANOVA were conducted to examine differences by gender. Three clusters (profiles were identified. The first profile identified was "moderate" motivation (n = 463 and was associated with boys who practice physical activity for less than 3 hours per week. The second profile identified was "low" motivation (n = 545 and was associated mainly with girls who practice physical activity for less than 3 hours per week. And lastly the third profile identified was "high" motivation (n = 910, which was found to be greater in boys who practiced physical exercise for more than 3 hours a week

  20. Nanophysics and nanotechnology an introduction to modern concepts in nanoscience

    CERN Document Server

    Wolf, Edward L

    2015-01-01

    The long-awaited new edition of the highly successful textbook, which was the first to coherently present in a tutorial fashion the thread of physical concepts that lie at the heart of nanotechnology. Expanded by around 10-15 %, a completely new section has been added on graphene, covering physical and electrical properties, synthesis and applications, as well as discussions of computer logic devices and silicon technology. There are updates and corrections to every chapter, including the references, while the modern-day examples are chosen to represent important concepts and research tools. Finally, a free solutions manual is available for lecturers. Well illustrated, including explanatory diagrams to assist in the understanding of scientific principles, this is a self-contained text for upper-level undergraduate engineering or science students looking for a concise, easy-to-read introduction to this fascinating field of research.

  1. Mechatronic blockset for Simulink-concept and implementation

    DEFF Research Database (Denmark)

    Ravn, Ole; Szymkat, Maciej; Uhl, T.

    1996-01-01

    The paper describes the design considerations for modelling and simulation of mechatronic systems. The system is based on a component concept enabling the designer to pick component models that match the physical components of the setup to be modelled from a block library. Another important feature...... and for the whole model. This library that can be extended by the user contains standard components, such as DC-motors, potentiometers, encoders, pneumatic elements, and a Maple based facility to generate symbolic equations of motion. To evaluate the concepts the mechatronic Simulink library blockset has been...... implemented as a prototype based on MATLAB and Simulink and has been used to model several mechatronic systems. The library is presently being tested in different projects...

  2. Conceptualizing and Defining the Intention Construct for Future Physical Activity Research.

    Science.gov (United States)

    Rhodes, Ryan E; Rebar, Amanda L

    2017-10-01

    Intention has been an extremely important concept in physical activity theory and research but is complicated by a double-barreled definition of a decision to perform physical activity and the commitment to enact that decision. We put forth the hypothesis that these separate meanings have different measurement requirements, are situated in distinctly different intention-based models, and show discrete findings when explaining physical activity motives.

  3. More Than Only Skin Deep: Appearance Self-Concept Predicts Most of Secondary School Students' Self-Esteem.

    Science.gov (United States)

    Baudson, Tanja G; Weber, Kira E; Freund, Philipp A

    2016-01-01

    One important goal of education is to develop students' self-esteem which, in turn, hinges on their self-concept in the academic, physical, and social domains. Prior studies have shown that physical self-concept accounts for most of the variation in self-esteem, with academic and social self-concepts playing a much lesser role. As pressure toward perfection seems to be increasing in education, appearance, and social relationships (three aspects that relate to crucial developmental tasks of adolescence), the goal of the present field study was to examine whether former findings still hold true in the light of the changing societal context. A sample of 2,950 students from a broad range of German secondary schools (47% girls, age 10-19 years) responded to a recently validated German-language questionnaire assessing multiple self-concept facets (Weber and Freund, 2016). We examined which self-concept aspects predict self-esteem best and whether the pattern is comparable across genders and achievement levels using latent regression analyses. Results show that self-concept of appearance is still by far the strongest predictor (total sample: B = 0.77, SE = 0.02, p educational schools. Other aspects play a much lesser role. The discussion explores why appearance is so neglected, compared to the more academic subjects, and what school can do to account for its vast importance for students' self-esteem.

  4. More Than Only Skin Deep: Appearance Self-Concept Predicts Most of Secondary School Students’ Self-Esteem

    Science.gov (United States)

    Baudson, Tanja G.; Weber, Kira E.; Freund, Philipp A.

    2016-01-01

    One important goal of education is to develop students’ self-esteem which, in turn, hinges on their self-concept in the academic, physical, and social domains. Prior studies have shown that physical self-concept accounts for most of the variation in self-esteem, with academic and social self-concepts playing a much lesser role. As pressure toward perfection seems to be increasing in education, appearance, and social relationships (three aspects that relate to crucial developmental tasks of adolescence), the goal of the present field study was to examine whether former findings still hold true in the light of the changing societal context. A sample of 2,950 students from a broad range of German secondary schools (47% girls, age 10–19 years) responded to a recently validated German-language questionnaire assessing multiple self-concept facets (Weber and Freund, 2016). We examined which self-concept aspects predict self-esteem best and whether the pattern is comparable across genders and achievement levels using latent regression analyses. Results show that self-concept of appearance is still by far the strongest predictor (total sample: B = 0.77, SE = 0.02, p educational schools. Other aspects play a much lesser role. The discussion explores why appearance is so neglected, compared to the more academic subjects, and what school can do to account for its vast importance for students’ self-esteem. PMID:27803681

  5. Particle and radiation leakage importance: definition, analysis, and interpretation

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Wagschal, J.J.; Yaari, A.

    1982-01-01

    The concept of leakage importance function has been introduced and analyzed for physical systems governed by the Boltzmann transport equation. This leakage importance function represents a measure of the relative importance of source particles located at every point in phase space in contributing to the leakage and provides insight regarding the specific physical process that leads to leakage. The equation satisfied by the leakage importance function has been derived by using adjoint operators. It has been shown that procedures that are customarily used to derive an equation obeyed by an importance function suitable for an integral parameter such as a detector response or an eigenvalue lead to difficulties when directly applied to derive an equation obeyed by the leakage importance function. This is because, although leakage is also an integral parameter (i.e., a functional of the forward flux density), leakage is expressed in terms of a surface integral rather than in terms of volume integrals such as those appearing in expressions of detector responses or eigenvalues. Therefore, a procedure that departs from the customary course has been devised to derive the equation satisfied by the leakage importance function

  6. Influence of perceived sport competence and body attractiveness on physical activity and other healthy lifestyle habits in adolescents.

    Science.gov (United States)

    Moreno-Murcia, Juan Antonio; Hellín, Pedro; González-Cutre, David; Martínez-Galindo, Celestina

    2011-05-01

    The purpose of this study was to test an explanatory model of the relationships between physical self-concept and some healthy habits. A sample of 472 adolescents aged 16 to 20 answered different questionnaires assessing physical self-concept, physical activity, intention to be physically active and consumption of alcohol and tobacco. The results of the structural equation model showed that perceived sport competence positively correlated with current physical activity. Body attractiveness positively correlated with physical activity in boys and negatively in girls. Current physical activity positively correlated with the intention to be physically active in the future and negatively with the consumption of alcohol and tobacco. Nevertheless, this last relationship was only significant in boys. The results are discussed in connection with the promotion of healthy lifestyle guidelines among adolescents. This model shows the importance of physical self-concept for engaging in physical activity in adolescence. It also suggests that physical activity is associated with the intention to continue being physically active and with healthy lifestyle habits.

  7. A multimodal physical therapy approach utilizing the Maitland concept in the management of a patient with cervical and lumbar radiculitis and Ehlers-Danlos syndrome-hypermobility type: A case report.

    Science.gov (United States)

    Pennetti, Adelina

    2018-07-01

    The purpose of this case report is to present a multimodal approach for patient management using the Maitland concept framework for cervical and lumbar radiculitis with an underlying diagnosis of Ehlers-Danlos Syndrome-Hypermobility Type (EDS-HT). This case presents care guided by evidence, patient values, and rationale for the selected course of physical therapy treatment provided by therapist experience. A 35-year-old female with a 2-year history of worsening lumbar and cervical pain was referred to physical therapy to address these musculoskeletal issues concurrent with diagnostic testing for EDS. A multimodal approach including manual therapy, therapeutic exercise, postural and body mechanics education, and a home exercise program was used. The patient specific functional scale (PSFS) was used to gauge patient's perceived improvements which were demonstrated by increased scores at reevaluation and at discharge. Following the Maitland concept framework, the physical therapist was able to make sound clinical decisions by tracking the logical flow of constant patient assessment. A 10-month course of treatment designed to maximize recovery of function was successful with a chronic history of pain and the EDS-HT diagnosis. The role of education and empowering the patient is shown to be of utmost importance. Optimizing therapeutic outcomes long-term for this patient population requires maintaining a home exercise program, adaptation and modifications of work and lifestyle activities.

  8. Questioning the Universe concepts in physics

    CERN Document Server

    Sadoff, Ahren

    2008-01-01

    UNITS AND POWERS OF TEN PHYSICS AND ITS METHODOLOGY  What Is Physics? Methodology The First Scientist Why Do You Believe? Back to the Questions How Do We Answer theQuestions? The Need to BeQuantitative Theories Models AestheticJudgments  MOTION Relating the Variables of Motion Graphs of One-Dimensional Motion Constant Speed Constant Acceleration Two-Dimensional Motion FORCES The Fundamental Forces A Specific Force Law: Newtonian Gravity Weight How Does Force Affect Motion? Newton's SecondLaw Newton, the Apple, and the Moon Combining Two Laws The Mass of the Earth Newton's Firs

  9. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    Energy Technology Data Exchange (ETDEWEB)

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  10. Greek pre-service physical education teachers’ beliefs about curricular orientations: Instrument validation and examination of four important goals

    Directory of Open Access Journals (Sweden)

    Manolis Adamakis

    2013-12-01

    Full Text Available BACKGROUND: The way people interpret reality is influenced by their mental constructions, their cognitive abilities and their beliefs. Physical Education (PE students have a wide range of formed beliefs concerning the purposes of PE, which cannot be easily modified, even during undergraduate studies. OBJECTIVE: This study validated the scores from a previously constructed questionnaire and investigated the Physical Education students’ belief systems toward the Greek curricular outcome goals. METHODS: Students (N = 483; males = 259, females = 224 from a Greek Faculty of Physical Education and Sport Science shared their beliefs about curricular outcomes. They completed the Greek version of the four factor instrument “Attitudes/beliefs toward curriculum in physical education”. A confirmatory factor analysis was conducted for the validation of the instrument and MANOVAs followed in order to control for group differences. Finally, a profile analysis was run in order to determine if PE students considered each goal to be equally important. RESULTS: The validation of the instrument confirmed the proposed four factors dependant model. Both internal consistency and the confirmatory factor analysis fit indices produced valid and reliable scores. The profile analysis was significant, indicating that students did not view the outcome goals as equally important. The leading goal was physical activity and fitness, followed by self-actualization, social development and motor skill development. MANOVA results for comparisons between sub-groups revealed significant differences only between genders. CONCLUSIONS: Between groups similarities and differences are discussed, focusing on the classification of the four important outcome goals. Currently, Greek Physical Education students consider physical activity and fitness outcome goal as the most important, while motor skill development is considered the least important one.

  11. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    Science.gov (United States)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  12. The importance of the human factor in a physical protection system

    International Nuclear Information System (INIS)

    Silva, A.; Rocha, A.

    2002-01-01

    Full text: A complete physical protection system gathers three elements: equipment's, guards and procedures. The integration of these three elements will guarantee the efficiency of the overall PPS in such a way that it can meet the objectives that were defined during its project: clear and precise procedures will rule the relation between the technical factor (equipments/ hardware and software) and the human factor (guards). The technical factor is easily adapted ad upgraded to continue meet the objectives of the PPS; however, the human factor presents some resistance, internal and external, concerning the performance of its function within the overall PPS. The objective of this paper is to show the importance of the human factor as an integrant part of the PPS of a nuclear facility. 1. Good relationship between guards and other employees in a facility; 2. the knowledge and acceptance of rules and procedures; 3. and the awareness of the needing to implement security measures, as well as the cooperation with these measures to avoid unauthorized nuclear material removal from the facility or sabotage with consequent radioactive release will guarantee the success of the human factor within the overall PPS. In countries where there is no recent record of terrorist activities, as in Brazil's case, these three key factors are particularly critical, once the concept of security culture is not present in those people's way of life. The target public of this survey are the employees, including the guards of the security force, of the CNAAA - Central Nuclear Almirante Alvaro Alberto - consisting of Angra 1 and Angra 2 nuclear power plants. The tools used to came up with the conclusions of this work were two different kinds of questionnaires: a) one of the questionnaires was answered by the guards of the security force concerning their feelings or impressions about other employees' knowledge, acceptance and cooperation of/with the security measures applied on site, and their

  13. Physical protection of export/import and transportation of nuclear material in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J

    2002-01-01

    Full text: The paper contains short overview about average amount of nuclear materials transported on the territory of the Slovak Republic in a year, and the physical protection of these nuclear materials. There are several types of transportation and export/import of nuclear materials in the SR: fresh fuel import; import of other unirradiated nuclear materials (e.g. depleted uranium, natural uranium); export of unirradiated nuclear materials (e.g. natural uranium); internal transportation of fresh fuel; internal transportation of other unirradiated nuclear materials; internal transportation of spent fuel. The main objective of the nuclear regulatory authority SR is to supervise observation of the national legislation as follows: the act no. 130 / 1998 on peaceful use of nuclear energy; UJD SR's regulation no. 186/1999 which details the physical protection of the nuclear facilities, nuclear materials, and radioactive waste (following requirements of INFCIRC 225 / Rev. 4); UJD SR's regulation no. 284 / 1999 which details conditions of nuclear material and radioactive wastes transportation. (author)

  14. TA Mentorship in Lecture significantly enhances students' learning in mechanics in large introductory physics classes

    Science.gov (United States)

    Cheng, K.; Caglar, Mehmet

    2011-10-01

    Lab is an important component of students' learning in a traditional lecture-lab setting of introductory physics courses. Using standard mechanics concepts and baseline surveys as well as independent classroom observations, the effects of TA mentorship in Lecture on students' learning of physics concepts and problem-solving skills among different student subgroups taught by other TAs and lecturers using different level of student interactive engagement in classes have been analyzed. Our data indicate that in lecture training of TA promotes lecture/lab synergism in improvement students' learning of mechanics in large introductory physics classes.

  15. University physics Arfken Griffing Kelly Priest

    CERN Document Server

    Houk, T William; Snider, John W

    1984-01-01

    University Physics: Arfken Griffing Kelly Priest covers the concepts upon which the quantitative nature of physics as a science depends; the types of quantities with which physics deals are defined as well as their nature; and the concepts of units and dimensions. The book describes the concepts of scalars and vectors; the rules for performing mathematical operations on vector quantities; the concepts of force, torque, center of gravity, and types of equilibrium. The text also describes the concepts and quantities required to describe motion; the linear kinematical relationships to describe m

  16. Neurobiological correlates of physical self-concept and self-identification with avatars in addicted players of Massively Multiplayer Online Role-Playing Games (MMORPGs).

    Science.gov (United States)

    Leménager, Tagrid; Dieter, Julia; Hill, Holger; Koopmann, Anne; Reinhard, Iris; Sell, Madlen; Kiefer, Falk; Vollstädt-Klein, Sabine; Mann, Karl

    2014-12-01

    MMORPG addiction has been associated with self-concept impairments and increased identification with the own avatar. Yet, the underlying neurobiological mechanisms of self-identification with avatars, especially reflected in the left angular gyrus (AG), have only been assessed in regular gamers. Therefore, the study aims to examine neurobiological processes in addicted MMORPG players while evaluating their own and their personal avatar's body image (physical self-concept). Sixteen addicted and seventeen non-addicted gamers underwent functional Magnetic Resonance Imaging (fMRI) while viewing images of themselves, their own avatar and unfamiliar persons. The Body Image Questionnaire (FKB-20) and Visual Analog Scales (VAS) assessing the degree of attractiveness, sympathy and gender identity of the self, of the avatar as well as of the unfamiliar persons were applied. Addicts showed a significantly extended negative body image and lower gender identity levels as well as decreased bilateral brain activations in the AG and the middle occipital gyrus during self-perception. They further exhibited higher activations in the left AG during avatar-perception. Regression analyses in the overall group and in addicted gamers indicated a significant positive correlation between gender identity and brain activation in the left AG during self-perception. Our results confirm addicted MMORPG players to have physical self-concept deficits which may be related to hypoactivations in the AG. The findings further indicate addicted gamers to have a tendency to identify themselves easier with their own avatar than with their real self. Lower gender identity levels might be associated with physical self-concept deficits in MMORPG addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fundamental Concepts in Particle Physics (1/6)

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Basic concepts of Quantum mechanics including the description of spin - covered by any undergraduate textbook on quantum mechanics. An elementary knowledge of the ideas of the Lagrangian formulation of classical mechanics and the principle of least action is useful but not e...

  18. Importance of Self-Efficacy and Knowledge to Physical Activity Behavior in Older African Americans.

    Science.gov (United States)

    Babatunde, Oyinlola Toyin

    2015-11-01

    Regular physical activity is an important lifestyle behavior for preventing or reducing the burden of osteoporosis, and for promoting optimal bone health. This report evaluates the effect of an osteoporosis education program on knowledge, self-efficacy, and initiation and/maintenance of physical activity (PA) in older African Americans. African American adults 50 years and older (n=130) were randomly assigned to either experimental (EG) or control (CG) groups. Immediately following baseline assessment EG was offered six-weekly education sessions, using the Expanded Heath Belief Model and the CG offered same after the intervention. Main outcome measures were knowledge and self-efficacy regarding osteoporosis and engagement in PA. One hundred and ten (59=EG, 51=CG) participants completed all assessments. Overall, significantly higher (p<.01) mean self-efficacy and knowledge scores were observed in the EG than in the CG. Physical activity scores were positively related to self-efficacy but not knowledge scores. Self-efficacy is important in increasing PA in older African Americans, and emphasis on culturally appropriate strategies may improve PA and reduce the risk of osteoporotic fracture.

  19. III. The importance of physical activity and aerobic fitness for cognitive control and memory in children.

    Science.gov (United States)

    Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F

    2014-12-01

    In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.

  20. Some important issues in evaluating the availability of passive systems

    International Nuclear Information System (INIS)

    Kafka, P.; Kelemen, I.; Krzykacz, B.

    1993-01-01

    In some countries new reactor concepts based on a broader use of passive safety features are under development. The term 'passive' as used here refers to systems which rely heavily on natural heat transfer process such as natural circulation to perform their function rather than on decidedly 'active' components like pumps. The paper deals with important issues in evaluating the availability of passive systems, e.g. the assessment of the active components, the assessment of passive components and structures and the probabilistic assessment of the physical function of the natural processes. Based on an outlined assessment process for the entire system and on an exercised simulation process for the assessment of passive components e.g. pipes insights and important issues are presented. A follow-up study will refine and expand the concept to a full scope assessment procedure of passive systems. (author)

  1. Interpreting Physics

    CERN Document Server

    MacKinnon, Edward

    2012-01-01

    This book is the first to offer a systematic account of the role of language in the development and interpretation of physics. An historical-conceptual analysis of the co-evolution of mathematical and physical concepts leads to the classical/quatum interface. Bohrian orthodoxy stresses the indispensability of classical concepts and the functional role of mathematics. This book analyses ways of extending, and then going beyond this orthodoxy orthodoxy. Finally, the book analyzes how a revised interpretation of physics impacts on basic philosophical issues: conceptual revolutions, realism, and r

  2. Relational Aggression, Victimization and Self-Concept: Testing Pathways from Middle Childhood to Adolescence.

    Science.gov (United States)

    Blakely-McClure, Sarah J; Ostrov, Jamie M

    2016-02-01

    When studying adolescent development, it is important to consider two key areas that are salient for teens, which are self-concept and peer relations. A secondary analysis of the National Institute of Health and Human Development Study of Early Child Care and Youth Development was conducted to examine the prospective bidirectional associations between self-concept and peer relations. To date, how social development broadly and peer relations in particular (e.g., relational aggression and victimization) affect self-concept domains is not fully understood. Using a large sample (N = 1063; 532 girls; M = 11.14 years; SD = .59) with multiple informants, the present study examined whether fifth grade relational aggression and sixth grade relational victimization was associated with adolescent self-concept in three key domains (i.e., academic, sports, physical appearance). A significant direct effect emerged, such that relational aggression in middle childhood was associated with decreases in academic self-concept and increases in sports self-concept in adolescence. Analyses also revealed that having higher levels of domain specific self-concept led to decreases in relational aggression across the transition to adolescence. The findings highlight the importance of examining bidirectional prospective associations between relational aggression, relational victimization, and domain specific self-concept. Implications for future research and clinical intervention are discussed.

  3. Knowledge Organization and its Representation in Teaching Physics : Magnetostatics in University and Upper Secondary School Levels

    OpenAIRE

    Majidi, Sharareh

    2013-01-01

    Physics has been always one of the most challenging subjects to learn for university and school students. It is also considered a demanding topic for teachers who aim to teach it efficiently. Therefore, one of the most important notions in physics is to find suitable ways to maximize productive learning and teaching outcomes. One of the most important factors that influence physics learning and teaching is the organization of physics knowledge and the ability to arrange its concepts properly....

  4. 12th Advanced Accelerator Concept (AAC 2006) Workshop

    International Nuclear Information System (INIS)

    Piot, Philippe

    2006-01-01

    Summary of the 12th Advanced Accelerator Concept (AAC 2006) Workshop help by NIU and ANL on July 10th-15th 2006 in Lake Geneva WI. The proceedings of the workshop have been published as an AIP conference proceedings '12th Advanced Accelerator Concepts Workshop' volume 877. The Twelfth Workshop on Advanced Accelerator Concepts was held at the Grand Geneva Resort in Lake Geneva, Wisconsin, from July 10 to July 15, 2006. The Workshop was sponsored by the High Energy Physics program of the U.S. Department of Energy, and was hosted by the Argonne Wakefield Accelerator Group (AWA) of Argonne National Laboratory and by Northern Illinois University. The workshop is a bi-annual meeting among physicist working on novel charged particle acceleration concept. The name 'advanced accelerator' physics covers long term research and development in beam physics and accelerator technologies. Some of the topics in advanced accelerator R and D are laser acceleration of electrons, wake field acceleration, novel high power rf source, new beam diagnostics, free-electron lasers, generating high brightness electron beams etc. The Advanced Accelerator Concept workshop is the only acknowledged and fully sponsored forum that provides a platform for inter- and cross-disciplinary discussion on various aspects of advanced accelerator and beam physics/technology concepts.

  5. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P. [Candu Energy Inc, Mississauga, Ontario (Canada)

    2012-07-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  6. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    International Nuclear Information System (INIS)

    Xu, X.P.

    2012-01-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  7. College Physical Chemistry Students' Conceptions of Equilibrium and Fundamental Thermodynamics.

    Science.gov (United States)

    Thomas, Peter L.; Schwenz, Richard W.

    1998-01-01

    Focuses on many alternative conceptions and nonconceptions about material related to equilibrium and thermodynamics. Uses interviews and compares the concepts from these with those expressed by experts in textbooks. (DDR)

  8. A novel physical eco-hydrological model concept for preferential flow based on experimental applications.

    Science.gov (United States)

    Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin

    2014-05-01

    transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.

  9. Cars and Kinetic Energy--Some Simple Physics with Real-World Relevance

    Science.gov (United States)

    Parthasarathy, Raghuveer

    2012-01-01

    Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in "The Physics Teacher" in the past few decades (e.g., Refs. 1-5, noted further below).…

  10. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    International Nuclear Information System (INIS)

    Naqvi, S

    2014-01-01

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  11. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S [Saint Agnes Cancer Institute, Department of Radiation Oncology, Baltimore, MD (United States)

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  12. Interactions between Mathematics and Physics: The History of the Concept of Function--Teaching with and about Nature of Mathematics

    Science.gov (United States)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-01-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another…

  13. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  14. Physical Analysis of an Electric Resistor Heating

    Science.gov (United States)

    Perea Martins, J. E. M.

    2018-01-01

    This work describes a simple experiment to measure the resistor temperature as a function of the applied power and proves that it is an efficient way to introduce some important physical concepts in classroom, including the Joule's first law, hot-spot temperature, thermal resistance, thermal dissipation constant, time constant and the Newton's law…

  15. The neural basis of self-face recognition after self-concept threat and comparison with important others.

    Science.gov (United States)

    Guan, Lili; Qi, Mingming; Zhang, Qinglin; Yang, Juan

    2014-01-01

    The implicit positive association (IPA) theory attributed self-face advantage to the IPA with self-concept. Previous behavioral study has found that self-concept threat (SCT) could eliminate the self-advantage in face recognition over familiar-face, without taking levels of facial familiarity into account. The current event-related potential study aimed to investigate whether SCT could eliminate the self-face advantage over stranger-face. Fifteen participants completed a "self-friend" comparison task in which participants identified the face orientation of self-face and friend-face after SCT and non-self-concept threat (NSCT) priming, and a "self-stranger" comparison task was also completed in which participants identified the face orientation of self-face and stranger-face after SCT and NSCT priming. The results showed that the N2 amplitudes were more negative for processing friend-face than self-face after NSCT priming, but there was no significant difference between them after SCT priming. Moreover, the N2 amplitudes were more negative for processing stranger-face than self-face both after SCT priming and after NSCT priming. Furthermore, SCT manipulated the N2 amplitudes of friend-face rather than self-face. Overall, the present study made a supplementary to the current IPA theory and further indicated that SCT would only eliminate this self-face recognition advantage when comparing with important others.

  16. LEVEL OF KNOWLEDGE OF THE BASIC CONCEPTS OF PHYSICAL EVALUATION FOR THE PROFESSIONALS IN THE ACADEMICS OF THE CITY OF JOÃO PESSOA - PB

    Directory of Open Access Journals (Sweden)

    Rodrigo Benevides Ceriani

    2005-10-01

    Full Text Available The objective of this study is to verify the level of knowledge of the basic concepts of physical evaluation for the responsible professionals for this practice in the academies. He/she/you elapses of a traverse study, of field, with professionals that act in the area of Physical Evaluation, registered by CREF 10 - PB/RN. questionnaire of open and closed questions was Applied in 39 individuals. The statistics was applied of percentile of frequency through spreadsheet Excel. The results found that: 61,54% collect for the physical activity, being in 41,66% of the cases, 15 real; 69,23% don't include in the registration; 84,61% have knowledge of the one that is test; 61,54% of the one that it is to measure and 53,45% of the one that it is to evaluate. Three people were found without graduation in physical education, or in another course of superior level, acting in the area Conclusions: They still act inside of the academies, directly with the physical evaluation, professionals not graduated in physical education or in another course of superior level. Many appraisers don't possess the basic theoretical knowledge regarding the concepts that involve to test, to measure and to evaluate. In general it is collected by the physical evaluation, being most included in the customer's registration

  17. Introduction to Accelerators Physics

    International Nuclear Information System (INIS)

    Variola, A.

    2007-01-01

    This short course aims at giving to high energy physics students a preliminary introduction to accelerators basics. The arguments and the style were selected in this perspective. Consequently, topics such as the definition of beam parameters and luminosity were preferred to much more technical aspects. The calculation details were neglected to allow more important highlights on concepts and definitions. Some examples and exercises were suggested to summarize the different topics of the lessons

  18. The effectiveness of Concept Mapping Content Representation Lesson Study (ComCoReLS) model to improve skills of Creating Physics Lesson Plan (CPLP) for pre-service physics teacher

    Science.gov (United States)

    Purwaningsih, E.; Suyatno; Wasis; Prahani, B. K.

    2018-03-01

    This research is aimed to analyse the effectiveness of ComCoReLS (Concept Mapping Content Representation Lesson Study) model towards the improvement skills of Creating Physics Lesson Plan (CPLP) for pre-service physics teacher. This research used one group pre-test and post-test design on 12 pre-service physics teacher at University of Malang State (Indonesia) in academic year 2016/2017. Data collection was conducted through test and interview. Skills of creating physics lesson plan for pre-service physics teacher measurement were conducted through Physics Lesson Plan Evaluation Sheet (PLPES). The data analysis technique was done by using paired t-test and n-gain. The CoMCoReLS model consists of 5 phases, including (1) Preparation, (2) Coaching, (3) Guided Practice, (4) Independent Practice, and (5) Evaluation. In the first, second, third and fifth phases are done at University of Malang State, while the fourth phase (Independent Practice) is done in SMAN 1 Singosari, SMAN 2 Malang, SMA Lab UM, MAN 3 Malang. The results showed that there was a significant increase in skills of creating physics lesson plan for pre-service physics teacher at α = 5% and n-gain average of high category. Thus, the ComCoReLS model is effective for improving skills of creating physics lesson plan for pre-service physics teacher.

  19. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  20. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  1. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  2. Physical concepts of materials for novel optoelectronic device applications II: Device physics and applications; Proceedings of the Meeting, Aachen, Federal Republic of Germany, Oct. 28-Nov. 2, 1990

    International Nuclear Information System (INIS)

    Razeghi, M.

    1991-01-01

    The present conference on physical concepts for materials for novel optoelectronic device applications encompasses the device physics and applications including visible, IR, and far-IR sources, optoelectronic quantum devices, the physics and applications of high-Tc superconducting materials, photodetectors and modulators, and the electronic properties of heterostructures. Other issues addressed include semiconductor waveguides for optical switching, wide band-gap semiconductors, Si and Si-Ge alloys, transport phenomena in heterostructures and quantum wells, optoelectronic integrated circuits, nonlinear optical phenomena in bulk and multiple quantum wells, and optoelectronic technologies for microwave applications. Also examined are optical computing, current transport in charge-injection devices, thin films of YBaCuO for electronic applications, indirect stimulated emission at room temperature in the visible range, and a laser with active-element rectangular geometry

  3. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  4. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  5. Using the automata processor for fast pattern recognition in high energy physics experiments—A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael H.L.S., E-mail: mwang@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Cancelo, Gustavo; Green, Christopher [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Guo, Deyuan; Wang, Ke [University of Virginia, Charlottesville, VA 22904 (United States); Zmuda, Ted [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-10-01

    We explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  6. More Than Only Skin Deep: Appearance Self-Concept Predicts Most of Secondary School Students' Self-Esteem

    Directory of Open Access Journals (Sweden)

    Tanja Gabriele Baudson

    2016-10-01

    Full Text Available One important goal of education is to develop students' self-esteem which, in turn, hinges on their self-concept in the academic, physical, and social domains. Prior studies have shown that physical self-concept accounts for most of the variation in self-esteem, with academic and social self-concepts playing a much lesser role. As pressure towards perfection seems to be increasing in education, appearance, and social relationships (three aspects that relate to crucial developmental tasks of adolescence, the goal of the present field study was to examine whether former findings still hold true in the light of the changing societal context. A sample of 2,950 students from a broad range of German secondary schools (47% girls, age 10–19 years responded to a recently validated German-language questionnaire assessing multiple self-concept facets (Weber & Freund, 2016. We examined which self-concept aspects predict self-esteem best and whether the pattern is comparable across genders and achievement levels using latent regression analyses. Results show that self-concept of appearance is still by far the strongest predictor (total sample: B = 0.77, SE = 0.02, p < .01 and that this is especially the case for girls and students from special educational schools. Other aspects play a much lesser role. The discussion explores why appearance is so neglected, compared to the more academic subjects, and what school can do to account for its vast importance for students' self-esteem.

  7. Influence of Emotional Abuse on the Self-Concept of Senior ...

    African Journals Online (AJOL)

    DRCMRS UCHENNA EGODI

    self-concept in terms of social-self, physical-self, moral-self, family-self and financial self-concept respectively. .... necessary for a child's psychological growth and ... produces withdrawal syndrome, disorder such as fearfulness, anxiety, low .... MSW = 3.93. Physical self-concept low. 11.45. 3.83. 5.69. Moderate. 29.12*. 7.62.

  8. Kinetic chains: a review of the concept and its clinical applications.

    Science.gov (United States)

    Karandikar, Ninad; Vargas, Oscar O Ortiz

    2011-08-01

    During the past decade, our understanding of biomechanics and its importance in rehabilitation has advanced significantly. The kinetic chain, a concept borrowed from engineering, has helped us better understand the underlying physiology of human movement. This understanding, in turn, has facilitated the development of new and more rational rehabilitation strategies. The kinetic chain concept has application in a wide spectrum of clinical conditions, including musculoskeletal medicine, sports medicine, and neurorehabilitation, as well as prosthetics and orthotics. The purpose of this review is to provide insights into the biomechanics related to the concept of kinetic chains, with a specific focus on closed kinetic chains and its clinical applications in rehabilitation. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Discussion on concepts for radiological dosimetric quantities in the Japan Health Physics Society

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Oda, Keiji

    2007-01-01

    Many dosimetric quantities have been used for radiation protection purpose. The International Commission on Radiological Protection (ICRP) has recommended protection quantities and the International Commission on Radiation Units and Measurements (ICRU) has introduced operational quantities to provide a reasonable estimate of the protection quantities. Enthusiastic discussions are continuously made on the issues of the dosimetric quantities, such as basic biological data for the definition of these quantities and applicability of the quantities to actual radiation protection practice. At the moment, some changes are being proposed concerning dosimetric quantities in the draft recommendations of ICRP, opened for consultation in recent years. Thus, the Japan Health Physics Society (JHPS) established the Expert Committee on concepts of Dosimetric Quantities used in radiological protection (ECDQ) in April 2005 to reviewed and discuss issues in the dosimetric quantities. (author)

  10. The Physical Examination as Ritual: Social Sciences and Embodiment in the Context of the Physical Examination.

    Science.gov (United States)

    Costanzo, Cari; Verghese, Abraham

    2018-05-01

    The privilege of examining a patient is a skill of value beyond its diagnostic utility. A thorough physical examination is an important ritual that benefits patients and physicians. The concept of embodiment helps one understand how illness and pain further define and shape the lived experiences of individuals in the context of their race, gender, sexuality, and socioeconomic status. Understanding ritual in medicine, including the placebo effects of such rituals, reaffirms the centrality of the physical examination to the process of building strong physician-patient relationships. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 4. Effect on physical self-concept and depression.

    Science.gov (United States)

    Guest, R S; Klose, K J; Needham-Shropshire, B M; Jacobs, P L

    1997-08-01

    To determine whether persons with spinal cord injury (SCI) paraplegia who participated in an electrical stimulation walking program experienced changes in measures of physical self-concept and depression. Before-after trial. Human SCI applied research laboratory. Volunteer sample of 12 men and 3 women with SCI paraplegia, mean age 28.75 +/- 6.6yrs and mean duration of injury 3.8 +/- 3.2yrs. Thirty-two FNS ambulation training sessions using a commercially available system (Parastep 1). The hybrid system consists of a microprocessor-controlled stimulator and a modified walking frame with finger-operated switches that permit the user to control the stimulation parameters and activate the stepping. The Tennessee Self-Concept Scale (TSCS) and the Beck Depression Inventory (BDI) were administered before and after training. Only the Physical Self subscale of the TSCS was analyzed. After training, individual interviews were performed to assess participants' subjective reactions to the training program. A repeated measures analysis of variance indicated that desired directional and statistically significant changes occurred on the Physical Self subscale of the TSCS (F(1,14) = 8.54, p self-concept scores and decreases in depression scores.

  12. Learning Strategies of Physics Teacher Candidates: Relationships with Physics Achievement and Class Level

    Science.gov (United States)

    Selçuk, Gamze S.; Çalişkan, Serap; Erol, Mustafa

    2007-04-01

    Learning strategy concept was introduced in the education field from the development of cognitive psychology. Learning strategies are behaviors and thoughts that a learner engages in during learning which are intended to influence the learner's encoding process. Literature on learning strategies in physics field is very scarce. Participants of the research consist of teacher candidates (n=137) from 1st, 2nd, 3rd, 4th and 5th grade attending Department of Physics Education, Education Faculty of Buca, Dokuz Eylül University in Turkey. Data of this research was collected by ``Scale of Learning Strategies Usage in Physics'' (Cronbach's Alpha=0.93). Mean, Standard Deviation, Analysis of Variance were used to analyze the research data. This paper reports on teacher candidates' learning strategies used in physics education The paper investigates the relationships between learning strategies and physics achievement, class level. Some important outcomes of the research are presented, discussed and certain suggestions are made.

  13. The Importance of Adolescents' Sexually Outgoing Self-Concept: Differential Roles of Self- and Other-Generated Sexy Self-Presentations in Social Media.

    Science.gov (United States)

    van Oosten, Johanna M F; de Vries, Dian A; Peter, Jochen

    2018-01-01

    The present study investigated the relationships between (exposure to) sexy self-presentations on social network sites (SNSs) and adolescents' sexual self-concept over time. Results from a three-wave panel study among 1,288 Dutch adolescents (aged 13-17 years) showed that more frequent engagement in sexy self-presentation, rather than exposure to sexy self-presentations of others, on SNSs positively predicted the importance of being sexually outgoing (e.g., sexy, seductive, and wild) in adolescents' self-concept 6 months later.

  14. Therapeutic communication in nursing students: A Walker & Avant concept analysis

    Science.gov (United States)

    Abdolrahimi, Mahbobeh; Ghiyasvandian, Shahrzad; Zakerimoghadam, Masoumeh; Ebadi, Abbas

    2017-01-01

    Background and aim Therapeutic communication, the fundamental component of nursing, is a complex concept. Furthermore, the poor encounters between nursing student and patient demonstrate the necessity of instruction regarding therapeutic communication. The aim of this study was to define and clarify this important concept for including this subject in the nursing curriculum with more emphasis. Methods A literature search was conducted using keywords such as “nursing student”, “patient” and “therapeutic communication” and Persian-equivalent words in Persian databases (including Magiran and Medlib) and English databases (including PubMed, ScienceDirect, Scopus and ProQuest) without time limitation. After extracting concept definitions and determining characteristic features, therapeutic communication in nursing students was defined. Then, sample cases, antecedents, consequences and empirical referents of concept were determined. Results After assessing 30 articles, therapeutic communication defining attributes were as follows: “an important means in building interpersonal relationships”, “a process of information transmission”, “an important clinical competency”, “a structure with two different sections” and “a significant tool in patient centered care”. Furthermore, theoretical and clinical education and receiving educators’ feedback regarding therapeutic communication were considered as antecedents of the concept. Improving physical and psychological health status of patient as well as professional development of nursing students were identified as consequences of the concept. Conclusion Nursing instructors can use these results in order to teach and evaluate therapeutic communication in nursing students and train qualified nurses. Also, nursing students may apply the results to improve the quality of their interactions with patients, perform their various duties and meet patients’ diverse needs. PMID:28979730

  15. Basic concepts from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Rodriguez Arroyo, Diego

    2011-01-01

    The use of magnetic resonance imaging (MRI) has grown exponentially, due in part to excellent anatomic and pathologic detail provided by the modality, as recent technological advances that have led to more rapid acquisition times. Radiology residents in different parts of the world now receive training in MR images from their first year of residence, included the pulse sequences training spin-echo, gradient-echo, inversion-recovery, echo-planar image and MR angiographic sequences, commonly used in medical imaging. However, to optimize the use of this type of study, it has been necessary to understand the basic concepts of physics, included the concepts of recovery T1, degradation T2* and T2, repetition time, echo time, and the effects of chemical shift. Additionally, it has been important to understand the contrast weighting for better representation of specific tissues and thus perform an appropriate differential diagnosis of various pathological processes. (author) [es

  16. IT Solution concept development for tracking and analyzing the labor effectiveness of employees

    Science.gov (United States)

    Ilin, Igor; Shirokova, Svetlana; Lepekhin, Aleksandr

    2018-03-01

    Labor efficiency and productivity of employees is an important aspect for the environment within any type of organization. This is particularly crucial factor for the companies, if which operations are associated with physical labor, such as construction companies. Productivity and efficiency are both very complicated concepts and a huge variety of methods and approaches to its analysis can be implemented within the organization. Despite that, it is important to choose the methods, which not only analyze the key performance indicators of employee, but take into account personal indicators, which might affect performance even more than professional skills. For this complicated analysis task it is important to build IT solution for tracking and analyzing of the labor effectiveness. The concept for designing this IT solution is proposed in the current research.

  17. IT Solution concept development for tracking and analyzing the labor effectiveness of employees

    Directory of Open Access Journals (Sweden)

    Ilin Igor

    2018-01-01

    Full Text Available Labor efficiency and productivity of employees is an important aspect for the environment within any type of organization. This is particularly crucial factor for the companies, if which operations are associated with physical labor, such as construction companies. Productivity and efficiency are both very complicated concepts and a huge variety of methods and approaches to its analysis can be implemented within the organization. Despite that, it is important to choose the methods, which not only analyze the key performance indicators of employee, but take into account personal indicators, which might affect performance even more than professional skills. For this complicated analysis task it is important to build IT solution for tracking and analyzing of the labor effectiveness. The concept for designing this IT solution is proposed in the current research.

  18. The Relation of Physics Teachers' Leadership with Burnout Levels and Attitudes towards Change. Turkey Case

    Science.gov (United States)

    Tortop, Hasan Said

    2012-01-01

    Nowadays, leadership concept has changed into ability to work with team behaviour from doing something alone It is inevitable that school managements include their teachers to the leadership concept. Leadership of physics teachers who educate necessary individuals for developing society in views of technologically and scientifically is important.…

  19. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation.

    Science.gov (United States)

    Zelle, Dorien M; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J L

    2016-01-01

    Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. RTR were investigated between 2001-2003. The Tampa Score of Kinesiophobia-Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17-26]. Low physical self-efficacy (Exp B:0.41[0.31-0.54], pphysical self-efficacy. This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation.

  20. Humanizing Physics through Its History.

    Science.gov (United States)

    Brown, Ronald A.

    1991-01-01

    A nonmajors course entitled Ideas and Concepts in Physics that surveys the conception and development of ideas in classical and modern physics is described. Details of the syllabus and suggestions for incorporating an historical approach into the physics curriculum on both the precollege and college levels are provided. A bibliography of materials…

  1. A New Foundation of Physical Theories

    CERN Document Server

    Ludwig, Günther

    2006-01-01

    Written in the tradition of G. Ludwig’s groundbreaking works, this book aims to clarify and formulate more precisely the fundamental ideas of physical theories. By introducing a basic descriptive language of simple form, in which it is possible to formulate recorded facts, ambiguities of physical theories are avoided as much as possible. In this approach the field of physics that should be described by a theory is determined by basic concepts only, i.e. concepts that can be explained without a theory. In this context the authors introduce a new concept of idealization and review the process of discovering new concepts. They believe that, when the theories are formulated within an axiomatic basis, solutions can be found to many difficult problems such as the interpretation of physical theories, the relations between theories as well as the introduction of physical concepts. The book addresses both physicists and philosophers of science and should encourage the reader to contribute to the understanding of the...

  2. Introduction to many-body physics

    CERN Document Server

    Coleman, Piers

    2015-01-01

    A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

  3. Kinaesthetic activities in physics instruction

    DEFF Research Database (Denmark)

    Bruun, Jesper; Christiansen, Frederik V

    2016-01-01

    One of the major difficulties in learning physics is for students to develop a conceptual understanding of the core concepts of physics. Many authors argue that students’ conceptions of basic physical phenomena are rooted in basic schemas, originating in fundamental kinaesthetic experiences...... of being. We argue that this idea should be utilized in physics instruction, that kinaesthetic activities will provide useful entry point for students’ acquisition of the basic conceptions of physics, and that they can overcome the phenomenological gap between experiential and conceptual understanding. We...... discuss the nature of image schemas and focus particularly on one: effort-resistance-flow. This schema is fundamental not only in our everyday experience, but also in most of school physics. We show how enactment of a particular kinaesthetic model can support student understanding and intuition...

  4. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  5. Introduction to solitons and their applications in physics and biology

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs

  6. Parent participation plays an important part in promoting physical activity

    Directory of Open Access Journals (Sweden)

    Anna-Karin Lindqvist

    2015-08-01

    Full Text Available Although physical activity (PA is an important and modifiable determinant of health, in Sweden only 15% of boys and 10% of girls aged 15 years old achieve the recommended levels of PA 7 days per week. Adolescents’ PA levels are associated with social influence exerted by parents, friends, and teachers. The purpose of this study was to describe parents’ experiences of being a part of their adolescents’ empowerment-inspired PA intervention. A qualitative interview study was performed at a school in the northern part of Sweden. A total of 10 parents were interviewed, and the collected data were analyzed with qualitative content analysis. Three subthemes were combined into one main theme, demonstrating that parents are one important part of a successful PA intervention. The life of an adolescent has many options and demands that make it difficult to prioritize PA. Although parents felt that they were important in supporting their adolescent, a successful PA intervention must have multiple components. Moreover, the parents noted that the intervention had a positive effect upon not only their adolescents’, but also their own PA. Interventions aimed at promoting PA among adolescents should include measures to stimulate parent participation, have an empowerment approach, and preferably be school-based.

  7. The value and importance of Logistik’s concept in activinies of enterprise

    OpenAIRE

    Obruch, A.

    2013-01-01

    This article deals with two main interpretations of the term " logistics" that doshly to this day. The first related to the military area, and another a modern interpretation of this concept in terms of the position of business. Recently, scientists have become increasingly say that improving the management of logistics with a focus only on cost minimization longer meets urgent needs. Therefore, management will be optimal only when it is based on the logistics concept, the essence, the basic ...

  8. Physical analysis of an electric resistor heating

    Science.gov (United States)

    Perea Martins, J. E. M.

    2018-05-01

    This work describes a simple experiment to measure the resistor temperature as a function of the applied power and proves that it is an efficient way to introduce some important physical concepts in classroom, including the Joule’s first law, hot-spot temperature, thermal resistance, thermal dissipation constant, time constant and the Newton’s law of cooling.

  9. Importance of questionnaire context for a physical activity question.

    Science.gov (United States)

    Jørgensen, M E; Sørensen, M R; Ekholm, O; Rasmussen, N K

    2013-10-01

    Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person Register. A new question about physical activity was included with minor differences in formulations in samples 1-3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four samples from 57 to 100 min/day. Question order was associated with the reported number of minutes spent on moderate-intensity physical activity and with prevalence of meeting the recommendation, whereas physical inactivity was associated with the differences in formulation of the question. Questionnaire context influences the way people respond to questions about physical activity significantly and should be tested systematically in validation studies of physical activity questionnaires. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. How Analogy Drives Physics

    International Nuclear Information System (INIS)

    Hofstadter, Doug

    2004-01-01

    Many new ideas in theoretical physics come from analogies to older ideas in physics. For instance, the abstract notion of 'isospin' (or isotopic spin) originated in the prior concept of 'spin' (quantized angular momentum); likewise, the concept of 'phonon' (quantum of sound, or quantized collective excitation of a crystal) was based on the prior concept of 'photon' (quantum of light, or quantized element of the electromagnetic field). But these two examples, far from being exceptions, in fact represent the bread and butter of inventive thinking in physics. In a nutshell, intraphysics analogy-making -- borrowing by analogy with something already known in another area of physics -- is central to the progress of physics. The aim of this talk is to reveal the pervasiveness -- indeed, the indispensability -- of this kind of semi-irrational, wholly intuitive type of thinking (as opposed to more deductive mathematical inference) in the mental activity known as 'doing physics'. Speculations as to why wild analogical leaps are so crucial to the act of discovery in physics (as opposed to other disciplines) will be offered.

  11. PHYSICAL EDUCATION AND SPORTS IN PRESCHOOL PERIOD

    Directory of Open Access Journals (Sweden)

    Arzu ÖZYÜREK

    2015-07-01

    Full Text Available Early childhood is known as a critical period for development and fundamental movement skills. Growing and development of children have an effect on gaining fundamental movement skills. Besides, the opportu nities and movement education provided for the students play an essential role on developing fundamental movement skills poisedly. In preschool education, physical training is the leading activity given the least importance. From the early years of child hood on, promoting basic skills of children such as walking, running, jumping besides bending over, twisting, flinging something away have great importance because it is closely connected to the other zones of development. Physical training strengthens co gnitive skills such as inquiring mind, problem solving skills and concept acquisition. Besides, fine and gross motor development is consistent with emotional and social life skills. In virtue of physical training, awareness level of children is heightened and a basis for lifelong sport habits is provided. Consequently, children acquire much more than movement skills thanks to physical training. In this study, the importance of physical training and sports activities, the points to be paid attention to while practicing, basic activities in physical training, and education models and methods used have been issued relevantly.

  12. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  13. Physics division annual report - 1999

    International Nuclear Information System (INIS)

    Thayer, K.

    2000-01-01

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R and D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design

  14. Location and deprivation are important influencers of physical activity in primary care populations.

    Science.gov (United States)

    Barrett, E M; Hussey, J; Darker, C D

    2016-07-01

    To investigate the physical activity of adults attending primary care services in the Republic of Ireland and to determine whether the location (urban/rural) and deprivation of the primary care centre influenced physical activity. Cross sectional study. Stratified random sampling based on urban/rural location and deprivation was used to identify three primary care centres from a list of established primary care teams in the Leinster region. The International Physical Activity Questionnaire (IPAQ) was used to collate data on physical activity category (low/moderate/high), total weekly activity (MET-minutes/week) and weekly walking (MET-minutes/week) of participants. Data from 885 participants with a median age of 39 years (IQR 31-53) were analysed. There were significant differences in physical activity between the primary care areas (P < 0.001). Rural mixed deprivation participants were the least active with almost 60% of this group (59.4%, n = 177) classified as inactive (535 median MET-minutes/week, IQR 132-1197). Urban deprived participants were the most active (low active 37.6%, n = 111, 975 median MET-minutes/week, IQR 445-1933). Upon adjustment for multiple factors, rural participants (OR = 2.81, 95% CI 1.97-4.01), urban non-deprived participants (OR = 1.61, 95% CI 1.08-2.39), females (OR = 1.66, 95% CI 1.23-2.23) and older adults (OR = 1.01, 95% CI 1.00-1.02) were more likely to be categorised as low active. Overall 47.2% (n = 418) of all participants were classified within the low physical activity category. Significant disparities exist in the physical activity levels of primary care populations. This has important implications for the funding and planning of physical activity interventions. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  15. Rest rages between physical execise under the influence of cardivascular sistem

    OpenAIRE

    Jurevičiūtė, Eglė

    2005-01-01

    SUMMARY Peculiarities of organizm to adaptation physical strain are very relevant problem to sport and its range. Relative narrow and particular purpose is raised in the solution of this problem: to estimate conception of professionals working in athletic club and those who goes in for sports there – abaut the importance of rest intervals in training for seeking result during the physical exercising also to ascertain the influence of rest intervals between physical strains to pe...

  16. Physical literacy in the field of physical education – A challenge and a possibility

    Directory of Open Access Journals (Sweden)

    Suzanne Lundvall

    2015-06-01

    Full Text Available Publications of articles with physical literacy as a topic have increased dramatically since the beginning of 2000s. The aim of this paper is to, through an explorative literature overview with an inductive approach, analyze frequent, and significant themes in published peer reviewed articles, with a focus on physical literacy. The database EBSCO has been used with the identifiers “physical literacy” and “physical literacy and evidence”. Furthermore ICSSPE Bulletin's special issue on physical literacy has been included in the overview. The findings have resulted in three key themes: assumptions of the concept physical literacy and its educative role, sports development and physical literacy, and assessment and physical literacy. Future studies are needed to examine if the advocated pedagogical strategies based on the concept physical literacy have led to a re-organized and revitalized school subject. There is also an existing critique towards making physical literacy an idealistic neutral concept or synonym with fundamental movement skills or sports talent identification. The role of higher education emerges as crucial for the next step of the development of the scientific framework as this involves how physical literacy will be socially configured, nurtured, and embodied in practice.

  17. History and evolution of concepts in physics

    CERN Document Server

    Varvoglis, Harry

    2014-01-01

    Our understanding of nature, and in particular of physics and the laws governing it, has changed radically since the days of the ancient Greek natural philosophers. This book explains how and why these changes occurred, through landmark experiments as well as theories that - for their time - were revolutionary. The presentation covers Mechanics, Optics, Electromagnetism, Thermodynamics, Relativity Theory, Atomic Physics and Quantum Physics. The book places emphasis on ideas and on a qualitative presentation, rather than on mathematics and equations. Thus, although primarily addressed to those who are studying or have studied science, it can also be read by non-specialists. The author concludes with a discussion of the evolution and organization of universities, from ancient times until today, and of the organization and dissemination of knowledge through scientific publications and conferences.

  18. Embedded random matrix ensembles in quantum physics

    CERN Document Server

    Kota, V K B

    2014-01-01

    Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles.  The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensemb...

  19. Physics teacher use of the history of science

    Science.gov (United States)

    Winrich, Charles

    The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics (CHOP). ITOP participants self-report changes to their teaching practices as a result of their participation in ITOP. The purpose of this study was to verify and characterize those changes in the specific area of the participants' use of history after their study of CHOP. Ten recent ITOP participants were observed, interviewed, and asked to provide lesson plans and samples of student work from their classes. Case studies of each participant's teaching were constructed from the data. The individual cases were synthesized to characterize the impact of CHOP on the ITOP participants. The results show that the participants integrate CHOP into their pedagogical content knowledge (PCK) to inform their understanding of: (1) the relationship between physics and other disciplines, (2) the relationship between specific physics concepts, (3) student understanding of physics concepts, (4) student difficulties in learning physics concepts, and (5) methods for teaching physics concepts. The participants use history to teach a variety of topics, although the most common were mechanics and electromagnetism. All of the participants used history to teach aspects of the nature of science (NOS) and to increase student interest in physics, while eight participants taught physics concepts through history. The predominant mode of incorporating history was through adding anecdotes about the scientists who worked on the concepts, but seven participants had their students study the historical development of physical concepts. All the participants discussed a lack of time as a factor that inhibits a greater use of history in their courses. Eight

  20. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  1. Physics Demonstrations

    Science.gov (United States)

    Bringing Physics Presentations to Students for Presenters Remember why you became a scientist help students develop a deeper understanding of the concepts of force and motion. Physics of Sports Grades 4-12 Fermilab scientists guide a discussion and exploration of the impact physics has in a variety

  2. A curricular frame for physics education: Development, comparison with students' interests, and impact on students' achievement and self-concept

    Science.gov (United States)

    Häussler, Peter; Hoffmann, Lore

    2000-11-01

    This article presents three interlinked studies aimed at: (1) developing a curricular frame for physics education; (2) assessing the students' interest in the contents, contexts, and activities that are suggested by that curricular frame; and (3) developing a curriculum that is in line with that frame and measuring its cognitive and emotional effects on students. The curricular frame was developed by adopting the Delphi technique and drawing on the expertise of 73 persons selected according to specified selection criteria. Interest data of some 8000 students and information of the presently taught physics curriculum were sampled longitudinally as well as cross-sectionally in various German Länder (states) by questionnaire. The third study comprised 23 experimental and 7 control classes. As a result of the comparison between the features of the curricular frame, the interest structure of students, and the current physics curriculum, there is a remarkable congruency between students' interest in physics and the kind of physics education identified in the Delphi study as being relevant. However, there is a considerable discrepancy between students' interest and the kind of physics instruction practiced in the physics classroom. Regression analysis revealed that students' interest in physics as a school subject is hardly related to their interest in physics, but mainly to the students' self-esteem of being good achievers. The data strongly suggest physics be taught so that students have a chance to develop a positive physics-related self-concept and to link physics with situations they encounter outside the classroom. A curriculum based on these principles proved superior compared to a traditional curriculum.

  3. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  4. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  5. The influence of intuition and communication language in generating student conceptions

    Science.gov (United States)

    Handhika, J.; Cari, C.; Suparmi, A.; Sunarno, W.

    2017-11-01

    This research aims to describe the influence of intuition and communication language in generating student conceptions. The conception diagnostic test is used to reveal student conception. The diagnostic test results described and communication language profiled by giving instruction to students to make sentences using physics quantities. Sentences expressed by students are reduced and profiled potential effects. Obtained information that (1) Students generalize non-scientific experience (based on feeling) into the physics problem. This process caused misconception. Communication language can make the students difficult to understand the concept because of the difference meaning of communication and physics language.

  6. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  7. Development and Application of Diagnostic Test to Identify Students' Misconceptions of Quantum Physics

    International Nuclear Information System (INIS)

    Halim, A.A.; Meerah, T.S.; Lilia Halim

    2009-01-01

    A study on students' misconceptions on quantum physics is rarely being done, because the target audience is quite small. It is important to understand quantum physics concepts correctly especially for science students. This study was under taken to help students identify their misconceptions at the early stage. The aim of this study is to develop a diagnostic test which can access the students' misconceptions, and use the findings for the benefits of quantum physics courses. A multiple-choice Quantum Physics Diagnostic Test (QPDT), that involves concepts of light, atomic model, particle-wave dualism, wave function, and potential energy, was administered to 200 university students. The results shows that many students use the classical concepts to describe the quantum phenomenon. For example students describe light only as a wave, an electron only as a particle, and that the atomic structure is parallel to the solar system. To overcome these problems, it is suggested that lecturers spend more time in explaining the basic definitions and using analogies in quantum physics teaching. (author)

  8. Integration of Computational and Preparative Techniques to Demonstrate Physical Organic Concepts in Synthetic Organic Chemistry: An Example Using Diels-Alder Reaction

    Science.gov (United States)

    Palmer, David R. J.

    2004-01-01

    The Diels-Alder reaction is used as an example for showing the integration of computational and preparative techniques, which help in demonstrating the physical organic concepts in synthetic organic chemistry. These experiments show that the students should not accept the computational results without questioning them and in many Diels-Alder…

  9. Let's Make Physical Education More Physical and More Educational

    Science.gov (United States)

    Duncan, Charles Arthur; Bellar, David M.

    2015-01-01

    Historically, physical education has a stereotypical image as being neither very physical nor educational. NASPE [National Standards for Physical Education] Standard 2 indicates that students in physical education classes should be able to demonstrate understanding and movement concepts, principles, and tactics as they apply to physical activity.…

  10. History of modern physics

    International Nuclear Information System (INIS)

    Biezunski, M.

    1993-01-01

    This book presents an history of the principal concepts of contemporary physics and their genesis from the great cleavages of the beginning of the century with some incursions in a more far-away past. The essential concepts are replaced in their creation context, especially relativity, quantum mechanics and particles physics. (A.B.)

  11. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  12. Solid state physics

    CERN Document Server

    Hook, J R

    1991-01-01

    This Second Edition is aimed at students taking a first course in this subject, although it will also be of interest to professional physicists and electronic engineers requiring a grasp of the fundamentals of this important area of physics. Basic concepts are introduced in an easily accessible context: for example, wave propagation in crystals is introduced using one-and two-dimensional geometries. Only when these basic ideas are familiar are generalisations to three dimensions and the elegant framework of the reciprocal lattice made. Extensively rewritten, the Second Edition now includes

  13. User interaction concept for plasma discharge control on WENDELSTEIN 7-X

    International Nuclear Information System (INIS)

    Spring, Anett; Laqua, Heike; Niedermeyer, Helmut

    2006-01-01

    The requirements to the user interfaces arising from the concept of segmented discharges allowing short pulses and steady state operation and from the distributed hierarchical structure of the experiment are discussed. The modular design of the user interfaces is presented including specialised tools for preparation, manipulating, and monitoring the discharge operation. The user guidance and the mapping of complex control procedures onto a physically relevant view on the plasma discharge process will be vitally important. The feasibility of the user interaction concept could already be validated on a prototype installation and during commissioning of the first technical WENDELSTEIN 7-X (W7-X) components

  14. The Use of Academic Portfolio in the Learning and Assessment of Physics Students

    Directory of Open Access Journals (Sweden)

    Meng Kay Ling

    2016-05-01

    Full Text Available The purpose of this research paper is to examine the use of portfolios in the teaching and learning of physics at a Singapore private college. The paper starts with a short introduction of the types of students and the purpose of using academic portfolios in their learning and assessment. Some ideas of how portfolios can be used in the local context will also be discussed. It is necessary for teachers to know how to incorporate portfolio assessment in their daily lesson plans. At the same time, students who are studying physics at the college should also know how to use portfolios to their academic advantage. The paper also highlights three of the relevant work artifacts that can be included into the physics portfolios. The three work samples are concept-maps, internet research reports and newspaper articles reports. Concept-maps are useful tools to help students establish the connections between concepts. Internet research reports serve as important means for students to know more about how some scientific devices or technology use physics in the operations. Newspaper articles reports allow students to understand the real impact of physics on the lives of people. Subsequent sections of the paper discuss about the organizational flow of the portfolio, the timeline, the selection process, the portfolio checklist and assessment rubrics, the positive influences of using portfolios, the issues to consider and also the potential problems that physics teachers may face in implementing portfolios. These sections present the important framework which teachers can use as references for their portfolio initiatives in schools.

  15. Understanding pressure: didactical transpositions and pupils' conceptions

    Science.gov (United States)

    Kariotogloy, P.; Psillos, D.; Vallassiades, O.

    1990-03-01

    Using the concept of pressure two research trends-content analysis and pupils' conceptions of subject matter-are drawn together, in an attempt to understand the issues in teaching and learning specific domains of physics.

  16. The "Finding Physics" Project: Recognizing and Exploring Physics outside the Classroom

    Science.gov (United States)

    Beck, Judith; Perkins, James

    2016-01-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives.…

  17. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation.

    Directory of Open Access Journals (Sweden)

    Dorien M Zelle

    Full Text Available Physical activity (PA and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR.RTR were investigated between 2001-2003. The Tampa Score of Kinesiophobia-Dutch Version (TSK-11 was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire.A total of 487 RTR (age 51±12 years, 55% men were studied. Median score [interquartile range] on TSK-11 was 22 [17-26]. Low physical self-efficacy (Exp B:0.41[0.31-0.54], p<0.001 and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03-1.63],p = 0.03 were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73% of the effect of fear of movement on PA was explained by low physical self-efficacy.This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation.

  18. Social Support and Physical Health: The Importance of Belonging.

    Science.gov (United States)

    Hale, Cara J.; Hannum, James W.; Espelage, Dorothy L.

    2005-01-01

    Social support is a multifaceted construct recognized as a significant predictor of physical health. In this study, the authors examined several support domains simultaneously in a sample of 247 college students to determine their unique prediction of physical health perceptions and physical symptoms. They also examined gender differences across…

  19. Einstein 1905-1955: His Approach to Physics

    Science.gov (United States)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  20. THE ANALYSIS OF THE LOGIC CONTENTS WITH ACTUAL VOLUME OF CONCEPTS “PROFESSIONAL DEVELOPMENT”, „PROFESSIONAL BECOMING”, OF RESEARCH THE PROBLEM OF FUTURE TEACHER OF PHYSICAL CULTURE PROF. DEVELOPMENT IN THE CONDITIONS OF INFORMATIVE-EDUC. SPACE OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Yurii V. Drahniev

    2011-02-01

    Full Text Available In the article the comparative analysis of leading concepts „professional development”, „professional becoming” of research of problem of professional development of future teacher of physical culture is given in the conditions of informative educational space of Ukraine. It is grounded, that concepts play an important role both in science and in everyday practice. It is specified, that professional development must have a specific orientation of future professional activity with the use of computer, be characterized by the use of information technologies in the process of professional preparation, determine the maintenance of educational professional program taking into account informatization of higher education system.

  1. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  2. Effects of an exercise programme on self-esteem, self-concept and quality of life in women with fibromyalgia: a randomized controlled trial.

    Science.gov (United States)

    García-Martínez, Aida M; De Paz, José A; Márquez, Sara

    2012-07-01

    This study was aimed to investigate the effects of an exercise trial on self-esteem, self-concept and quality of life in patients with fibromyalgia and to evaluate whether improvements in psychological distress were related to changes in physical functioning. Twenty-eight women with a primary diagnosis of fibromyalgia were randomized to a usual care control group or to a 12-week supervised training programme consisting of 3 weekly sessions of aerobic, strengthening and flexibility exercises. Outcomes were physical functioning (Fibromyalgia Impact Questionnaire (FIQ), lower-body strength and flexibility) and psychological functioning (SF-36, Rosenberg self-esteem scale and Erdmann self-concept scale). Outcomes were measured at study entry and at the end of the intervention. Compared to the control group, statistically significant improvements in self-esteem, self-concept, FIQ, physical functioning, role physical, bodily pain, vitality, role emotional, social functioning, mental health, isometric strength, muscular endurance and flexibility were evident in the exercise group at the end of treatment. Self-esteem and self-concept scores were correlated positively with role emotional, mental health and the mental component summary of SF-36 and were negatively correlated to FIQ scores. No significant correlation existed between self-esteem or self-concept and isometric strength, muscular endurance or flexibility. Our results highlight the need for a broader array of physical and mental outcomes and the importance of examining patient's perceptions in future research therapies.

  3. Laser physics from principles to practical work in the lab

    CERN Document Server

    Eichhorn, Marc

    2014-01-01

    This textbook originates from a lecture course in laser physics at the Karlsruhe School of Optics and Photonics at the Karlsruhe Institute of Technology (KIT). A main goal in the conception of this textbook was to describe the fundamentals of lasers in a uniform and especially lab-oriented notation and formulation as well as many currently well-known laser types, becoming more and more important in the future. It closes a gap between the measureable spectroscopic quantities and the whole theoretical description and modeling. This textbook contains not only the fundamentals and the context of laser physics in a mathematical and methodical approach important for university-level studies. It allows simultaneously, owing to its conception and its modern notation, to directly implement and use the learned matter in the practical lab work. It is presented in a format suitable for everybody who wants not only to understand the fundamentals of lasers but also use modern lasers or even develop and make laser setups. T...

  4. An Analysis of Metaphors Used by High School Students to Describe Physics, Physics Lesson and Physics Teacher

    Science.gov (United States)

    Çetin, Ali

    2016-01-01

    The purpose of this study was to describe high school students' "physics", physics lesson" and "physics teacher" conceptions by using metaphors. 313 students participated in the study from different high school types in Siirt, Turkey. A metaphorical perception form constructed by researcher was individually conducted,…

  5. Importance of questionnaire context for a physical activity question

    DEFF Research Database (Denmark)

    Jørgensen, M. E.; Sørensen, Mette Rosenlund; Ekholm, O.

    2013-01-01

    ; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person......Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires...... Register. A new question about physical activity was included with minor differences in formulations in samples 1–3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four...

  6. Resilience of Historical Urban Multi-ethnic Settlement: Entrepreneurship and Religiosity Concept of Gresik City

    Science.gov (United States)

    Ariestadi, Dian; Antariksa; Dwi Wulandari, Lisa; Surjono

    2017-12-01

    Important aspects in continual development include economic and social developments, as well as environment protection. Social development aspect should concern political aspiration and local socio-culture as resilience of their local wisdom features. A review on urban resilience is more focused on economic and physical concepts, without developing the social concept. Objective of the study was to find out the resilience concept of Gresik City, which was the earliest description of a big trade port city in Indonesia, for example, Jakarta, Surabaya, and Semarang. The study applied morphology approach on spatial settings at historical urban multi-ethnic settlement through physical and non-physical observations, as well as validation through historical records and archives. The descriptive analysis of morphological pattern relates to activities on social, economic, and cultural aspects in order to obtain basic concept of social life. Morphological pattern of Gresik, which is dominated by multi-ethnic settlements, such as Arabs, Chinese, ex-Dutch-colonial, and the natives of Javanese and Madurese, has attracted traders from various nations and ethnics. History of the city as the center of Islamic learning and dissemination has formed the public of Gresik to have basic religious life, which is reflected on Islamic rituals. Settlement domination, which functions as household industries, craftsmanship, and small-scale trading, shows that entrepreneurship activities as socio-economy activities have highly supported daily religious ritual activities. Entrepreneurship and religiosity concept, which is formed and developed through long history of Gresik, represent the resilience of multi-ethnic societies at cities along the North Coast of Java.

  7. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  8. Recasting particle physics by entangling physics, history and philosophy

    International Nuclear Information System (INIS)

    Bertozzi, Eugenio; Levrini, Olivia

    2015-01-01

    The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their 'regime of competence' for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students’ reactions brought into light the need of clarifying the 'foundational' character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

  9. Quantum mechanics. Textbook for students of physics, mathematics and physical chemistry. Quantenmechanik. Studienbuch fuer Studierende der Physik, Mathematik und Physikalischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Grawert, G. (Marburg Univ. (Germany, F.R.). Fachbereich 13 - Physik)

    1989-01-01

    The aim of the textbook now present in fifth edition is the representation of the fundamental physical concepts of the theory of quantum mechanics. It is confined to the nonrelativistic quantum mechanics; however also themes are treated which are in an extended form important just for quantum field theory up to the modern development. (orig.) With 22 figs.

  10. Physical protection as the most important part of the national system of combating illicit trafficking

    International Nuclear Information System (INIS)

    Ivanov, P.; Kokhan, V.D.

    2001-01-01

    renders services related to physical protection and illicit trafficking to member states as well as is setting up the database and data-processing systems on illicit trafficking. The international regime should be based on national systems of combating illicit trafficking which include measures for prevention, detection and response regarding illicit trafficking in each specific state or across its borders. When undertaking these measures one should take into account specific characteristics of the state, its unique features and its geography, political and economic situation, as well as different types of potential threat of proliferation of nuclear weapons, availability of materials subjected to illicit trafficking in this state, general situation of criminal trafficking in this state, general situation of criminal trafficking with radioactive materials, potential consumers and suppliers, market features, possible incentives for crime etc. Vital components of national systems for combating illicit trafficking are: 1) legislation; 2) state control systems; 3) operator responsibilities; 4) physical protection of nuclear and radioactive materials and equipment; 5) export/import control of nuclear and radioactive materials and equipment; 6) clear definition of goals and responsibilities of national legislative authorities; 7) co-ordination of activities between national authorities as well as with international organizations. Eighty percent of all nuclear and radioactive materials in the Ukraine are concentrated at the companies and institutions supervised by the Ministry of Energy and Fuel. In view hereof we see the establishment of powerful and efficient systems of physical protection, accountancy and control directed against theft and unauthorized transportation of nuclear and radioactive materials as well as against acts of sabotage at nuclear installation performed by individuals or groups, as our contribution to combating illicit trafficking. These activities are

  11. The Impact of Vision Impairment on Students' Self-Concept

    Science.gov (United States)

    Datta, Poulomee; Talukdar, Joy

    2016-01-01

    This study investigated the self-concept of students with vision impairment who were placed in specialist and mainstream educational settings in South Australia. Self-Concept was explored across six dimensions, namely Physical, Moral, Personal, Family, Social and Academic Self-Concepts and the Total Self-Concept. The "Tennessee Self-Concept…

  12. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  13. Strategies for Integrating Elementary Classroom Concepts and Physical Activity

    Science.gov (United States)

    Johnson, Ingrid L.; Abbate, Vinny; Chase, Rachael

    2017-01-01

    The purpose of this article is to demonstrate the ease with which physical educators, or any other teacher in a school, can incorporate physical movement skills (physical literacy) while teaching reading, writing or any other content area at the same time.

  14. Modern introductory physics

    CERN Document Server

    Holbrow, Charles H; Amato, Joseph C; Galvez, Enrique; Parks, M. Elizabeth

    2010-01-01

    Modern Introductory Physics, 2nd Edition, by Charles H. Holbrow, James N. Lloyd, Joseph C. Amato, Enrique Galvez, and Beth Parks, is a successful innovative text for teaching introductory college and university physics. It is thematically organized to emphasize the physics that answers the fundamental question: Why do we believe in atoms and their properties?  The book provides a sound introduction to basic physical concepts with particular attention to the nineteenth- and twentieth-century physics underlying our modern ideas of atoms and their structure.  After a review of basic Newtonian mechanics, the book discusses early physical evidence that matter is made of atoms.  With a simple model of the atom Newtonian mechanics can explain the ideal gas laws, temperature, and viscosity.  Basic concepts of electricity and magnetism are introduced along with a more complicated model of the atom to account for the observed electrical properties of atoms. The physics of waves---particularly light and x-rays---an...

  15. Difficulty in the Clinical Diagnosis of Tularemia: Highlighting the Importance of a Physical Exam

    Directory of Open Access Journals (Sweden)

    Rupin Kumar

    2018-01-01

    Full Text Available We report an 18-month-old male who presented with fever and nonspecific symptoms. He was evaluated for multiple differential diagnoses including Kawasaki disease and JIA and received treatment for them. After he was readmitted, tularemia was considered based on the physical exam finding of an ulcer on the scalp and enlarged lymph nodes. Tularemia titers were positive, and the patient was given the appropriate antibiotic and was discharged home. Follow-up of the patient showed complete resolution of symptoms. This is a case that demonstrates the importance of physical exam in identifying rare diseases presenting with common signs and symptoms.

  16. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  17. Yoga and physical exercise - a review and comparison.

    Science.gov (United States)

    Govindaraj, Ramajayam; Karmani, Sneha; Varambally, Shivarama; Gangadhar, B N

    2016-06-01

    Yoga is a multifaceted spiritual tool with enhanced health and well-being as one of its positive effects. The components of yoga which are very commonly applied for health benefits are asanas (physical postures), pranayama (regulated breathing) and meditation. In the context of asanas, yoga resembles more of a physical exercise, which may lead to the perception that yoga is another kind of physical exercise. This article aims at exploring the commonalities and differences between yoga and physical exercise in terms of concepts, possible mechanisms and effectiveness for health benefits. A narrative review is undertaken based on traditional and contemporary literature for yoga, along with scientific articles available on yoga and exercise including head-to-head comparative trials with healthy volunteers and patients with various disease conditions. Physical exercises and the physical components of yoga practices have several similarities, but also important differences. Evidence suggests that yoga interventions appear to be equal and/or superior to exercise in most outcome measures. Emphasis on breath regulation, mindfulness during practice, and importance given to maintenance of postures are some of the elements which differentiate yoga practices from physical exercises.

  18. The Structures of the Alternative Conceptions of Preservice Secondary Teachers on Seasonal Changes

    Directory of Open Access Journals (Sweden)

    Junyoung Oh

    2005-03-01

    Full Text Available This study was to understand the components that influence preservice secondary teachers' conceptions about "seasonal changes". We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

  19. The use of astronomy questions as an instrument to detect student's misconceptions regarding physics concepts at high school level by using CRI (Certainty of Response Index) as identification methods

    Science.gov (United States)

    Utami, D. N.; Wulandari, H. R. T.

    2016-11-01

    The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.

  20. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Bruce E. Rieman; Jason B. Dunham; James L. Clayton

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions....

  1. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  2. Exploring the Yo-Yo: Filipino Physics Fun

    Science.gov (United States)

    Murfin, Brian

    2012-01-01

    The yo-yo is a scientific toy that has fascinated young and old for thousands of years. According to yo-yo experts, the yo-yo is the second oldest toy in the world, after the doll. Yo-yo activities can be an excellent tool to help students explore many important physics concepts related to energy and motion. The rich history of the yo-yo offers…

  3. New Developments in the Simulation of Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-01-01

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating and gt;10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ∼2,000 as compared to standard particle-in-cell.

  4. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro, E-mail: ogawa.masuro@jaea.go.jp

    2016-11-15

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  5. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    2016-01-01

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  6. The "Finding Physics" Project: Recognizing and Exploring Physics Outside the Classroom

    Science.gov (United States)

    Beck, Judith; Perkins, James

    2016-11-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives. Encouraging students to apply physics to their own surroundings helps them develop the critical analysis skills of a scientifically literate and competent citizen. Fink, in his book Creating Significant Learning Experiences, emphasizes the importance of constructing opportunities to help students connect what they learn in their academic courses with past and current life experiences and link them to possible future life experiences. Several excellent papers in this journal have presented labs and activities that address this concern by encouraging teachers to bring real-world examples into the classroom or to take students into the field for data collection and observation. Alternatively, Smith suggests a writing exercise in which his students identify and explain an event in terms of their understanding of physics. In this paper we present a multiphase exercise that challenges students to find their own examples of physics from outside the classroom and analyze them using the conceptual understanding and quantitative skills which they are developing in the classroom. The ultimate goal of the "Finding Physics" project is to improve students' learning through enhancing their recognition that, to quote one participant's end-of-course survey, "Physics is everywhere!"

  7. The transformation of elementary particle physics into many-body physics

    International Nuclear Information System (INIS)

    Hove, L. van

    1986-01-01

    The author illustrates the domains of particle physics where the theoretical problems and methods have much in common with many-body and condensed-matter physics. The multitude of diverse physical systems accessible to experimentation in condensed-matter physics, and the numerous concepts developed for their theoretical understanding provide a rich store of ideas and analogies to the particle physicist. This can help him to overcome the great handicap that in his own discipline the experimental facts are very hard to come by and are often extremely incomplete. On the other hand, particle physics brought us such truly fundamental advances as non-Abelian gauge theories, electroweak unification with the heavy weak bosons, and quantum chromodynamics with the confinement principle for the field quanta. As our understanding of these novel schemes deepens, possibly with further progress toward unification, one can expect that they will slowly have an impact on the rest of physics, just as the concepts and techniques of Abelian field theories have gradually invaded most of condensed-matter physics. (Auth.)

  8. Prerequisites for the development of the concept of health-forming technologies in the process of adaptive physical education of school-age children with hearing impairment

    Directory of Open Access Journals (Sweden)

    Vitaliy Kashuba

    2018-03-01

    Full Text Available Prerequisites for the development of the concept of health-forming technologies in the process of adaptive physical education of school-age children with hearing impairment Prerequisites for the development of the concept of health-forming technologies in the process of adaptive physical education of school-age children with hearing impairment National University of Physical Education and Sports of Ukraine, Kyiv. Actuality. The leading position of the contemporary issues of health-forming activity of children and youth presented in the form of a methodological basis for the formation of a positive motivation for a healthy lifestyle of the younger generation, especially with specific disabilities in the state of health, separates the central component of this process from the humanistic approach, the essence of which is creating a favorable situation for the readiness of the present youth to perceive and adequately respond to the educational activities of the school and social environment that are implemented in the process of their physical education. Objectives of the study: determination of priority directions of optimization of the process of physical education of students with hearing impairments, selection of rational means and methods that fully satisfy the specific needs of this contingent based on the study of their interests not only during physical education, but also correctional activities, self-organized motor activity Research results. The data obtained during the study showed that most children with hearing impairments understood the problems of their own health and had a desire to carry out activities aimed at improving their level, defining for themselves as the main criterion the physical state of their organism. The results of the questionnaire survey of 236 schoolchildren aged 13 to 19 years with different established hearing disorders supplemented the systematization of preconditions and scientifically substantiated the

  9. Internet of Things: Concept, Building blocks, Applications and Challenges

    OpenAIRE

    Abdmeziem, Riad; Tandjaoui, Djamel

    2014-01-01

    Internet of things (IoT) constitutes one of the most important technology that has the potential to affect deeply our way of life, after mobile phones and Internet. The basic idea is that every objet that is around us will be part of the network (Internet), interacting to reach a common goal. In another word, the Internet of Things concept aims to link the physical world to the digital one. Technology advances along with popular demand will foster the wide spread deployement of IoT's services...

  10. Physics curiosities, oddities, and novelties

    CERN Document Server

    Kimball, John

    2015-01-01

    An Enlightening Way to Navigate through Mind-Boggling Physics ConceptsPhysics Curiosities, Oddities, and Novelties highlights unusual aspects of physics and gives a new twist to some fundamental concepts. The book covers both classical and modern physics in an engaging, straightforward style.The author presents perplexing questions that often lack satisfying answers. He also delves into the stories of famous and eccentric past scientists. Many examples reveal interesting ideas, including how:Newton had trouble determining the mass of the moonAn electric motor is an electric generator run in re

  11. AECL's concept for the disposal of nuclear fuel waste and the importance of its implementation

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-07-01

    Since 1978, Canada has been investigating a concept for permanently dealing with the nuclear fuel waste from Canadian CANDU (Canada Deuterium Uranium) nuclear generating stations. The concept is based on disposing of the waste in a vault excavated 500 to 1000 m deep in intrusive igneous rock of the Canadian Shield. AECL Research will soon be submitting an environmental impact statement (EIS) on the concept for review by a Panel through the federal environmental assessment and review process (EARP). In accordance with AECL Research's mandate and in keeping with the detailed requirements of the review Panel, AECL Research has conducted extensive studies on a wide variety of technical and socio-economic issues associated with the concept. If the concept is accepted, we can and should continue our responsible approach and take the next steps towards constructing a disposal facility for Canada's used nuclear fuel waste

  12. The Field Concept in Psychology, Gestalt Theory, Physics, and Epic Theatre – Brecht’s Adaptations of Kurt Lewin

    Directory of Open Access Journals (Sweden)

    Langemeyer, Ines

    2017-03-01

    Full Text Available In the first half of the 20th century, the field concept was part of theoretical and methodological innovations in physics, gestalt theory as well as epic theatre as introduced by Bertolt Brecht. Another reference is the psychology of Kurt Lewin. In what ways Brecht took notice of Lewin’s research, especially his demand of a transition from Aristotelian to Galileian thought is reconstructed within the context of paradigm shifts fostered by logical empiricism, gestalt theory and physics. Lewin’s argumentation of an advanced understanding of the lawfulness of societal and psychological processes is placed in the center and traced back as an inspiration to Brecht’s writings. Vice versa, the article investigates in what ways Brecht’s theoretical writings and adaptations of Lewin’s approach can be reconsidered as a source for psychological theorizing.

  13. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  14. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  15. Mass, Speed, Direction: John Buridan's 14th-Century Concept of Momentum

    Science.gov (United States)

    Graney, Christopher M.

    2013-10-01

    "Modern science began in the Middle Ages," a fact that has been forgotten thanks to the celebrated accomplishments of Copernicus and Galileo, who did not acknowledge their predecessors. So states James Hannam in a January 2010 article in History Today. Among the scientists of the Middle Ages that Hannam mentions is John Buridan, a French thinker who was the first to develop modern concepts of inertia and momentum. Buridan's work has been known to historians of science for decades2 and remains a topic of discussion among them today.3,4 However, it is not well-known in physics circles,5 although there was an American Journal of Physics discussion of Buridan 35 years ago as part of a history of inertia.6 Readers of The Physics Teacher may find Buridan of interest both as a matter of history and because Buridan presents important physics ideas in a different sort of way, which may be of value in the physics classroom.

  16. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters...... and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors...... for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40...

  17. Informing Physics: Jacob Bekenstein and the Informational Turn in Theoretical Physics

    Science.gov (United States)

    Belfer, Israel

    2014-03-01

    In his PhD dissertation in the early 1970s, the Mexican-Israeli theoretical physicist Jacob Bekenstein developed the thermodynamics of black holes using a generalized version of the second law of thermodynamics. This work made it possible for physicists to describe and analyze black holes using information-theoretical concepts. It also helped to transform information theory into a fundamental and foundational concept in theoretical physics. The story of Bekenstein's work—which was initially opposed by many scientists, including Stephen Hawking—highlights the transformation within physics towards an information-oriented scientific mode of theorizing. This "informational turn" amounted to a mild-mannered revolution within physics, revolutionary without being rebellious.

  18. Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2016-05-01

    Full Text Available The Force Concept Inventory (FCI has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students’ alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students’ initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs: knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (∼900 of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students’ difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information

  19. On importance of dark matter for LHC physics

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    The aim of this paper is to attract attention of the LHC high-energy physics community to non-accelerator, low-energy experiments that are also very sensitive to new physics. This example concerns the search for supersymmetric dark matter particles. It is shown that non-observation of the SUSY dark matter candidates with a high-accuracy detector can exclude large domains of the MSSM parameter space and, in particular, can make especially desirable collider search for light SUSY charged Higgs boson

  20. The role of language in learning physics

    Science.gov (United States)

    Brookes, David T.

    Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics

  1. Introduction to symmetry-breaking phenomena in physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2001-01-01

    The notion of broken symmetries started slowly to emerge in the 19th century. The early studies of Pasteur on the parity asymmetry of life, the studies of Curie on piezoelectricity and on the symmetries of effects versus the symmetry of causes ( which clearly excluded spontaneous symmetry breaking), are important historical landmarks. However the possibility of spontaneous symmetry breaking within the usual principles of statistical mechanics, waited for the work of Peierls and Onsager. The whole theory of phase transitions and critical phenomena, as well as the construction of field theoretic models as long distance limit of yet unknown physics, relies nowadays on the concept of criticality associated to spontaneous symmetry breaking. The phenomena of Goldstone bosons, of Meissner-Higgs effects, are central to the theory of condensed matter as well as to particle physics. In cosmology as well, the various inflationary scenarios begin similarly with this same concept. The three lectures will provide a simple ...

  2. General definition of the concept of "sport" as one of the basic constructs of the general theory of physical culture and sports theory

    Directory of Open Access Journals (Sweden)

    Vasil Sutula

    2018-02-01

    Full Text Available Purpose: to reveal modern ideas about the essence of the concept of "sport" and determine its role in the development of the general theory of physical culture and sports theory. Material & Methods: analysis of specialized literature, which highlights various aspects of the development of the field of people's activities related to the use of physical exercises. Results: in today's society there is an objective sphere of human activity related to the use of physical exercises, for which the name in domestic and foreign scientific and social practice is most often used the term "physical culture". Conclusion: the constitutive conditions of the process of developing a general theory of physical culture are singled out, it is shown that sport, as a special socio-cultural phenomenon, is a historically conditioned activity of people associated with the use of physical exercises, aimed at preparing and participating in competitions, as well as individual and socially significant results of such activity.

  3. Exploring the Effects of Employing Google Docs in Collaborative Concept Mapping on Achievement, Concept Representation, and Attitudes

    Science.gov (United States)

    Lin, Yu-Tzu; Chang, Chia-Hu; Hou, Huei-Tse; Wu, Ke-Chou

    2016-01-01

    This study investigated the effectiveness of using Google Docs in collaborative concept mapping (CCM) by comparing it with a paper-and-pencil approach. A quasi-experimental study was conducted in a physics course. The control group drew concept maps using the paper-and-pencil method and face-to-face discussion, whereas the experimental group…

  4. Can there be a physics of financial markets? Methodological reflections on econophysics

    Science.gov (United States)

    Huber, Tobias A.; Sornette, Didier

    2016-12-01

    We address the question whether there can be a physical science of financial markets. In particular, we examine the argument that, given the reflexivity of financial markets (i.e., the feedback mechanism between expectations and prices), there is a fundamental difference between social and physical systems, which demands a new scientific method. By providing a selective history of the mutual cross-fertilization between physics and economics, we reflect on the methodological differences of how models and theories get constructed in these fields. We argue that the novel conception of financial markets as complex adaptive systems is one of the most important contributions of econophysics and show that this field of research provides the methods, concepts, and tools to scientifically account for reflexivity. We conclude by arguing that a new science of economic and financial systems should not only be physics-based, but needs to integrate findings from other scientific fields, so that a truly multi-disciplinary complex systems science of financial markets can be built.

  5. Quantum mechanics. Textbook for students of physics, mathematics and physical chemistry. 4. ed. Quantenmechanik. Studienbuch fuer Studierende der Physik, Mathematik und Physikalischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Grawert, G.

    1985-01-01

    The aim of the textbook now present in fourth edition is the representation of the fundamental physical concepts of the theory of quantum mechanics. It is confined to the nonrelativistic quantum mechanics; however also themes are treated which are in an extended form important just for quantum field theory up to the modern development. (orig./HSI). With 22 figs.

  6. Some mathematical methods of physics

    CERN Document Server

    Goertzel, Gerald

    2014-01-01

    This well-rounded, thorough treatment for advanced undergraduates and graduate students introduces basic concepts of mathematical physics involved in the study of linear systems. The text emphasizes eigenvalues, eigenfunctions, and Green's functions. Prerequisites include differential equations and a first course in theoretical physics.The three-part presentation begins with an exploration of systems with a finite number of degrees of freedom (described by matrices). In part two, the concepts developed for discrete systems in previous chapters are extended to continuous systems. New concepts u

  7. The elusive importance effect: more failure for the Jamesian perspective on the importance of importance in shaping self-esteem.

    Science.gov (United States)

    Marsh, Herbert W

    2008-10-01

    Following William James (1890/1963), many leading self-esteem researchers continue to support the Individual-importance hypothesis-that the relation between specific facets of self-concept and global self-esteem depends on the importance an individual places on each specific facet. However, empirical support for the hypothesis is surprisingly elusive, whether evaluated in terms of an importance-weighted average model, a generalized multiple regression approach for testing self-concept-by-importance interactions, or idiographic approaches. How can actual empirical support for such an intuitively appealing and widely cited psychological principle be so elusive? Hardy and Moriarty (2006), acknowledging this previous failure of the Individual-importance hypothesis, claim to have solved the conundrum, demonstrating an innovative idiographic approach that provides clear support for it. However, a critical evaluation of their new approach, coupled with a reanalysis of their data, undermines their claims. Indeed, their data provide compelling support against the Individual-importance hypothesis, which remains as elusive as ever.

  8. Standard classification: Physics

    International Nuclear Information System (INIS)

    1977-01-01

    This is a draft standard classification of physics. The conception is based on the physics part of the systematic catalogue of the Bayerische Staatsbibliothek and on the classification given in standard textbooks. The ICSU-AB classification now used worldwide by physics information services was not taken into account. (BJ) [de

  9. Relativistic nuclear physics: symmetry and the correlation depletion principle

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1996-01-01

    The author's view on the role of symmetry in fundamental physics is presented. The concept of the 'symmetry of solutions' is analyzed. It is stressed that it is impossible to deduce the basic laws of relativistic nuclear physics from the QCD Lagrangians without recourse to additional hypotheses about the symmetry of solutions (Green functions). The test of these hypotheses is the major prospect of the study of hadron and nuclear collisions. Special importance is given to the Correlation Depletions Principle that makes it possible to construct mathematical models of relativistic nuclear physics, and analyze, by using simple terms, topologically complicated events of nucleus-nucleus collisions. 15 refs., 4 figs

  10. A course in classical physics

    CERN Document Server

    Bettini, Alessandro

    This first volume covers the mechanics of point particles, gravitation, extended systems (starting from the two-body system), the basic concepts of relativistic mechanics and the mechanics of rigid bodies and fluids. The four-volume textbook, which covers electromagnetism, mechanics, fluids and thermodynamics, and waves and light, is designed to reflect the typical syllabus during the first two years of a calculus-based university physics program. Throughout all four volumes, particular attention is paid to in-depth clarification of conceptual aspects, and to this end the historical roots of the principal concepts are traced. Writings by the founders of classical mechanics, G. Galilei and I. Newton, are reproduced, encouraging students to consult them. Emphasis is also consistently placed on the experimental basis of the concepts, highlighting the experimental nature of physics. Whenever feasible at the elementary level, concepts relevant to more advanced courses in modern physics are included. Each chapter b...

  11. NON-PHARMACOLOGICAL CONCEPTS OF ENDOTHELIAL DYSFUNCTION IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Mirjana Bakic

    2007-04-01

    Full Text Available Endothelium plays an important role in maintaining normal vascular tonus and blood fluidity reducing thrombocyte activity and adhesion of leukocytes as well as limiting response of vascular inflammation. However, in certain pathological conditions such as hypercholesterolemia, hypertension, and diabetes, endothelium improves vasoconstriction, inflammation and thrombocytic events.Non-pharmacological concept is based on recognition of genetic factors, environmental factors, or combination of risk factors for the occurrence of endothelial dysfunction, general and individual education of the significance of adequate nutrition, physical activity and regulation of body weight, regular check-ups and the application of antioxidants which can regulate and protect several aspects of endothelial functions.

  12. Childhood Obesity, Gender, Actual-Ideal Body Image Discrepancies, and Physical Self-Concept in Hong Kong Children: Cultural Differences in the Value of Moderation

    Science.gov (United States)

    Marsh, Herbert W.; Hau, K. T.; Sung, R. Y. T.; Yu, C. W.

    2007-01-01

    Childhood obesity is increasingly prevalent in Western and non-Western societies. The authors related multiple dimensions of physical self-concept to body composition for 763 Chinese children aged 8 to 15 and compared the results with Western research. Compared with Western research, gender differences favoring boys were generally much smaller for…

  13. The importance of physical activity and diet in the life of female students

    Directory of Open Access Journals (Sweden)

    Rafał Pawłowski

    2015-10-01

    Full Text Available Introduction : The lifestyle is known to be the most influential factor for maintaining a good health condition. Lack of physical activity and poor nutrition are two factors that suport each other in a negative way and result in an increasing number of obese people. Irregular nutrition is often closely related to irregular academic life. Aim of the research: The objective of this research is to find out how female students perceive health – how they understand and define it. Another objective is to determine whether nurses-to-be and psychiatrists-to-be perceive health differently than other students and whether their health-esteem is backed with their free-time physical activity and regular nutrition. It is crucial to find out what factors, according to the research, have the biggest influence on people’s health. Material and methods: The research involved 180 female students of full-time courses at the Jan Kochanowski University in Kielce: 98 female students of the Health Sciences Faculty and 82 female students of other faculties. The method of a diagnostic survey and a questionnaire were used in the research. Results : The female students perceived health as a quality, well-being, an absence of disease; and for female nursing students health was not only the absence of disease or disability but also biopsychosocial well-being. The most important factors that influence the health condition are physical activity and nutrition. A high evaluation does not correspond to taking care of one’s health. Fewer than 8% of the female students practised sport in their free time and ate regularly. More than a half neither did sport nor ate regularly (Pearson’s contingency coefficient C reaches a value of 0.1. Conclusions : The female nursing students, contrary to the female students of other faculties, perceive health in the same way as the World Health Organisation. Regardless of faculty, physical activity and regular nutrition are considered to be

  14. Khan's lectures handbook of the physics of radiation therapy

    CERN Document Server

    Khan, Faiz M; Mihailidis, Dimitris

    2011-01-01

    Khan's Lectures: Handbook of the Physics of Radiation Therapy will provide a digest of the material contained in The Physics of Radiation Therapy. Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) w

  15. [Social support and physical activity in adolescents from public schools: the importance of family and friends].

    Science.gov (United States)

    Prado, Crisley Vanessa; Lima, Alex Vieira; Fermino, Rogério César; Añez, Ciro Romelio Rodriguez; Reis, Rodrigo Siqueira

    2014-04-01

    The aim of this study was to verify the association between different types and sources of social support and physical activity among adolescents from Curitiba, Paraná State, Brazil. A school-based survey was conducted with a representative sample of adolescents from public schools (n = 1,469). Multiple regression models were used to test the association between weekly frequency and sources of social support from family and friends and weekly frequency of physical activity. Among boys, frequent company of family (PR: 2.88; 95%CI: 2.00-4.13) and friends (PR: 5.46; 95%CI: 2.33-12.78) and positive reinforcement from friends (PR: 1.81; 95%CI: 1.18-2.77) were positively associated with physical activity. Sporadic invitation by the family was negatively associated with physical activity (PR: 0.66; 95%CI: 0.46-1.14). For girls, frequent company of family (PR: 3.39; 95%CI: 1.49-7.69) and friends (PR: 4.06; 95%CI: 2.22-7.45) increased the likelihood of physical activity. Company of friends was the most important type of social support for physical activity among these adolescents.

  16. Summary of exotic collider concepts group

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1995-01-01

    We present a summary of the discussions in the Exotic Collider Concepts Group. Most of the discussions were centered around the status and open problems for muon-muon and gamma-gamma colliders. In addition the group discussed some general problems and new results of accelerator physics. copyright 1995 American Institute of Physics

  17. Evaluation of Standard Concepts Design of Library Interior Physical Environment (Case Study at University of Ma Chung

    Directory of Open Access Journals (Sweden)

    Debri Haryndia Putri

    2016-12-01

    Full Text Available Currently the function of a room is not only used as a shelter, the function of the room itself to be increased as a refreshing or relaxation area for users to follow the development of creativity and technology in the field of design. The comfortable factor becomes the main factor that indicates a successful process of creating a space. No exception library. The nature of library seemed stiff because of its function as a place to read, now can be developed and made into more dynamic with the special design concepts or color patterns used. Libraries can be created a special concept that suits the characteristics of the users themselves. Most users of the library, especially in college libraries are teenagers. Naturally, teenagers like to gather with their friends and we have to facilitate this activity in our library design concept. In addition we can also determine the needs of users through research by questionnaire method. The answers of users can be mapped and drawn conclusions. To explore the research, the author reviewed some literature about library interior design and observed the library of Ma Chung University as a case study. The combined results of the method can be concluded and the discovery of ideal standards of physical environment. So, the library can be made as a comfortable reading environment so as to increased interest in reading behavior and the frequent visits of students in the library.

  18. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  19. COMPARISON OF THE ACCOUNTING CONCEPT “FAIR VALUE” WITH OTHER ECONOMIC VALUE CONCEPTS

    OpenAIRE

    Justine Jaunzeme

    2011-01-01

    Fair value is a measurement base found both in International Financial Reporting Standards and in Latvian accounting legislation. For the fair value measurements to be meaningful for financial analysts, consultants and other financial statement users, it is important that the fair value concept be understood in relation to other economic value concepts. The purpose of this paper is to compare the fair value concept of financial accounting to other economic value concepts. The qualitative meth...

  20. Body-related state shame and guilt in women: do causal attributions mediate the influence of physical self-concept and shame and guilt proneness.

    Science.gov (United States)

    Crocker, Peter R E; Brune, Sara M; Kowalski, Kent C; Mack, Diane E; Wilson, Philip M; Sabiston, Catherine M

    2014-01-01

    Guided by the process model of self-conscious emotions, this study examined whether physical self-concept (PSC) and shame and guilt proneness were associated with body-related self-conscious emotions of state shame and guilt and if these relationships were mediated by attributions of stability, globality, and controllability. Female participants (N=284; Mean age=20.6±1.9 years) completed measures of PSC and shame and guilt proneness before reading a hypothetical scenario. Participants completed measures of attributions and state shame and guilt in response to the scenario. Significant relationships were noted between state shame and attributions of globality and controllability, and shame proneness, guilt proneness, and PSC. Similar relationships, with the additional predictor of stability, were found for state guilt. Mediation analysis partially supported the process model hypotheses for shame. Results indicate PSC and shame proneness are important in predicting body-related emotions, but the role of specific attributions are still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Relationship between body weight status and self-concept in schoolchildren].

    Science.gov (United States)

    Gálvez Casas, Arancha; Rodríguez García, Pedro L; Rosa Guillamón, Andrés; García-Cantó, Eliseo; Pérez-Soto, Juan J; Tarraga Marcos, Loreto; Tarraga López, Pedro

    2014-11-30

    Body weight status has been linked to other health parameters. The aim of this study was to evaluate the relationship between body weight status and self-concept in a sample of 216 students (9.26 ± 1.26 years) from schools of the Southeast of Spain. BMI (Body-mass index) was used to evaluate the body weight status. Subjects were classified into normal weight, overweight and obesity according to international standards. The six dimensions of self-concept (intellectual, behavioral, physical, lack of anxiety, social and life satisfaction) were assessed using the Piers-Harris Self-Concept Scale. The results showed significant associations between BMI and intellectual self-concept, life satisfaction, global self-concept and physical self. Subjects categorized as overweight or obese were those who showed lower scores on the self-concept scale. Interventions focused on improving the body weight status are needed in order to achieve better self-concept levels and health among young people. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Game physics

    CERN Document Server

    Eberly, David H

    2010-01-01

    ""Game Physics, 2nd Edition"" provides clear descriptions of the mathematics and algorithms needed to create a powerful physics engine - while providing a solid reference for all of the math you will encounter anywhere in game development: quaternions, linear algebra, and calculus. Implementing physical simulations for real-time games is a complex task that requires a solid understanding of a wide range of concepts from the fields of mathematics and physics. Previously, the relevant information could only be gleaned through obscure research papers. Thanks to ""Game Physics"", all this informa

  3. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  4. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  5. Let's Get Physical: Teaching Physics through Gymnastics

    Science.gov (United States)

    Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.

    2018-01-01

    The concept of embodied learning--that we can learn with our bodies and with our minds--is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of…

  6. Predictive model of nicotine dependence based on mental health indicators and self-concept

    Directory of Open Access Journals (Sweden)

    Hamid Kazemi Zahrani

    2014-12-01

    Full Text Available Background: The purpose of this research was to investigate the predictive power of anxiety, depression, stress and self-concept dimensions (Mental ability, job efficiency, physical attractiveness, social skills, and deficiencies and merits as predictors of nicotine dependency among university students in Isfahan. Methods: In this correlational study, 110 male nicotine-dependent students at Isfahan University were selected by convenience sampling. All samples were assessed by Depression Anxiety Stress Scale (DASS, self-concept test and Nicotine Dependence Syndrome Scale. Data were analyzed by Pearson correlation and stepwise regression. Results: The result showed that anxiety had the highest strength to predict nicotine dependence. In addition, the self-concept and its dimensions predicted only 12% of the variance in nicotine dependence, which was not significant. Conclusion: Emotional processing variables involved in mental health play an important role in presenting a model to predict students’ dependence on nicotine more than identity variables such as different dimensions of self-concept.

  7. Alternative conceptions, memory, & mental models in physics education

    Science.gov (United States)

    Lee, Gyoungho; Shin, Jongho; Park, Jiyeon; Song, Sangho; Kim, Yeounsoo; Bao, Lei

    2005-09-01

    There are two somewhat independent research traditions, which converge to suggest a form of students' knowledge: alternative conceptions and mental models. However we have little literature that explains what they are different from each other and from memory. This study tried to describe these issues with some thoughts about how cognitive psychology and science education approaches can be best synthesized in order to approach these questions.

  8. The importance of life cycle concepts for the development of safe nanoproducts

    International Nuclear Information System (INIS)

    Som, Claudia; Berges, Markus; Chaudhry, Qasim; Dusinska, Maria; Fernandes, Teresa F.; Olsen, Stig I.; Nowack, Bernd

    2010-01-01

    Whilst the global players in industry are rapidly moving forward to take advantage of the new opportunities and prospects offered by nanotechnologies, it is imperative that such developments take place in a safe and sustainable manner. The increasing use of engineered nanomaterials (ENMs) in consumer products has raised certain concerns over their safety to human health and the environment. There are currently a number of major uncertainties and knowledge gaps in regard to behavior, chemical and biological interactions and toxicological properties of ENMs. As dealing with these uncertainties will require the generation of new basic knowledge, it is unlikely that they will be resolved in the immediate future. One has to consider the whole life cycle of nanoproducts to ensure that possible impacts can be systematically discovered. For example, life cycle assessment (LCA) - a formalized life cycle concept - may be used to assess the relative environmental sustainability performance of nanoproducts in comparison with their conventional equivalents. Other less formalized life cycle concepts in the framework of prospective technology assessment may uncover further detailed and prospective knowledge for human and environmental exposure to ENMs during the life cycle of nanoproducts. They systematically reveal impacts such as cross product contamination or dissipation of scarce materials among others. The combination of different life cycle concepts with the evolving knowledge from toxicology and risk assessment can mitigate uncertainties and can provide an early basis for informed decision making by the industry and regulators.

  9. Scholar-activating teaching materials on quantum physics. Pt. 3. Foundations of atomic physics; Schueleraktivierende Unterrichtsmaterialien zur Quantenphysik. T. 3. Grundlagen der Atomphysik

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, Horst

    2010-07-01

    Traditionally in the center of the interest on quantum physics referring to schools the question lies, whether electrons or photons are now particles or waves, a question, which is often characterized by the phrase ''wave-particle dualism'', which notoriously not exists in its original meaning. Against that by the author - on the base of important preparatory works of Kueblbeck and Mueller - a new concept of quantum physics for the school was proposed, which puts ''basic facts'' in the foreground, comparable with the Kueblbeck-Mueller ''characteristic features''. The ''basic facts'' are similar to axioms of quantum physics, by means of them a large number of experiments and phenomena can be ''explained'' at least qualitatively - in a heuristic way -. Instead of the so-called ''wave-particle dualism'' uncertainty and complementarity are put in the foreground. The new concept is in the Internet under http://www.forphys.de extensively presented with many further materials. In the partial volumes of this publication manifold and carefully elaborated teaching materials are presented, by which scholars can get themselves the partial set of quantum physics referring to schools by different methods like learning at stations, short referates, Internet-research, group puzzle, the query-sheet or the card-index method etc. In the present 3. part materials are prepared, by which scholars can get foundations of atomic physics and interpret in the sense of the ''basic facts or quantum physics''. Here deals it thus with discrete energy levels, the linear potential box, with atomic models, the atomic structure, the tunnel effect, and - because curricula it often require - also with the Schroedinger equation. The materials can also be usefully applied in other concepts.

  10. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2013-01-01

    This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...

  11. Energy: Between Physics and Metaphysics.

    Science.gov (United States)

    Bunge, Mario

    2000-01-01

    The general concept of energy is somewhat unclear as long as it is confined to physics since every chapter of it defines its own particular concept of energy. The general concept can be elucidated in terms of the hypergeneral concepts of concrete things and changeability. Concludes that physicists and philosophers can learn from one another.…

  12. Open educational resources, cultural artifacts, conception’s physics teachers for engineering analysis of two case studies

    Directory of Open Access Journals (Sweden)

    Oscar Jardey Suárez

    2016-09-01

    Full Text Available The research attempts to answer questions such as: What are the concepts of physics teachers who work in the engineering faculty on the use of Open Educational Resources (OER?  This article focuses on revealing the conceptions of physics teachers working in the engineering faculty in relation to OER. Methodologically the project has a qualitative and a quantitative component; This article is the result of a qualitative and interpretive phase from extensive interviews with active teachers, who run courses in physics in engineering careers in higher education institutions public or private; interviews were conducted from elicitadoras situations that emerge from the categories that emerged from the literature review (cultural artifact, Learning environment, social-scientific, technical and technological. The interpretation of the interviews suggests that there conceptions of laboratory reality and its relationship with models, they do consider that this reality may be far from the models when experiments are discussed through simulations (which can be misleading. Conclusions point out that mathematics is the most important in the construction and reconstruction of physical models, although not unanimously mediation; infers that can be incorporated as complementary elements OER mediation possible a spectrum of educational options in teaching physics.

  13. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  14. Is exercise important in chronic obstructive pulmonary disease?

    Science.gov (United States)

    Make, Barry; Casaburi, Richard

    2007-09-01

    Chronic obstructive pulmonary disease impairs the ability of patients to perform maximal physical exercise, particularly in patients with severe lung disease. However, differing perceptions of the meaning and importance of exercise to patients and caregivers is likely to impair patient-physician communication about current medical status and outcomes of therapeutic interventions. Other outcomes of importance to patients including actual performance of functional activity during daily life and health-related quality of life may also be affected by impaired exercise capacity. However, the relationships between exercise, activity, and quality of life are inconsistent. Thus, measurement of physiologic and patient-centered outcomes may provide the best approach to assessing responses to therapeutic interventions. These concepts were explored in a conference sponsored by Boehringer Ingelheim Pharmaceuticals, Inc. and Pfizer Inc and reviewed in the articles generated from the symposium in this issue of COPD.

  15. The importance of self-determined motivation towards physical activity in patients with schizophrenia.

    Science.gov (United States)

    Vancampfort, Davy; De Hert, Marc; Vansteenkiste, Maarten; De Herdt, Amber; Scheewe, Thomas W; Soundy, Andrew; Stubbs, Brendon; Probst, Michel

    2013-12-30

    There is a need for theoretically-based research on the motivational processes linked to the commencement and continuation of physical activity in patients with schizophrenia. Within the Self-Determination Theory (SDT) framework, we investigated the SDT tenets in these patients by examining the factor structure of the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2) and by investigating associations between motivation and PA. The secondary aim was to study differences in motivation according to gender, educational level, treatment setting and disease stage. A total of 129 patients (44♀) with schizophrenia agreed to participate. Exploratory factor analysis showed sufficient convergence with the original factor for amotivation, external and introjected regulation, while identified and intrinsic regulations loaded on a single factor which we labeled "autonomous regulation". Significant positive correlations were found between the total physical activity score and the subscales amotivation (r = -0.44, P important role in the adoption and maintenance of health promoting behaviors in patients with schizophrenia. © 2013 Published by Elsevier Ireland Ltd.

  16. Scholar-activating teaching materials for quantum physics. Pt. 2. Basic facts of quantum physics and heuristic methods

    International Nuclear Information System (INIS)

    Huebel, Horst

    2010-01-01

    Traditionally in the center of interest on quantum physics referring to schools the question lies, whether electrons and photons are now particles or waves, a question, which is often characterized by the phrase ''wave-particle dualism'', which notoriously not exists in its original meaning. Against that by the author - basing on important preparatory works of Kueblbeck and Mueller - a new concept for the treatment of quantum physics for the school was proposed, which puts ''basic facts'' in the foreground, comparable with the Kueblbeck-Mueller ''characteristic features''. The ''basic facts'' are similar to axioms of quantum physics, by means of which a large number of experiments and phenomena can be ''explained'' at least qualitatively - in a heuristic way -. Instead of the so-called ''wave-particle dualism'' here uncertainty and complementarity are put in the foreground. The new concept is in the Internet under http://www.forphys.de extensively presented with many further materials. In the partial volumes of this publication manifold and carefully elaborated teaching materials are presented, by means of which scholars can get themselves the partial set of quantum physics referring to schools by different methods like learn at stations, short referates, Internet research, group puzzle, the query-sheet or the card-index method etc. In the present 2. part materials for the ''basic facts'' of quantum physics are prepared, by which also modern experiments can be interpreted. Here deals it with the getting of knowledge and application of the ''basic Facts''. This pursues also by real scholar experiments, simulations and analogy tests. The scholars obtain so more simply than generally a deeper insight in quantum physics.

  17. Kierkegaard's concepts: Hypocrisy

    DEFF Research Database (Denmark)

    Fauth Hansen, Thomas Martin

    2014-01-01

    Kierkegaard’s Concepts is a comprehensive, multi-volume survey of the key concepts and categories that inform Kierkegaard’s writings. Each article is a substantial, original piece of scholarship, which discusses the etymology and lexical meaning of the relevant Danish term, traces the development...... of the concept over the course of the authorship, and explains how it functions in the wider context of Kierkegaard’s thought. Concepts have been selected on the basis of their importance for Kierkegaard’s contributions to philosophy, theology, the social sciences, literature and aesthetics, thereby making...... this volume an ideal reference work for students and scholars in a wide range of disciplines....

  18. The Africa Yoga Project and Well-Being: A Concept Map of Students' Perceptions.

    Science.gov (United States)

    Giambrone, Carla A; Cook-Cottone, Catherine P; Klein, Jessalyn E

    2018-03-01

    Concept mapping methodology was used to explore the perceived impact of practicing yoga with the Africa Yoga Project (AYP)-an organisation created to increase health and well-being by providing community-based yoga classes throughout Kenya. AYP's mission fit with theoretical models of well-being is discussed. Anecdotal evidence and initial qualitative research suggested the AYP meaningfully impacted adult students. Of the hundreds of AYP's adult students, 56 and 82 students participated in Phases I and II, respectively. Phase I brainstorming resulted in 94 student-generated statements about their perceived change. Phase II participants sorted and rated statements in terms of importance. Multidimensional scaling and hierarchical cluster analysis of sort data was utilised to map and group statements into clusters. Based on statistical and interpretive criteria, a five-cluster solution with the following concepts was identified as the best model of students' change: Personal Growth; Interpersonal Effectiveness (lowest importance); Physical and Social Benefits; Emotional Resiliency; and Improved Self-Concept (highest importance). Overall, students reported positive perceptions of the AYP. Additional research is needed to quantify students' change, and to compare the AYP outcomes to those of other programs aimed at poverty-related stress reduction and well-being. © 2018 The International Association of Applied Psychology.

  19. Finiteness principle and the concept of space-time

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt

  20. Physical self-concept changes in a selective sport high school: a longitudinal cohort-sequence analysis of the big-fish-little-pond effect.

    Science.gov (United States)

    Marsh, Herbert W; Morin, Alexandre J; Parker, Philip D

    2015-04-01

    Elite athletes and nonathletes (N = 1,268) attending the same selective sport high school (4 high school age cohorts, grades 7-10, mean ages varying from 10.9 to 14.1) completed the same physical self-concept instrument 4 times over a 2-year period (multiple waves). We introduce a latent cohort-sequence analysis that provides a stronger basis for assessing developmental stability/change than either cross-sectional (multicohort, single occasion) or longitudinal (single-cohort, multiple occasion) designs, allowing us to evaluate latent means across 10 waves spanning a 5-year period (grades 7-11), although each participant contributed data for only 4 waves, spanning 2 of the 5 years. Consistent with the frame-of-reference effects embodied in the big-fish-little-pond effect (BFLPE), physical self-concepts at the start of high school were much higher for elite athletes than for nonathlete classmates, but the differences declined over time so that by the end of high school there were no differences in the 2 groups. Gender differences in favor of males had a negative linear and quadratic trajectory over time, but the consistently smaller gender differences for athletes than for nonathletes did not vary with time.

  1. [Physics of materials and female stress urinary continence: New concepts: I) Elasticity under bladder].

    Science.gov (United States)

    Guerquin, B

    2015-09-01

    Improving the understanding of the adaptation to stress of urinary continence. A transversal analysis between physics of materials and the female anatomy. Laws of physics of the materials and of their viscoelastic behavior are applied to the anatomy of the anterior vaginal wall. The anterior vaginal wall may be divided into two segments of different viscoelastic behavior, the vertical segment below the urethra and the horizontal segment below the bladder. If the urethra gets crushed on the first segment according to the hammock theory, the crushing of the bladder on the second segment is, on the other hand, damped by its important elasticity. The importance of this elasticity evokes an unknown function: damping under the bladder that moderates and delays the increase of intravesical pressure. This damping function below the bladder is increased in the cystocele, which is therefore a continence factor; on the other hand, it is impaired in obesity, which is therefore a factor of SUI. It is necessary to include in the theory of stress continence, the notion of a damping function below the bladder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Analysis and evaluation of the Dual Fluid Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang

    2017-06-27

    The Dual Fluid Reactor is a molten salt fast reactor developed by IFK in Berlin based on the Gen-IV Molten-Salt Reactor concept and the Liquid-Metal Cooled Reactor. The design aims to combine these two concepts to improve these two concepts. The Dissertation focuses on the concept and performs diverse calculations and estimations on the subjects of neutron physics, depletion and thermal-hydraulic behaviors to validate the new features of the concept. Based on the results it is concluded that this concept is feasible to its desired purpose and with great potential.

  3. Imagery, Intuition and Imagination in Quantum Physics Education

    Science.gov (United States)

    Stapleton, Andrew J.

    2018-01-01

    In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area…

  4. Internet and Democracy: Is the Internet an Important Predictor for Physical Education Teacher Candidates' Attitudes towards Democracy?

    Science.gov (United States)

    Ünlü, Hüseyin

    2017-01-01

    Today, in the digital age, the Internet usage is common among university students. The Internet is also an important platform for actively participating in democracy. This study explores physical education (PE) candidate teachers' attitudes toward the Internet and democracy. It also explores whether the Internet is an important predictor for…

  5. Self-Concept in Adolescents—Relationship between Sport Participation, Motor Performance and Personality Traits

    Directory of Open Access Journals (Sweden)

    Markus Klein

    2017-04-01

    Full Text Available The relationship between sport participation, personality development, self-concept and self-esteem has been discussed repeatedly. In this research, a standardized written survey together with tests on motor performance were carried out with 1399 students (707 male; 692 female in school years 7 (12.9 ± 0.6 years and 10 (15.8 ± 0.6 years to measure the extent of a relationship between physical self-concept (self-developed short scale and sporting activity, measured motor performance (German motor performance test DMT (Deutscher Motorik-Test 6–18 and report mark in physical education. Relationships were also analyzed between physical self-concept and general personality traits (neuroticism, extraversion, openness to experiences, compatibility, and conscientiousness, measured with NEO Five Factor Inventory (NEO-FFI. The assessment of own physical attractiveness and own athleticism differs by sex (F(1, 962 = 35.21; p < 0.001, whereby girls assess themselves more critically. Weak significant relationships are displayed between motor performance and the assessment of own physical attractiveness (r(395 = 0.31; p < 0.01. Motor performance is given a higher predictive value with regard to a subject’s own self-concept, (physical attractiveness β = 0.37; t(249 = 5.24; p < 0.001; athleticism β = 0.40; t(248 = 6.81; p < 0.001 than the mark achieved in physical education (physical attractiveness β = −0.01; n.s.; athleticism β = −0.30; t(248 = 5.10; p < 0.001. Relationships were found overall between personality traits and physical self-concept. The influence of the ‘neuroticism’ trait is particularly strong (physical attractiveness β = −0.44; t(947 = −13.58; p < 0.001; athleticism β = −0.27; t(948 = −7.84; p < 0.001. The more pronounced this trait, the lower the assessment of own physical attractiveness and own athleticism.

  6. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  7. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    Science.gov (United States)

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  8. Quantum physics and statistical physics. 5. ed.

    International Nuclear Information System (INIS)

    Alonso, Marcelo; Finn, Edward J.

    2012-01-01

    By logical and uniform presentation this recognized introduction in modern physics treats both the experimental and theoretical aspects. The first part of the book deals with quantum mechanics and their application to atoms, molecules, nuclei, solids, and elementary particles. The statistical physics with classical statistics, thermodynamics, and quantum statistics is theme of the second part. Alsonso and Finn avoid complicated mathematical developments; by numerous sketches and diagrams as well as many problems and examples they make the reader early and above all easily understandably familiar with the formations of concepts of modern physics.

  9. Concept caring in nursing

    Directory of Open Access Journals (Sweden)

    Lenka Drahošová

    2016-05-01

    Full Text Available Aim: The aim of this literature review was to search for qualitative studies focusing on the concept of caring in nursing, to analyse them and to synthesize knowledge that concerns the definition of the concept of caring in nursing from the point of view of nurses and patients. Design: Review. Methods: Qualitative studies were searched for systematically in the electronic databases Academic Search Complete (EBSCO, CINAHL, Medline, Science Direct, and the Wiley Library Online, according to set criteria and defined key words for the period 1970-2015. Seven selected articles were analysed after selection of documents with the aid of a sorting chart. Results: Nurses understand caring in nursing as a relationship with patients which is characterised on the nurses' part by an individual and empathetic approach, attentiveness, experience and sensitivity. Through caring, active communication takes place, providing information which reduces anxiety and leads to the breaking down of barriers. This relationship helps protect patients' autonomy, dignity and comfort. It requires experience on the part of nurses, and it is influenced by the environment. The nurses' personal qualities (what professional knowledge, attitudes and skills they have and their availability, reliability, and emotional and physical support are important to patients. Conclusion: The concept of caring is a content specific interpersonal process which is characterized by the professional knowledge, skills, personal maturity, and interpersonal sensitivity of nurses, which result in the protection, emotional support, and the meeting of bio-psycho-social needs of patients. The results of the overview study could contribute to an explanation and understanding of the nature of caring as a fundamental feature of the discipline of nursing.

  10. German physical protection concept for the storage of spent fuel elements in transport and storage casks

    International Nuclear Information System (INIS)

    Weil, L.; Maier, R.

    2005-01-01

    Full text: In Germany, the legal regulations and requirements derived from rules and guidelines for the protection of storage facilities for spent fuel elements from disruptive action or other inference by third parties are structured hierarchically. The Atomic Energy Act constitutes the top level. It is supported by federal ordinances. The next level down is formed by the rules and guidelines. The storage of nuclear fuels may only be authorized, according to the provisions of the Atomic Energy Act, if the required protection from disruptive action or other interference by third parties can be guaranteed as following: it must be possible to prevent any danger to life and health due to a substantial amount of direct radiation or due to the release of a substantial amount of radioactive material; it must be possible to prevent singular or repeated acts of stealing nuclear fuels in such amounts that a critical accumulation can be produced directly without reprocessing and enrichment. Knowing that nuclear installations cannot be protected from every possible interference, physical protection is focused on basic security standards, the so-called design basic threat (DBT), departing from the assumed interference. DBT is regularly reviewed by the competent federal authorities and authorities of the states and are revised on the basis of newly gained knowledge, if necessary, such as in the wake of the terrorist attacks in the U.S. on September 11, 2001. The operator must guarantee and give proof of a sufficient level of physical protection of the plant. The sole physical protection measures implemented by the operator cannot ensure the required protection from other interference by third parties for an unlimited time span. The concept therefore requires additional physical protection measures by the police. (author)

  11. ROLE OF UML SEQUENCE DIAGRAM CONSTRUCTS IN OBJECT LIFECYCLE CONCEPT

    Directory of Open Access Journals (Sweden)

    Miroslav Grgec

    2007-06-01

    Full Text Available When modeling systems and using UML concepts, a real system can be viewed in several ways. The RUP (Rational Unified Process defines the "4 + 1 view": 1. Logical view (class diagram (CD, object diagram (OD, sequence diagram (SD, collaboration diagram (COD, state chart diagram (SCD, activity diagram (AD, 2.Process view (use case diagram, CD, OD, SD, COD, SCD, AD, 3. Development view (package diagram, component diagram, 4. Physical view (deployment diagram, and 5. Use case view (use case diagram, OD, SD, COD, SCD, AD which combines the four mentioned above. With sequence diagram constructs we are describing object behavior in scope of one use case and their interaction. Each object in system goes through a so called lifecycle (create, supplement object with data, use object, decommission object. The concept of the object lifecycle is used to understand and formalize the behavior of objects from creation to deletion. With help of sequence diagram concepts our paper will describe the way of interaction modeling between objects through lifeline of each of them, and their importance in software development.

  12. An introduction to the atomic and radiation physics of plasmas

    CERN Document Server

    Tallents, G J

    2018-01-01

    Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

  13. Concepts first: A course with improved educational outcomes and parity for underrepresented minority groups

    Science.gov (United States)

    Webb, D. J.

    2017-08-01

    Two active learning physics courses were taught and compared. The "concepts first" course was organized to teach only concepts in the first part of the class, the ultimate goal being to increase students' problem-solving abilities much later in the class. The other course was taught in the same quarter by the same instructor using the same curricular materials, but covered material in the standard (chapter-by-chapter) order. After accounting for incoming student characteristics, students from the concepts-first course scored significantly better in two outcome measures: their grade on the final exam and the grade received in their subsequent physics course. Moreover, in the concepts-first class course, students from groups underrepresented in physics had final exam scores and class grades that were indistinguishable from other students. Finally, students who took at least one concepts-first course in introductory physics were found to have significantly higher rates of graduation with a STEM major than students from this cohort who did not.

  14. Self-Concept and Secondary School Students' Academic ...

    African Journals Online (AJOL)

    The purpose of this research was to investigate the influence of self concept on physics students' academic achievement in secondary schools. The study was conducted in Uyo LGA of Akwa Ibom State in Nigeria. A sample size of five hundred (500) senior secondary two physics students took part in the investigation.

  15. Organisational culture: an important concept for pharmacy practice research.

    Science.gov (United States)

    Scahill, Shane; Harrison, Jeff; Carswell, Peter; Babar, Zaheer-Ud-Din

    2009-10-01

    Throughout the developed world, community pharmacy is under considerable pressure to play a greater part in delivering effective primary health care. The requirement to adopt new roles continues to challenge community pharmacy and drive change. The factors that determine the ability of community pharmacy to effectively deliver services for health gain are complex and include; policy, professional, financial and structural elements. There is also evidence to suggest that organisational culture may influence the effectiveness of an organisation. In order to address this there is a need to understand the dimensions of organisational culture that lead to successful implementation of the change necessary for community pharmacy to become a more effective primary health care organisation. In this commentary, we introduce the concept of organisational culture, outline two frameworks for studying culture, and argue the benefits of pursuing an organisational culture research agenda for the evolution of pharmacy practice and research.

  16. Mikhail Geraskov (1874-1957): Methodological Concepts of Learning Physics

    Science.gov (United States)

    Ilieva, Mariyana

    2014-01-01

    Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions…

  17. Concepts of quantum optics

    CERN Document Server

    Knight, P L

    1983-01-01

    Concepts of Quantum Optics is a coherent and sequential coverage of some real insight into quantum physics. This book is divided into six chapters, and begins with an overview of the principles and concepts of radiation and quanta, with an emphasis on the significance of the Maxwell's electromagnetic theory of light. The next chapter describes first the properties of the radiation field in a bounded cavity, showing how each cavity field mode has the characteristics of a simple harmonic oscillator and how each can be quantized using known results for the quantum harmonic oscillator. This chapte

  18. Teaching the Conceptual History of Physics to Physics Teachers

    Science.gov (United States)

    Garik, Peter; Garbayo, Luciana; Benétreau-Dupin, Yann; Winrich, Charles; Duffy, Andrew; Gross, Nicholas; Jariwala, Manher

    2015-01-01

    For nearly a decade we have taught the history and philosophy of science as part of courses aimed at the professional development of physics teachers. The focus of the history of science instruction is on the stages in the development of the concepts and theories of physics. For this instruction, we designed activities to help the teachers…

  19. Indian mental concepts on children and adolescents.

    Science.gov (United States)

    Sitholey, Prabhat; Agarwal, Vivek; Vrat, Satya

    2013-01-01

    Ancient Indian mental concepts of children and adolescents are very similar to the contemporary modern concepts. The ancient concepts were based on a very positive regard for the children's development, education and future independence, adult role and contribution to society. Children were wanted and considered precious. The children were categorized in to 4 different varnas based on their intelligence, abilities, merit and aptitude and educated accordingly, away from their home, at Gurukuls. They had universal right to education. Girls received attention equal to boys. The boys were expected to earn their livelihood, while the girls were expected to be homemakers. Graduation of the young person at the end of education and return to home marked the emancipation from adolescence. Children's physical and mental health and its disorders were given due attention. Aetiology and treatment of physical and mental disorders was in accordance with the overall scientific development of those times.

  20. The Use of Academic Portfolio in the Learning and Assessment of Physics Students from a Singapore Private College

    Directory of Open Access Journals (Sweden)

    Meng Kay Ling

    2016-07-01

    Full Text Available The purpose of this research paper is to examine the use of portfolios in the teaching and learning of physics at a Singapore private college. The paper starts with a short introduction of the types of students and the purpose of using academic portfolios in their learning and assessment. Some ideas of how portfolios can be used in the local context will also be discussed. It is necessary for teachers to know how to incorporate portfolio assessment in their daily lesson plans. At the same time, students who are studying physics at the college should also know how to use portfolios to their academic advantage. The paper also highlights three of the relevant work artifacts that can be included into the physics portfolios. The three work samples are concept-maps, internet research reports and newspaper articles reports. Concept-maps are useful tools to help students establish the connections between concepts. Internet research reports serve as important means for students to know more about how some scientific devices or technology use physics in the operations. Newspaper articles reports allow students to understand the real impact of physics on the lives of people. Subsequent sections of the paper discuss about the organizational flow of the portfolio, the timeline, the selection process, the portfolio checklist and assessment rubrics, the positive influences of using portfolios, the issues to consider and also the potential problems that physics teachers may face in implementing portfolios. These sections present the important framework which teachers can use as references for their portfolio initiatives in schools.