WorldWideScience

Sample records for important food crop

  1. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives

    KAUST Repository

    Chakraborty, Subhra; Salekdeh, Ghasem Hosseini; Yang, Pingfang; Woo, Sun-Hee; Chin, Chiew Foan; Gehring, Christoph A; Haynes, Paul A.; Mirzaei, Mehdi; Komatsu, Setsuko

    2015-01-01

    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn would pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unravel the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regards to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.

  2. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives

    KAUST Repository

    Chakraborty, Subhra

    2015-06-02

    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn would pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unravel the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regards to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.

  3. 4F CROPS: Future crops for food, feed, fibre and fuel

    Energy Technology Data Exchange (ETDEWEB)

    E. Alexopoulou, E.; Christou, M.; Eleftheriadis, I. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    2008-07-01

    As different sectors - food, feed, fiber, and fuels - compete for land, the yielding potential of the future non-food crops has to be as efficient as possible in order to minimize the competition for land. The main objective of 4F CROPS project is to survey and analyze all the parameters that will play an important role in successful non-food cropping systems in the agriculture of EU27 alongside the existing food crop systems. The work will start with the prediction of the future land use in short term (2020) and long term (2030), taking under consideration restrict factors for agriculture and the market demand for non-food crops. The cropping possibilities based on regional potential levels, ecology and climate will be determined. This group of non-food crops will be then subjected to a comparative cost analysis with conventional crops for the same time framework. Socio-economic impacts, like farmers' income, rural development, public development, and public acceptance will analyze. Then environmental implications will be assessed compared to their respective conventional products (fossil energy, conversional materials). Several environmental impacts will be assessed like soil quality and soil erosion, air quality and climate change, water issues, biodiversity and landscape by using LCA and EIE methods. The regulatory framework of the non-food crops will be considered including existing policies, co-existence and safety measures when the crops used for both food and non-food crops. All the collected information will be used for the formation of scenarios for successful non-food cropping alongside food cropping systems answering whether a completive bioeconomy is a viable option for EU27.

  4. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  5. Genetically modified crops and food security.

    Directory of Open Access Journals (Sweden)

    Matin Qaim

    Full Text Available The role of genetically modified (GM crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  6. Genetically Modified Crops and Food Security

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy. PMID:23755155

  7. Genetically modified crops and food security.

    Science.gov (United States)

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.

  8. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2008-09-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  9. Radioactivity in food crops

    International Nuclear Information System (INIS)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for 137 Cs, 40 K, 90 Sr, 226 Ra, 228 Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for 241 Am, 7 Be, 60 Co, 55 Fe, 3 H, 131 I, 54 Mn, 95 Nb, 210 Pb, 210 Po, 106 Ru, 125 Sb, 228 Th, 232 Th, and 95 Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g -1 (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins

  10. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  11. Genetically Modified Crops and Food Security

    OpenAIRE

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  12. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Science.gov (United States)

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. 40 CFR 264.276 - Food-chain crops.

    Science.gov (United States)

    2010-07-01

    ...) Describe the procedures used in conducting any tests, including the sample selection criteria, sample size... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in...

  14. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  15. Crop-Specific EU Aid and Smallholder Food Security in Sierra Leone

    Directory of Open Access Journals (Sweden)

    Silvia L. Saravia-Matus

    2016-11-01

    Full Text Available The article analyses the viability of promoting crop-specific programs as a mean to improve smallholder net farm income and food security. The case study explores the relevance of European Union Stabilisation of Export Earnings (STABEX funds in supporting Sierra Leone’s agricultural development agenda. By analysing the drivers of food security for a number of targeted smallholders in the two most important agricultural zones of Sierra Leone, it is possible to compare the suitability of crop-specific support (in rice, cocoa and coffee versus general aid programs (public infrastructure, on and off farm diversification opportunities, sustainable practices, access to productive assets, etc.. The results indicate that crop diversification strategies are widespread and closely related to risk minimisation and enhanced food security among smallholders. Similarly, crop-specific programs mainly focusing on commercialisation tend to overlook important constraints associated to self-consumption and productivity.

  16. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    significant effects on food crop production and productivity. ... 2 Department of Economics and Resource management, Norwegian University of Life Sciences, Norway ... food markets work well, the problem of imperfect markets does not allow ..... prices at the time of purchase with the remaining balance due at the end of the.

  17. 40 CFR 265.276 - Food chain crops.

    Science.gov (United States)

    2010-07-01

    ... of crop and soil characteristics, sample selection criteria, sample size determination, analytical... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food chain crops. 265.276 Section 265... FACILITIES Land Treatment § 265.276 Food chain crops. (a) An owner or operator of a hazardous waste land...

  18. Food Security and Staple Crops. Staple Food Around the World

    International Nuclear Information System (INIS)

    Kilian, Lizette

    2012-01-01

    Of more than 50,000 edible plant species in the world, only a few hundred contribute significantly to our food supplies. Almost all of the world’s food energy intake is satisfied by just a few crop plants. Rice, maize and wheat make up two-thirds of this already small group of foods. These three grains are the staple foods for more than four billion people both as a source of nutrition and income. A staple crop, by definition, dominates the major part of our diet and supplies a major proportion of our energy and nutrient needs. If staple crops are threatened by drought, pests or nutrient-poor soils, hunger and poverty can rise dramatically.

  19. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    Science.gov (United States)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  20. SUPPLY AND UTILISATION OF FOOD CROPS IN GHANA, 1960 ...

    African Journals Online (AJOL)

    ROP4

    Due to that much attention has been placed on sustainable management of agricultural ... Supply (import and export) and utilisation (for food, feed, seed, farm manure, waste and other uses) of food crops have ..... Cassava is mainly used in non-poultry livestock production, i.e., for goats, sheep, pigs and some ruminants.

  1. Tropical crops as a basic source of food

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J.E.G.

    1979-01-01

    A study is made of the potential that exists for food production in the Latin American tropics, and ways in which this could improve and diversify nutritional patterns in other ecological regions. Crops which could become more important include roots and tubers, varieties of beans, fruits, nuts and vegetables. Tropical crops such as sugar cane and cassava could also be used as renewable sources of energy, to replace conventional non-renewable fuels.

  2. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  3. Genetic engineering of crops: a ray of hope for enhanced food security.

    Science.gov (United States)

    Gill, Sarvajeet Singh; Gill, Ritu; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    Crop improvement has been a basic and essential chase since organized cultivation of crops began thousands of years ago. Abiotic stresses as a whole are regarded as the crucial factors restricting the plant species to reach their full genetic potential to deliver desired productivity. The changing global climatic conditions are making them worse and pointing toward food insecurity. Agriculture biotechnology or genetic engineering has allowed us to look into and understand the complex nature of abiotic stresses and measures to improve the crop productivity under adverse conditions. Various candidate genes have been identified and transformed in model plants as well as agriculturally important crop plants to develop abiotic stress-tolerant plants for crop improvement. The views presented here are an attempt toward realizing the potential of genetic engineering for improving crops to better tolerate abiotic stresses in the era of climate change, which is now essential for global food security. There is great urgency in speeding up crop improvement programs that can use modern biotechnological tools in addition to current breeding practices for providing enhanced food security.

  4. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  5. Increased food production and reduced water use through optimized crop distribution

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  6. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    Science.gov (United States)

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa.

  7. Optimum Plans For Oilpalm And Food Crop Combinations In Edo ...

    African Journals Online (AJOL)

    Intercropping food crops in oil palm plantations is a popular practice among oil ... are not guided by economic rationale for the choice of food crops and oil palm. ... linear programming model for oil palm/food crops enterprise combinations in ...

  8. Progress update: crop development of biofortified staple food crops ...

    African Journals Online (AJOL)

    Over the past 15 years, biofortification, the process of breeding nutrients into food crops, has gained ample recognition as a cost-effective, complementary, feasible means of delivering micronutrients to populations that may have limited access to diverse diets, supplements, or commercially fortified foods. In 2008, a panel of ...

  9. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    associated to derive food production estimates. Based on trends analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. CropWatch bulletin can be downloaded from the CropWatch website at http://www.cropwatch.com.cn.

  10. Contribution of Food Crops to Household Food Security Among ...

    African Journals Online (AJOL)

    acer

    Department of Agricultural Economics And Extension, Usmanu Danfodiyo ... farmers to household food security in Patigi Local Government Area, Kwara ... They earn more revenue from rice (87%), sorghum (35%), melon (14.2%), ... the type of crops they grow on their farm .... help farmers achieve high crop yield, ability to.

  11. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  12. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil.

    Science.gov (United States)

    Novais, Samuel M A; Nunes, Cássio A; Santos, Natália B; D Amico, Ana R; Fernandes, G Wilson; Quesada, Maurício; Braga, Rodrigo F; Neves, Ana Carolina O

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil-one of the world's agriculture leaders-by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55-51 million tons, which would amount to 4.86-14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%- 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service.

  13. Importance of pollinators in changing landscapes for world crops

    OpenAIRE

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, glo...

  14. Factors Constraining Local Food Crop Production in Indonesia: Experiences from Kulon Progo Regency, Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    RADEN RIJANTA

    2013-01-01

    Full Text Available Local food crops are believed to be important alternatives in facing the problems of continuously growing price of food stuff worldwide. There has been a strong bias in national agricultural development policy towards the production of rice as staple food in Indonesia. Local food crops have been neglected in the agricultural development policy in the last 50 years, leading to the dependency on imported commodities and creating a vulnerability in the national food security. This paper aims at assessing the factors constraining local food production in Indonesia based on empirical experiences drawn from a research in Kulon Progo Regency, Yogyakarta Province. The government of Kulon Progo Regency has declared its commitment in the development of local food commodities as a part of its agricultural development policy, as it is mentioned in the long-term and medium-term development planning documents. There is also a head regency decree mandating the use of local food commodities in any official events organized by the government organisations. The research shows that there are at least six policy-related problems and nine technical factors constraining local food crops production in the regency. Some of the policy-related and structural factors hampering the production of local food crops consist of (1 long-term policy biases towards rice, (2 strong biases on rice diet in the community, (3 difficulties in linking policy to practices, (4 lack of information on availability of local food crops across the regency and (5 external threat from the readily available instant food on local market and (6 past contra-productive policy to the production of local food crops. The technical factors constraining local food production comprises (1 inferiority of the food stuff versus the instantly prepared food, (2 difficulty in preparation and risk of contagion of some crops, lack of technology for processing, (3 continuity of supply (some crops are seasonally

  15. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  16. Radioactive contamination in imported foods

    International Nuclear Information System (INIS)

    Kan, Kimiko; Maki, Toshio; Nagayama, Toshihiro; Hashimoto, Hideki; Kawai, Yuka; Kobayashi, Maki; Shioda, Hiroko; Nishima, Taichiro

    1990-01-01

    On April 26, 1986, explosion occurred in Chernobyl nuclear power station in USSR, and radioactivity contamination was brought about in almost all countries in the world. In European countries, crops were contaminated directly with radioactive fallout to high concentration. Also in Japan, after one week the radioactivity higher than usual was detected in environment, and also in vegetables, milk, tea leaves and others. Thereafter, in order to cope with the import of contaminated foods, inspection and watch system was strengthened by deciding the interim limit of radioactive concentration. However the cases of exceeding the interim limit were often reported. In order to remove the harmful foods due to radioactive contamination and to meet the fear of consumers, the authors measured the radioactive concentration in foods distributed in Tokyo and investigated the actual state of contamination. The samples were 920 imported foods. The experimental method, the preparation of samples, the method of analysis and the results are reported. The samples in which the radioactive concentration exceeding 50 Bq/kg was detected were 25 cases. The food having the high frequency of detection was flavors. (K.I.)

  17. Perspectives on genetically modified crops and food detection

    Directory of Open Access Journals (Sweden)

    Chih-Hui Lin

    2016-01-01

    Full Text Available Genetically modified (GM crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation.

  18. Perspectives on genetically modified crops and food detection.

    Science.gov (United States)

    Lin, Chih-Hui; Pan, Tzu-Ming

    2016-01-01

    Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.

  19. Foregone benefits of important food crop improvements in Sub-Saharan Africa

    Science.gov (United States)

    2017-01-01

    A number of new crops have been developed that address important traits of particular relevance for smallholder farmers in Africa. Scientists, policy makers, and other stakeholders have raised concerns that the approval process for these new crops causes delays that are often scientifically unjustified. This article develops a real option model for the optimal regulation of a risky technology that enhances economic welfare and reduces malnutrition. We consider gradual adoption of the technology and show that delaying approval reduces uncertainty about perceived risks of the technology. Optimal conditions for approval incorporate parameters of the stochastic processes governing the dynamics of risk. The model is applied to three cases of improved crops, which either are, or are expected to be, delayed by the regulatory process. The benefits and costs of the crops are presented in a partial equilibrium that considers changes in adoption over time and the foregone benefits caused by a delay in approval under irreversibility and uncertainty. We derive the equilibrium conditions where the net-benefits of the technology equal the costs that would justify a delay. The sooner information about the safety of the technology arrive, the lower the costs for justifying a delay need to be i.e. it pays more to delay. The costs of a delay can be substantial: e.g. a one year delay in approval of the pod-borer resistant cowpea in Nigeria will cost the country about 33 million USD to 46 million USD and between 100 and 3,000 lives. PMID:28749984

  20. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Science.gov (United States)

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  1. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  2. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  3. Food system consequences of a fungal disease epidemic in a major crop.

    Science.gov (United States)

    Godfray, H Charles J; Mason-D'Croz, Daniel; Robinson, Sherman

    2016-12-05

    Fungal diseases are major threats to the most important crops upon which humanity depends. Were there to be a major epidemic that severely reduced yields, its effects would spread throughout the globalized food system. To explore these ramifications, we use a partial equilibrium economic model of the global food system (IMPACT) to study a hypothetical severe but short-lived epidemic that reduces rice yields in the countries affected by 80%. We modelled a succession of epidemic scenarios of increasing severity, starting with the disease in a single country in southeast Asia and ending with the pathogen present in most of eastern Asia. The epidemic and subsequent crop losses led to substantially increased global rice prices. However, as long as global commodity trade was unrestricted and able to respond fast enough, the effects on individual calorie consumption were, to a large part, mitigated. Some of the worse effects were projected to be experienced by poor net-rice importing countries in sub-Saharan Africa, which were not affected directly by the disease but suffered because of higher rice prices. We critique the assumptions of our models and explore political economic pressures to restrict trade at times of crisis. We finish by arguing for the importance of 'stress-testing' the resilience of the global food system to crop disease and other shocks.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  4. Importance of pollinators in changing landscapes for world crops.

    Science.gov (United States)

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  5. Agrofuels and transgenic crops: a couple that promotes the loss of food sovereignty

    Directory of Open Access Journals (Sweden)

    Milena Espinosa

    2013-11-01

    Full Text Available In order to approach to understanding the threat agrofuels and transgenic crops pose to food sovereignty, this paper revises some statements in relation to the dynamics related to these proposals and the socio–environmental conflicts they generate. Thus, firstly,some key concepts are defined; then, a general revision of the agrofuel production and transgenic expansion context is made, pointing out the perspectives and risks of this couple; next, the agroenergy model effects on food sovereignty are briefly studied inLatin America through the case of Argentina, projected as an important agroenergy producer with large areas of land to cultivate transgenic soy for export; finally, some conclusions are presented: agrofuel production and transgenic crops have a negative impact on peasants and consumers because of the import of food, the increase of foodprices, the dependence on external agricultural inputs, land conflicts and the loss of agricultural diversity, in the end the loss of food sovereignty.

  6. Crops and food security--experiences and perspectives from Taiwan.

    Science.gov (United States)

    Huang, Chen-Te; Fu, Tzu-Yu Richard; Chang, Su-San

    2009-01-01

    Food security is an important issue that is of concern for all countries around the world. There are many factors which may cause food insecurity including increasing demand, shortage of supply, trade condition, another countries' food policy, lack of money, high food and oil prices, decelerating productivity, speculation, etc. The food self-sufficiency ratio of Taiwan is only 30.6% weighted by energy in 2007. Total agriculture imports and cereals have increased significantly due to the expansion of livestock and fishery industries and improve living standard. The agriculture sector of Taiwan is facing many challenges, such as: low level of food self-sufficiency, aging farmers, large acreage of set-aside farmlands, small scale farming, soaring price of fertilizers, natural disasters accelerated by climate change, and rapid changes in the world food economy. To cope with these challenges, the present agricultural policy is based on three guidelines: "Healthfulness, Efficiency, and Sustainability." A program entitled "Turning Small Landlords into Large Tenants" was launched to make effective use of idle lands. Facing globalization and the food crisis, Taiwan will secure stable food supply through revitalization of its set-aside farmlands and international markets, and provide technical assistance to developing countries, in particular for staple food crops.

  7. Trade and commerce in improved crops and food: an essay on food security.

    Science.gov (United States)

    Kershen, Drew L

    2010-11-30

    Agricultural trade between nations is a significant proportion of total international trade. Agricultural trade in transgenic crops faces extra complications due to the existence of domestic and international regimes that focus specifically on agricultural biotechnology. These specialized regimes create legal and commercial challenges for trade in transgenic crops that have significant implications for the food security of the nations of the world. By food security, one should understand not just the available supply of food, but also the quality of the food and the environmental impact of agricultural production systems. These specialized regimes for transgenic crops can either encourage or hinder the adoption of agricultural biotechnology as a sustainable intensive agriculture. Sustainable intensive agriculture offers hope for agronomic improvements for agricultural production, socio-economic betterment for farmers and environmental benefits for societies. Sustainable intensive agriculture offers particular hope for the poorest farmers of the world because agricultural biotechnology is a technology in the seed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  9. Increased nutritional value in food crops.

    Science.gov (United States)

    Goicoechea, Nieves; Antolín, M Carmen

    2017-09-01

    Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: 'End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Assessment of the safety of foods derived from genetically modified (GM) crops

    DEFF Research Database (Denmark)

    Konig, A.; Cockburn, A.; Crewel, R. W. R.

    2004-01-01

    of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use......This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group I of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics...... (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex...

  11. CLUSTER OF INDONESIA KABUPATEN-KOTA POTENTIAL IN DEVELOPING FOOD CROP AND HORTICULTURE COMMODITIES

    Directory of Open Access Journals (Sweden)

    Imam Wahyudi

    2016-09-01

    Full Text Available Identification of potential areas in an agricultural sector is needed in order to meet the national food needs, among others, by carrying out mapping the potential areas through clustering the Kabupaten-Kota in Indonesia, especially on imported agricultural commodities of food crops and horticultures. The use of cluster analysis with top-down clustering method (K-means produces the best cluster. Of 268 regencies-cities, there are 7 clusters, namely Cluster 1 consisting of 154 regencies, Cluster 2 consisting of 2 regencies, Cluster 3 consisting of only1 regency, Cluster 4 consisting of 8 regencies, Cluster 5 consisting of 24 regencies, Cluster 6 consisting of 75 regencies, and Cluster 7 consisting of 4 regencies. Each cluster has its own dominant commodity characteristics.  The results of typology klassen on constructed clusters show that food crop and horticulture commodities have grown well and fast. Out of 13 commodities, there are 7 major commodities: Cluster 1: rice and corns; Clusters 2, 3 and 7: cassava; Cluster 4: corns, cassavas and chilly; Cluster 5: apples; Cluster 6: corns, shallots, and garlic. Six other commodities do not grow well, namely sorghum, potatoes, soybeans, peanuts, oranges, and grapes. The potential lack of an area is due to the plants’ low productivity, which is mainly because of plant pests, highly operational cost, climates and natural disasters. Keywords: imports, food crops, horticulture, cluster, and leading sector.

  12. Assessment of the safety of foods derived from genetically modified (GM) crops.

    Science.gov (United States)

    König, A; Cockburn, A; Crevel, R W R; Debruyne, E; Grafstroem, R; Hammerling, U; Kimber, I; Knudsen, I; Kuiper, H A; Peijnenburg, A A C M; Penninks, A H; Poulsen, M; Schauzu, M; Wal, J M

    2004-07-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex modifications. First, the paper reviews test methods developed for the risk assessment of chemicals, including food additives and pesticides, discussing which of these methods are suitable for the assessment of recombinant proteins and whole foods. Second, the paper presents a systematic approach to combine test methods for the safety assessment of foods derived from a specific GM crop. Third, the paper provides an overview on developments in this area that may prove of use in the safety assessment of GM crops, and recommendations for research priorities. It is concluded that the combination of existing test methods provides a sound test-regime to assess the safety of GM crops. Advances in our understanding of molecular biology, biochemistry, and nutrition may in future allow further improvement of test methods that will over time render the safety assessment of foods even more effective and informative. Copryright 2004 Elsevier Ltd.

  13. Radioactivity in food crops from high background radiation area in southwest area

    International Nuclear Information System (INIS)

    Shanthi, G.; Maniyan, C.G.; Allan Gnana Raj, G.; Thampi Thanka Kumaran, J.

    2009-01-01

    The study was carried out to evaluate radioactive concentration in food crops grown in naturally high-background radiation areas in southwest India. Seventeen varieties of food crops were collected from different parts of Kanyakumari district. The gross alpha and beta activities of the collected samples were measured using alpha scintillation counter and low beta counter respectively. The alpha activity was maximum in tapioca (497± 72 Bq kg -1 ) and the beta activity was maximum in paddy grain (10,946±583 Bq kg -1 ). The gamma activity of the food samples was studied by measuring the activity concentration of the radionuclides ( 226 Ra, 228 Th, 238 U, 40 K) in the food crops. The radioactivity content of the food crops from high-background radiation area was higher when compared to similar samples collected from low-background radiation area. The daily radionuclide intake from the food crops grown and consumed by the public was 127.696 Bq and daily internal dose resulting from ingestion of radionuclides in food was 2.34 μSv. (author)

  14. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.

    Science.gov (United States)

    Ren, Dandan; Yang, Yonghui; Yang, Yanmin; Richards, Keith; Zhou, Xinyao

    2018-06-01

    While agriculture places the greatest demand on water resources, increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example) by: (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain is produced using scarce water resources but exported to other regions; and (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m 3 of virtual water (10.81 bn m 3 of blue virtual water) are used by wheat and maize production and 8.77 bn m 3 of virtual water used in nearly 2 million ha of cropland to overproduce 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing & Tianjin imported mostly grain (wheat and maize) from Shandong Province. Then, Hebei Province, as an exporting-based sub-region with severe water shortage, overproduced too much grain for other regions, which aggravated the water crisis. To achieve an integrated and sustainable development of the Beijing-Tianjin-Hebei Region, Hebei Province should stop undertaking the breadbasket role for Beijing & Tianjin and pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in cultivated crops can potentially solve the overuse of water resources without adverse effects on food supply

  15. Land-Water-Food Nexus and Indications of Crop Adjustment for Water Shortage Solution

    Science.gov (United States)

    Yang, Y.; Ren, D.; Zhou, X.

    2017-12-01

    Agriculture places the greatest demand on water resources, and increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example), by (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain are produced using scarce water resources but exported to other regions. (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m3 of virtual water (10.81 bn m3 of blue virtual water) are used by wheat and maize production and nearly 2 million ha of cropland using 8.77 bn m3 of virtual water overproduced 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing and Tianjin (BT) imported mostly grain (wheat and maize) from Shandong (SD). Whereas, Hebei (HB), as an exporting-based sub-region with sever water shortage, overproduced too much grain for other regions (like Central area), which aggravated water crisis. To achieve Beijing-Tianjin-Hebei's integrated and sustainable development, HB should not undertake the breadbasket role for BT but pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in the cultivated crops can potentially solve the overuse of water resources without adverse effect on food supply, and provides meaningful information to support policy

  16. Technical efficiency among the food crop farmers in Rivers State ...

    African Journals Online (AJOL)

    This study estimated technical efficiency and isolated determinants of technical inefficiency among food crop farmers in Rivers State, Nigeria. The data was collected with structured questionnaire from 180 food crop farmers randomly selected from 10 out of the 15 upland LGAs that make up Rivers State. A stochastic frontier ...

  17. Changing pollutants to green biogases for the crop food cycle chain.

    Science.gov (United States)

    Zong, B Y; Xu, F J; Zong, B D; Zhang, Z G

    2012-09-01

    When fossil fuels on the Earth are used up, which kind of green energy can be used to replace them? Do every bioenergy generation or crop food chain results in environmental pollution? These questions are major concerns in a world facing restricted supplies of energy and food as well as environmental pollutions. To alleviate these issues, option biogases are explored in this paper. Two types of biogas generators were used for modifying the traditional crop food chain [viz. from atmospheric CO(2) photosynthesis to crops, crop stem/husk biowastes (burnt in cropland or as home fuels), to livestock droppings (dumping away), pork and people foods, then to CO(2)], via turning the biowaste pollutants into green bioenergies. By analyzing the traditional food chain via observation method, the drawbacks of by-product biowastes were revealed. Also, the whole cycle chain was further analyzed to assess its "greenness," using experimental data and other information, such as the material balance (e.g., the absorbed CO(2), investment versus generated food, energy, and wastes). The data show that by using the two types of biogas generators, clean renewable bioenergy, crop food, and livestock meat could be continuously produced without creating any waste to the world. The modification chain largely reduced CO(2) greenhouse gas and had a low-cost investment. The raw materials for the gas generators were only the wastes of crop stems and livestock droppings. Thus, the recommended CO(2) bioenergy cycle chain via the modification also greatly solved the environmental biowaste pollutions in the world. The described two type biogases effectively addressed the issues on energy, food, and environmental pollution. The green renewable bioenergy from the food cycle chain may be one of suitable alternatives to fossil and tree fuels for agricultural countries.

  18. A 12-Month Study of Food Crops Contaminated by Heavy Metals, Lusaka, Zambia

    Science.gov (United States)

    Holden, J. A.; Malamud, B. D.; Chishala, B. H.; Kapungwe, E.; Volk, J.; Harpp, K. S.

    2009-04-01

    We investigate heavy-metal contamination of irrigation water used for urban agriculture and subsequent contamination of food crops in Chunga, NW Lusaka, the capital of Zambia. Inhabitants of the Chunga area rely on urban agriculture as both a major source of income and food. From August 2004 to July 2005, monthly samples of irrigation water used and edible portions of food crops were taken from a farmer's plot at Chunga. The food crops (cabbage, Chinese cabbage, pumpkin leaves, rape, sweet potato leaves and tomatoes) are grown using irrigation throughout the year. Irrigation water samples and digested food crop samples were analysed using ICP-MS at the Department of Geology, Colgate University, USA for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, and U. We find heavy-metal concentrations present in both irrigation water and food crop samples. Zambian sample concentrations were compared to Zambian and international legislative and guideline limits for concentrations of heavy metals in industrial effluent, heavy metals in irrigation water and heavy metals in foods. In irrigation water samples recommended national and/or international legislative limits for Al, Cr, Mn, Fe, Cu, Hg, Pb and U were exceeded. Limits for Hg were exceeded by up to 130 times. There were heavy-metal concentrations above recommended limits in food crops for Cr, Fe, Ni, Cu, Zn, Cd, Hg and Pb throughout the different food crops grown and throughout the year. In all 14 samples recommended limits for Cr, Fe and Hg were exceeded. Zambian legislated limits for food crops were exceeded by up to 16 times for Pb and 58 times for Hg. The results of this study show that heavy metal contamination is present in irrigation water used and food crops grown in urban agriculture in Chunga, Lusaka, Zambia. Recommended maximum limits for heavy metals in irrigation water and food are exceeded in some samples indicating there may be a risk to health.

  19. Determining the potential productivity of food crops in controlled environments

    Science.gov (United States)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  20. Diversifying crops for food and nutrition security - a case of teff.

    Science.gov (United States)

    Cheng, Acga; Mayes, Sean; Dalle, Gemedo; Demissew, Sebsebe; Massawe, Festo

    2017-02-01

    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size. © 2015 Cambridge Philosophical Society.

  1. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    Science.gov (United States)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with

  2. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    Science.gov (United States)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  3. Food Crops Breeding in Sri Lanka - Achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, S D.L.; Peiris, R [Central Agricultural Research Institute, Gannoruwa, Peradeniya (Sierra Leone)

    1988-12-31

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka`s best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet.

  4. Food Crops Breeding in Sri Lanka - Achievements and challenges

    International Nuclear Information System (INIS)

    Jayawardena, S.D.L.; Peiris, R.

    1988-01-01

    Since Rice is the staple food in Sri Lanka strong emphasis has been given for the improvement of Rice in Sri Lanka. Over the last three decades 36 high yielding rice varieties have been developed. The present yield potential of Sri Lanka's best varieties have been recorded to be be around 10 mt/ha. At present more than 90% of the total paddy extent is grown with modern high yielding rice varieties and as a result the national paddy production has increased from 1.8 mt/ha to 3.5 mt/ha. Induced mutations is used in plant breeding. Use of radiation to produce haploids and for production of transitory sexuality in apomicts have been done. Under the coarse grains and millet varietal program, maize have recorded increasing attention owing to the fact that is is used for human consumption and as feed grain for poultry. Promising varieties of Soya bean, cowpea, mung bean, black gram and ground nut have been recommended for cultivation. Research attention has also been directed towards Root and Tuber crops which have great potential in providong food for the rapidly increasing population in Sri Lanka. Potato is the most important and popular tuber crop. A number of improved varieties with respect to a number of local fruit crops such as banana, sweet orange, lemonime, avocado, pineapple, rambutan, grapes.have been introduced. New improved varieties of indigenous vegetables such as tomato, brinjal etc. have been produced. Chillies and onions with desirable qualities also have been identified. Mutation breeding provides a novel approach to the plant breeders for raising the productivity of crop plants, thus complementing conventional methods. Any way the use of induced mutations in crop improvement has not been properly exploited in Sri Lanka as yet

  5. [Assessment of allergenicity of genetically modified food crops].

    Science.gov (United States)

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  6. Attitudes in China about Crops and Foods Developed by Biotechnology

    OpenAIRE

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M.

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their ...

  7. IMPACT OF AGRICULTURAL POLICY ON RELATIVE PRICE VARIABILITY OF FOOD CROPS AND INFLATION IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Ifeoluwa Akin Babalola

    2016-08-01

    Full Text Available Prices of food crops in Nigeria tend to exhibit similar trend with inflation. The study therefore established quantitatively relationships among agricultural policy, relative price variability (RPV of food crops and inflation in Nigeria. Data for the study includes annual producer prices (nominal and output of food crops and annual inflation rate obtained from the publications of the Central Bank of Nigeria, Nigerian Bureau of Statistics, Food and Agricultural Organisation and Nigerian Institute of Social and Economic Research covering the period of 1970-2009. Analytical tools used were RPV index and Error Correction Method (ECM. The results showed that the variables are stationary at their levels. As inflation increases, RPV of food crops also increases both in short run (0.0002 and the long run (0.0310. Civilian Post-Structural Adjustment Period Policies (CPSAP caused a significant reduction in inflation and consequently reduced the   RPV of food crops in the long run. There is a need for policies that will buffer the food crop sub-sector from the effects of inflation. Policies that reduce the rate of inflation and minimise RPV among food crops are needed. Effective management of inefficiencies and misallocation of resources in the sub-sector should be explored.

  8. Determinants of Pesticide Use in Food Crop Production in Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2018-02-01

    Full Text Available The present study examines pesticide use in producing multiple food crops (i.e., rice, yam, and cassava and identifies the range of socio-economic factors influencing pesticide use by 400 farmers from Ebonyi and Anambra states of Southeastern Nigeria using a Tobit model. Results reveal that 68% of the farmers grew at least two food crops. Overall, 41% of the farmers applied pesticides in at least one food crop, whereas 70% of the farmers producing both rice and yam applied pesticides. Pesticide use rates and costs vary significantly amongst farmers producing different food crops and crop combinations. Pesticide use rate is highest for producing yam followed by cassava estimated at 1.52 L/ha costing Naira 1677.97 per ha and 1.37 L/ha costing Naira 1514.96 per ha. Similarly, pesticide use rate is highest for the farmers that produce both yam and cassava followed by farmers that produce both rice and cassava. The inverse farm size–pesticide use rate exists in the study areas, i.e., the pesticide use rate is highest for the small farmers (p < 0.01. Farmers seem to treat pesticides as substitutes for labor and ploughing services, indicated by the significant positive influence of labor wage and ploughing price on pesticide use. Increases in yam price significantly increase pesticide use. Rice production significantly increases pesticide use, whereas cassava production significantly reduces pesticide use. Male farmers use significantly more pesticides. Farming experience is significantly positively related to pesticide use. Policy recommendations include land reform policies aimed at increasing farm operation size and investment in programmes to promote cassava production to reduce pesticide use in food crop production in Southeastern Nigeria.

  9. The Performance Of Oil Palm And Different Food Crop ...

    African Journals Online (AJOL)

    The experiment was carried out between 1996 and 2004 to determine the productivity and economic returns to the resource base of farmers practicing different oil palm/food crop intercropping in an intensive four-year sequential cropping using the standard oil palm density. Oil palm was intercropped for four years, ...

  10. Rethinking crop diversification under changing climate, hydrology and food habit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Aminul Islam Akanda

    2011-11-01

    Full Text Available Extreme temperature, frequent and intensive flood, cyclone and other natural disasters due to climate change became acute in Bangladesh and would be severe in future. Besides, water crisis due to shortage of upstream flow and very little rainfall in dry season would affect in a same way. Gradual higher dependency on groundwater irrigation during last few decades created pressure on groundwater even after a huge discharge during rainy season. Using secondary data, this research analyzed the changes in cropping pattern along with a forecast of area to be distributed among various crops in 2029-30 and proposed a re-distribution considering probable crop failure, water crisis and change in food habit. Inherit rice-dominated food habit and government incentive policy encouraged farmers to be concentrated highly on water-intensive rice farming. However, a recent tendency of less rice consumption would encourage crop diversification in future. An incentive policy for farming of diversified crops and their intensification in all crop seasons would be effective to reduce pressure on groundwater and to persuade a balanced food basket in Bangladesh.

  11. Safety assessment of foods derived from genetically modified crops

    NARCIS (Netherlands)

    Kleter, G.A.; Kuiper, H.A.

    2003-01-01

    The pre-market safety assessment of foods derived from genetically modified crops is carried out according to the consensus approach of "substantial equivalence", in other words: the comparative safety assessment. Currently, the safety assessment of genetically modified foods is harmonized at the

  12. Safety assessment of foods from genetically modified crops in countries with developing economies.

    Science.gov (United States)

    Delaney, Bryan

    2015-12-01

    Population growth particularly in countries with developing economies will result in a need to increase food production by 70% by the year 2050. Biotechnology has been utilized to produce genetically modified (GM) crops for insect and weed control with benefits including increased crop yield and will also be used in emerging countries. A multicomponent safety assessment paradigm has been applied to individual GM crops to determine whether they as safe as foods from non-GM crops. This paper reviews methods to assess the safety of foods from GM crops for safe consumption from the first generation of GM crops. The methods can readily be applied to new products developed within country and this paper will emphasize the concept of data portability; that safety data produced in one geographic location is suitable for safety assessment regardless of where it is utilized. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    Science.gov (United States)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  14. Climate resilient crops for improving global food security and safety.

    Science.gov (United States)

    Dhankher, Om Parkash; Foyer, Christine H

    2018-05-01

    Food security and the protection of the environment are urgent issues for global society, particularly with the uncertainties of climate change. Changing climate is predicted to have a wide range of negative impacts on plant physiology metabolism, soil fertility and carbon sequestration, microbial activity and diversity that will limit plant growth and productivity, and ultimately food production. Ensuring global food security and food safety will require an intensive research effort across the food chain, starting with crop production and the nutritional quality of the food products. Much uncertainty remains concerning the resilience of plants, soils, and associated microbes to climate change. Intensive efforts are currently underway to improve crop yields with lower input requirements and enhance the sustainability of yield through improved biotic and abiotic stress tolerance traits. In addition, significant efforts are focused on gaining a better understanding of the root/soil interface and associated microbiomes, as well as enhancing soil properties. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  15. Importing food damages domestic environment: Evidence from global soybean trade.

    Science.gov (United States)

    Sun, Jing; Mooney, Harold; Wu, Wenbin; Tang, Huajun; Tong, Yuxin; Xu, Zhenci; Huang, Baorong; Cheng, Yeqing; Yang, Xinjun; Wei, Dan; Zhang, Fusuo; Liu, Jianguo

    2018-05-22

    Protecting the environment and enhancing food security are among the world's Sustainable Development Goals and greatest challenges. International food trade is an important mechanism to enhance food security worldwide. Nonetheless, it is widely concluded that in international food trade importing countries gain environmental benefits, while exporting countries suffer environmental problems by using land and other resources to produce food for exports. Our study shows that international food trade can also lead to environmental pollution in importing countries. At the global level, our metaanalysis indicates that there was increased nitrogen (N) pollution after much farmland for domestically cultivated N-fixing soybeans in importing countries was converted to grow high N-demanding crops (wheat, corn, rice, and vegetables). The findings were further verified by an intensive study at the regional level in China, the largest soybean-importing country, where the conversion of soybean lands to corn fields and rice paddies has also led to N pollution. Our study provides a sharp contrast to the conventional wisdom that only exports contribute substantially to environmental woes. Our results suggest the need to evaluate environmental consequences of international trade of all other major goods and products in all importing countries, which have significant implications for fundamental rethinking in global policy-making and debates on environmental responsibilities among consumers, producers, and traders across the world.

  16. Sustainability of Marketing Food Crops through the Internet in Lagos ...

    African Journals Online (AJOL)

    abdulaphyz

    Key Words: Marketing food crop, internet marketing in Nigeria .... have been made easy such that prospective customers are exposed to the varieties via ... earlier found a positive relationship between perceived usefulness and adoption of .... crops, varieties and, easy and personalized experience devised as encouraging ...

  17. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    Science.gov (United States)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  18. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal...

  19. Environmental Sustainability of Gm Crops for Food Safety on Risk Society

    Directory of Open Access Journals (Sweden)

    Gil Ramos de Carvalho Neto

    2016-10-01

    Full Text Available GM crops are presented as an alternative to the erradication of hunger. The risk society, however, considering the brazilian environmental law - specially the brazilian legislation on biosafety - the food safety and nutritional law and the economic and social data on the subject, it appears that the environmental sustainability of these crops is not yet complete. Producers should adopt additional safeguards if they wish a sustainable agriculture with effective food security.

  20. Matching Crew Diet and Crop Food Production in BIO-Plex

    Science.gov (United States)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  1. Perceived Effect of Climate Variation on Food Crop Production in ...

    African Journals Online (AJOL)

    The study objective is to determine the perception of food crop farmers in Oyo state to climate variation as it affects their production, because the relationship between climate variation and food security is direct and Oyo State has enormous potentials to make Nigeria food secure. Multi-stage sampling technique was used to ...

  2. Trend analysis of food crops production in Nigeria (1990-2005 ...

    African Journals Online (AJOL)

    Secondary data were obtained from Nigeria Institute for Social and Economic Research (NISER), and National Bureau of Statistics (NBS). Regression analysis was used for data analysis. The result shows that the physical output of food crops in Nigeria portrayed a clear trend over the period reviewed. Out of all the crops ...

  3. analysis of cost efficiency in food crop production among small-scale

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Food crop production in Nigeria is dominated by small-scale farmers ... influenced by farm-specific factors, which delineate their ..... vii). Cost of seed: This is the total expenses on seed incurred by the farmer during the last cropping season. It.

  4. Floods and food security: A method to estimate the effect of inundation on crops availability

    Science.gov (United States)

    Pacetti, Tommaso; Caporali, Enrica; Rulli, Maria Cristina

    2017-12-01

    The inner connections between floods and food security are extremely relevant, especially in developing countries where food availability can be highly jeopardized by extreme events that damage the primary access to food, i.e. agriculture. A method for the evaluation of the effects of floods on food supply, consisting of the integration of remote sensing data, agricultural statistics and water footprint databases, is proposed and applied to two different case studies. Based on the existing literature related to extreme floods, the events in Bangladesh (2007) and in Pakistan (2010) have been selected as exemplary case studies. Results show that the use of remote sensing data combined with other sources of onsite information is particularly useful to assess the effects of flood events on food availability. The damages caused by floods on agricultural areas are estimated in terms of crop losses and then converted into lost calories and water footprint as complementary indicators. Method results are fully repeatable; whereas, for remote sensed data the sources of data are valid worldwide and the data regarding land use and crops characteristics are strongly site specific, which need to be carefully evaluated. A sensitivity analysis has been carried out for the water depth critical on the crops in Bangladesh, varying the assumed level by ±20%. The results show a difference in the energy content losses estimation of 12% underlying the importance of an accurate data choice.

  5. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop

    Directory of Open Access Journals (Sweden)

    Maria Isabel Casas

    2014-09-01

    Full Text Available Agricultural outputs have resulted in food production continuously expanding. Satisfying the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, resulted in crop varieties with higher caloric intake but lacking many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step towards a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  6. Productivity growth in food crop production in Imo State, Nigeria ...

    African Journals Online (AJOL)

    Agriculture plays pivotal roles in Nigeria including food security, employment, foreign exchange earnings and poverty reduction. This study examined the growth in food crop productivity in Imo State in Nigeria with emphasis on the decomposition of total factor productivity (TFP) into technical progress, changes in technical ...

  7. Assessing genetically modified crops to minimize the risk of increased food allergy: A review

    NARCIS (Netherlands)

    Goodman, Richard E.; Hefle, Susan L.; Taylor, Steven L.; van Ree, Ronald

    2005-01-01

    The first genetically modified (GM) crops approved for food use ( tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have

  8. Genetic improvement of under-utilized and neglected crops in low income food deficit countries through irradiation and related techniques. Proceedings of a final research coordination meeting

    International Nuclear Information System (INIS)

    2004-11-01

    The majority of the world's food is produced from only a few crops, and yet many neglected and under-utilized crops are extremely important for food production in low income food deficit countries (LIFDCs). As the human population grows at an alarming rate in LIFDCs, food availability has declined and is also affected due to environmental factors, lack of improvement of local crop species, erosion of genetic diversity and dependence on a few crop species for food supply. Neglected crops are traditionally grown by farmers in their centres of origin or centres of diversity, where they are still important for the subsistence of local communities, and maintained by socio-cultural preferences and traditional uses. These crops remain inadequately characterised and, until very recently, have been largely ignored by research and conservation. Farmers are losing these crops because they are less competitive with improved major crop species. Radiation-induced mutation techniques have successfully been used that benefited the most genetic improvement of 'major crops' and their know-how have a great potential for enhancing the use of under-utilized and neglected species and speeding up their domestication and crop improvement. The FAO/IAEA efforts on genetic improvement of under-utilized and neglected species play a strategic role in complementing the work that is being carried out worldwide in their promotion. This CRP entitled Genetic Improvement of Under-utilized and Neglected Crops in LIFDCs through Irradiation and Related Techniques was initiated in 1998 with an overall objective to improve food security, enhance nutritional balance, and promote sustainable agriculture in LIFDCs. Specific objectives addressed major constraints to productivity of neglected and under-utilized crops by genetic improvement with radiation-induced mutations and biotechnology in order to enhance economic viability and sustain crop species diversity, and in future to benefit small farmers. This

  9. Crop Diversity: An Unexploited Treasure Trove for Food Security.

    Science.gov (United States)

    Massawe, Festo; Mayes, Sean; Cheng, Acga

    2016-05-01

    The prediction is that food supply must double by 2050 to cope with the impact of climate change and population pressure on global food systems. The diversification of staple crops and the systems in which they grow is essential to make future agriculture sustainable, resilient, and suitable for local environments and soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Toxicological evaluation of proteins introduced into food crops

    Science.gov (United States)

    Kough, John; Herouet-Guicheney, Corinne; Jez, Joseph M.

    2013-01-01

    This manuscript focuses on the toxicological evaluation of proteins introduced into GM crops to impart desired traits. In many cases, introduced proteins can be shown to have a history of safe use. Where modifications have been made to proteins, experience has shown that it is highly unlikely that modification of amino acid sequences can make a non-toxic protein toxic. Moreover, if the modified protein still retains its biological function, and this function is found in related proteins that have a history of safe use (HOSU) in food, and the exposure level is similar to functionally related proteins, then the modified protein could also be considered to be “as-safe-as” those that have a HOSU. Within nature, there can be considerable evolutionary changes in the amino acid sequence of proteins within the same family, yet these proteins share the same biological function. In general, food crops such as maize, soy, rice, canola etc. are subjected to a variety of processing conditions to generate different food products. Processing conditions such as cooking, modification of pH conditions, and mechanical shearing can often denature proteins in these crops resulting in a loss of functional activity. These same processing conditions can also markedly lower human dietary exposure to (functionally active) proteins. Safety testing of an introduced protein could be indicated if its biological function was not adequately characterized and/or it was shown to be structurally/functionally related to proteins that are known to be toxic to mammals. PMID:24164515

  11. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  12. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Directory of Open Access Journals (Sweden)

    Fei Han

    Full Text Available Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  13. Attitudes in China about Crops and Foods Developed by Biotechnology

    Science.gov (United States)

    Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M.

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China. PMID:26418161

  14. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Science.gov (United States)

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  15. Responses of tropical root crops to climate change: implications for Pacific food security

    Science.gov (United States)

    Gleadow, R.; Webber, B.; Macness, N.; Lisson, S.; Nauluvula, P.; Hargraves, J.; Crimp, S. J.

    2013-12-01

    Cassava and taro are an important source of calories in many parts of the developing world and hold much promise for meeting the need for food security in equatorial regions. Communities in the Pacific Island countries reliant on agriculture-based livelihood systems have been identified as particularly at risk from climate change, due to likely increases in crop failure, new patterns of pests and diseases, lack of appropriate seed and plant material, loss of livestock and potential loss of arable land. Recent shortfalls in agricultural production resulting from changing export markets, commodity prices, climatic variation, and population growth and urbanisation, have contributed further to regional food insecurity concerns. Cassava and taro contain herbivore defense chemicals that are detrimental to human health (cyanogenic glucosides and calcium oxalate). Unprocessed cassava can cause acute cyanide intoxication, paralysis and even death, especially during droughts. A number of activities are already underway in the Pacific region to identify ways to ameliorate existing climate risk and enhance current agricultural production. Whilst these activities are important to ensure long-term agricultural sustainability, there remains a significant degree of uncertainty as to how effective these strategies may be in the face of a changing and increasingly variable future climate. We present our current understanding of the impact of climate change on key Pacific production systems - specifically those based on the staple root crops, taro and cassava. This includes (1) Our understanding of the responses of cassava and taro crops to existing environmental drivers (climate, soil and nutrient interactions); (2) The responses of cassava and taro crops to enhanced CO2 conditions; and (3) Efforts to model productivity responses (within the APSIM framework) and results for locations in the Pacific.

  16. Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China’s main food crops

    Science.gov (United States)

    Zhang, Ying; Liu, Yanping; Shibata, Hideaki; Gu, Baojing; Wang, Yawei

    2018-01-01

    A nitrogen (N) flow, divided into production, food supply, and consumption phases, was designed to calculate the virtual N factors (VNFs) and N footprints (NFs) of China’s main food crops. It covered four food groups—cereals, tubers, vegetables, and fruits—comprising 24 food crops. A meta-analysis of 4896 relevant examples from 443 publications was conducted to build a database on N availability and N loss rates during each stage. We calculated N loss from each food group during each phase, and estimated VNFs and NFs based on N loss. It was found that 39.2%-67.6% of N inputs were lost during the production phase, 6.6%-15.2% during the food supply phase, and 0.9%-6.7% during the consumption phase. VNFs for cereals, tubers, vegetables, and fruits were 2.1, 2.9, 4.1 and 8.6, respectively. To raise public awareness, we also calculated the NFs, which were 30.9, 6.7, 7.4, and 17.2 g N kg-1 for cereals, tubers, vegetables, and fruits consumed, respectively, equal to 9.3 kg N capita-1 yr-1 consumption for these four food crops in China. We concluded that policies and strategies to reduce N loss, especially N loss embedded in food loss, must be taken into account to improve the technologies, infrastructure, approaches, and social awareness in reducing nutrient loss during food production and consumption phases.

  17. The Empowerment Strategy for The Food Crop Farmers in Anticipating The Climate Change

    Directory of Open Access Journals (Sweden)

    Efriyani Sumastuti

    2015-12-01

    Full Text Available In Indonesia, the climate change and the global warming like changes in the pattern and distribution of the rainfall give impacts on agricultural production at large, especially in the food crops. These also cause droughts, floods, landslides, forest fires, rising temperatures in urban areas, and rising sea levels. The above impacts are felt by the farmers because those can lead to a decrease in production even the crop failure. This research aims to develop an empowerment strategy of the food crop farmers in anticipating the climate change in Central Java. The data used is the primary data obtained through in-depth interviews with key-person and the Focus Group Discussion (FGD. The Analysis Hierarchy Process (AHP is conducted to determine the program priorities and strate gies. The result of research shows that anticipating the climate change should be synergistically conducted in four aspects: human resources, technology, institutional and production, by involving various groups in the society. Various groups can be grouped into academics, businessmen / private sectors, government and community of food crop farmers / society.

  18. Nuclear techniques to study the role of mycorrhiza in increasing food crop production

    International Nuclear Information System (INIS)

    1985-07-01

    A group of consultants, whose names are listed at the end of this publication were invited by the FAO/IAEA Division to Vienna from 16-20 November 1981 to review, together with the Division's staff, the state-of-the-art regarding Vascular-arbuscular-mycorrhizal symbiosis with various food crops, to assess the useful role of the association in food crop production, and to recommend inputs that the Joint FAO/IAEA Division could make to promote research which might lead to the exploitation of VAM for increased crop production. The reports presented at the meeting covered several topics, including the ecology of the VAM fungus, mechanism of VAM infection, factors affecting the establishment of an effective symbiosis with food crops, mechanisms for enhanced nutrient availability to mycorrhizal plants, increased tolerance of mycorrhizal plants to adverse environmental conditions, inoculum production and field inoculation procedures. These reports, together with the experimental plans and recommendations made at the meeting, are embodied in this unpriced Technical Document. Separate abstracts were prepared for the various presentations at this meeting

  19. Comparative analysis of women's contribution to food crop ...

    African Journals Online (AJOL)

    Women in Nigeria form a significant part of the population and are practically involved in agricultural activities. Based on the involvement of women in agriculture and in the rural economies of Nigeria, this study evaluates the contribution of women to food crop production. This is to establish knowledge about what farm ...

  20. Assessment of the safety of foods derived from genetically modified (GM) crops

    NARCIS (Netherlands)

    König, A.; Cockburn, A.; Crevel, R.W.R.; Debruyne, E.; Grafstroem, R.; Hammerling, U.; Kimber, I.; Knudsen, I.; Kuiper, H.A.; Peijnenburg, A.A.C.M.; Penninks, A.H.; Poulsen, M.; Schauzu, M.; Wal, J.M.

    2004-01-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of

  1. Food Yields and Nutrient Analyses of the Three Sisters: A Haudenosaunee Cropping System

    Directory of Open Access Journals (Sweden)

    Jane Mt.Pleasant

    2016-11-01

    Full Text Available Scholars have studied The Three Sisters, a traditional cropping system of the Haudenosaunee (Iroquois, from multiple perspectives. However, there is no research examining food yields, defined as the quantities of energy and protein produced per unit land area, from the cropping system within Iroquoia. This article compares food yields and other nutrient contributions from the Three Sisters, comprised of interplanted maize, bean and pumpkin, with monocultures of these same crops. The Three Sisters yields more energy (12.25 x 106 kcal/ha and more protein (349 kg/ha than any of the crop monocultures or mixtures of monocultures planted to the same area. The Three Sisters supplies 13.42 people/ha/yr. with energy and 15.86 people/ha/yr. with protein. Nutrient contents of the crops are further enhanced by nixtamalization, a traditional processing technique where maize is cooked in a high alkaline solution. This process increases calcium, protein quality, and niacin in maize.

  2. Urban food crop production capacity and competition with the urban forest

    Science.gov (United States)

    Jeffrey J Richardson; L. Monika Moskal

    2016-01-01

    The sourcing of food plays a significant role in assessing the sustainability of a city, but it is unclear how much food a city can produce within its city limits. In this study, we propose a method for estimating the maximum food crop production capacity of a city and demonstrate the method in Seattle, WA USA by taking into account land use, the light environment, and...

  3. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    Science.gov (United States)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices

  4. Natural Radioactivity in Some Food Crops from Bangka-Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini

    2014-06-01

    Full Text Available Natural radioactivities of food crops are the main sources of internal radiation exposure in humans. Bangka Belitung islands of Indonesia has natural background radioactivity higher than normal area because of tin mining activities.The study was carried out to evaluate the natural radioactivity concentration in some food crops grown in Bangka and Belitung Islands. Food samples collected from Bangka and Belitung Islands were analysed by means of a gamma spectroscopy for natural radionuclides 226Ra, 232Th and 40K. The annual intake of the food was estimated on the basis of their average annual consumption. Calculations were also made to determine the effective dose to an individual consuming such diets. The intakes of these radionuclides were calculated using the concentrations in Bangka Belitung foods and annual consumption rates of these food. Annual intakes of these radionuclides were as follows: 226Ra= 190.00; 232Th, 633.79 and 40K = 2065.10 Bq/year. The annual internal dose resulting from ingestion of radionuclides in food was 0.205 mSv/year which is very much lower than annual dose limit of 1 mSv for general public. The radionuclides with highest consumption is 40K followed by 232Th and 226Ra

  5. Natural Radioactivity in Some Food Crops from Bangka-Belitung Islands, Indonesia

    International Nuclear Information System (INIS)

    Syarbaini; Warsona, A.; Iskandar, D.

    2014-01-01

    Natural radioactivities of food crops are the main sources of internal radiation exposure in humans. Bangka-Belitung islands of Indonesia has a higher natural background radioactivity than typical areas because of tin mining activities.The study was carried out to evaluate the natural radioactivity concentration in several food crops grown in Bangka and Belitung Islands. Food samples collected from Bangka and Belitung Islands were analyzed by means of a gamma spectroscopy for natural radionuclides 226 Ra, 232 Th and 40 K. The annual intake of the food was estimated on the basis of their average annual consumption. Calculations were also made to determine the effective dose to an individual consuming such diets. The intakes of these radionuclides were calculated using the concentrations in Bangka-Belitung foods and annual consumption rates of these food. Annual intakes of these radionuclides were as follows: 226 Ra = 190.00; 232 Th = 633.79 and 40 K = 2065.10 Bq/year. The annual internal dose resulting from ingestion of radionuclides in food was 0.205 mSv/year which is much lower than annual dose limit of 1 mSv for general public. The radionuclides with highest consumption is 40 K followed by 232 Th and 226 Ra. (author)

  6. Cadmium in fertilizers, soil, crops and foods - the Swedish situation

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, S; Landner, L [Swedish Environmental Research Group (MFG)

    1998-03-01

    The aim of this report is to review available information on the fluxes of cadmium (Cd) to agricultural soils and crops in Sweden from phosphorus fertilizers (P-fertilizer) and other sources, and to discuss how the content of Cd in soil, crops and human food may be influenced by the specific environmental conditions in Sweden, as well as by the agricultural practices used in the country 62 refs, 15 figs, 18 tabs. With 5 page summary in Swedish

  7. Start with the seed: Native crops, indigenous knowledge, and community seed systems prerequisites for food sovereignty

    Science.gov (United States)

    The dynamic conservation and sustainable utilization of native crop genetic resources are crucial for food sovereignty of Native American communities. Indigenous knowledge of crop diversity when linked to food traditions, local practices and social norms provide the basis for building sovereign comm...

  8. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  9. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  10. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  11. Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety.

    Science.gov (United States)

    Heikens, Alex; Panaullah, Golam M; Meharg, Andy A

    2007-01-01

    High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition

  12. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  13. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    Science.gov (United States)

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  14. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  15. The food and environmental safety of Bt crops

    Science.gov (United States)

    Koch, Michael S.; Ward, Jason M.; Levine, Steven L.; Baum, James A.; Vicini, John L.; Hammond, Bruce G.

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms. PMID:25972882

  16. The food and environmental safety of Bt crops.

    Science.gov (United States)

    Koch, Michael S; Ward, Jason M; Levine, Steven L; Baum, James A; Vicini, John L; Hammond, Bruce G

    2015-01-01

    Bacillus thuringiensis (Bt) microbial pesticides have a 50-year history of safety in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s). Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals, and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  17. The Food and Environmental Safety of Bt Crops

    Directory of Open Access Journals (Sweden)

    Michael Stephen Koch

    2015-04-01

    Full Text Available Bt (Bacillus thuringiensis microbial pesticides have a 50-year history of safe use in agriculture. Cry proteins are among the active insecticidal ingredients in these pesticides, and genes coding for Cry proteins have been introduced into agricultural crops using modern biotechnology. The Cry gene sequences are often modified to enable effective expression in planta and several Cry proteins have been modified to increase biological activity against the target pest(s. Additionally, the domains of different but structurally conserved Cry proteins can be combined to produce chimeric proteins with enhanced insecticidal properties. Environmental studies are performed and include invertebrates, mammals and avian species. Mammalian studies used to support the food and feed safety assessment are also used to support the wild mammal assessment. In addition to the NTO assessment, the environmental assessment includes a comparative assessment between the Bt crop and the appropriate conventional control that is genetically similar but lacks the introduced trait to address unintended effects. Specific phenotypic, agronomic, and ecological characteristics are measured in the Bt crop and the conventional control to evaluate whether the introduction of the insect resistance has resulted in any changes that might cause ecological harm in terms of altered weed characteristics, susceptibility to pests, or adverse environmental impact. Additionally, environmental interaction data are collected in field experiments for Bt crop to evaluate potential adverse effects. Further to the agronomic and phenotypic evaluation, potential movement of transgenes from a genetically modified crop plants into wild relatives is assessed for a new pest resistance gene in a new crop. This review summarizes the evidence for safety of crops containing Cry proteins for humans, livestock, and other non-target organisms.

  18. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

    Science.gov (United States)

    Kromdijk, Johannes; Long, Stephen P

    2016-03-16

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  19. Food and fitness: associations between crop yields and life-history traits in a longitudinally monitored pre-industrial human population.

    Science.gov (United States)

    Hayward, Adam D; Holopainen, Jari; Pettay, Jenni E; Lummaa, Virpi

    2012-10-22

    Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources.

  20. Considering human exposure to pesticides in food products: Importance of dissipation dynamics

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, Ronnie; Jolliet, Olivier

    2014-01-01

    The general public is continuously concerned about effects from pesticide exposure via residues in food crops. However, impacts from pesticide exposure are mostly neglected in food product-related LCAs. Time-to-harvest and dissipation from crops mainly drive residue dynamics with dissipation...... as most uncertain aspect in characterization modeling. We analyzed measured half-lives (n=4513) with 95% falling between 0.6 and 29 days. With ~500 pesticides authorized alone in the EU for several hundred crops, however, experimental stud-ies only cover few possible pesticide-crop combinations. Therefore......, we estimated dissipation from measured data and provide reference half-lives for 333 pesticides applied at 20°C under field conditions. Our framework allows for detailed explorations of dietary choices in LCA with respect to human health impacts from pesticide exposure via crop consumption. The next...

  1. Smallholder food crop farmers' participation in Bank of Agriculture ...

    African Journals Online (AJOL)

    Low participation of smallholder farmers in agricultural loans, despite efforts by governments and NGOs to make funds available for agricultural growth and development, has remained a matter of concern in Nigeria. The study analysed smallholder food crop farmers' participation in Bank of Agriculture loan (BOA) scheme in ...

  2. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China

    International Nuclear Information System (INIS)

    Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G.

    2008-01-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P ≤ 0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. - Long-term wastewater irrigation leads to buildup of heavy metals in soils and food crops

  3. Crop modelling for integrated assessment of risk to food production from climate change

    DEFF Research Database (Denmark)

    Ewert, F.; Rötter, R.P.; Bindi, M.

    2015-01-01

    . However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming...... climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables...

  4. The Role of Transgenic Crops in the Future of Global Food and Feed

    OpenAIRE

    O. Škubna; H. Řezbová

    2012-01-01

    The paper is aimed on the problematic of biotech crops planting (GM, transgenic crops). The main aim of this paper is to analyze the trends in the main biotech crops planting groups in the sense of their use for food and feed in the future. The selected groups of biotech crops analyzed in this article are soybeans, maize (corn), cotton and rapeseed (canola). The used methods are chain and basic indexes and regression analysis of times series/ trend data - for predicting on next four years (20...

  5. Determinants of Food Crop Diversity and Profitability in Southeastern Nigeria: A Multivariate Tobit Approach

    Directory of Open Access Journals (Sweden)

    Sanzidur Rahman

    2016-04-01

    Full Text Available The present study jointly determines the factors influencing decisions to diversify into multiple food crops (i.e., rice, yam and cassava vis-à-vis profitability of 400 farmers from Ebonyi and Anambra states of Southeastern Nigeria using a multivariate Tobit model. Model diagnostic reveals that the decisions to diversify into multiple crops and profits generated therefrom are significantly correlated, thereby justifying use of a multivariate approach. Results reveal that 68% of the farmers grew at least two food crops and profitability is highest for only rice producers followed by joint rice and yam producers, which are mainly for sale. Farm size is the most dominant determinant of crop diversity vis-à-vis profitability. A rise in the relative price of plowing significantly reduces profitability of yam and rice. High yield is the main motive for growing yam and cassava whereas ready market is for rice. Other determinants with varying level of influences are proximity to market and/or extension office, extension contact, training, agricultural credit, subsistence pressure and location. Policy recommendations include investments in market infrastructure and credit services, land and/or tenurial reform and input price stabilization to promote food crop diversity vis-à-vis profitability in Southeastern Nigeria.

  6. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning

    Science.gov (United States)

    Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.

    2016-12-01

    Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.

  7. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    International Nuclear Information System (INIS)

    Brauman, Kate A; Foley, Jonathan A; Siebert, Stefan

    2013-01-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people. (letter)

  8. Hotspots of inefficiency: Mapping the difference between crop production and food calorie delivery

    Science.gov (United States)

    Cassidy, E. S.; Foley, J. A.

    2012-12-01

    Meeting growing demands for food calories will be a substantial challenge. One place to search for solutions is in how we allocate the world's crops, and finding ways to feed more people with current crop production. Currently, a substantial proportion of crop calories are used as animal feed, and only a small fraction of those feed calories ultimately contribute to human diets. Countries like the United States and China, which together produce over a third of the world's meat, eggs and dairy, lose a substantial portion of calories and protein to the feed-to-animal conversion process. This study looks at global croplands that have a large difference between calories grown, and the food calories available for consumption. These hotspots have the potential to feed more people, while reducing environmental impacts of agriculture.;

  9. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    Science.gov (United States)

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  10. Parameter values for the estimation of radionuclide transfer to major food crops in Korea

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Lee, Chang-Woo

    2008-01-01

    This paper summarizes the results of the radiotracer experiments and field studies performed in Korea for the past 20 years to obtain parameter values for estimating the environmental transfer of radionuclides to food crops. With regards to direct plant contamination, the interception fractions, weathering half-lives and translocation factors of Cs, Sr, Mn, Co and Ru were measured for depositions at different growth stages of selected food crops. In order to investigate an indirect contamination pathway, the soil-to-plant transfer factors (TF m , dimensionless) of Cs, Sr, Mn, Co and/or Zn were measured for rice, Chinese cabbage, radish, soybean, barley, lettuce and so on in one or more soils. In addition, the transfer factors (TF a , m 2 kg -1 ) based on a deposition density were also measured following depositions at different times during the growth periods of several food crops. Particularly for rice and Chinese cabbage, tritium experiments were also carried out for the TF a . The obtained parameter values varied considerably with the soils, crops, radionuclides and deposition times. These data would be applicable to both normal and acute releases not only in Korea but also in many other countries. (author)

  11. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  12. Genetically modified crops and the “food crisis”: discourse and material impacts

    NARCIS (Netherlands)

    Glover, D.; Stone, G.D.

    2011-01-01

    A surge of media reports and rhetorical claims depicted genetically modified (GM) crops as a solution to the ‘global food crisis’ manifested in the sudden spike in world food prices during 2007–08. Broad claims were made about the potential of GM technologies to tackle the crisis, even though the

  13. Non-bee insects are important contributors to global crop pollination

    NARCIS (Netherlands)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A.; Kleijn, David; Scheper, Jeroen

    2016-01-01

    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change.

  14. Resilience of cereal crops to abiotic stress: A review

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Key words: Cereal crops, abiotic stresses, food insecurity, molecular breeding, quantitative trait loci (QTLs), salinity, water stress. ... production of genetically modified (GM) crops, exo- genous use of osmo protectants etc. ... stressful environments is important to fulfill food demand of the ever-increasing world ...

  15. Food for Survival: Diagnosing Crop Patterns to Secure Lower Threshold Food Security Levels in Farm Households of Burundi.

    Science.gov (United States)

    Niragira, Sanctus; D'Haese, Marijke; D'Haese, Luc; Ndimubandi, Jean; Desiere, Sam; Buysse, Jeroen

    2015-06-01

    Burundi is one of the world's poorest countries, coming last in the Global Food Index (2013). Yet, a large majority of its population depends on agriculture. Most smallholder families do not produce enough to support their own families. To estimate the optimal crop mix and resources needed to provide the family with food containing sufficient energy, fat, and protein. This study uses mathematical programming to obtain the optimal crop mix that could maximize output given the constraints on production factor endowments and the need to feed the household. The model is calibrated with household-level data collected in 2010 in Ngozi Province in northern Burundi. Four models are developed, each representing a different farm type. The typology is based on 2007 data. Model predictions are compared with data collected during a revisit of the area in 2012. By producing a smaller number of crops and concentrating on those in which they have a comparative advantage, and trading produce and input with other farms, large and medium-sized farms can improve their productivity and hire extra workers to supplement family labor. Predictions of crops to be planted coincided to a high degree with those that farmers planted 2 years after our survey on newly acquired plots. Despite land scarcity, it is still possible for households that own land to find optimal crop combinations that can meet their minimal food security requirements while generating a certain level of income. Nearly landless households would benefit from the increased off-farm employment opportunities. With only 0.05 ha of land per capita, the annotation Nearly Landless is used to highlight the limited access to land observed in this farm category. © The Author(s) 2015.

  16. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    Science.gov (United States)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  17. Benefits of seasonal forecasts of crop yields

    Science.gov (United States)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  18. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    Science.gov (United States)

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Using membrane transporters to improve crops for sustainable food production

    Science.gov (United States)

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  20. Adaptation Strategies to Climate Change by Food Crop Farmers in ...

    African Journals Online (AJOL)

    ... constraints to farmers adaptation strategies. Inputs supply to the local farmers should also come with government subsidy. This will go a long way in alleviating the sufferings of the farmers, as regards inadequate supply and delivery of agricultural inputs. Key words: Adaptation, Strategies, Climate, Change, Food, Crop,

  1. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    Science.gov (United States)

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  2. Improved production systems for traditional food crops: The case of finger millet in Western Kenya

    OpenAIRE

    Christina Handschuch; Meike Wollni

    2013-01-01

    Increasing agricultural productivity through the dissemination of improved cropping practices remains one of the biggest challenges of this century. A considerable amount of literature is dedicated to the adoption of improved cropping practices among smallholder farmers in developing countries. While most studies focus on cash crops or main staple crops, traditional food grains like finger millet have received little attention in the past decades. The present study aims to assess the factors ...

  3. Resources Use Efficiency In Food Crop Production In Ekiti State ...

    African Journals Online (AJOL)

    Marginal value productivity of resources were computed and compared with the acquisition/prices of these resources. Result of regression analysis indicates that farm size, fertilizer and purchased inputs were significant inputs that accounted for variation in the output of food crops. The Marginal Value Product (MVP) of all ...

  4. Affordable nutrient solutions for improved food security as evidenced by crop trials

    Science.gov (United States)

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovic, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-04-01

    Robust assessments of attainable crop yields in Africa and South America are pivotal for projections of food security and cropland expansion. In contract to South America, Africa has not achieved significant increases in crop yields. Here we utilize a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America to calculate corn yield gaps at the continental scale. To further the African crop productivity discourse we consider the importance of soil nutrient stoichiometry and the viability of micro-dosing. Importantly, besides N, our crop yield potential estimates account for P which has a notoriously low availability in weathered tropical soils. We investigated yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in N and P of 10 kg/ha and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg/ha respectively. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in yield increases of 8% while the addition of only P increased yields by 26%, with implications for designing better balanced fertilizer distribution schemes. Application of both N and P at 10 kg ha-1 lead to 15% and 32% yield increase. To put the benefits of these higher yields in context, this could save more than 4 and 25 million ha of cropland, or alternatively potentially feed 64 and 150 million people in South America and Africa respectively. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for a scenario involving higher

  5. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  6. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  7. Efficacy of iron-biofortified crops | Boy | African Journal of Food ...

    African Journals Online (AJOL)

    Biofortification aims to increase the content of micronutrients in staple crops without sacrificing agronomic yield, making the new varieties attractive to farmers. Food staples that provide a major energy supply in low- and middle-income populations are the primary focus. The low genetic variability of iron in the germplasm of ...

  8. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of District Shangla

    International Nuclear Information System (INIS)

    Ullah, I.; Khan, A.; Rahim, M.; Haris, M. R. H. M.

    2016-01-01

    Heavy metals such as cadmium, lead, nickel, chromium, cobalt, copper, zinc and iron were quantified in food crops and soil samples using atomic absorption spectrophotometry. Questionnaire survey was conducted to estimate average body weight and daily intake of food crops. Daily intake of metals (DIM) and health risk assessment were conducted for heavy metals via ingestion path way from food crops. Cobalt and cadmium daily intake were found to be higher than the suggested limits. Health risk indices (HRI) were found < 1 for all metals indicating no health risks except cadmium and cobalt. HRI of cobalt and cadmium were > 1 in 80 percent and 96 percent of the population, respectively. This study conveys a strong message to the ministry of health to protect the general population from the harmful effects of cadmium and cobalt. (author)

  9. Food legume production in China

    Directory of Open Access Journals (Sweden)

    Ling Li

    2017-04-01

    Full Text Available Food legumes comprise all legumes grown for human food in China as either dry grains or vegetables, except for soybean and groundnut. China has a vast territory with complex ecological conditions. Rotation, intercropping, and mixed cropping involving pulses are normal cropping systems in China. Whether indigenous or introduced crops, pulses have played an important role in Chinese cropping systems and made an important contribution to food resources for humans since ancient times. The six major food legume species (pea, faba bean, common bean, mung bean, adzuki bean, and cowpea are the most well-known pulses in China, as well as those with more local distributions; runner bean, lima bean, chickpea, lentil, grass pea, lupine, rice bean, black gram, hyacinth bean, pigeon pea, velvet bean, winged bean, guar bean, sword bean, and jack bean. China has remained the world's leading producer of peas, faba beans, mung beans, and adzuki beans in recent decades, as documented by FAO statistics and China Agriculture Statistical Reports. The demand for food legumes as a healthy food will markedly increase with the improvement of living standards in China. Since China officially joined the World Trade Organization (WTO in 2001, imports of pea from Canada and Australia have rapidly increased, resulting in reduced prices for dry pea and other food legumes. With reduced profits for food legume crops, their sowing area and total production has decreased within China. At the same time, the rising consumer demand for vegetable food legumes as a healthy food has led to attractive market prices and sharp production increases in China. Vegetable food legumes have reduced growing duration and enable flexibility in cropping systems. In the future, production of dry food legumes will range from stable to slowly decreasing, while production of vegetable food legumes will continue to increase.

  10. Trends in global approvals of biotech crops (1992-2014).

    Science.gov (United States)

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992-2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits.

  11. Helping to increase tree crops

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  12. Helping to increase tree crops

    International Nuclear Information System (INIS)

    1970-01-01

    Tree crops such as coffee, coconuts, palm oil, citrus fruits and cocoa are of major importance to the economies of countries in Africa, Asia and Latin America, and may be a prime source of foreign exchange earnings. The search for ways to improve efficiently the yields of crops like these - now being aided by the Division of Atomic Energy in Food and Agriculture operated jointly with the Food and Agriculture Organization - thus has a clearly defined practical goal. D. Nethsinghe deals here with some of the work. (author)

  13. The Vital Importance to South Mrica of Food Production by the White ...

    African Journals Online (AJOL)

    1974-08-14

    Aug 14, 1974 ... droughts ruined various grain crops in Argentina, Mexico and Central America. Food production was so ... the Peoples' Republic of China. The food ..... ported a very rewarding export market for many years. Projected trends ...

  14. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China

    Science.gov (United States)

    Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui

    2018-04-01

    China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.

  15. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    Science.gov (United States)

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  16. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  17. Freshwater use in livestock production—To be used for food crops or livestock feed?

    NARCIS (Netherlands)

    Ran, Ylva; Middelaar, van Corina E.; Lannerstad, Mats; Herrero, Mario; Boer, de Imke J.M.

    2017-01-01

    Current approaches to estimate freshwater use in livestock production systems generally fail to consider the competition for water resources with alternative uses, such as production of food crops food or other ecosystem services. This article presents a new method to account for the competition for

  18. RICE CROP MAPPING USING SENTINEL-1A PHENOLOGICAL METRICS

    Directory of Open Access Journals (Sweden)

    C. F. Chen

    2016-06-01

    Full Text Available Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter–spring, summer–autumn in the Mekong River Delta (MRD, Vietnam through three main steps: (1 data pre-processing, (3 rice classification based on crop phenological metrics, and (4 accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government’s rice area statistics for such crops (R2 > 0.95. The values of relative error in area obtained for the winter–spring and summer–autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  19. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study.

    Science.gov (United States)

    Lewis, Christopher P; Newell, James N; Herron, Caroline M; Nawabu, Haidari

    2010-07-12

    Genetically Modified (GM) crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Nineteen individual interviews (10 male and 9 female) and five mixed gender focus group discussions with local farmers were conducted in 3 regions in Tanzania. Analysis took place concurrently with data collection. Following initial interviews, subsequent questions were adjusted based on emerging themes. Understanding, awareness and knowledge of GM crop technology and terminology and its potential risks and benefits was very poor in all regions. Receptivity to the potential use of GM crops was, however, high. Respondents focused on the potential benefits of GM crops rather than any potential longer term health risks. A number of factors, most significantly field trial data, would influence farmers' decisions regarding the introduction of GM crop varieties into their farming practice. Understanding of the potential improved health provision possible by changes in agricultural practice and food-related decision making, and the health benefits of a diet containing essential vitamins, minerals and micronutrients is also poor in these communities. This study forms a basis from which further research work can be undertaken. It is important to continue to assess opinions and attitudes of farmers and consumers in sub Saharan Africa towards potential use of GM technologies whilst highlighting the importance of the relationship between agriculture, health and development. This will allow people in the region to make accurate, informed decisions about whether they believe use of GM biotechnology is an appropriate way in which

  20. Ground-level O3 pollution and its impacts on food crops in China: A review

    International Nuclear Information System (INIS)

    Feng, Zhaozhong; Hu, Enzhu; Wang, Xiaoke; Jiang, Lijun; Liu, Xuejun

    2015-01-01

    Ground-level ozone (O 3 ) pollution has become one of the top environmental issues in China, especially in those economically vibrant and densely populated regions. In this paper, we reviewed studies on the O 3 concentration observation and O 3 effects on food crops throughout China. Data from 118 O 3 monitoring sites reported in the literature show that the variability of O 3 concentration is a function of geographic location. The impacts of O 3 on food crops (wheat and rice) were studied at five sites, equipped with Open Top Chamber or O 3 -FACE (free-air O 3 concentration enrichment) system. Based on exposure concentration and stomatal O 3 flux–response relationships obtained from the O 3 -FACE experimental results in China, we found that throughout China current and future O 3 levels induce wheat yield loss by 6.4–14.9% and 14.8–23.0% respectively. Some policies to reduce ozone pollution and impacts are suggested. - Highlights: • Ozone concentrations are increasing in most of regions of China. • Ozone has caused high yield loss of food crops in China. • More species and local varieties should be investigated for ozone sensitivity. • Developing the air quality standards for crops is required in China. • More air quality stations in the rural are needed. - Ground-level ozone is one of the most serious environmental pollutants for food production in China

  1. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  2. Trends in global approvals of biotech crops (1992–2014)

    Science.gov (United States)

    Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A

    2015-01-01

    ABSTRACT With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992–2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits. PMID:26039675

  3. Perceived effects of climate change on food crops production in Oyo ...

    African Journals Online (AJOL)

    The study assessed the perceived effects of climate change on food crops production in Oyo State. Multi stage sampling procedure was used in selecting 120 respondents for the study. Primary data was collected through interview schedule and it was analyzed using both descriptive and inferential statistics. Results reveal ...

  4. Improving selenium nutritional value of major crops

    Science.gov (United States)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  5. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  6. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    Science.gov (United States)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact

  7. The fundament of food, crop protein production, is threatened by climate change

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Gislum, René; Jørgensen, Johannes Ravn

    2016-01-01

    Income growth, urbanization, and changes in lifestyles and food preferences combined with continuing population growth lead to increasing demand for plant protein production worldwide. All the proteins we eat are produced by crops, including the proteins we get from animals, which initially come...

  8. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    International Nuclear Information System (INIS)

    2013-11-01

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  9. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  10. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  11. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  12. Food and Development

    African Journals Online (AJOL)

    issue, but also food is perhaps the most important development issue, if not global issue, of our time, ... Other boxes include the pet food market, genetically modified (GM) crops, land grabs, the financialisation of food,. African bean sauces ...

  13. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Herron Caroline M

    2010-07-01

    Full Text Available Abstract Background Genetically Modified (GM crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Methods Nineteen individual interviews (10 male and 9 female and five mixed gender focus group discussions with local farmers were conducted in 3 regions in Tanzania. Analysis took place concurrently with data collection. Following initial interviews, subsequent questions were adjusted based on emerging themes. Results Understanding, awareness and knowledge of GM crop technology and terminology and its potential risks and benefits was very poor in all regions. Receptivity to the potential use of GM crops was, however, high. Respondents focused on the potential benefits of GM crops rather than any potential longer term health risks. A number of factors, most significantly field trial data, would influence farmers' decisions regarding the introduction of GM crop varieties into their farming practice. Understanding of the potential improved health provision possible by changes in agricultural practice and food-related decision making, and the health benefits of a diet containing essential vitamins, minerals and micronutrients is also poor in these communities. Conclusion This study forms a basis from which further research work can be undertaken. It is important to continue to assess opinions and attitudes of farmers and consumers in sub Saharan Africa towards potential use of GM technologies whilst highlighting the importance of the relationship between agriculture, health and development. This will allow people in the region to make accurate, informed decisions about whether they

  14. The Potential Use of Agroforestry Community Gardens as a Sustainable Import-Substitution Strategy for Enhancing Food Security in Subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Maren Oelbermann

    2013-09-01

    Full Text Available The high prevalence of food insecurity experienced by northern First Nations partially results from dependence on an expensive import-based food system that typically lacks nutritional quality and further displaces traditional food systems. In the present study, the feasibility of import substitution by Agroforestry Community Gardens (AFCGs as socio-ecologically and culturally sustainable means of enhancing food security was explored through a case study of Fort Albany First Nation in subarctic Ontario, Canada. Agroforestry is a diverse tree-crop agricultural system that has enhanced food security in the tropics and subtropics. Study sites were selected for long-term agroforestry research to compare Salix spp. (willow-dominated AFCG plots to a “no tree” control plot in Fort Albany. Initial soil and vegetative analysis revealed a high capacity for all sites to support mixed produce with noted modifications, as well as potential competitive and beneficial willow-crop interactions. It is anticipated that inclusion of willow trees will enhance the long-term productive capacity of the AFCG test plots. As an adaptable and dynamic system, AFCGs have potential to act as a more reliable local agrarian system and a refuge for culturally significant plants in high-latitude First Nation socio-ecological systems, which are particularly vulnerable to rapid cultural, climatic, and ecological change.

  15. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  16. Economic comparison of food, non food crops, set-aside at a regional level with a linear programming model

    International Nuclear Information System (INIS)

    Sourie, J.C.; Hautcolas, J.C.; Blanchet, J.

    1992-01-01

    This paper is concerned with a regional linear programming model. Its purpose is a simulation of the European Economic Community supply of non-food crops at the farm gate according to different sets of European Common Agriculture Policy (CAP) measures. The methodology is first described with a special emphasis on the aggregation problem. The model allows the simultaneous calculation of the impact of non food crops on the farmer's income and on the agricultural budget. The model is then applied to an intensive agricultural region (400 000 ha of arable land). In this region, sugar beet and rape seem the less costly resources, both for the farmers and the CAP taxpayers. An improvement of the economic situation of the two previous agents can be obtained only if a tax exemption on ethanol and rape oil and a subsidy per hactare are allowed. This subsidy can be lower than the set aside premium. (author)

  17. 76 FR 65734 - Guidance for Industry on Evaluating the Safety of Flood-Affected Food Crops for Human Consumption...

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0733] Guidance for Industry on Evaluating the Safety of Flood-Affected Food Crops for Human Consumption; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug...

  18. Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria

    Directory of Open Access Journals (Sweden)

    Orisakwe Orish

    2012-08-01

    Full Text Available Abstract Background This study assessed lead, cadmium, and nickel level in food crops, fruits and soil samples from Ohaji and Umuagwo and Owerri in South Eastern Nigeria and estimated the potential health risks of metals. Samples were washed, oven-dried at 70–80°C for 24 h and powdered. Samples were digested with perchloric acid and nitric acid. Metals were analysed with Unicam Atomic Absorption Spectrophotometer. Result The concentration of Pb, Cd, and Ni in Ohaji exceeded the maximum allowable concentrations for agricultural soil as recommended by EU. Lead, Cd, and Ni in the food crops were highest in Oryza sativa, Glycine max, and Pentabacta microfila respectively. Highest levels of Pb, Cd, and Ni, in fruits were detected in Canarium schweinfurthii, Citrus reticulata, Ananas comosus respectively. The true lead and cadmium intake for the rice based meal were 3.53 and 0.034 g/kg respectively. Whereas the true intake of lead and cadmium for the cassava based meal were 19.42 and 0.049 g/kg respectively. Conclusion Local food stuff commonly available in South Eastern Nigeria villages may contribute to the body burden of heavy metal. This is of public health importance.

  19. Radioactive contamination in imported foods (II)

    International Nuclear Information System (INIS)

    Kan, Kimiko; Maki, Toshio; Hashimoto, Hideki; Kawai, Yuka; Nagayama, Toshihiro; Kobayashi, Maki; Shioda, Hiroko; Nishima, Taichiro

    1991-01-01

    Five years have elapsed since the Chernobyl accident, but the effect of radioactivity contamination to foods has continued. Also in Japan, the imported foods which were ordered by the Ministry of Health and Welfare to be sent back due to radioactivity contamination do not cease. In fiscal year 1990, three cases occurred: tea from Albania, mushrooms from Yugoslavia and spices from france. If those are not checked at quarantines, it is feared that such foods are distributed in Japan. Among the foods which were ordered to be sent back in the past, there were those from Brazil and Hong Kong where the effect of the Chernobyl accident is little, and the foods contaminated with radioactivity spread worldwide through import and export. Therefore, attention must be paid to the foods from the countries where radioactivity contamination is little. Also it is feared that Japanese foods may be contaminated by being cultivated with imported feed, soil and fertilizer, for which there is no regulation. In this report, the radioactivity contamination of imported foods in fiscal year 1990 is described, and the experimental method and the results are reported. (K.I.)

  20. Sustainable Agriculture - Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses

    Science.gov (United States)

    Feeding nutrition-dense food to future world populations presents agriculture with enormous challenges as estimates indicate that crop production must as much as double. Crop production cannot be increased to meet this challenge simply by increasing land acreage or using past agricultural intensific...

  1. Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach.

    Science.gov (United States)

    Cockburn, Andrew

    2002-09-11

    Genes change continuously by natural mutation and recombination enabling man to select and breed crops having the most desirable traits such as yield or flavour. Genetic modification (GM) is a recent development which allows specific genes to be identified, isolated, copied and inserted into other plants with a high level of specificity. The food safety considerations for GM crops are basically the same as those arising from conventionally bred crops, very few of which have been subject to any testing yet are generally regarded as being safe to eat. In contrast a rigorous safety testing paradigm has been developed for GM crops, which utilises a systematic, stepwise and holistic approach. The resultant science based process, focuses on a classical evaluation of the toxic potential of the introduced novel trait and the wholesomeness of the transformed crop. In addition, detailed consideration is given to the history and safe use of the parent crop as well as that of the gene donor. The overall safety evaluation is conducted under the concept known as substantial equivalence which is enshrined in all international crop biotechnology guidelines. This provides the framework for a comparative approach to identify the similarities and differences between the GM product and its comparator which has a known history of safe use. By building a detailed profile on each step in the transformation process, from parent to new crop, and by thoroughly evaluating the significance from a safety perspective, of any differences that may be detected, a very comprehensive matrix of information is constructed which enables the conclusion as to whether the GM crop, derived food or feed is as safe as its traditional counterpart. Using this approach in the evaluation of more than 50 GM crops which have been approved worldwide, the conclusion has been that foods and feeds derived from genetically modified crops are as safe and nutritious as those derived from traditional crops. The lack of

  2. Availability and utility of crop composition data.

    Science.gov (United States)

    Kitta, Kazumi

    2013-09-04

    The safety assessment of genetically modified (GM) crops is mandatory in many countries. Although the most important factor to take into account in these safety assessments is the primary effects of artificially introduced transgene-derived traits, possible unintended effects attributed to the insertion of transgenes must be carefully examined in parallel. However, foods are complex mixtures of compounds characterized by wide variations in composition and nutritional values. Food components are significantly affected by various factors such as cultivars and the cultivation environment including storage conditions after harvest, and it can thus be very difficult to detect potential adverse effects caused by the introduction of a transgene. A comparative approach focusing on the identification of differences between GM foods and their conventional counterparts has been performed to reveal potential safety issues and is considered the most appropriate strategy for the safety assessment of GM foods. This concept is widely shared by authorities in many countries. For the efficient safety assessment of GM crops, an easily accessible and wide-ranging compilation of crop composition data is required for use by researchers and regulatory agencies. Thus, we developed an Internet-accessible food composition database comprising key nutrients, antinutrients, endogenous toxicants, and physiologically active substances of staple crops such as rice and soybeans. The International Life Sciences Institute has also been addressing the same matter and has provided the public a crop composition database of soybeans, maize, and cotton.

  3. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    Science.gov (United States)

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  4. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  5. Using membrane transporters to improve crops for sustainable food production

    Science.gov (United States)

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  6. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel

    OpenAIRE

    Leakey, Andrew D.B.

    2009-01-01

    Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from fr...

  7. Contribution of Organically Grown Crops to Human Health

    Directory of Open Access Journals (Sweden)

    Eva Johansson

    2014-04-01

    Full Text Available An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds, tocopherols (including vitamin E and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely.

  8. Implications of food aid and remittances for West African food import demand

    OpenAIRE

    Kiawu, James; Jones, Keithly G

    2013-01-01

    The influence of food aid and remittances on West African food import demand is evaluated using a Central Bureau of Statistics (CBS) model. Our results show that imports of oilseeds and the rest of the agricultural products category are highly price elastic, and that fruit and vegetables and dairy products are least responsive to price changes. Food aid did not influence West African food imports, but remittances were found to be statistically significant in determining food imports. The infl...

  9. Role of modern chemistry in sustainable arable crop protection

    OpenAIRE

    Smith, Keith; Evans, David A; El-Hiti, Gamal A

    2007-01-01

    Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion ...

  10. Parameters on the radionuclide transfer in crop plants for Korean food chain dose assessment

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, K. M.; Cho, Y. H.

    2001-12-01

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. In this report, results of last about 15 years' studies on radionuclide transfer parameters in major crop plants by the Korea Atomic Energy Research Institute, were summarized and put together. Soil-to-plant transfer factors, parameters quantifying the root uptake of radionuclides, were measured through greenhouse experiments and field studies. In addition to traditional transfer factors, which are based on the activity in unit weight of soil, those based on the activity applied to unit area of soil surface were also investigated. Interception factors, translocation factors and weathering half lives, parameters in relation to direct plant contamination, were investigated through greenhouse experiments. The levels of initial plant contamination with HTO and I2 vapor were described with absorption factors. Especially for HTO vapor, 3H levels in crop plants at harvest were expressed with TFWT (tissue free water tritium) reduction factors and OBT (organically bound tritium) production factors. The above-mentioned parameters generally showed great variations with soils, crops and radionuclide species and application times. On the basis of summarized results, the points to be amended or improved in food chain dose assessment models were discussed both for normal operation and for accidental release

  11. PFGE: importance in food quality.

    Science.gov (United States)

    Vernile, Anna; Giammanco, Giovanni; Massa, Salvatore

    2009-11-01

    In late 19 century, great interest has arisen for food quality. This is referred as absence of pathogens in food (safety for consumers) and as nutritional quality of food (organoleptic characteristics). Pulsed-field gel electrophoresis (PFGE) is, among the molecular techniques developed in the last years, one of the most reliable, discriminative and reproducible technique. It can be used in clinical field for the identification of pathogens and the origin of outbreaks, and in food microbiology for the identification of pathogens (food borne disease surveillance) or of microorganisms responsible for the organoleptic characteristics of food. The present article shows some useful patents related to PFGE and importance in food quality.

  12. Prediction of seasonal climate-induced variations in global food production

    Science.gov (United States)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-10-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.

  13. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  14. Parameterization models for pesticide exposure via crop consumption.

    Science.gov (United States)

    Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier

    2012-12-04

    An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.

  15. Pick-and-Eat Salad-Crop Productivity, Nutritional Value, and Acceptability to Supplement the ISS Food System

    Science.gov (United States)

    Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.

    2016-01-01

    The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light

  16. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas.

    Science.gov (United States)

    Chiatante, Gianpasquale; Meriggi, Alberto

    2016-01-01

    Nowadays we are seeing the largest biodiversity loss since the extinction of the dinosaurs. To conserve biodiversity it is essential to plan protected areas using a prioritization approach, which takes into account the current biodiversity value of the sites. Considering that in the Mediterranean Basin the agro-ecosystems are one of the most important parts of the landscape, the conservation of crops is essential to biodiversity conservation. In the framework of agro-ecosystem conservation, farmland birds play an important role because of their representativeness, and because of their steady decline in the last Century in Western Europe. The main aim of this research was to define if crop dominated landscapes could be useful for biodiversity conservation in a Mediterranean area in which the landscape was modified by humans in the last thousand years and was affected by the important biogeographical phenomenon of peninsula effect. To assess this, we identify the hotspots and the coldspots of bird diversity in southern Italy both during the winter and in the breeding season. In particular we used a scoring method, defining a biodiversity value for each cell of a 1-km grid superimposed on the study area, using data collected by fieldwork following a stratified random sampling design. This value was analysed by a multiple linear regression analysis and was predicted in the whole study area. Then we defined the hotspots and the coldspots of the study area as 15% of the cells with higher and lower value of biodiversity, respectively. Finally, we used GAP analysis to compare hotspot distribution with the current network of protected areas. This study showed that the winter hotspots of bird diversity were associated with marshes and water bodies, shrublands, and irrigated crops, whilst the breeding hotspots were associated with more natural areas (e.g. transitional wood/shrubs), such as open areas (natural grasslands, pastures and not irrigated crops). Moreover, the

  17. The Importance of Rotational Crops for Biodiversity Conservation in Mediterranean Areas.

    Directory of Open Access Journals (Sweden)

    Gianpasquale Chiatante

    Full Text Available Nowadays we are seeing the largest biodiversity loss since the extinction of the dinosaurs. To conserve biodiversity it is essential to plan protected areas using a prioritization approach, which takes into account the current biodiversity value of the sites. Considering that in the Mediterranean Basin the agro-ecosystems are one of the most important parts of the landscape, the conservation of crops is essential to biodiversity conservation. In the framework of agro-ecosystem conservation, farmland birds play an important role because of their representativeness, and because of their steady decline in the last Century in Western Europe. The main aim of this research was to define if crop dominated landscapes could be useful for biodiversity conservation in a Mediterranean area in which the landscape was modified by humans in the last thousand years and was affected by the important biogeographical phenomenon of peninsula effect. To assess this, we identify the hotspots and the coldspots of bird diversity in southern Italy both during the winter and in the breeding season. In particular we used a scoring method, defining a biodiversity value for each cell of a 1-km grid superimposed on the study area, using data collected by fieldwork following a stratified random sampling design. This value was analysed by a multiple linear regression analysis and was predicted in the whole study area. Then we defined the hotspots and the coldspots of the study area as 15% of the cells with higher and lower value of biodiversity, respectively. Finally, we used GAP analysis to compare hotspot distribution with the current network of protected areas. This study showed that the winter hotspots of bird diversity were associated with marshes and water bodies, shrublands, and irrigated crops, whilst the breeding hotspots were associated with more natural areas (e.g. transitional wood/shrubs, such as open areas (natural grasslands, pastures and not irrigated crops

  18. Change in radionuclide content of crops as a result of food preparation

    International Nuclear Information System (INIS)

    Watterson, J.; Nicholson, K.W.

    1996-01-01

    Radionuclides, including 3 H, 14 C and 35 S, are periodically and routinely discharged from nuclear powered electricity generation sites and it is important to assess the radiological impact of such discharges on humans due to food consumption. Foodstuffs may be cooked before being eaten and this can change their radionuclide content. The aim of this study was to examine the effects of a range of domestic food preparation techniques on the radionuclide contents of a range of food types. Radionuclide concentrations of tritium (free tritium, HTO, and organically bound tritium, (OBT), 14 C and 35 S were examined in a selection of fruit and vegetables that would form part of a typical diet. The foodstuffs included blackberries, broad beans, cabbages, carrots and potatoes (at two stages of development). The preparation techniques included boiling (potatoes, carrots, broad beans), roasting (potatoes), steaming (cabbage), or stewing (blackberries). In general, the radionuclide concentrations were reduced at the crops by at least 30% after preparation using any of the cooking techniques. The concentrations of 35 S fell by at least 60%, and this radionuclide showed the greatest reductions in the levels of HTO and 35 S. The results of this work indicate that the effects of cooking should be considered when assessing the dose received from the intake of foodstuffs. (Author)

  19. TOWARDS FOOD SAFETY. POTENTIALLY HARMFUL ELEMENTS (PHEs FLUXES FROM SOIL TO FOOD CROPS

    Directory of Open Access Journals (Sweden)

    Claudio Bini

    2013-09-01

    Full Text Available Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L. from a tannery district in North-East Italy were analyzed to determine the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V. The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities, Zn, Cu, Cd (from agriculture practices. Biological Absorption Coefficient (BAC from soil to plant roots and Translocation factor (TF within the plant were calculated; major nutrients (K, P, S and some micronutrients (Cu, Zn, Mg, Mn are easily absorbed and translocated, whilst other nutrients (Ca, Fe and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V are not accumulated in the seeds of the two considered plants. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources (dust ingestion, water, there seems to be no

  20. Accumulation of contaminants of emerging concern in food crops-part 1: Edible strawberries and lettuce grown in reclaimed water.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Dickenson, Eric R V; Higgins, Christopher P

    2015-10-01

    Contaminants of emerging concern present in domestic waste streams include a highly diverse group of potentially biologically active compounds that can be detected at trace levels in wastewater. Concerns about potential uptake into crops arise when reclaimed water is used in food crop production. The present study investigated how 9 contaminants of emerging concern in reclaimed water are taken up into edible portions of two food crops. Two flame retardant chemicals, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) and several polar pharmaceuticals (carbamazepine, diphenhydramine, sulfamethoxazole, and trimethoprim) accumulated in a linear, concentration-dependent manner in lettuce (Lactuca sativa) irrigated with reclaimed water, suggesting passive uptake of both neutral and ionizable chemical contaminants in lettuce. Furthermore, concentration-dependent accumulation of TCEP and TCPP from reclaimed water was also observed in strawberry fruits (Fragaria ananassa). Collectively, these data suggest that highly polar or charged contaminants can be taken up by crops from water bearing contaminants of emerging concern and can be accumulated in the edible portions. Using these data, however, estimates of human exposure to these contaminants from reclaimed water food crop accumulation suggest that exposure to the contaminants of emerging concern examined in the present study is likely substantially lower than current exposure guidelines. © 2015 SETAC.

  1. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Science.gov (United States)

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  2. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Nacira Muñoz

    2017-02-01

    Full Text Available Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  3. Analysis of price and income elasticities for cereals food crops in an ...

    African Journals Online (AJOL)

    The objective of the study is to estimate the price and income elasticities of cereals food crops in the study area. The results of the price and income elasticities of demand suggest that urban households in general are responsive to changes in own price and income in adjusting their consumption patterns. It was shown that ...

  4. Current perspectives on genetically modified crops and detection methods.

    Science.gov (United States)

    Kamle, Madhu; Kumar, Pradeep; Patra, Jayanta Kumar; Bajpai, Vivek K

    2017-07-01

    Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.

  5. Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...

  6. Multiple Cropping for Raising Productivity and Farm Income of Small Farmers

    Directory of Open Access Journals (Sweden)

    Mina Nath Paudel

    2016-12-01

    Full Text Available Multiple cropping is an agriculture system long adopted by marginalized small holder farmers especially in hills and mountains. This practice was a meant to enhance farm productivity when farming area is limited. Here, in this paper, a brief review on the benefits of multiple cropping is presented focusing on the practices adopted by marginalized farmers, in general. In multiple cropping, it is generally argued that the practice favors an efficient utilization of resources like air, water, light, space, and nutrients by companion crops in both temporal and spatial dimensions due to their differential growth habits and seasonality. Multiple cropping could be one of the viable alternatives to cope uncertainties and changes, where food and nutritional uncertainty looming large. The ultimate outcome of multiple cropping could be visualized in adverse or harsh environment for increase agriculture production, livelihood and income. Various food products are obtained through multiple cropping. Land equivalent ratio (LER, relative yield total (RYT and income equivalent ratio (IER can be increased with mixed/intercropping systems. Multiple cropping helps in getting more than one crop simultaneously, so even if the selling price of one commodity is less, the other might compensate. In the tropics, smallholder farms, which produce over 60% of the food resources of developing nations from intercropping of cereals with many crops mostly legumes, had been the field of much investigation because of synergistic effects of diversifying food production and household cash incomes in these systems. This clearly implies the importance of multiple cropping for small farmers who constitute majority in the developing countries.

  7. The use of whole food animal studies in the safety assessment of genetically modified crops: Limitations and recommendations

    Science.gov (United States)

    Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve

    2013-01-01

    There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable. PMID:24164514

  8. The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations.

    Science.gov (United States)

    Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve; Walker, Kate

    2013-11-01

    There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable.

  9. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  10. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    Science.gov (United States)

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  11. Research on Food Quality Security of China’s Food Import and Export

    Directory of Open Access Journals (Sweden)

    Pengling Liu

    2014-04-01

    Full Text Available This article researches quality and safety of food at home and abroad on the basis of present situation, cause and effect, from the point of import and export of food quality and safety in China, by combining with economic theories and empirical analysis, from a macro perspective study of China’s import and export food safety issues impact on economic and social development, and study the experience of other developed countries advanced management experience in the quality and safety of food imports and exports. Finally, after the combination of the analysis, make recommendations to protect China’s import and export food safety measures and provide policy proposals.

  12. Identifying the Impact of Natural Hazards on Food Security in Africa: Crop Monitoring Using MODIS NDVI Time-Series

    Science.gov (United States)

    Freund, J. T.; Husak, G.; Funk, C.; Brown, M. E.; Galu, G.

    2005-12-01

    Most developing countries rely primarily on the successful cultivation of staple crops to ensure food security. Climatic hazards like drought and flooding often negatively impact economically vulnerable economies such as those in Eastern Africa. Effective tracking of food production is required in this area. Production is typically quantified as the simple product of a planted area and its corresponding crop yield. To date, crop yields have been estimated with reasonable accuracy using grid-cell techniques and a Water Requirement Satisfaction Index (WRSI), which draw from remotely sensed data. However, planted area and hence production estimation remains an arduous manual technique fraught with inevitable inaccuracies. In this study we present ongoing efforts to use MODIS NDVI time-series data as a surrogate for greenness, exploiting phenological contrast between cropland and other land cover types. In regions with small field sizes, variations in land cover can impose uncertainty in food production figures, resulting in a lack of consensus in the donor community as to the amount and type of food aid required during an emergency. To concentrate on this issue, statistical methods were employed to produce sub-pixel estimation, addressing the challenges in a monitoring system for use in subsistence-farmed areas. We will discuss two key results. Firstly, we established an inter-annual evaluation of crop health in primary agricultural areas in Kenya. These estimates will greatly improve our ability to anticipate and prevent famine in risk-prone regions through the FEWS NET early warning system. A primary goal is to build capacity in high-risk areas through the transfer of these results to local entities in the form of an operational tool. The low cost and accessibility of MODIS data lends itself well to this objective. Monitoring of crop health will be instituted for use on a yearly basis, and will draw on MODIS data analysis, ground sampling and valuable local

  13. Food Allergy - Basic Mechanisms and Applications to Identifying Risks Associated with Plant Incorporated Pesticides and Other Genetically Modified Crops

    Science.gov (United States)

    Food allergy is a relatively new concern for toxicologists as a result of the incorporation of novel proteins into food crops in order to promote resistance to pests and other stresses, improve nutrition, or otherwise modify the phenotype. Food allergy can manifest as inflammatio...

  14. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.

    Science.gov (United States)

    Halford, Nigel G; Curtis, Tanya Y; Chen, Zhiwei; Huang, Jianhua

    2015-03-01

    The effects of abiotic stresses and crop management on cereal grain composition are reviewed, focusing on phytochemicals, vitamins, fibre, protein, free amino acids, sugars, and oils. These effects are discussed in the context of nutritional and processing quality and the potential for formation of processing contaminants, such as acrylamide, furan, hydroxymethylfurfuryl, and trans fatty acids. The implications of climate change for cereal grain quality and food safety are considered. It is concluded that the identification of specific environmental stresses that affect grain composition in ways that have implications for food quality and safety and how these stresses interact with genetic factors and will be affected by climate change needs more investigation. Plant researchers and breeders are encouraged to address the issue of processing contaminants or risk appearing out of touch with major end-users in the food industry, and not to overlook the effects of environmental stresses and crop management on crop composition, quality, and safety as they strive to increase yield. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    Science.gov (United States)

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  16. Agriculture and crop science in China:Innovation and sustainability

    Institute of Scientific and Technical Information of China (English)

    Yunbi Xu; Jiayang Li; Jianmin Wan

    2017-01-01

    The International Crop Science Congress (ICSC) is a regularly held event allowing crop scientists to integrate current knowledge into a global context and international applications. The 7th ICSC was held on August 14–19, 2016 in Beijing, China, with the theme "Crop Science: Innovation and Sustainability". As a companion production for this great congress, the nine papers collected in this special issue feature important fields of crop science in China. This editorial first briefly introduces the 7th ICSC, followed by a brief discussion of the current status of, constraints to, and innovations in Chinese agriculture and crop science. Finally, the main scientific points of the papers published in this special issue are surveyed, covering important advances in hybrid rice breeding, minor cereals, food legumes, rapeseed, crop systems, crop management, cotton, genomics-based germplasm research, and QTL mapping. In a section describing future prospects, it is indicated that China faces a full transition from traditional to modern agriculture and crop science.

  17. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    Science.gov (United States)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published

  18. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential.

    Science.gov (United States)

    Long, Stephen P; Marshall-Colon, Amy; Zhu, Xin-Guang

    2015-03-26

    Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.

    Science.gov (United States)

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [ Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  20. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  1. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    Science.gov (United States)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2017-04-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  2. Global scale climate-crop yield relationships and the impacts of recent warming

    International Nuclear Information System (INIS)

    Lobell, David B; Field, Christopher B

    2007-01-01

    Changes in the global production of major crops are important drivers of food prices, food security and land use decisions. Average global yields for these commodities are determined by the performance of crops in millions of fields distributed across a range of management, soil and climate regimes. Despite the complexity of global food supply, here we show that simple measures of growing season temperatures and precipitation-spatial averages based on the locations of each crop-explain ∼30% or more of year-to-year variations in global average yields for the world's six most widely grown crops. For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002. While these impacts are small relative to the technological yield gains over the same period, the results demonstrate already occurring negative impacts of climate trends on crop yields at the global scale

  3. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  4. Estimation Of Effective Dose In Ingestion Of Food Crops For 137Cs

    International Nuclear Information System (INIS)

    Angeleska, A.; Dimitrieska-Stojkovic, E.; Uzunov, R.; Hajrulai-Musliu, Z.; Stojanovska-Dimzoska, B.; Jankuloski, D.; Crceva-Nikolovska, R.

    2015-01-01

    The interaction of the ionizing radiation with the human body leads to various biological effects which afterwards can be manifested as clinical symptoms. The nature and the seriousness of the symptoms depend on the absorbed dose, as well as the dose rate, and many diseases which were supposed to be effectively managed if information for the radiation level of an environment was available. The knowledge of the concentration of radioactivity of our environment is of essential relevance in the assessment of the dose that is accumulated in the population, as well as for the formation of the basis for estimation of the level of radioactive contamination or contamination in the environment in future. Taking into consideration the relevance of the distribution and the transfer of radionuclides from the soil to the crops, this work was aimed to estimate the effective dose in ingestion of separate crops for 137Cs. The effective dose was determined by means of already known transfer factors from the soil to the plants and measured concentrations of activities of soil from specific locations in the surrounding of the city of Skopje. The agricultural crops used for analysis are the most commonly applied crops (vegetables, legumes, root crops) in Republic of Macedonia. The radiometric analysis of these samples was conducted by applying a spectrometer for gamma-rays with Germanium with high purity (HPGe). The estimated effective dose would apply for adults who ingested the mentioned crops which were produced at the mentioned locations, that is, in the region of Skopje. These data can be the basis for estimation of risk for radioactive contamination of the population, received by ingestion of produced food. (author).

  5. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs.

    Science.gov (United States)

    Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet

    2018-07-30

    In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  7. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    Science.gov (United States)

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Radioactivity measurement in imported food and food related items

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Santos, F.L.; Rosa, A.M. de la; Tangonan, M.C.; Bulos, A.D.; Nuguid, Z.F.

    1989-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly Philippine Atomic Energy Commission (PAEC) undertook the radioactivity monitoring of imported food and food-related products after the Chernobyl Plant accident in April 1986. Food samples were analyzed for 137 Cs and 134 Cs by gamma spectral method of analysis. This report deals with the measurement process and gives the result of the activity covering the period June 1986 to December 1987. (Auth.). 9 tabs., 7 figs., 4 refs

  9. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies....

  10. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  11. Non-bee insects are important contributors to global crop pollination.

    Science.gov (United States)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  12. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops

    International Nuclear Information System (INIS)

    Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A.

    2017-01-01

    Highlights: •Combining solar panels and crops on the same land increases the total productivity. •Use of solar trackers permits to balance or promote food/energy production. •Controlling mode of trackers strongly affect the total production per unit area. •Dynamic agrivoltaic systems increases productivity without competing with food. -- Abstract: Agrivoltaic systems, consisting of the combination of photovoltaic panels (PVPs) with crops on the same land, recently emerged as an opportunity to resolve the competition for land use between food and energy production. Such systems have proved efficient when using stationary PVPs at half their usual density. Dynamic agrivoltaic systems improved the concept by using orientable PVPs derived from solar trackers. They offer the possibility to intercept the variable part of solar radiation, as well as new means to increase land productivity. The matter was analysed in this work by comparing fixed and dynamic systems with two different orientation policies. Performances of the resulting agrivoltaic systems were studied for two varieties of lettuce over three different seasons. Solar tracking systems placed all plants in a new microclimate where light and shade bands alternated several times a day at any plant position, while stationary systems split the land surface into more stable shaded and sunlit areas. In spite of these differences, transient shading conditions increased plant leaf area in all agrivoltaic systems compared to full-sun conditions, resulting in a higher conversion of the transmitted radiation by the crop. This benefit was lower during seasons with high radiation and under controlled tracking with more light transmitted to the crop. As expected, regular tracking largely increased electric production compared to stationary PVPs but also slightly increased the transmitted radiation, hence crop biomass. A large increase in transmitted radiation was achieved by restricting solar tracking around midday

  13. Do genetically modified crops affect animal reproduction? A review of the ongoing debate.

    Science.gov (United States)

    Zhang, W; Shi, F

    2011-05-01

    In the past few years, genetically modified (GM) crops aimed at producing food/feed that became part of the regular agriculture in many areas of the world. However, we are uncertain whether GM food and feed can exert potential adverse effects on humans or animals. Of importance, the reproductive toxicology of GM crops has been studied using a number of methods, and by feeding GM crops to a number species of animals to ensure the safety assessment of GM food and feed. It appears that there are no adverse effects of GM crops on many species of animals in acute and short-term feeding studies, but serious debates of effects of long-term and multigenerational feeding studies remain. The aims of this review are to focus on the latest (last 3 to 4 years) findings and debates on reproduction of male and female animals after feeding daily diets containing the GM crops, and to present the possible mechanism(s) to explain their influences.

  14. Food and Agricultural Imports from China

    National Research Council Canada - National Science Library

    Becker, Geoffrey S

    2007-01-01

    U.S. food and agricultural imports have increased significantly in recent years. A series of recent incidents have raised safety concerns about the many foods, medicines, and other products from China in particular. U.S...

  15. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems.

    Science.gov (United States)

    E Birch, A Nicholas; Begg, Graham S; Squire, Geoffrey R

    2011-06-01

    Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are

  16. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  17. Nitrate leaching from organic and conventional crop production farms

    OpenAIRE

    Olesen, J.E.; Berntsen, J.; Petersen, B.M.; Kristensen, I.S.

    2004-01-01

    Farm accounting data from the Institute of Food Economics and from Central Agricultural Registers in Denmark were used to define the import of nitrogen (N) to farmed fields on conventional and organic arable farms to 129 and 51 kg N ha-1 yr-1, respectively. Based on the recorded distribution of crops, a generalised crop rotation was defined for each of the two farming systems. The crop rotation for the organic farm had a high share of spring cereals and additionally 20% grass-clover in the ro...

  18. Grand challenges for crop science

    Science.gov (United States)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  19. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  20. An investigation of radionuclide uptake into food crops grown in soils treated with bauxite mining residues

    International Nuclear Information System (INIS)

    Cooper, M.B.; Clarke, P.C.; Robertson, W.; McPharlin, I.R.; Jeffrey, R.C.

    1994-01-01

    Sandy soils of the coastal plain area of Western Australia have poor phosphorous retention capacity which leads to pollution of surface water bodies in the region. Application of bauxite mining residues (termed 'red mud') to vegetable and crops has been proposed as a solution to increase the phosphorous and water retention and thereby reduce the leaching of nutrients. The thorium and radium-226 concentrations in the 'red mud' residues are in excess of 1 kBq/kg, and 300 Bq/kg respectively. Potentially, the use of these residues on agricultural land could result in increased levels of radionuclides in food grown in amended soils. The transfer of long-lived radionuclides of both the natural thorium and uranium series to a variety of vegetable crops grown under controlled conditions is investigated. The effects of varying the rates of application of 'red mud' and phosphate fertilizers on radionuclide uptake are studied. It has been shown previously that fallout caesium-137 is sandy soils of the region transfers readily to food and grazing crops. Some of the parameters which influence that transfer are also examined. (author). 14 refs., 1 fig., 8 tabs

  1. GM foods and the misperception of risk perception.

    Science.gov (United States)

    Gaskell, George; Allum, Nick; Wagner, Wolfgang; Kronberger, Nicole; Torgersen, Helge; Hampel, Juergen; Bardes, Julie

    2004-02-01

    Public opposition to genetically modified (GM) food and crops is widely interpreted as the result of the public's misperception of the risks. With scientific assessment pointing to no unique risks from GM crops and foods, a strategy of accurate risk communication from trusted sources has been advocated. This is based on the assumption that the benefits of GM crops and foods are self-evident. Informed by the interpretation of some qualitative interviews with lay people, we use data from the Eurobarometer survey on biotechnology to explore the hypothesis that it is not so much the perception of risks as the absence of benefits that is the basis of the widespread rejection of GM foods and crops by the European public. Some respondents perceive both risks and benefits, and may be trading off these attributes along the lines of a rational choice model. However, for others, one attribute-benefit-appears to dominate their judgments: the lexicographic heuristic. For these respondents, their perception of risk is of limited importance in the formation of attitudes toward GM food and crops. The implication is that the absence of perceived benefits from GM foods and crops calls into question the relevance of risk communication strategies for bringing about change in public opinion.

  2. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    Science.gov (United States)

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J.; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops. PMID:28487720

  3. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2017-04-01

    Full Text Available Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L. Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement.Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  4. ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT : A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS

    OpenAIRE

    Sandhi, Arifin

    2017-01-01

    Use of arsenic-rich groundwater for crop irrigation can increase the arsenic (As) content in food crops and act as a carcinogen, compromising human health. Using aquatic plant based phytofiltration is a potential eco-technique for removing arsenic from water. The aquatic moss species Warnstorfia fluitans grows naturally in mining areas in northern Sweden, where high concentrations of arsenic occur in lakes and rivers. This species was selected as a model for field, climate chamber and greenho...

  5. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  6. Characteristics important for organic breeding of vegetable crops

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2010-01-01

    Full Text Available The remarkable development and application of new genetic The Institute for Vegetable Crops possesses a rich germplasm collection of vegetables, utilized as gene resource for breeding specific traits. Onion and garlic breeding programs are based on chemical composition improvement. There are programs for identification and use of genotypes characterized by high tolerance to economically important diseases. Special attention is paid to breeding cucumber and tomato lines tolerant to late blight. As a result, late blight tolerant pickling cucumber line, as well as late blight tolerant tomato lines and hybrids are realized. Research on bean drought stress tolerance is initiated. Lettuce breeding program including research on spontaneous flora is started and interspecies hybrids were observed as possible genetic variability source. It is important to have access to a broad range of vegetable genotypes in order to meet the needs of organic agriculture production. Appreciating the concept of sustainable agriculture, it is important to introduce organic agriculture programs in breeding institutions.

  7. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, I; Orfi, M; Shamma, M [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2007-08-15

    Samples of food crops (peanut, peeled pistachio, unpeeled pistachio, rice, and corn) and feed (barley, bran, corn) were sterilized then inoculated with 10{sup 6} of spore suspension of an isolate of Aspergillus flavus fungus known to produce aflatoxin B1 . Food and feed samples were irradiated with gamma radiation at the doses 4, 6, and 10 kGy. Results indicated that degradation of Aflatoxin B1 was positively correlated with the increase in the applied dose of gamma ray for each tested sample. For example, at a dose of 4 KGy. Percentages of aflatoxin B1 degradation were 8.4, 9.7, 16.6 and 23.5, and 43.97% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, consecutively . Whereas, at a dose of 10 KGy percentages of aflatoxin degradation reached highest values at 58.6, 68.8, 84.6, 81.1 and 87.8% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, consecutively In feed samples percentages of aflatoxin degradation were 45, 66, and 90% in barley, 47, 75, and 86% in bran, and 31, 72, and 84% in corn for the doses of 4, 6, and 10 KGy, consecutively. Aflatoxin degradation in food samples correlated negatively with oil content in irradiated samples. Thus, in peanuts, which contained the highest oil content, percentage of aflatoxin degradation at 10 KGy was not more than 56.6%, whereas, the corresponding value in corn, which contained the highest oil content, reached as high as 80%. The above results indicate the possibility of using gamma irradiation as a means of degradation of aflatoxin B1 in food and feed crops to lower than the maximum allowed levels using a maximum dose of radiation of 10 KGy which represents the permitted dose of radiation for such type of crops.(author)

  8. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops

    International Nuclear Information System (INIS)

    Ghanem, I.; Orfi, M.; Shamma, M.

    2007-08-01

    Samples of food crops (peanut, peeled pistachio, unpeeled pistachio, rice, and corn) and feed (barley, bran, corn) were sterilized then inoculated with 10 6 of spore suspension of an isolate of Aspergillus flavus fungus known to produce aflatoxin B1 . Food and feed samples were irradiated with gamma radiation at the doses 4, 6, and 10 kGy. Results indicated that degradation of Aflatoxin B1 was positively correlated with the increase in the applied dose of gamma ray for each tested sample. For example, at a dose of 4 KGy. Percentages of aflatoxin B1 degradation were 8.4, 9.7, 16.6 and 23.5, and 43.97% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, consecutively . Whereas, at a dose of 10 KGy percentages of aflatoxin degradation reached highest values at 58.6, 68.8, 84.6, 81.1 and 87.8% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, consecutively In feed samples percentages of aflatoxin degradation were 45, 66, and 90% in barley, 47, 75, and 86% in bran, and 31, 72, and 84% in corn for the doses of 4, 6, and 10 KGy, consecutively. Aflatoxin degradation in food samples correlated negatively with oil content in irradiated samples. Thus, in peanuts, which contained the highest oil content, percentage of aflatoxin degradation at 10 KGy was not more than 56.6%, whereas, the corresponding value in corn, which contained the highest oil content, reached as high as 80%. The above results indicate the possibility of using gamma irradiation as a means of degradation of aflatoxin B1 in food and feed crops to lower than the maximum allowed levels using a maximum dose of radiation of 10 KGy which represents the permitted dose of radiation for such type of crops.(author)

  9. Framing GM Crops as a Food Security Solution

    Science.gov (United States)

    Dibden, Jacqui; Gibbs, David; Cocklin, Chris

    2013-01-01

    The spectre of a food security crisis has raised important questions about future directions for agriculture and given fresh impetus to a long-standing debate about the potential contribution of agricultural biotechnology to food security. This paper considers the discursive foundations for promotion of agricultural biotechnology, arguing that…

  10. An overview of FAO's food crop development programme for Africa - A plant breeder's perspective

    International Nuclear Information System (INIS)

    Kueneman, E.A.

    1997-01-01

    While FAO employs some scientists for posts at headquarters, in its laboratory at Seibersdorf in Austria and in its field projects, FAO is not, in the conventional sense, a research organization. FAO assists its member nations providing information on matters ranging from: remote sensing, to projections on food availability to land-use-planning to extension to crop and animal production methodologies (including variety development and germplasm preservation) to marketing and processing to nutrition needs and policies. FAO is also a forum where member nations can present different opinions on regional and global needs as they relate to food, agriculture and sustainable development

  11. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  12. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance

    Directory of Open Access Journals (Sweden)

    Neeru Kaushal

    2016-12-01

    Full Text Available The rising temperatures are resulting in heat stress for various agricultural crops to limit their growth, metabolism, and leading to significant loss of yield potential worldwide. Heat stress adversely affects normal plant growth and development depending on the sensitivity of each crop species. Each crop species has its own range of temperature maxima and minima at different developmental stages beyond which all these processes get inhibited. The reproductive stage is on the whole more sensitive to heat stress, resulting in impaired fertilization to cause abortion of flowers. During seed filling, heat stress retards seed growth by affecting all the biochemical events to reduce seed size. Unfavorable temperature may significantly affect photosynthesis, respiration, water balance, and membrane stability of leaves. To combat heat stress, plants acquire various defense mechanisms for their survival such as maintaining membrane stability, and scavenging reactive oxygen species by generating antioxidants and stress proteins. Thermo-tolerance can be improved by the accumulation of various compounds of low molecular mass known as thermo-protectants as well as phyto-hormones. Exogenous application of these molecules has benefited plants growing under heat stress. Alternatively, transgenic plants over-expressing the enzymes catalyzing the synthesis of these molecules may be raised to increase their endogenous levels to improve heat tolerance. In recent times, various transgenics have been developed with improved thermo-tolerance having potential benefits for inducing heat tolerance in food crops. Updated information about of the effects of heat stress on various food crops and their responses as well as adaptive mechanisms is reviewed here.

  13. Groundwater Depletion Embedded in International Food Trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-01-01

    Recent hydrological modeling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world's food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  14. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  15. The Nutritional Facts of Bamboo Shoots and Their Usage as Important Traditional Foods of Northeast India

    Science.gov (United States)

    Nongdam, P.; Tikendra, Leimapokpam

    2014-01-01

    Bamboo shoots are considered as one of the useful health foods because of their rich contents of proteins, carbohydrates, vitamins, fibres, and minerals and very low fat. Though bamboo shoots provide lots of health benefits, their consumption is confined mostly to Southeast Asian and East Asian countries. The acceptability of bamboo shoots as popular vegetable crop is very less due to their high pungent smell and bitter acidic taste. The use of bamboo as food in India is mainly restricted to Northeastern part of the country where they form an indispensable part of several traditional speciality dishes. The different ethnic communities take fresh or fermented bamboo shoot as one of most preferred traditional food items. Some of the important bamboo based traditional foods are ushoi, soibum, rep, mesu, eup, ekhung, hirring, and so forth. Bamboo shoots should be properly processed before they are consumed as freshly harvested shoots have high content of toxic cyanogenic glycosides which may pose serious health problems. The prospect of bamboo shoot industry in Northeast India is bright due to its rich genetic resources of bamboos. However, habitat destruction and extensive use of bamboos for food, handicraft, and construction purposes have resulted in severe depletion of natural bamboo resources. This review stresses upon the high nutritive values and health benefits of bamboo shoots and their usage as important traditional foods in Northeast India. The bamboo market potential of the region and use of in vitro plant micropropagation methods as effective means of bamboo conservation are also emphasized in this paper. PMID:27433496

  16. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  17. Achievements and trends of using induced mutations in crop improvement

    International Nuclear Information System (INIS)

    Nichterlein, K.; Maluszynski, M.; ); Bohlmann, H.; Nielen, S.; )

    2000-01-01

    Mutation techniques have been employed for the genetic improvement of crops and ornamentals leading to the official release of more than 2200 improved varieties. Some of them have made a major impact on crop productivity and achieved great economic success. Induced mutations play an important role in plant genome research to understand the function of genes aiming to improve food security and diversity. (author)

  18. Researching Seeds: Films, Sanitation Methods, Microbiological Growth, Viability, and Selection for New Crops

    Science.gov (United States)

    Padgett, Niki; Smith, Trent

    2018-01-01

    A major factor in long-term human exploration of the solar system is crop growth in microgravity. Space crops can provide fresh, nutritious food to supplement diets for astronauts. Important factors impacting space plant growth and consumption are water delivery to root zone in microgravity, sanitation methods for microbiological safety, plant responses to light quality/spectrum, and identifying optimal edible plants suitable for growth on the International Space Station (ISS). Astronauts growing their own food on the ISS provides necessary data for crop production for long duration deep space missions. The seed film project can be used in Advanced Plant Habitat and Veggies that are currently being utilized on the ISS.

  19. Impact of mine waste dumps on growth and biomass of economically important crops.

    Science.gov (United States)

    Mathiyazhagan, Narayanan; Natarajan, Devarajan

    2012-11-01

    The present study aimed to investigate the effect of magnesite and bauxite waste dumps on growth and biochemical parameters of some edible and economically important plants such as Vigna radiata, V. mungo, V. unguiculata, Eleusine coracana, Cajanus cajan, Pennisetum glaucum, Macrotyloma uniflorum, Oryza sativa, Sorghum bicolour, Sesamum indicum, Ricinus communis, Brassica juncea, Gossypium hirsutum and Jatropha curcas. The growth rate of all the crops was observed in the range of 75 to 100% in magnesite and 15 to 100% in bauxite mine soil. The moisture content of roots and shoots of all the crops were in the range of 24 to 77, 20 to 88% and 42 to 87, 59 to 88% respectively. The height of the crops was in the range of 2.6 to 48 cm in magnesite soil and 3 to 33 cm in bauxite soil. Thus the study shows that both mine soils reflects some physical and biomolecule impact on selected crops.

  20. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    Science.gov (United States)

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  1. Status of market, regulation and research of genetically modified crops in Chile.

    Science.gov (United States)

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    Science.gov (United States)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub

  3. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  4. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change.

    Science.gov (United States)

    Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson

    2016-01-01

    This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.

  5. Food fraud and the perceived integrity of European food imports into China

    Science.gov (United States)

    Raley, M.; Dean, M.; Clark, B.; Stolz, H.; Home, R.; Chan, M. Y.; Zhong, Q.; Brereton, P.; Frewer, L. J.

    2018-01-01

    Background/Aims Persistent incidents of food fraud in China have resulted in low levels of consumer trust in the authenticity and safety of food that is domestically produced. We examined the relationship between the concerns of Chinese consumers regarding food fraud, and the role that demonstrating authenticity may play in relieving those concerns. Methods A two-stage mixed method design research design was adopted. First, qualitative research (focus groups n = 7) was conducted in three Chinese cities, Beijing, Guangzhou and Chengdu to explore concerns held by Chinese consumers in relation to food fraud. A subsequent quantitative survey (n = 850) tested hypotheses derived from the qualitative research and theoretical literature regarding the relationship between attitudinal measures (including risk perceptions, social trust, and perceptions of benefit associated with demonstrating authenticity), and behavioral intention to purchase “authentic” European products using structural equation modelling. Results Chinese consumers perceive food fraud to be a hazard that represents a food safety risk. Food hazard concern was identified to be geographically influenced. Consumers in Chengdu (tier 2 city) possessed higher levels of hazard concern compared to consumers in Beijing and Guangzhou (tier 1). Structural trust (i.e. trust in actors and the governance of the food supply chain) was not a significant predictor of attitude and intention to purchase authenticated food products. Consumers were shown to have developed ‘risk-relieving’ strategies to compensate for the lack of trust in Chinese food and the dissonance experienced as a consequence of food fraud. Indexical and iconic authenticity cues provided by food manufacturers and regulators were important elements of product evaluations, although geographical differences in their perceived importance were observed. Conclusions Targeted communication of authenticity assurance measures, including; regulations

  6. Food fraud and the perceived integrity of European food imports into China.

    Science.gov (United States)

    Kendall, H; Naughton, P; Kuznesof, S; Raley, M; Dean, M; Clark, B; Stolz, H; Home, R; Chan, M Y; Zhong, Q; Brereton, P; Frewer, L J

    2018-01-01

    Persistent incidents of food fraud in China have resulted in low levels of consumer trust in the authenticity and safety of food that is domestically produced. We examined the relationship between the concerns of Chinese consumers regarding food fraud, and the role that demonstrating authenticity may play in relieving those concerns. A two-stage mixed method design research design was adopted. First, qualitative research (focus groups n = 7) was conducted in three Chinese cities, Beijing, Guangzhou and Chengdu to explore concerns held by Chinese consumers in relation to food fraud. A subsequent quantitative survey (n = 850) tested hypotheses derived from the qualitative research and theoretical literature regarding the relationship between attitudinal measures (including risk perceptions, social trust, and perceptions of benefit associated with demonstrating authenticity), and behavioral intention to purchase "authentic" European products using structural equation modelling. Chinese consumers perceive food fraud to be a hazard that represents a food safety risk. Food hazard concern was identified to be geographically influenced. Consumers in Chengdu (tier 2 city) possessed higher levels of hazard concern compared to consumers in Beijing and Guangzhou (tier 1). Structural trust (i.e. trust in actors and the governance of the food supply chain) was not a significant predictor of attitude and intention to purchase authenticated food products. Consumers were shown to have developed 'risk-relieving' strategies to compensate for the lack of trust in Chinese food and the dissonance experienced as a consequence of food fraud. Indexical and iconic authenticity cues provided by food manufacturers and regulators were important elements of product evaluations, although geographical differences in their perceived importance were observed. Targeted communication of authenticity assurance measures, including; regulations; enforcement; product testing; and actions taken by

  7. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  8. A crop production ecology (CPE) approach to sustainable production of biomass for food, feed and fuel

    NARCIS (Netherlands)

    Haverkort, A.J.; Bindraban, P.S.; Conijn, J.G.; Ruijter, de F.J.

    2009-01-01

    With the rapid increase in demand for agricultural products for food, feed and fuel, concerns are growing about sustainability issues. Can agricultural production meet the needs of increasing numbers of people consuming more animal products and using a larger share of crops as fuel for transport,

  9. Crop improvement through mutation techniques in Chinese agriculture

    International Nuclear Information System (INIS)

    Wen, X.; Qu, L.

    1996-01-01

    Induced mutations for crop improvement is the most developed field in China's nuclear-agricultural sciences. It is well known that China has supported 22% of the world's population with only 7% of its cultivated land. The continued rise in population stresses the importance of increasing food production. Although developing crop varieties is efficient in increasing food production, plant breeders are approaching the outer limits of existing and useful genetic variability. As nuclear techniques provide an efficient route to inducing genetic mutations, more and more efforts have been focused on induced genetic variability. Induced mutations have become an effective way of improving cultivars and supplementing existing germplasm. Since 1981 two nationwide co-operation programs for mutation breeding, organized by the IAEA, have been carried out. 3 tabs

  10. Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock

    Directory of Open Access Journals (Sweden)

    Beaudoin Frédéric

    2014-11-01

    Full Text Available The world faces considerable challenges including how to produce more biomass for food, feed, fuel and industrial feedstock without significantly impacting on our environment or increasing our consumption of limited resources such as water or petroleum-derived carbon. This has been described as sustainable intensification. Oleaginous crops have the potential to provide renewable resources for all these commodities, provided they can be engineered to meet end-use requirements, and that they can be produced on sufficient scale to meet current growing world population and industrial demand. Although traditional breeding methods have been used successfully to modify the fatty acid composition of oils, metabolic engineering provides a more rapid and direct method for manipulating plant lipid composition. Recent advances in our understanding of the biochemical mechanisms of seed oil biogenesis and the cloning of genes involved in fatty acid and oil metabolic pathways, have allowed the generation of oilseed crops that produce ‘designer oils’ tailored for specific applications and the conversion of high biomass crops into novel oleaginous crops. However, improvement of complex quantitative traits in oilseed crops remains more challenging as the underlying genetic determinants are still poorly understood. Technological advances in sequencing and computing have allowed the development of an association genetics method applicable to crops with complex genomes. Associative transcriptomics approaches and high throughput lipidomic profiling can be used to identify the genetic components controlling quantitative variation for lipid related traits in polyploid crops like oilseed rape and provide molecular tools for marker assisted breeding. In this review we are citing examples of traits with potential for bio-refining that can be harvested as co-products in seeds, but also in non-harvested biomass.

  11. Radiation induced mutant crop varieties: accomplishment and societal deployment

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  12. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence

    Science.gov (United States)

    Guan, Kaiyu; Berry, Joseph A.; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B.

    2015-01-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.

  13. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  14. Crop wild relatives of the brinjal eggplant (Solanum melongena)

    NARCIS (Netherlands)

    Syfert, Mindy M.; Castañeda-Álvarez, Nora P.; Khoury, Colin K.; Särkinen, Tiina; Sosa, Chrystian C.; Achicanoy, Harold A.; Bernau, Vivian; Prohens, Jaime; Daunay, Marie Christine; Knapp, Sandra

    2016-01-01

    PREMISE OF THE STUDY: Crop wild relatives (CWR) provide important traits for plant breeding, including pest, pathogen, and abiotic stress resistance. Therefore, their conservation and future availability are essential for food security. Despite this need, the world's genebanks are currently

  15. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes.

    Science.gov (United States)

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat

  16. Indigenous Food Systems and Climate Change: Impacts of climatic shifts on the production and processing of native and traditional crops in the Bolivian Andes

    Directory of Open Access Journals (Sweden)

    Alder eKeleman Saxena

    2016-03-01

    Full Text Available Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data was collected between 2012 and 2014 via mixed-methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes a the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia; and b the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp., oca (Oxalis tuberosa, tarwi (Lupinus mutabilis, papalisa (Ullucus tuberosus, and charkay (llama or sheep jerky. Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, the use and spatial distribution of particular crop varieties. Further, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. While these findings are drawn from a single case-study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, indigenous food systems. Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture, and may be under different, more direct, and more immediate threat

  17. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    Science.gov (United States)

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. ENTOMOLOGY - INSECTS AND OTHER PESTS IN FIELD CROPS

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2009-12-01

    Full Text Available The academic textbook Entomology - Insects and other pests in field crops, describes the most important pests of field crops supported by many photographs. The textbook encompasses 15 chapters. Importance of entomology in intensive plant production is discussed in introductory chapter, in terms of increased threat of insects and other pests. Morphology, anatomy and physiology are given in the second and third chapter, while ways and phases of insect development are elaborated in the fourth chapter. The fifth chapter, overview of insect systematic is given. Polyphagous insects are described from the sixth to fourteenth chapter, as follows: pests of cereals, maize, sugar beet, sunflower, oil seed rape, soybean, forage crops and stored products. In the last chapter, principles of integrated pest management are described due to proper application of all control measures to obtain healthier food production.

  19. Bisphenol A in domestic and imported canned foods in Japan.

    Science.gov (United States)

    Kawamura, Yoko; Etoh, Masahiro; Hirakawa, Yoshinori; Abe, Yutaka; Mutsuga, Motoh

    2014-01-01

    Bisphenol A (BPA) concentrations were surveyed in 100 domestic and 60 imported canned foods purchased from the Japanese market in 2011-12. BPA was extracted from the canned foods, derivatised by ethylation and analysed using GC-MS. In the domestic canned foods, the maximum and average BPA concentrations were 30 and 3.4 ng g(-1), respectively, while in the imported canned foods they were 390 and 57 ng g(-1), respectively. The BPA level in the domestic canned foods was significantly lower than that in the imported canned foods. Based on these results, the intakes of BPA from the domestic and imported canned foods in Japan were estimated as 644 ng person(-1) day(-1). The Japanese BPA intake was the second lowest following New Zealand, although imported canned foods increased. It was sufficiently lower than the tolerable daily intake of EFSA and the USEPA. The drastic reduction of BPA in the domestic canned foods should be due to the 'BPA reduced cans' that Japanese can manufacturers had developed in the late 1990s and became widely used in Japan.

  20. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints

    International Nuclear Information System (INIS)

    Fader, Marianela; Gerten, Dieter; Lucht, Wolfgang; Krause, Michael; Cramer, Wolfgang

    2013-01-01

    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries’ capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries. (letter)

  1. The Impacts of Various Environments Factors and Adaptive Management Strategies on Food Crops in the 21st Century Based on a Land Surface Model

    Science.gov (United States)

    Jain, A. K.; Lin, T. S.; Lawrence, P.; Kheshgi, H. S.

    2017-12-01

    Environmental factors - characterized by increasing levels of CO2, and changes in temperature and precipitation patterns - present potential risks to global food supply. To date, understanding of environmental factors' effects on crop production remains uncertain due to (1) uncertainties in projected trends of these factors and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to adaptive management practices (e.g. change in planting time, irrigation and N fertilization etc.) and (3) uncertainties in current land surface models to estimate the response of crop production to changes in environmental factors and management strategies. In this study we apply a process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of various environmental factors and management strategies on the production of row crops (corn, soybean and wheat) at regional and global scales. Results are compared to corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Each model is driven with historical atmospheric forcing data (1901-2005), and projected atmospheric forcing data under RCP 4.5 or RCP 8.5 (2006-2100) from CESM CMIP5 simulations to estimate the effects of different climate change projections on potential productivity of food crops at a global scale. For each set of atmospheric forcing data, production of each crop is simulated with and without inclusion of adaptive management practices (e.g. application of irrigation, N fertilization, change in planting time and crop cultivars etc.) to assess the effect of adaptation on projected crop production over the 21st century. In detail, three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of adaptive management practices on projected crop production; and (3) how do differences in model

  2. Do whole-food animal feeding studies have any value in the safety assessment of GM crops?

    Science.gov (United States)

    Herman, Rod A; Ekmay, Ricardo

    2014-02-01

    The use of whole-food (grain meal contained in feed) animal-feeding studies to support the safety assessment of genetically modified crops has been contentious. This may be, in part, a consequence of poorly agreed upon study objectives. Whole-food animal-feeding studies have been postulated to be useful in detecting both expected and unexpected effects on the composition of genetically modified crops. While the justification of animal feeding studies to detect unexpected effects may be inadequately supported, there may be better justification to conduct such studies in specific cases to investigate the consequences of expected compositional effects including expression of transgenic proteins. Such studies may be justified when (1) safety cannot reasonably be predicted from other evidence, (2) reasonable hypothesis for adverse effects are postulated, (3) the compositional component in question cannot be isolated or enriched in an active form for inclusion in animal feeding studies, and (4) reasonable multiples of exposure can be accomplished relative to human diets. The study design for whole-food animal-feeding studies should be hypotheses-driven, and the types of data collected should be consistent with adverse effects that are known to occur from dietary components of biological origin. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  4. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Yoshinaga; Ohtake, Tomoko; Okada, Hajime; Fujimoto, Kenzo [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ami, Takehiro [Innovation Plaza Ishikawa, Japan Science and Technology Agency, 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tsukaguchi, Tadashi, E-mail: kenzo@jaist.ac.j [Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836 (Japan)

    2009-06-15

    We describe a simple and inexpensive single-nucleotide polymorphism (SNP) typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  5. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Directory of Open Access Journals (Sweden)

    Yoshinaga Yoshimura, Tomoko Ohtake, Hajime Okada, Takehiro Ami, Tadashi Tsukaguchi and Kenzo Fujimoto

    2009-01-01

    Full Text Available We describe a simple and inexpensive single-nucleotide polymorphism (SNP typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  6. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat, Sorghum (sorghum, Pennisetum (pearl millet, Eleusine (finger millet, Cicer (chickpea and Lens (lentil exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth, Chenopodium (quinoa, Eragrostis (teff and Abelmoschus (okra. In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  7. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Science.gov (United States)

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  8. 21 CFR 1.283 - What happens to food that is imported or offered for import without adequate prior notice?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false What happens to food that is imported or offered for import without adequate prior notice? 1.283 Section 1.283 Food and Drugs FOOD AND DRUG... Imported Food Consequences § 1.283 What happens to food that is imported or offered for import without...

  9. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    Directory of Open Access Journals (Sweden)

    Frances M Shapter

    Full Text Available Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae, was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇ of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  10. In silico assessment of the potential allergenicity of transgenes used for the development of GM food crops.

    Science.gov (United States)

    Mishra, Ankita; Gaur, S N; Singh, B P; Arora, Naveen

    2012-05-01

    Genetically modified (GM) crops require allergenicity and toxicity assessment of the novel protein(s) to ensure complete safety to the consumers. These assessments are performed in accordance with the guidelines proposed by Codex (2003) and ICMR (2008). The guidelines recommend sequence homology analysis as a preliminary step towards allergenicity prediction, later in vitro experiments may be performed to confirm allergenicity. In the present study, an in silico approach is employed to evaluate the allergenic potential of six transgenes routinely used for the development of GM food crops. Among the genes studied, manganese superoxide dismutase (MnSOD) and osmotin shares greater than 90% identity with Hev b 10 and Cap a 1w, respectively. Chitinase shares greater than 70% identity with allergens namely Pers a 1 and Hev b 11, and fungal chitinase showed significant IgE binding with 7 of 75 patients' sera positive to different food extracts. Glucanases (alfalfa, wheat) and glycine betaine aldehyde dehydrogenase gene share 50% homology with allergens like - Ole e 9, Cla h 10 and Alt a 10. The results demonstrate the allergenic potential of six genes and can serve as a guide for selection of transgenes to develop GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    Science.gov (United States)

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  12. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    Science.gov (United States)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  13. The water-land-food nexus of first-generation biofuels

    Science.gov (United States)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  14. How important is local food to organic-minded consumers?

    Science.gov (United States)

    Hempel, Corinna; Hamm, Ulrich

    2016-01-01

    The study deals with German consumers' attitudes towards organic food and local food, their food purchase behaviour and their personal characteristics. The purpose is to investigate the differences in attitudes and willingness-to-pay values between consumers who consider the organic production of food (very) important and those who consider it less important. This study combines a consumer survey with an in-store, discrete choice experiment. In the analysis, findings from the consumer survey were related to the choices made by consumers in the experiment. Consumers' preferences and willingness-to-pay values were estimated through random parameter logit modelling. Organic-minded consumers (i.e. those who regarded organic food production as (very) important in the survey) have stronger preferences and estimated willingness-to-pay values for organic as well as local products. Locally produced food, as opposed to food from neighbouring countries or non-EU countries, is preferred over organically produced food by both consumer groups which demonstrates that organic-minded consumers do not only consider organic food production as important, but also value local food production in a purchase situation. Hence, it can be assumed that local food production complements organic food production for the group of organic-minded consumers. This contribution is the first study dealing with local and organic food purchase behaviour in Germany that examines four different products and is carried out in rural as well as urban locations in four different regions. Due to the application of a choice experiment including no-choice options and binding purchase decisions, the results are expected to be closer to real purchase situations than results of direct questioning and choice experiments in online applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  16. [Food poisoning--importance of international perspective].

    Science.gov (United States)

    Nishibuchi, Mitsuaki

    2012-08-01

    It is important to obtain the information on food security in the countries other than Japan since more than 60 % of the food consumed come from these countries. Food security is now considered as a global issue. A global trend persuading us to provide safe food to humans is based on the concept of human security development associated with a sense of human mission to sustain one's life. Another global tendency pushing us to secure safety and hygiene of food is driven by the economic pressure coming from the rules in international trade established by Codex Committee under FAO/WHO. In contrast to these trends under globalization requesting safe and hygienic food, food habits based on tradition or religion are maintained locally in various parts of the world. These local habits include eating raw or improperly cooked foods, which may become a risk of being exposed to food poisoning pathogens. This issue may be adequately solved by a risk assessment approach based on the concept of appropriate level of protection (ALOP). Like or not, people in some local areas live in the unhygienic environment where they are unintentionally and frequently exposed to enteric pathogens or immunologically cross-reacting microorganisms through which they may acquire specific immunity to the pathogens and escape from infection by the pathogens. There are therefore many areas in the world where people understand the necessity to provide safe food at the international level (globalization) but actually consume food in varying hygienic conditions from area to area due in part to traditional food habits or living environments (localization); we call this situation as glocalization (global+local).

  17. Production of Pharmaceutical Proteins in Solanaceae Food Crops

    Directory of Open Access Journals (Sweden)

    Giorgio De Guzman

    2013-01-01

    Full Text Available The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.

  18. Development Procedure in Mutation Induction and Tracer Technique for Good Agriculture Practices for Under used Crops

    International Nuclear Information System (INIS)

    Faiz Ahmad; Rusli Ibrahim; Khairuddin Abdul Rahim

    2015-01-01

    Under used crops are those crop species which have high potential value in the supply of important raw material for secondary economy sector in food processing. The yield production of new Under used crops varieties can be used as an important input in food production process for export products. The optimum production cost can be minimized since the price of raw material supplied from agriculture sector is cheaper compared with the international markets. Agriculture output can be increased through the development of Under used crops using radiation mutagenesis and tracer technique for good agricultural practices. This paper work will discuss the development procedure of mutation induction method which includes irradiation of samples such as seeds of groundnut and in vitro shoots of banana using gamma rays and application of N-15 for nutrient use efficiency and screening of potential mutant lines with high yield and resistance to drought. These management practices using established procedures of water and nutrient use efficiency will be recommended to the growers. (author)

  19. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  20. Agricultural diversification as an important strategy for achieving food security in Africa.

    Science.gov (United States)

    Waha, Katharina; van Wijk, Mark T; Fritz, Steffen; See, Linda; Thornton, Philip K; Wichern, Jannike; Herrero, Mario

    2018-03-31

    Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi-scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off-farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500-1,000 mm annual rainfall and 17%-22% rainfall variability. Forty-three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  1. Measurement of Radiocesium Decreasing Ratios in Some Crops after Food Processing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shigeo; Tagami, Keiko [National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-7444 (Japan)

    2014-07-01

    Radiocesium concentrations in foods are of great concern after the Fukushima Daiichi nuclear power plant (FDNPP) accident to avoid receiving additional dose. Food monitoring has been carried out and, if there is any food exceeding the standard limit of 100 Bq/kg of radiocesium ({sup 134}Cs+{sup 137}Cs), the food name together with the producing district has been reported immediately by the Ministry of Health, Labor and Welfare. Every month, about 20,000 samples have been measured their radioactivities, and the most recent data of August 2013 showed that only foods from wild sometimes exceeds the standard limits. However, public people worry about the radiocesium concentrations in foods, although the value were lower than 100 Bq/kg; and thus, one of their concerns is still how to remove radiocesium from foods. Unfortunately, however, there were not so many data for crops common in Japan before the FDNPP accident. To provide more data, we've been collecting data. Samples were obtained from wild, that is, mugwort, giant butter-bur, young bamboo shoot and chestnut, collected in Chiba or Fukushima Prefectures in Japan in 2013. Mugwort and giant butter-bur samples were separated into three portions to make raw, washed and boiled (2.5 min) samples. Young bamboo shoot and chestnut samples were separated into two portions to make raw and boiled sub-samples. All samples were oven-dried at 80 deg. C and each sample was pulverized and mixed well. After transfer the sample to a plastic container, the radioactivity concentration was measured by a Ge detecting system. The results showed that radiocesium concentrations after boiling decreased by 50-60% for mugwort (n=3), 15-40% for petioles of giant butter-bur (n=3), 20-35% for young bamboo shoot (n=7), and 0-20% for chestnut (n=3). These data were compared with recently reported values collected in Japan complied by Radioactive Waste management Funding and Research Center (2013), and our data were within the range of

  2. Gender in crop agriculture

    OpenAIRE

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the role of gender in crop agriculture as an essential component of development and poverty reduction. Gender is an integral aspect of crop agriculture because women's roles in crop production and household subsistence, as well as their knowledge of complex production syst...

  3. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  4. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  5. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    Science.gov (United States)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  6. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  7. An overview of FAO`s food crop development programme for Africa - A plant breeder`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kueneman, E A [Field Food Crops Group, Plant Production and Protection Div., FAO, Rome (Italy)

    1997-12-01

    While FAO employs some scientists for posts at headquarters, in its laboratory at Seibersdorf in Austria and in its field projects, FAO is not, in the conventional sense, a research organization. FAO assists its member nations providing information on matters ranging from: remote sensing, to projections on food availability to land-use-planning to extension to crop and animal production methodologies (including variety development and germplasm preservation) to marketing and processing to nutrition needs and policies. FAO is also a forum where member nations can present different opinions on regional and global needs as they relate to food, agriculture and sustainable development.

  8. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    Science.gov (United States)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  9. A proper metabolomics strategy supports efficient food quality improvement: A case study on tomato sensory properties

    NARCIS (Netherlands)

    Thissen, U.; Coulier, L.; Overkamp, K.M.; Jetten, J.; Werff, B.J.C. van de; Ven, T. van de; Werf, M.J. van der

    2011-01-01

    In agricultural and food products, typical quality parameters are sensory properties, shelf-life, safety, health, nutritional value, crop yield per area and disease resistance. It is known that these parameters are importantly determined by the metabolites in the crops and food products.

  10. Levels of Sulfur as an Essential Nutrient Element in the Soil-Crop-Food System in Austria

    Directory of Open Access Journals (Sweden)

    Manfred Sager

    2012-01-01

    Full Text Available Total sulfur data of various agricultural and food items from the lab of the author, have been compiled to develop an understanding of sulfur levels and ecological cycling in Austria. As sulfur level is not an included factor among the quality criteria of soil and fertilizer composition, the database is rather small. Problems in analytical determinations of total sulfur, in particular digestions, are outlined. As a protein component, sulfur is enriched in matrices of animal origin, in particular in egg white. There is substantial excretion from animals and man via urine. Organic fertilizers (manures, composts might contribute significantly to the sulfur budget of soils, which is important for organic farming of crops with high sulfur needs. For soils, drainage is a main route of loss of soluble sulfate, thus pot experiments may yield unrealistic sulfur budgets.

  11. Stable Food Crops Turning Into Commercial Crops: Case studies of ...

    African Journals Online (AJOL)

    RahelYilma

    case study analyses for the cereal crops of teff3, wheat and rice. Specifically, the ... behavior of households during the process of commercial transformation of subsistence ..... roducer → rural assembler, and producer → consumer. As with teff ...

  12. Cropping system diversification for food production in Mindanao rubber plantations: a rice cultivar mixture and rice intercropped with mungbean

    Science.gov (United States)

    Elazegui, Francisco; Duque, Jo-Anne Lynne Joy E.; Mundt, Christopher C.; Vera Cruz, Casiana M.

    2017-01-01

    Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5. Rice and mungbean intercropping treatments consisted of different combinations of two- or three-row strips of rice and mungbean. We used generalized linear mixed models to evaluate the yield of each crop alone and in the mixture or intercropping treatments. We also evaluated a land equivalent ratio for yield, along with weed biomass (where Ageratum conyzoides was particularly abundant), the severity of disease caused by Magnaporthe oryzae and Cochliobolus miyabeanus, and rice bug (Leptocorisa acuta) abundance. We analyzed the yield ranking of each cropping system across site-year combinations to determine mean relative performance and yield stability. When weighted by their relative economic value, UPL Ri-5 had the highest mean performance, but with decreasing performance in low-yielding environments. A rice and mungbean intercropping system had the second highest performance, tied with high-value Dinorado but without decreasing relative performance in low-yielding environments. Rice and mungbean intercropped with rubber have been adopted by farmers in the Arakan Valley. PMID:28194318

  13. Effects of Genetically Modified Crops on Food Security

    Directory of Open Access Journals (Sweden)

    MS Hosseini

    2018-03-01

    CONCLUSION: Therefore, discussing the existing concerns about production of GM crops should be with caution because there is little information on the impact of GM crops on sustainable agriculture. Thus, it requires decision making at national and even international levels.

  14. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  15. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    Science.gov (United States)

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  16. The changing importance of quality aspects in food consumption

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Brunsø, Karen; Grunert, Klaus G.

    in the pricing of foods. Five scales from the Food-related Lifestyle instrument (FRL) were used in replication surveys in Germany in 1993 and 1996 (N1 = 1000, N2 = 1042), France in 1994 and 1998 (N1 = 1000, N2 = 1000), and the UK in 1994 and 1998 (N1 = 1000, N2 = 1000), measuring the importance of health, price....../quality relation, novelty, organic products, and freshness to consumers' food choices. Trends in the importance of these quality aspects were modeled using multi-sample confirmatory factor analysis with structured means. Results indicate that, contrary to widespread expectations, the importance of healthy...

  17. The changing importance of quality aspects in food consumption

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Brunsø, Karen; Grunert, Klaus G.

    2001-01-01

    in the pricing of foods. Five scales from the Food-related Lifestyle instrument (FRL) were used in replication surveys in Germany in 1993 and 1996 (N1 = 1000, N2 = 1042), France in 1994 and 1998 (N1 = 1000, N2 = 1000), and the UK in 1994 and 1998 (N1 = 1000, N2 = 1000), measuring the importance of health, price....../quality relation, novelty, organic products, and freshness to consumers' food choices. Trends in the importance of these quality aspects were modeled using multi-sample confirmatory factor analysis with structured means. Results indicate that, contrary to widespread expectations, the importance of healthy...

  18. A new nitrogen index for assessment of nitrogen management practices of Andean Mountain cropping systems of Ecuador

    Science.gov (United States)

    Corn (Zea mays L.) is the most important crop for food security in several regions of Ecuador. Small farmers are using nitrogen (N) fertilizer without technical advice based on soil, crop and climatological data. The scientific literature lacks studies where tools are validated that can be used to q...

  19. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs.

  20. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs

  1. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    Science.gov (United States)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  2. Some Important Diseases of Tree Fruits - Diseases of Vegetable Crops - Diseases of Grapes - Diseases of Tree Nuts.

    Science.gov (United States)

    Petersen, Donald H.; And Others

    This agriculture extension service publication from Pennsylvania State University consists of four sections on plant disease recognition and control. The titles of these four sections are: (1) Some Important Diseases of Tree Fruits; (2) Diseases of Vegetable Crops; (3) Diseases of Crops; and (4) Diseases of Tree Nuts. The first section discusses…

  3. Radiation technology for the development of improved crop varieties

    International Nuclear Information System (INIS)

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  4. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    OpenAIRE

    Kangfu Yu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries...

  5. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, I; Orfi, M; Shamma, M [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2008-09-15

    Samples of food crops (peanut, peeled pistachio, unpeeled pistachio, rice, and corn) and feed (barley, bran, corn) were autoclave-sterilized, and inoculated with 106 of spore suspension of an isolate of Aspergillus flavus fungus known to produce aflatoxin B1. Food and feed samples were irradiated with gamma radiation at the doses 4, 6, and 10 kGy. Results indicated that degradation of Aflatoxin B1 was positively correlated with the increase in the applied dose of gamma ray for each tested sample. At a dose of 4 KGy percentages of aflatoxin B1 degradation were 8.4, 9.7, 16.6 and 23.5, and 43.97% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, respectively. Whereas, at a dose of 10 KGy percentages of aflatoxin degradation reached highest values at 58.6, 68.8, 84.6, 81.1 and 87.8% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, respectively. In feed samples percentages of aflatoxin degradation were 45, 66, and 90% in barley, 47, 75 and 86% in bran and 31, 72 and 84% in corn for the doses of 4, 6 and 10 KGy, respectively, Aflatoxin degradation in food samples correlated negatively with oil content in irradiated samples. Thus, in peanuts, which contained the highest oil content, percentage of aflatoxin degradation at 10 KGy was not more than 56.6% whereas, the corresponding value in corn, which contained the highest oil content, reached as high as 80%. The above results indicate the possibility of using gamma radiation as a means of degradation of aflatoxin B1 in food and feed crops to levels lower than the maximum allowed levels.(author)

  6. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops

    International Nuclear Information System (INIS)

    Ghanem, I.; Orfi, M.; Shamma, M.

    2008-01-01

    Samples of food crops (peanut, peeled pistachio, unpeeled pistachio, rice, and corn) and feed (barley, bran, corn) were autoclave-sterilized, and inoculated with 106 of spore suspension of an isolate of Aspergillus flavus fungus known to produce aflatoxin B1. Food and feed samples were irradiated with gamma radiation at the doses 4, 6, and 10 kGy. Results indicated that degradation of Aflatoxin B1 was positively correlated with the increase in the applied dose of gamma ray for each tested sample. At a dose of 4 KGy percentages of aflatoxin B1 degradation were 8.4, 9.7, 16.6 and 23.5, and 43.97% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, respectively. Whereas, at a dose of 10 KGy percentages of aflatoxin degradation reached highest values at 58.6, 68.8, 84.6, 81.1 and 87.8% for peanuts, peeled pistachios, unpeeled pistachios, corn and rice, respectively. In feed samples percentages of aflatoxin degradation were 45, 66, and 90% in barley, 47, 75 and 86% in bran and 31, 72 and 84% in corn for the doses of 4, 6 and 10 KGy, respectively, Aflatoxin degradation in food samples correlated negatively with oil content in irradiated samples. Thus, in peanuts, which contained the highest oil content, percentage of aflatoxin degradation at 10 KGy was not more than 56.6% whereas, the corresponding value in corn, which contained the highest oil content, reached as high as 80%. The above results indicate the possibility of using gamma radiation as a means of degradation of aflatoxin B1 in food and feed crops to levels lower than the maximum allowed levels.(author)

  7. Pathogen Decontamination of Food Crop Soil: A Review.

    Science.gov (United States)

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  8. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems.

    Science.gov (United States)

    Weber, Carolyn F

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World's people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one's own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158-236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  9. Sensory properties of chile pepper heat - and its importance to food quality and cultural preference.

    Science.gov (United States)

    Guzmán, Ivette; Bosland, Paul W

    2017-10-01

    Chile peppers are one of the most important vegetable and spice crops in the world. They contain capsaicinoids that are responsible for the characteristic burning (pungency) sensation. Currently, there are 22 known naturally occurring capsaicinoids that can cause the heat sensation when consumed. Each produces a different heat sensation effect in the mouth. A need exists for a standard and new terminology to describe the complex heat sensation one feels when eating a chile pepper. A comprehensive set of descriptors to describe the sensory characteristics of chile pepper heat was developed. It was validated with trained panelists tasting samples representing the five domesticated species and 14 pod-types within these species. Five key attributes that define and reference a lexicon for describing the heat sensation of chile peppers were determined to describe the heat sensation in any product, and importantly, can be used in the food industry worldwide. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Modeling nutrient flows in the food chain of China.

    Science.gov (United States)

    Ma, L; Ma, W Q; Velthof, G L; Wang, F H; Qin, W; Zhang, F S; Oenema, O

    2010-01-01

    Increasing nitrogen (N) and phosphorus (P) inputs have greatly contributed to the increasing food production in China during the last decades, but have also increased N and P losses to the environment. The pathways and magnitude of these losses are not well quantified. Here, we report on N and P use efficiencies and losses at a national scale in 2005, using the model NUFER (NUtrient flows in Food chains, Environment and Resources use). Total amount of "new" N imported to the food chain was 48.8 Tg in 2005. Only 4.4.Tg reached households as food. Average N use efficiencies in crop production, animal production, and the whole food chain were 26, 11, and 9%, respectively. Most of the imported N was lost to the environment, that is, 23 Tg N to atmosphere, as ammonia (57%), nitrous oxide (2%), dinitrogen (33%), and nitrogen oxides (8%), and 20 Tg to waters. The total P input into the food chain was 7.8 Tg. The average P use efficiencies in crop production, animal production, and the whole food chain were 36, 5, and 7%, respectively. This is the first comprehensive overview of N and P balances, losses, and use efficiencies of the food chain in China. It shows that the N and P costs of food are high (for N 11 kg kg(-1), for P 13 kg kg(-1)). Key measures for lowering the N and P costs of food production are (i) increasing crop and animal production, (ii) balanced fertilization, and (iii) improved manure management.

  11. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries.

    Science.gov (United States)

    Kumar, Deepak; Kalita, Prasanta

    2017-01-15

    While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers' livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%-60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%-2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  12. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    2017-01-01

    Full Text Available While fulfilling the food demand of an increasing population remains a major global concern, more than one-third of food is lost or wasted in postharvest operations. Reducing the postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, reduce pressure on natural resources, eliminate hunger and improve farmers’ livelihoods. Cereal grains are the basis of staple food in most of the developing nations, and account for the maximum postharvest losses on a calorific basis among all agricultural commodities. As much as 50%–60% cereal grains can be lost during the storage stage due only to the lack of technical inefficiency. Use of scientific storage methods can reduce these losses to as low as 1%–2%. This paper provides a comprehensive literature review of the grain postharvest losses in developing countries, the status and causes of storage losses and discusses the technological interventions to reduce these losses. The basics of hermetic storage, various technology options, and their effectiveness on several crops in different localities are discussed in detail.

  13. Tanzanian farmers' knowledge and attitudes to GM biotechnology and the potential use of GM crops to provide improved levels of food security. A Qualitative Study

    OpenAIRE

    Herron Caroline M; Newell James N; Lewis Christopher P; Nawabu Haidari

    2010-01-01

    Abstract Background Genetically Modified (GM) crops have been championed as one possible method to improve food security and individual nutritional status in sub Saharan Africa. Understanding and acceptability of GM crop technology to farmers and consumers have not been assessed. We developed a qualitative research study involving farmers as both producers and consumers to gauge the understanding of GM crop technology, its acceptability, and identifying issues of concern. Methods Nineteen ind...

  14. Climate Change Adaptation Strategies and Farm-level Efficiency in Food Crop Production in Southwestern, Nigeria

    Directory of Open Access Journals (Sweden)

    Otitoju, MA.

    2014-01-01

    Full Text Available Food crop yields depend largely on prevailing climate conditions, especially in Africa, where rain-fed agriculture predominate. The extent to which climate impacts are felt depends principally on the adaptation measures used by farmers. This study focused on the effect of climate change adaptation strategies on farm-level technical efficiency. The study used primary data collected from 360 randomly selected farmers in Southwest Nigeria. Cobb-Douglass stochastic frontier production model was used to analyse the data. Multiple cropping, land fragmentation, multiple planting dates, mulching and cover cropping were the major climate change adaptation strategies employed by the farmers. While land fragmentation and multiple planting dates had significant positive relationships, years of climate change awareness and social capital had significant inverse relationships, with technical inefficiency. This may be because while land fragmentation may hinder farm mechanization, multiple planting dates may increase the monotonousness and drudgery of farming. On the other hand, social capital and climate change awareness could help ameliorate the effects of, particularly, land fragmentation through resource pooling. It is therefore recommended that the farmers be encouraged to form cooperative societies so as to leverage their resource status through collective efforts.

  15. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    Science.gov (United States)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  16. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Directory of Open Access Journals (Sweden)

    Kangfu Yu

    2012-01-01

    Full Text Available Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.

  17. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    Science.gov (United States)

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  18. Prediction of seasonal climate-induced variations in global food production

    DEFF Research Database (Denmark)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki

    2013-01-01

    attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years(2......Consumers, including the poor in many countries, are increasingly dependent on food imports(1) and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased...

  19. Nanotechnology in agri-food production: an overview

    Science.gov (United States)

    Sekhon, Bhupinder Singh

    2014-01-01

    Nanotechnology is one of the most important tools in modern agriculture, and agri-food nanotechnology is anticipated to become a driving economic force in the near future. Agri-food themes focus on sustainability and protection of agriculturally produced foods, including crops for human consumption and animal feeding. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use. Nanotechnology can boost agricultural production, and its applications include: 1) nanoformulations of agrochemicals for applying pesticides and fertilizers for crop improvement; 2) the application of nanosensors/nanobiosensors in crop protection for the identification of diseases and residues of agrochemicals; 3) nanodevices for the genetic manipulation of plants; 4) plant disease diagnostics; 5) animal health, animal breeding, poultry production; and 6) postharvest management. Precision farming techniques could be used to further improve crop yields but not damage soil and water, reduce nitrogen loss due to leaching and emissions, as well as enhance nutrients long-term incorporation by soil microorganisms. Nanotechnology uses include nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant varieties, food processing and storage, nanofeed additives, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuels production technologies. Experts feel that the potential benefits of nanotechnology for agriculture, food, fisheries, and aquaculture need to be balanced against concerns for the soil, water, and environment and the occupational health of workers. Raising awareness of nanotechnology in the agri-food sector, including feed and food ingredients, intelligent packaging and quick-detection systems, is one of the keys to influencing consumer acceptance. On the basis of only a handful of toxicological studies, concerns have

  20. Importance of lactobacilli in food and feed biotechnology.

    Science.gov (United States)

    Giraffa, Giorgio; Chanishvili, Nina; Widyastuti, Yantyati

    2010-01-01

    The genus Lactobacillus is a heterogeneous group of lactic acid bacteria (LAB) with important implications in food fermentation. The ability to colonize a variety of habitats is a direct consequence of the wide metabolic versatility of this group of LAB. Consequently, lactobacilli have been used for decades in food preservation, as starters for dairy products, fermented vegetables, fish and sausages as well as silage inoculants. Lactobacilli have also been proposed as probiotics and microbial cell factories for the production of nutraceuticals. However, a wide range of applications of lactobacilli in food biotechnology remains potential, whereas a number of important strains still need to be discovered and characterized. This article provides an overview of the taxonomy of lactobacilli and describes four of the most significant case studies on the application of this group of LAB in food and feed biotechnology, including their use as probiotics, dairy starters, silage inoculants, and microbial cell factories. The importance of access to and exchange of biological material within and between different strain collections as a crucial step in expanding the range of different biotechnological applications of lactobacilli is also emphasized. (c) 2010 Elsevier Masson SAS. All rights reserved.

  1. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  2. Antioxidants in foods: state of the science important to the food industry.

    Science.gov (United States)

    Finley, John W; Kong, Ah-Ng; Hintze, Korry J; Jeffery, Elizabeth H; Ji, Li Li; Lei, Xin Gen

    2011-07-13

    Antioxidant foods and ingredients are an important component of the food industry. In the past, antioxidants were used primarily to control oxidation and retard spoilage, but today many are used because of putative health benefits. However, the traditional message that oxidative stress, which involves the production of reactive oxygen species (ROS), is the basis for chronic diseases and aging is being reexamined. Accumulating evidence suggests that ROS exert essential metabolic functions and that removal of too many ROS can upset cell signaling pathways and actually increase the risk of chronic disease. It is imperative that the food industry be aware of progress in this field to present the science relative to foods in a forthright and clear manner. This may mean reexamining the health implications of adding large amounts of antioxidants to foods.

  3. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  4. Impact of Climate Change on Food Security in Kenya

    Science.gov (United States)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely

  5. Food for the Future

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2012-01-01

    The population of the world is expected to grow by a third to nine billion by 2050. In order to feed this growing population, global food production will have to increase significantly. It is vitally important to make optimal use of the latest modern technology to help farmers to produce more food, to protect animals and crops against diseases and pests and to ensure that food is safe and wholesome.Nuclear techniques can help to achieve all three of these goals. The International Atomic Energy Agency, working closely with the Food and Agriculture Organization of the United Nations, makes these techniques available to farmers and food producers in developing countries.

  6. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  7. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany

    International Nuclear Information System (INIS)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-01-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. - Highlights: ► Traffic-related pollutant deposition as important pathway for crop contamination. ► Heavy metal content often over EU standards for lead concentration in food crops. ► ‘Grow your own’ food in inner cities not always ‘healthier’ than supermarket products. ► No support for generalisations of crops as ‘risky high’ or ‘safe low’ accumulators. - Higher overall traffic burden increased, while the presence of buildings and large masses of vegetation as barriers between crops and roads reduced heavy metal content in crop biomass.

  8. GM Crops, Organic Agriculture and Breeding for Sustainability

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2014-07-01

    Full Text Available The ongoing debate about the use of genetically-modified (GM crops in agriculture has largely focused on food safety and genetic contamination issues. Given that the majority of GM crops have been produced to respond to the problem of crop yield reductions caused by diseases, insects and weeds, the paper argues that in those cases, the currently used GM crops are an unstable solution to the problem, because they represent such a strong selection pressure, that pests rapidly evolve resistance. Organic agriculture practices provide a more sustainable way of producing healthy food; however, the lower yields often associated with those practices, making the resultant healthy food more expensive, open the criticism that such practices will not be able to feed human populations. Evolutionary plant breeding offers the possibility of using the evolutionary potential of crops to our advantage by producing a continuous flow of varieties better adapted to organic systems, to climate change and to the ever changing spectrum of pests, without depending on chemical control.

  9. Landscape and host plant effects on two important omnivorous arthropod taxa in field crops

    Science.gov (United States)

    The economically important brown stink bug, Euschistus servus (Say), is a native pest of many crops in southeastern USA and insecticide applications are the prevailing method of population suppression. To elucidate biological control of E. servus populations, we investigated two egg predators’ (red ...

  10. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed......Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). Grain legumes are an important crop for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil...... distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...

  11. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  12. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    Science.gov (United States)

    Shi, J.; Liu, J.; Pinter, L.

    2013-09-01

    China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  13. JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator

    Science.gov (United States)

    Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T.

    2014-10-01

    Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.

  14. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    Atherton, Keith T.

    2002-01-01

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  15. Alternative food promotes broad mite control on chilli pepper plants

    NARCIS (Netherlands)

    Duarte, M.V.A.; Venzon, M.; de S. Bittencourt, M.C.; Rodríguez-Cruz, F.A.; Pallini, A.; Janssen, A.

    2015-01-01

    Many omnivorous arthropods are important natural enemies because they can feed on plant-provided pollen and several prey species, and thus persist in crops even in the absence of the target pest. Hence, populations of these predators can be established in a crop by providing alternative food, thus

  16. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    Science.gov (United States)

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  17. Safety Assessment of Food and Feed from GM Crops in Europe: Evaluating EFSA's Alternative Framework for the Rat 90-day Feeding Study.

    Science.gov (United States)

    Hong, Bonnie; Du, Yingzhou; Mukerji, Pushkor; Roper, Jason M; Appenzeller, Laura M

    2017-07-12

    Regulatory-compliant rodent subchronic feeding studies are compulsory regardless of a hypothesis to test, according to recent EU legislation for the safety assessment of whole food/feed produced from genetically modified (GM) crops containing a single genetic transformation event (European Union Commission Implementing Regulation No. 503/2013). The Implementing Regulation refers to guidelines set forth by the European Food Safety Authority (EFSA) for the design, conduct, and analysis of rodent subchronic feeding studies. The set of EFSA recommendations was rigorously applied to a 90-day feeding study in Sprague-Dawley rats. After study completion, the appropriateness and applicability of these recommendations were assessed using a battery of statistical analysis approaches including both retrospective and prospective statistical power analyses as well as variance-covariance decomposition. In the interest of animal welfare considerations, alternative experimental designs were investigated and evaluated in the context of informing the health risk assessment of food/feed from GM crops.

  18. Soil nitrous oxide and methane fluxes in integrated crop-livestock systems in subtropics

    International Nuclear Information System (INIS)

    Dieckow, Jeferson; Pergher, Maico; Moraes, Anibal de; Piva, Jonatas Thiago; Bayer, Cimélio; Sakadevan, Karuppan

    2015-01-01

    Integrated crop-livestock (ICL) system is an agricultural practice in which crop-pasture rotation is carried out in the same field over time. In Brasil, ICL associated with no-tillage farming is increasingly gaining importance as a soil use strategy that improves food production (grain, milk and beef) and economic returns to farmers. Integrated crop-livestock-forestry (ICLF) is a recent modification of ICL in Brazil, with the inclusion of trees cultivation aiming at additional wood production and offering thermal comfort to livestock (Porfírio-da-Silva & Moraes, 2010). However, despite the increasing importance of ICL, little information is available on how this system may affect soil-atmosphere exchange of nitrous oxide (N 2 O) and methane (CH 4 )

  19. Mutations technology in the service of food security

    International Nuclear Information System (INIS)

    Sobeih, S.A.S.

    2013-01-01

    Nuclear techniques of various physical mutagens such as, X-rays, Gamma rays, Beta partials, Neutrons, Lasers, Electron beams, Ion beams irradiation and some chemical mutagens had significantly contributed in developing superior crop varieties of seeds and vegetatively propagated crops. Those released mutant cultivars in different groups had great economic impact on agriculture and food production and added billions of dollars in the economy of many countries. More than 3200 crops varieties of different crops have been officially released by mutation breeding technique. Almost half (48%) of all mutant crop varieties is recorded in cereals. Rice is the crop with the highest number of mutants and accounts for (53%) of the mutant cereals under cultivations followed by barley which makes up (20%) of all cereals mutant varieties globally. More than half (60%) of the mutants crop varieties have been released in Asia. China alone accounts for more than(25%) of all mutant varieties that have been officially released globally. Nuclear technology is an important way to reduce the gap of food between consumption and climate change and on the other hand to increase production. (author)

  20. Irradiation of packaged food

    International Nuclear Information System (INIS)

    Kilcast, D.

    1990-01-01

    Food irradiation is used to improve the safety of food by killing insects and microorganisms, to inhibit sprouting in crops such as onions and potatoes and to control ripening in agricultural produce. In order to prevent re-infestation and re-contamination it is essential that the food is suitably packed. Consequently, the packaging material is irradiated whilst in contact with the food, and it is important that the material is resistant to radiation-induced changes. In this paper the nature of the irradiation process is reviewed briefly, together with the known effects of irradiation on packaging materials and their implications for the effective application of food irradiation. Recent research carried out at the Leatherhead Food RA on the possibility of taint transfer into food is described. (author)

  1. Food is life

    International Nuclear Information System (INIS)

    1974-01-01

    From the beginning of man's history food has remained his most important prerequisite. Without it he has no energy to work, to clothe or to house himself - in fact, to live. The spectre of a world so over-filled with people that there are insufficient foodstuffs to keep them alive even at subsistence level faces everyone - and the United Nations, through its various agencies, is trying to avert this crisis. The IAEA promotes the improvement of food crops and animal health and production in many of its programmes. It is hoped that the World Food Conference this year will work towards a solution. These UN photographs illustrate some of the variety of products included in the word 'food'. (author)

  2. Particulate matter air pollution may offset ozone damage to global crop production

    Science.gov (United States)

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  3. Particulate matter air pollution may offset ozone damage to global crop production

    Directory of Open Access Journals (Sweden)

    L. D. Schiferl

    2018-04-01

    Full Text Available Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010 global net impact of air quality on crop production varies by crop (+5.6, −3.7, and +4.5 % for maize, wheat, and rice, respectively. Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  4. analysis of cost efficiency in food crop production among small-scale ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Eleven cropping systems were identified with mixed cropping accounting for about 53% of the cropping systems and about 54% of the total hectarage allocations. The maximum likelihood estimates of the stochastic cost function revealed that the explanatory variables; extension contact, crop diversification and credit ...

  5. Nanotechnology in agri-food production: an overview

    Directory of Open Access Journals (Sweden)

    Sekhon BS

    2014-05-01

    Full Text Available Bhupinder Singh SekhonInstitute of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, IndiaAbstract: Nanotechnology is one of the most important tools in modern agriculture, and agri-food nanotechnology is anticipated to become a driving economic force in the near future. Agri-food themes focus on sustainability and protection of agriculturally produced foods, including crops for human consumption and animal feeding. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use. Nanotechnology can boost agricultural production, and its applications include: 1 nanoformulations of agrochemicals for applying pesticides and fertilizers for crop improvement; 2 the application of nanosensors/nanobiosensors in crop protection for the identification of diseases and residues of agrochemicals; 3 nanodevices for the genetic manipulation of plants; 4 plant disease diagnostics; 5 animal health, animal breeding, poultry production; and 6 postharvest management. Precision farming techniques could be used to further improve crop yields but not damage soil and water, reduce nitrogen loss due to leaching and emissions, as well as enhance nutrients long-term incorporation by soil microorganisms. Nanotechnology uses include nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant varieties, food processing and storage, nanofeed additives, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuels production technologies. Experts feel that the potential benefits of nanotechnology for agriculture, food, fisheries, and aquaculture need to be balanced against concerns for the soil, water, and environment and the occupational health of workers. Raising awareness of nanotechnology in the agri-food sector, including feed and food ingredients, intelligent packaging and quick-detection systems, is

  6. The importance of landscape and spatial structure for hymenopteran-based food webs in an agro-ecosystem.

    Science.gov (United States)

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Aebi, Alex; Kehrli, Patrik; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2013-11-01

    1. Understanding the environmental factors that structure biodiversity and food webs among communities is central to assess and mitigate the impact of landscape changes. 2. Wildflower strips are ecological compensation areas established in farmland to increase pollination services and biological control of crop pests and to conserve insect diversity. They are arranged in networks in order to favour high species richness and abundance of the fauna. 3. We describe results from experimental wildflower strips in a fragmented agricultural landscape, comparing the importance of landscape, of spatial arrangement and of vegetation on the diversity and abundance of trap-nesting bees, wasps and their enemies, and the structure of their food webs. 4. The proportion of forest cover close to the wildflower strips and the landscape heterogeneity stood out as the most influential landscape elements, resulting in a more complex trap-nest community with higher abundance and richness of hosts, and with more links between species in the food webs and a higher diversity of interactions. We disentangled the underlying mechanisms for variation in these quantitative food web metrics. 5. We conclude that in order to increase the diversity and abundance of pollinators and biological control agents and to favour a potentially stable community of cavity-nesting hymenoptera in wildflower strips, more investment is needed in the conservation and establishment of forest habitats within agro-ecosystems, as a reservoir of beneficial insect populations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  7. Environmental health impacts of feeding crops to farmed fish.

    Science.gov (United States)

    Fry, Jillian P; Love, David C; MacDonald, Graham K; West, Paul C; Engstrom, Peder M; Nachman, Keeve E; Lawrence, Robert S

    2016-05-01

    Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Utilization of tropical crop residues and agroindustrial by-products in animal nutrition. Constraints and perspectives

    International Nuclear Information System (INIS)

    Preston, T.R.; Parra, R.

    1983-01-01

    The importance of by-products and crop residues as animal feeds is increasing steadily. This is a consequence of the increasing demand for cereal grains as both human and animal (chiefly poultry) food, and the increasing demand for energy coupled with decreasing availability of fossil fuels. The effects of these two trends are that primary use of land for livestock production (usually grazing systems) will steadily diminish; at the same time, sources of biomass will increase in importance as renewable energy sources, and greater emphasis will be placed on draught animal power. Most by-products and crop residues are fibrous and therefore of only low to moderate nutritive value, or have special physical and chemical characteristics making them difficult to incorporate in conventional ''balanced'' rations. Such feed raw materials may need special processing and/or special forms of supplementation if they are to be used efficiently. It is hypothesized that industrial by-products and crop residues will be more efficiently utilized if they are incorporated in diversified and integrated production systems, i.e. (a) livestock production is integrated with production of cash crops both for food and fuel; (b) different livestock species are utilized in the same enterprise in a complementary way; (c) livestock feeding is based on crop residues (energy) supplemented with protein-rich forages and aquatic plants; and (d) animal wastes are recycled and used for food, fertilizer and fuel. This strategy is particularly suitable for the conditions in (i) tropical countries, whose climate favours high crop/biomass yields per unit area and ease of fermentation of organic wastes, and (ii) family farms, for which diversification means greater opportunity for self-sufficiency and increased possibilities for use of family resources. (author)

  9. Cassava (Manihot esculenta Crantz) and Yam (Dioscorea spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value.

    Science.gov (United States)

    Ferraro, Vincenza; Piccirillo, Clara; Tomlins, Keith; Pintado, Manuela E

    2016-12-09

    Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) are tropical crops consumed by ca. 2 billion people and represent the main source of carbohydrate and energy for the approximately 700 million people living in the tropical and sub-tropical areas. They are a guarantee of food security for developing countries. The production of these crops and the transformation into food-derived commodities is increasing, it represents a profitable business and farmers generate substantial income from their market. However, there are some important concerns related to the food safety and food security. The high post-harvest losses, mainly for yam, the contamination by endogenous toxic compounds, mainly for cassava, and the contamination by external agents (such as micotoxins, pesticides, and heavy metal) represent a depletion of economic value and income. The loss in the raw crops or the impossibility to market the derived foodstuffs, due to incompliance with food regulations, can seriously limit all yam tubers and the cassava roots processors, from farmers to household, from small-medium to large enterprises. One of the greatest challenges to overcome those concerns is the transformation of traditional or indigenous processing methods into modern industrial operations, from the crop storage to the adequate package of each derived foodstuff.

  10. Parameter Data on the Radiocesium Transfer to Korean Staple Food Crops Following a Nuclear Accident

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon

    2016-01-01

    In order to decide an optimum countermeasure against farmland contaminations following a severe NPP accident, it is necessary to have a reliable tool for predicting the concentrations of radiocesium in crop plants. For the estimation of radionuclide concentrations in crop plants, various transfer parameters, which quantify the radionuclide transfer from one compartment to the next, are used in general. Some amount of transfer parameter data has been produced at the Korea Atomic Energy Research Institute (KAERI) over the last 30 years. The present work was conducted to collate the KAERI data on radiocesium in staple food crops and to suggest effective ways of using them for assessing the environmental impact of a nuclear accident. The transfer parameter values of radiocesium for rice, Chinese cabbage and radish varied considerably with soils and times of its deposition. The proposed representative values were mostly based on a limited amount of data so they cannot be considered to have a high representativeness. Accordingly, they are intended for provisional use and a continuous improvement should be made. It is necessary to produce a sufficient amount of additional domestic data on the indirect pathway by conducting root-uptake experiments with as many types of soil as possible

  11. Parameter Data on the Radiocesium Transfer to Korean Staple Food Crops Following a Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In order to decide an optimum countermeasure against farmland contaminations following a severe NPP accident, it is necessary to have a reliable tool for predicting the concentrations of radiocesium in crop plants. For the estimation of radionuclide concentrations in crop plants, various transfer parameters, which quantify the radionuclide transfer from one compartment to the next, are used in general. Some amount of transfer parameter data has been produced at the Korea Atomic Energy Research Institute (KAERI) over the last 30 years. The present work was conducted to collate the KAERI data on radiocesium in staple food crops and to suggest effective ways of using them for assessing the environmental impact of a nuclear accident. The transfer parameter values of radiocesium for rice, Chinese cabbage and radish varied considerably with soils and times of its deposition. The proposed representative values were mostly based on a limited amount of data so they cannot be considered to have a high representativeness. Accordingly, they are intended for provisional use and a continuous improvement should be made. It is necessary to produce a sufficient amount of additional domestic data on the indirect pathway by conducting root-uptake experiments with as many types of soil as possible.

  12. The list of official methods of laboratory diagnostics of foods and fodder crops dated as of January 9, 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The Ministry of Agriculture of the Slovak Republic published approved method of laboratory diagnostics of foods and fodder crops. Chapter 13.1 contains determination of specific activity of radionuclides in homogenizable materials by methods of semiconductor gamma-spectrometry in the range 60 keV - 200 keV for standard geometry

  13. Radiological control of food importation products

    International Nuclear Information System (INIS)

    Aguirre G, J.

    2003-01-01

    Nowadays exists the possibility of marketing products possibly polluted with radioactive isotopes, by that some countries like Mexico, they have been given to the task of creating legal bases and the necessary infrastructure with the end of carrying out the radiological surveillance of nutritious import products. In this work the legal bases that our country has established for the radiological control are presented besides the results of this radiological control carried out through the gamma spectroscopy analysis of nutritious import products sent to our country through diverse companies that import foods produced mainly in European countries. (Author)

  14. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  15. Public Acceptance of Plant Biotechnology and GM Crops

    Directory of Open Access Journals (Sweden)

    Jan M. Lucht

    2015-07-01

    Full Text Available A wide gap exists between the rapid acceptance of genetically modified (GM crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  16. Public Acceptance of Plant Biotechnology and GM Crops

    Science.gov (United States)

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  17. United States import safety, environmental health, and food safety regulation in China.

    Science.gov (United States)

    Nyambok, Edward O; Kastner, Justin J

    2012-01-01

    China boasts a rapidly growing economy and is a leading food exporter. Since China has dominated world export markets in food, electronics, and toys, many safety concerns about Chinese exports have emerged. For example, many countries have had problems with Chinese food products and food-processing ingredients. Factors behind food safety and environmental health problems in China include poor industrial waste management, the use of counterfeit agricultural inputs, inadequate training of farmers on good farm management practices, and weak food safety laws and poor enforcement. In the face of rising import safety problems, the U.S. is now requiring certification of products and foreign importers, pursuing providing incentives to importers who uphold good safety practices, and considering publicizing the names of certified importers.

  18. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  19. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.

    Science.gov (United States)

    Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X

    2012-10-01

    Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The effectiveness of habitat modification schemes for enhancing beneficial insects: Assessing the importance of trap cropping management approach

    Science.gov (United States)

    Trisnawati, Indah; Azis, Abdul

    2017-06-01

    Many farms in regions of intensive crop production lack the habitats that historically provided resources to beneficial insects, and this lack has compromised the ability of farmers to rely on natural enemies for pest control. One of the strategies to boost populations of existing or naturally occurring beneficial insects is to supply them with appropriate habitat and alternative food sources, such as diversifying trap crop systems and plant populations in or around fields include perennials and flowering plants. Trap cropping using insectary plant that attracts beneficial insects as natural enemies, especially flowering plants, made for provision of habitat for predators or parasitoids that are useful for biological control. Perimeter trap cropping (PTC) is a method of integrated pest management in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. We observed PTC habitat modification and conventionaly-managed tobacco farms in Purwosari Village, Pasuruan (East Java) to evaluate the effectiveness of habitat modification management prescription (perimeter trap crop using flowering plant Crotalaria juncea) on agroecosystem natural enemies. Field tests were conducted in natural enemies (predator and parasitoid) abundance dynamic and diversity on tobacco field in Purwoasri, Pasuruan. Yellow pan trap, sweep net and hand collecting methods were applied in each 10 days during tobacco growth stage (vegetative, generative until reproductive/harvesting. The results showed that application perimeter trap crop with C. juncea in tobacco fields able to help arthropod conservation of natural enemies on all tobacco growth stages. These results were evidenced the increase in abundance of predators and parasitoids and the increased value of the Diversity Index (H') and Evenness Index (EH) in all tobacco growth phases. Composition of predator and parasitoid in the habitat modification field were more diverse than in the conventional field

  1. Agriculture, pesticides, food security and food safety

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P. [Instituto Tecnologico e Nuclear, Departamento de Proteccao Radiologica e Seguranca Nuclear, Estrada Nacional 10, P-2686-953 Sacavem (Portugal)]. E-mail: carvalho@itn.pt

    2006-11-15

    Decades ago, agrochemicals were introduced aiming at enhancing crop yields and at protecting crops from pests. Due to adaptation and resistance developed by pests to chemicals, every year higher amounts and new chemical compounds are used to protect crops, causing undesired side effects and raising the costs of food production. Eventually, new techniques, including genetically modified organisms (GMOs) resistant to pests, could halt the massive spread of agrochemicals in agriculture fields. Biological chemical-free agriculture is gaining also more and more support but it is still not able to respond to the need for producing massive amounts of food. The use of agrochemicals, including pesticides, remains a common practice especially in tropical regions and South countries. Cheap compounds, such as DDT, HCH and lindane, that are environmentally persistent, are today banned from agriculture use in developed countries, but remain popular in developing countries. As a consequence, persistent residues of these chemicals contaminate food and disperse in the environment. Coordinated efforts are needed to increase the production of food but with a view to enhanced food quality and safety as well as to controlling residues of persistent pesticides in the environment.

  2. Agriculture, pesticides, food security and food safety

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.

    2006-01-01

    Decades ago, agrochemicals were introduced aiming at enhancing crop yields and at protecting crops from pests. Due to adaptation and resistance developed by pests to chemicals, every year higher amounts and new chemical compounds are used to protect crops, causing undesired side effects and raising the costs of food production. Eventually, new techniques, including genetically modified organisms (GMOs) resistant to pests, could halt the massive spread of agrochemicals in agriculture fields. Biological chemical-free agriculture is gaining also more and more support but it is still not able to respond to the need for producing massive amounts of food. The use of agrochemicals, including pesticides, remains a common practice especially in tropical regions and South countries. Cheap compounds, such as DDT, HCH and lindane, that are environmentally persistent, are today banned from agriculture use in developed countries, but remain popular in developing countries. As a consequence, persistent residues of these chemicals contaminate food and disperse in the environment. Coordinated efforts are needed to increase the production of food but with a view to enhanced food quality and safety as well as to controlling residues of persistent pesticides in the environment

  3. The Post-war International Food Order: The Case of Agriculture in Colombia

    Directory of Open Access Journals (Sweden)

    Carlos Felipe Gaviria Garcés

    2011-06-01

    Full Text Available Since the post-war period, Colombian agriculture has been reshaped mainly by international measures. The post-war international food order (called food regime over time has exacerbated Colombian rural problems linked to land issues. Emphasizing in five groups of crops (Cereals, Fruits, Pulses, Roots and Tubers, and Vegetables this article found how Colombia has turned from being a self-sufficient producer into a net importer. Consequently, the food regime has reshaped agricultural structures where policies have favored certain groups rather than solving land issues. Bio-fuel crop policies are following the same direction, jeopardizing food sovereignty and deepening rural Colombian problems.

  4. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  5. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  6. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  7. Radiation monitoring of imported food to Saudi Arabia after Chernobyl

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Majid, S.; Abdul-Fattah, A.F.

    1987-01-01

    Saudi Arabia has been indirectly affected by the Chernobyl accident. Large amounts of food or products that may enter the food chain are daily imported from European countries. After April 27, the Saudi government assigned the responsibilities of radiation monitoring of imported food to some universities and governmental sectors. The nuclear engineering department at King Abdulaziz Univ. (KAU) has undertaken the monitoring duties for products coming to western and southern provinces of the country. The sampling and monitoring procedures and results are described

  8. Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops

    Directory of Open Access Journals (Sweden)

    S.-H. Lee

    2016-10-01

    Full Text Available This study aims to analyze the characteristics of global virtual water trade (GVWT, such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006–2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year−1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %; thus other traders should carefully consider water resource management in these exporters.

  9. Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops

    Science.gov (United States)

    Lee, Sang-Hyun; Mohtar, Rabi H.; Choi, Jin-Yong; Yoo, Seung-Hwan

    2016-10-01

    This study aims to analyze the characteristics of global virtual water trade (GVWT), such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006-2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year-1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %); thus other traders should carefully consider water resource management in these exporters.

  10. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 21 CFR 1.285 - What happens to food that is imported or offered for import from unregistered facilities that are...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false What happens to food that is imported or offered....285 Section 1.285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GENERAL ENFORCEMENT REGULATIONS Prior Notice of Imported Food Consequences § 1.285 What happens to...

  12. Engineering food crops to grow in harsh environments [v1; ref status: indexed, http://f1000r.es/5f1

    Directory of Open Access Journals (Sweden)

    Damar López-Arredondo

    2015-09-01

    Full Text Available Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

  13. Food Security in India, China, and the World

    Science.gov (United States)

    2016-06-01

    efficient cultivars (a plant produced by selective breeding), genetically modified organisms ( GMOs ), and building canals to transport water to...genetically modified organisms ( GMOs ). DARPA was interested in the details of China’s agriculture, trade, and future prospects for food security...to breed cultivars that are more water-efficient and tolerant of increased cropping intensity (Zhang et al. 2013). Despite import bans on GMO crops

  14. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  15. Development and implementation of a GEOGLAM Crop Monitor web interface

    Science.gov (United States)

    Oliva, P.; Sanchez, A.; Humber, M. L.; Becker-Reshef, I.; Justice, C. J.; McGaughey, K.; Barker, B.

    2016-12-01

    Beginning in September 2013, the GEOGLAM Crop Monitor activity has provided earth observation (EO) data to a network of partners and collected crop assessments on a subnational basis through a web interface known as the Crop Assessment Tool. Based on the collection of monthly crop assessments, a monthly crop condition bulletin is published in the Agricultural Market Information System (AMIS) Market Monitor report. This workflow has been successfully applied to food security applications through the Early Warning Crop Monitor activity. However, a lack of timely and accurate information on crop conditions and prospects at the national scale is a critical issue in the majority of southern and eastern African countries and some South American countries. Such information is necessary for informed and prompt decision making in the face of emergencies, food insecurity and planning requirements for agricultural markets. This project addresses these needs through the development of relevant, user-friendly remote sensing monitor systems, collaborative internet technology, and collaboration with national and regional agricultural monitoring networks. By building on current projects and relationships established through the various GEOGLAM Crop Monitor activities, this project aims to ultimately provide EO-informed crop condition maps and charts designed for economics and policy oriented audiences, thereby providing quick and easy to understand products on crop conditions as the season progresses. Integrating these data and assessments vertically throughout the system provides a basis for regional sharing and collaboration in food security applications.

  16. Brachypodium distachyon genomics for sustainable food and fuel production

    Science.gov (United States)

    Grasses are a vital source of food for humanity and are projected to be become an important source of renewable fuel. To provide food, feed and fuel for an ever expanding human population it will be necessary to improve existing grass crops (e.g. wheat, maize, rice) and domesticate perennial grasses...

  17. Adding Organic Matter Enhanced the Effectiveness of Silicate Rock Fertilizer for Food Crops Grown on Nutritionally Disorder Soils: A Glasshouse Assessment

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2012-05-01

    Full Text Available A glasshouse experiment was carried to identify effects of the application rate of ground silicate rock as a multinutrientfertilizer (SRF with and without organic matter (OM on growth and nutrient status of food crops (rice,corn, and soybean. Those crops were grown on 3 different soils in 2 cropping patterns, i.e., rice – soybean and corn– soybean, providing 6 experimental sets. A completely randomized design was applied in each experimental set.The treatment in each set consisted of 3 rates of SRF (5, 10, and 15 g kg-1, those 3 rates + 5 g kg-1 of OM, and acontrol (without adding SRF or OM. The first crops (rice and corn were grown up to 65 days, while the secondcrop (soybean was up to 40 days. Results indicated that for crops grown on less fertile soils, the application of SRFonly slightly increased growth of crops, mainly of the 2nd crops, and adding OM greatly increased the growth ofboth the 1st and 2nd crops. In those experimental sets, about 60 – 80% of the variation of crop growth was significantlydetermined by concentration of Cu and several other essential nutrients in crop tissue. In contrast, the growth forcrops grown on more fertile soils was not affected by the application of SRF or/and OM. It was concluded thatadding OM enhanced the effectiveness of SRF as a multi-nutrient fertilizer, and that may be used as an appropriatemulti-nutrient fertilizer or general ameliorant to sustain soil quality and remediate the nutritionally disorder soils.

  18. The Economics of Genetically Modified Crops

    OpenAIRE

    Matin Qaim

    2009-01-01

    Genetically modified (GM) crops have been used commercially for more than 10 years. Available impact studies of insect-resistant and herbicide-tolerant crops show that these technologies are beneficial to farmers and consumers, producing large aggregate welfare gains as well as positive effects for the environment and human health. The advantages of future applications could even be much bigger. Given a conducive institutional framework, GM crops can contribute significantly to global food se...

  19. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  20. The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling

    NARCIS (Netherlands)

    Affholder, F.; Poeydebat, C.; Corbeels, M.; Scopel, E.; Tittonell, P.A.

    2013-01-01

    Yield gaps of major food crops are wide under rainfed family agriculture in the tropics. Their magnitude and causes vary substantially across agro-ecological, demographic and market situations. Methods to assess yield gaps should cope with spatio-temporal variability of bio-physical conditions,

  1. the economic importance of microorganism in food processing

    African Journals Online (AJOL)

    BSN

    This paper attempts to highlight the Economic Importance of microorganisms in food processing and manufacturing; it goes further to differentiate between the desirable ... Desirable importance are those cost saving and revenue generating activities ... Microorganism (yeast) play very useful role in the Bakery industries.

  2. Radionuclides in domestic and imported foods in the United States, 1987-1992

    International Nuclear Information System (INIS)

    Cunningham, W.C.; Anderson, D.L.; Baratta, E.J.

    1994-01-01

    Findings from the U.S. Food and Drug Administration's Radionuclides in Foods program are summarized for foods collected between October 1, 1986, and September 30, 1992. Concentrations of radionuclide activity in the Total Diet Study and reactor-survey foods were in Range I or low in Range II of the surveillance and control recommendations of the Federal Radiation Council; no control actions were suggested. Dietary intake of 90 Sr continued the general decline observed since 1961. Approximately 2600 test portions of imported foods were analyzed for contamination associated with the Chernobyl nuclear accident. Concentrations of radionuclide activity were below limits of detection for the vast majority of the imported food test portions but were above the levels of concern for 23 portions. Since 1986, the fraction of imported food test portions having measurable amounts of contamination has steadily declined, as have the average concentrations of radionuclide activity; however, contamination is still occasionally found. Continued monitoring of both domestic and imported foods is planned. 17 refs., 2 figs., 2 tabs

  3. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  4. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Climate variability and change have been implicated to have significant impacts on global and regional food production particularly the common stable food crops performance in tropical sub-humid climatic zone. However, the extent and nature of these impacts still remain uncertain. In this study, records of crop yields and ...

  5. Induced mutations and molecular techniques for crop improvement. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1995-01-01

    The symposium was aimed at reviewing current aspects of mutation and molecular biology techniques for use in crop improvement and to bridge the gap between practical plant breeding and molecular laboratory techniques. Over the past few years, many transgenic plants have been developed in important crops such as rice, wheat, maize, soybean, banana, cassava and cotton, as well as in many food, industrial and pharmaceutical plant species. More than 180 participants from 48 countries of which 31 were from developing countries, attended which provided a forum for the discussion of problems related to crop improvement world wide, and their possible solutions. Refs, figs and tabs

  6. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  7. Household capacities, vulnerabilities and food insecurity: Shifts in food insecurity in urban and rural Ethiopia during the 2008 food crisis

    Science.gov (United States)

    Hadley, Craig; Linzer, Drew A.; Belachew, Tefera; Mariam, Abebe Gebre; Tessema, Fasil; Lindstrom, David

    2014-01-01

    The global food crisis of 2008 led to renewed interest in global food insecurity and how macro-level food prices impact household and individual level wellbeing. There is debate over the extent to which food price increases in 2008 eroded food security, the extent to which this effect was distributed across rural and urban locales, and the extent to which rural farmers might have benefited. Ethiopia’s food prices increased particularly dramatically between 2005 and 2008 and here we ask whether there was a concomitant increase in household food insecurity, whether this decline was distributed equally across rural, urban, and semi-urban locales, and to what extent pre-crisis household capacities and vulnerabilities impacted 2008 household food insecurity levels. Data are drawn from a random sample of 2610 households in Southwest Ethiopia surveyed 2005/6 and again in mid to late 2008. Results show broad deterioration of household food insecurity relative to baseline but declines were most pronounced in the rural areas. Wealthier households and those that were relatively more food secure in 2005/6 tended to be more food secure in 2008, net of other factors, and these effects were most pronounced in urban areas. External shocks, such as a job loss or loss of crops, experienced by households were also associated with worse food insecurity in 2008 but few other household variables were associated with 2008 food insecurity. Our results also showed that rural farmers tended to produce small amounts for sale on markets, and thus were not able to enjoy the potential benefits that come from greater crop prices. We conclude that poverty, and not urban/rural difference, is the important variable for understanding the risk of food insecurity during a food crisis and that many rural farmers are too poor to take advantage of rapid rises in food prices. PMID:21996022

  8. Household capacities, vulnerabilities and food insecurity: shifts in food insecurity in urban and rural Ethiopia during the 2008 food crisis.

    Science.gov (United States)

    Hadley, Craig; Linzer, Drew A; Belachew, Tefera; Mariam, Abebe Gebre; Tessema, Fasil; Lindstrom, David

    2011-11-01

    The global food crisis of 2008 led to renewed interest in global food insecurity and how macro-level food prices impact household and individual level wellbeing. There is debate over the extent to which food price increases in 2008 eroded food security, the extent to which this effect was distributed across rural and urban locales, and the extent to which rural farmers might have benefited. Ethiopia's food prices increased particularly dramatically between 2005 and 2008 and here we ask whether there was a concomitant increase in household food insecurity, whether this decline was distributed equally across rural, urban, and semi-urban locales, and to what extent pre-crisis household capacities and vulnerabilities impacted 2008 household food insecurity levels. Data are drawn from a random sample of 2610 households in Southwest Ethiopia surveyed 2005/6 and again in mid to late 2008. Results show broad deterioration of household food insecurity relative to baseline but declines were most pronounced in the rural areas. Wealthier households and those that were relatively more food secure in 2005/6 tended to be more food secure in 2008, net of other factors, and these effects were most pronounced in urban areas. External shocks, such as a job loss or loss of crops, experienced by households were also associated with worse food insecurity in 2008 but few other household variables were associated with 2008 food insecurity. Our results also showed that rural farmers tended to produce small amounts for sale on markets, and thus were not able to enjoy the potential benefits that come from greater crop prices. We conclude that poverty, and not urban/rural difference, is the important variable for understanding the risk of food insecurity during a food crisis and that many rural farmers are too poor to take advantage of rapid rises in food prices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. On the Water-Food Nexus: an Optimization Approach for Water and Food Security

    Science.gov (United States)

    Mortada, Sarah; Abou Najm, Majdi; Yassine, Ali; Alameddine, Ibrahim; El-Fadel, Mutasem

    2016-04-01

    Water and food security is facing increased challenges with population increase, climate and land use change, as well as resource depletion coupled with pollution and unsustainable practices. Coordinated and effective management of limited natural resources have become an imperative to meet these challenges by optimizing the usage of resources under various constraints. In this study, an optimization model is developed for optimal resource allocation towards sustainable water and food security under nutritional, socio-economic, agricultural, environmental, and natural resources constraints. The core objective of this model is to maximize the composite water-food security status by recommending an optimal water and agricultural strategy. The model balances between the healthy nutritional demand side and the constrained supply side while considering the supply chain in between. It equally ensures that the population achieves recommended nutritional guidelines and population food-preferences by quantifying an optimum agricultural and water policy through transforming optimum food demands into optimum cropping policy given the water and land footprints of each crop or agricultural product. Through this process, water and food security are optimized considering factors that include crop-food transformation (food processing), water footprints, crop yields, climate, blue and green water resources, irrigation efficiency, arable land resources, soil texture, and economic policies. The model performance regarding agricultural practices and sustainable food and water security was successfully tested and verified both at a hypothetical and pilot scale levels.

  10. Impact of cash cropping and perennial crops on food crop ...

    African Journals Online (AJOL)

    reviewers for their comments and suggestions. ... Asia and Africa) devoted special issues to focus on the significance and ... Adjustment Program (SAP) and economic liberalization throughout sub- ..... of students in each household. ... collaboration with various institutions (University of Oxford, UK and International Food.

  11. Radiation processing of food and allied products

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    Assuring adequate food security to citizens of the country requires deployment of strategies for augmenting agricultural production while reducing post-harvest losses. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for sustained food security, food safety and international trade in agricultural commodities. Nuclear energy has played a significant role both in the improvement of crop productivity, as well as, in the preservation and hygienization of agricultural produce

  12. Increasing homogeneity in global food supplies and the implications for food security

    NARCIS (Netherlands)

    Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C.

    2014-01-01

    The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop

  13. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    Science.gov (United States)

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Assessing the impact of climate variability on cropping patterns in Kenya

    Science.gov (United States)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  15. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  16. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  17. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use.

    Science.gov (United States)

    Kummu, M; de Moel, H; Porkka, M; Siebert, S; Varis, O; Ward, P J

    2012-11-01

    Reducing food losses and waste is considered to be one of the most promising measures to improve food security in the coming decades. Food losses also affect our use of resources, such as freshwater, cropland, and fertilisers. In this paper we estimate the global food supply losses due to lost and wasted food crops, and the resources used to produce them. We also quantify the potential food supply and resource savings that could be made by reducing food losses and waste. We used publically available global databases to conduct the study at the country level. We found that around one quarter of the produced food supply (614 kcal/cap/day) is lost within the food supply chain (FSC). The production of these lost and wasted food crops accounts for 24% of total freshwater resources used in food crop production (27 m(3)/cap/yr), 23% of total global cropland area (31 × 10(-3)ha/cap/yr), and 23% of total global fertiliser use (4.3 kg/cap/yr). The per capita use of resources for food losses is largest in North Africa & West-Central Asia (freshwater and cropland) and North America & Oceania (fertilisers). The smallest per capita use of resources for food losses is found in Sub-Saharan Africa (freshwater and fertilisers) and in Industrialised Asia (cropland). Relative to total food production, the smallest food supply and resource losses occur in South & Southeast Asia. If the lowest loss and waste percentages achieved in any region in each step of the FSC could be reached globally, food supply losses could be halved. By doing this, there would be enough food for approximately one billion extra people. Reducing the food losses and waste would thus be an important step towards increased food security, and would also increase the efficiency of resource use in food production. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  19. Economic significance of viroids in ornamental crops (Book Chapter)

    Science.gov (United States)

    The economic significance of viroids in ornamental crops is less obvious than in food crops. Most serious direct impact is known for chrysanthemum stunt viroid in chrysanthemum and, to a lesser extent, for chrysanthemum chlorotic mottle viroid in the same crop. However, the majority of viroid infect...

  20. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    Science.gov (United States)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  1. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  2. Food and chemical toxicology - Concluding remarks

    DEFF Research Database (Denmark)

    Kuiper, H.A.; Konig, A.; Kleter, G.A.

    2004-01-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical ri...

  3. Development of Trombay pulse crop varieties mutation through induced mutation

    International Nuclear Information System (INIS)

    Dhole, V.J.; Reddy, K.S.

    2016-01-01

    The food prices including pulses were beginning to increase from 2008, something that was not expected to happen before 2020. It was due to climate change, a scarcity of good arable land, water and nutrients. With these obstacles, we must produce almost double than what we are producing now to achieve food security by 2050. It can be achieved through crop improvement. Crop improvement is the art and science of changing the genetic make of crop plant in desire direction through various method of plant breeding. Mutation breeding is one of the techniques which utilize the physical and chemical mutagens to create genetic variability. Till date more than 3200 mutant varieties have been developed worldwide in which two physical mutagens i.e. X-rays and gamma rays have major contributions. Bhabha Atomic Research Centre is one of the leading institutes in India where nuclear energy is used for crop improvement, which resulted in to development of 43 improved high yielding varieties in different crops including 19 varieties of pulse crops. These varieties are contributing significantly to production of pulses and ultimately to national food security. (author)

  4. Antioxidant activity in selected Slovenian organic and conventional crops

    Directory of Open Access Journals (Sweden)

    Manca KNAP

    2015-12-01

    Full Text Available The demand for organically produced food is increasing. There is widespread belief that organic food is substantially healthier and safer than conventional food. According to literature organic food is free of phytopharmaceutical residues, contain less nitrates and more antioxidants. The aim of the present study was to verify if there are any differences in the antioxidant activity between selected Slovenian organic and conventional crops. Method of DPPH (2,2-diphenyl-1-picryhydrazyl was used to determine the antioxidant activity of 16 samples from organic and conventional farms. The same varieties of crops were analysed. DPPH method was employed to measure the antioxidant activity of polar antioxidants (AAp and antioxidant activity of fraction in ethyl acetate soluble antioxidants (EA AA. Descriptive statistics and variance analysis were used to describe differences between farming systems. Estimated differences between interactions for the same crop and different farming practice were mostly not statistically significant except for the AAp for basil and beetroot. Higher statistically significant values were estimated for conventional crops. For the EA AA in broccoli, cucumber, rocket and cherry statistically significant higher values were estimated for organic production.

  5. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    Science.gov (United States)

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  6. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    Science.gov (United States)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  7. Sorghum production and anthracnose disease management in future global energy and food security

    Science.gov (United States)

    Sorghum is the fifth most important cereal crop in world commerce with uses ranging from animal feed, food, in brewery, and recently as a potential source of biofuel. With the expected increase in the world's population, crop production outputs must be increased. Annual cereal production, including...

  8. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    Science.gov (United States)

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  9. Direct use of phosphate rock to improve crop production in Indonesia

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Rasjid, H.; Sisworo, W.H.; Haryanto; Idris, K.

    2002-01-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using 32 P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, 32 P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of 32 P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  10. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  11. What determines the acceptability of genetically modified food that can improve human nutrition?

    Science.gov (United States)

    Purchase, Iain F H

    2005-09-01

    It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tones. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent to its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalization (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.

  12. What determines the acceptability of genetically modified food that can improve human nutrition?

    International Nuclear Information System (INIS)

    Purchase, Iain F.H.

    2005-01-01

    It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tonnes. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent to its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalisation (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies

  13. What determines the acceptability of genetically modified food that can improve human nutrition?

    Energy Technology Data Exchange (ETDEWEB)

    Purchase, Iain F.H. [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom)

    2005-09-01

    It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tonnes. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent to its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalisation (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.

  14. Determinants of crop diversity and composition in Enset-coffee agroforestry homegardens of Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Tesfaye Abebe

    2013-08-01

    Full Text Available Households in much of the tropics depend for their livelihoods on the variety and continued production of food and other products that are provided by their own farms. In such systems, maintenance of agrobiodiversity and ensuring food security are important for the well being of the population. The enset-coffee agroforestry homegardens of Southern Ethiopia that are dominated by two native perennial crops, Coffee (Coffea arabica L. and Enset (Enset ventricosum Welw. Cheesman, are examples of such agricultural systems. This study was conducted in Sidama administrative zone of Southern Ethiopia to determine the factors that influence the diversity and composition of crops in the systems. Data were collected from 144 sample homegardens selected from four districts. Stepwise multiple regression analysis was used to relate indices of crop diversity and area share of major crops with the physical and socioeconomic factors. The study revealed that socioeconomic factors, mainly proximity to markets, affected negatively crop species richness. The production area of the main crops enset and coffee decreased with increasing proximity to market and road while that of maize and khat increased. At household level, farm size had a significant effect on area share of enset and coffee. As farm size increased the share of the cash crop, coffee increased but that of the staple, enset declined. Enset, which is the backbone of the system in terms of food security, is declining on small farms and the share of monoculture maize system is increasing. The trend towards declining agrobiodiversity, and reduction in the production area of the main perennial crops and their gradual replacement with monoculture fields could make the systems liable to instability and collapse. As these sites are high potential agricultural areas, intensification can be achieved by integrating high-value and more productive crops, such as fruits, spices and vegetables, while maintaining the

  15. Insect pollination and self-incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity.

    Science.gov (United States)

    Ren, Zong-Xin; Wang, Hong; Bernhardt, Peter; Li, De-Zhu

    2014-10-01

    An increasing global demand for food, coupled with the widespread decline of pollinator diversity, remains an international concern in agriculture and genetic conservation. In particular, there are large gaps in the study of the pollination of economically important and traditionally grown species in China. Many plant species grown in China are both edible and used medicinally. The country retains extensive written records of agricultural and apicultural practices, facilitating contemporary studies of some important taxa. Here, we focus on Yunnan in southwestern China, a mega-biodiversity hotspot for medicinal/food plants. We used plant and insect taxa as model systems to understand the patterns and consequences of pollinator deficit to crops. We identified several gaps and limitations in research on the pollination ecology and breeding systems of domesticated taxa and their wild relatives in Yunnan and asked the following questions: (1) What is known about pollination systems of edible and medicinal plants in Yunnan? (2) What are the most important pollinators of Codonopsis subglobosa (Campanulaceae)? (3) How important are native pollinator species for maximizing yield in Chinese crops compared with the introduced Apis mellifera? We found that some crops that require cross-pollination now depend exclusively on hand pollination. Three domesticated crops are dependent primarily on the native but semidomesticated Apis cerana and the introduced A. mellifera. Other species of wild pollinators often play important roles for certain specialty crops (e.g., Vespa velutina pollinates Codonopsis subglobosa). We propose a more systematic and comprehensive approach to applied research in the future. © 2014 Botanical Society of America, Inc.

  16. Safety aspects of genetically modified crops with abiotic stress tolerance

    NARCIS (Netherlands)

    Liang, C.; Prins, T.W.; Wiel, van de C.C.M.; Kok, E.J.

    2014-01-01

    Abiotic stress, such as drought, salinity, and temperature extremes, significantly reduce crop yields. Hence, development of abiotic stress-tolerant crops by modern biotechnology may contribute to global food security. Prior to introducing genetically modified crops with abiotic stress tolerance to

  17. Analyzing production potential of selected food and legume crops for food security in Punjab, Pakistan

    International Nuclear Information System (INIS)

    Qasim, M.; Hassan, S.; Bashir, A.; Mehmood, I.; Mahmood, H. Z.

    2015-01-01

    The present study was designed to assess growth rate in area, yield and production of selected major food commodities and to project these parameters on the basis of estimated growth co-efficient. Time-series data for area, yield and production were collected for wheat, sugarcane, rice, mung and gram since 1980-81. The semi-log trend function was employed to find out the growth rate of selected commodities. The findings of the study showed the positive growth rates of area, production and yield of all selected food grain and legume crops. The estimated co-efficient for all growth models (area, production and yield) of selected commodities were statistically highly significant at 1 percentage level except yield of gram which was significant at 10 percentage level. The estimated annual growth rate of area for wheat, rice and sugarcane was 0.9 percentage, 2.1 percentage and 0.8 percentage, respectively with the production growth of 3.0 percentage, 3.8 percentage and 2.2 percentage, respectively and yield growth of 2.1 percentage, 1.6 percentage and 1.5 percentage, respectively. The results highlighted that the major contribution for expansion in production for rice and sugarcane was area while it was yield for wheat. In this scenario the wheat production can be enhanced by increasing its area than that of rice and sugarcane. The annual growth rate for gram and mung area was estimated about 1.0 v and 4.9 percentage, respectively, with the production growth rate of 2.3 percentage and 6.4 percentage while yield growth rate of 2.9 percentage and 1.4 percentage, respectively. Keeping in view the higher growth of gram yield the increase in its area may enhance its production more than that of mung. The proportionate higher increase in the area of wheat and gram may enhance the welfare of producers in particular and provide food security to masses in general. (author)

  18. Engineering concepts for food processing in bioregenerative life support systems.

    Science.gov (United States)

    Hunter, J B

    1999-01-01

    Long-duration manned missions, such as Mars exploration, will require development of new and cost-effective food production and delivery systems. Requirements for both carry-on preserved food and food processed from on-board crops exceed the capabilities of existing food processing and preservation technologies. For the transit phase, new food products, preservation methods, and processing technologies for ground-based food processing are required. The bioregenerative surface phase requires methods for processing of in situ-grown crops, treatment of food wastes, preparation of daily meals, and design of nutritious and appealing plant-based menus, all within severe cost and labor constraints. In design of the food supply for a long-term mission, the designers must select and apply both the packaged food and in situ processing technologies most appropriate for the specific mission requirements. This study aims to evaluate the strengths and weaknesses of different food system strategies in the context of different types of mission, and to point out the most important areas for future technology development.

  19. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  20. New developments in food irradiation

    International Nuclear Information System (INIS)

    Molins, R.

    1996-01-01

    Food irradiation technology is rapidly gaining worldwide acceptance as a promising tool to help alleviate some important food security and safety concerns, and to facilitate the international trade in food. Because of the different priorities that these issues receive in various countries, food irradiation is being considered by developing countries as the technology of choice over chemical fumigants in applications related to the reduction of food losses such as the insect disinfestation of stored staple and export commodities and the inhibition of sprouting of bulb and tuber crops. In contrast, the use of irradiation as a 'cold pasteurization' method to improve the hygienic quality and safety of foods is emerging as the primary field of application in developed countries. Moreover, the use of irradiation as an alternative, non-chemical quarantine treatment for fresh fruits, vegetables and other agricultural commodities entering international trade will no doubt benefit exporting as well as importing countries. 4 figs

  1. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops.

    Science.gov (United States)

    Sharma, Divya; Jamra, Gautam; Singh, Uma M; Sood, Salej; Kumar, Anil

    2016-01-01

    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [ Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca 2+ ) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca 2+ ) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.

  2. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  3. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  4. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Directory of Open Access Journals (Sweden)

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  5. A methodology for determining optimal durations for the use of contaminated crops as fodder following a nuclear accident using a dynamic food-chain model

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Han, Moon Hee; Cho, Gyuseong

    2000-01-01

    A methodology for determining optimal durations for the use of contaminated crops as fodder was designed based on cost-benefit analysis. Illustrative results of the application of this methodology to pigs are presented for the hypothetical deposition of radionuclides on August 15 when a number of crops are fully developed in Korean agricultural conditions. For investigating the appropriateness of the use of contaminated crops as fodder, the net benefit from this action was compared with the imposition of a ban on human consumption of contaminated crops without alternative use. The time-dependent radionuclide concentrations in crops and pork after the deposition event were predicted from a dynamic food-chain model DYNACON. The net benefit from the actions was quantitatively evaluated in terms of cost equivalent of the doses incurred or averted and the monetary costs needed to implement the action. The optimal duration for the use of contaminated crops as fodder depended on a number of factors such as radionuclide, variety of crops fed as fodder and duration of the action. Such action was more cost effective for 137 Cs deposition than for 90 Sr or 131 I deposition. The use of contaminated crops as fodder can be an effective response to a public reluctance to consume contaminated crops

  6. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energ...... silage aNDFom digestibility improved daily milk yield with 82 g (P = 0.04) and daily weight gain with 12 g (P = 0.03). Therefore, aNDFom digestibility is an important trait in maize used as whole crop silage for dairy cows.......The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a...

  7. Crop diversity for yield increase.

    Directory of Open Access Journals (Sweden)

    Chengyun Li

    2009-11-01

    Full Text Available Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.

  8. Food safety evaluation of crops produced through genetic engineering--how to reduce unintended effects?

    Science.gov (United States)

    Jelenić, Srećko

    2005-06-01

    Scientists started applying genetic engineering techniques to improve crops two decades ago; about 70 varieties obtained via genetic engineering have been approved to date. Although genetic engineering offers the most precise and controllable genetic modification of crops in entire history of plant improvement, the site of insertion of a desirable gene cannot be predicted during the application of this technology. As a consequence, unintended effects might occur due to activation or silencing of genes, giving rise to allergic reactions or toxicity. Therefore, extensive chemical, biochemical and nutritional analyses are performed on each new genetically engineered variety. Since the unintended effects may be predictable on the basis of what is known about the insertion place of the transgenic DNA, an important aim of plant biotechnology is to define techniques for the insertion of transgene into the predetermined chromosomal position (gene targeting). Although gene targeting cannot be applied routinely in crop plants, given the recent advances, that goal may be reached in the near future.

  9. Building a Rice Decision Support System to Support Global Food Security and Commodity Markets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rice is an important crop globally that influences food security and the Earth system. Rice is the predominant food staple in many regions with approximately 700...

  10. Hortaliças como alimentos funcionais Vegetable crops as functional food

    Directory of Open Access Journals (Sweden)

    Patrícia G B de Carvalho

    2006-12-01

    in association with a more sedentary lifestyle, are responsible for an increase in diet-related diseases such as obesity, diabetes, cardiovascular problems, hypertension, osteoporosis, and cancer. It is believed that the ingestion of fruits and vegetables helps in the prevention of these diseases. Vegetables are an important component of the diet, usually in association with protein- and starch-rich foods. They are responsible not only for adding variety of color and texture to meals, but also for providing important nutrients. Vegetables are low fat and low calorie foods, with relatively small amounts of protein, but they are rich in carbohydrates and fibers and add significant amounts of micronutrients to the human diet. They are also a source of functional substances, which might benefit one or more physiological functions in the body, besides adequate nutritional effects. Functional elements might play a role in improving health and well-being, as well as reducing the risk of the onset of diet-related diseases. The development of vegetable cultivars with greater amounts of these substances is one of the main goals of modern breeding programs. Many of these programs, working on different vegetables, are currently underway in Brazil and other countries, aiming to improve the amount and variety of carotenoids present in the diet. In the present paper, the main aspects of vegetable crops as functional foods are discussed. The most important achievements of tomato and carrot breeding programs in Brazil aiming to improve the amount and types of functional compounds are also presented.

  11. Social and ecological analysis of commercial integrated crop livestock systems

    NARCIS (Netherlands)

    Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; Faccio Carvalho, de P.C.; Cortner, O.; Dynes, R.; Garbach, K.; Kebreab, E.; Mueller, N.; Peterson, C.; Reis, J.C.; Snow, V.; Valentim, J.

    2017-01-01

    Crops and livestock play a synergistic role in global food production and farmer livelihoods. Increasingly, however, crops and livestock are produced in isolation, particularly in farms operating at the commercial scale. It has been suggested that re-integrating crop and livestock systems at the

  12. Prospect of commercialization of food irradiation in Indonesia

    International Nuclear Information System (INIS)

    Hilmy, N.

    1990-01-01

    As a tropical country, the ambient temperature and humidity are high in Indonesia, accordingly foods are apt to be spoiled. Although the production of some important food crops increased from 1986 to 1988, the level of postharvest loss of the crops was also high. The loss was caused mostly by the lack of technological improvement in preservation, processing and distribution system. The export of Indonesian typical tropical commodities increased from 1986 to 1988, but sometimes a part of the commodities was detained by the importing countries since the quality did not meet the requirement. The development of new technologies such as radiation technology is necessary. The limited volume of spices and herbal tea has been irradiated for commercial purpose since 1987. Indonesia has approved the food irradiation technology for commercial purpose in December, 1987. But due to the limited capacity of the existing irradiation facility, the volume of irradiation cannot be increased. At present, there are two irradiation facilities available, the batch type irradiator for foods and latex irradiator. The information transfer for facilitating public acceptance and the barriers and constraints are discussed. (K.I.)

  13. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  14. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  15. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  16. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    Science.gov (United States)

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  17. Direct use of phosphate rock to improve crop production in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sisworo, E L; Rasjid, H; Sisworo, W H; Haryanto, [Batan, Center for the application of isotopes and radiation, Jakarta (Indonesia); Idris, K [Bogor Agriculture Institute, Bogor (Indonesia)

    2002-02-01

    In Indonesia most of the areas left for producing crops have soils such as Ultisols and Oxisols that are highly weathered, acid and of low fertility. One of the main constraints is their low available P to support food crop production. P inputs such as inorganic fertilizers, organic matter, and phosphate rock (PR) must be applied. Phosphate rock is one of the options for farmers to use as a P-source for food crops. In the frame of the coordinated research program three pot and five field experiments were conducted to determine the agronomic effectiveness of PR for food crops using {sup 32}P isotopic techniques. Crops used in the pot experiments were lowland rice, soybean, and mungbean. One of the pot experiments was a crop rotation simulation where upland rice, soybean, and mungbean were grown in sequence. Two of the field experiments were a crop rotation of upland rice, soybean, and mungbean. In the field experiments, {sup 32}P was used to determine the agronomic effectiveness, whenever possible. In general, the direct application of PR was able to increase plant growth in the pot experiments and crop production in the field experiments. Use of {sup 32}P was a good tool to determine the agronomic effectiveness of PR in the pot and field experiments. (author)

  18. Importance of cooking skills for balanced food choices.

    Science.gov (United States)

    Hartmann, Christina; Dohle, Simone; Siegrist, Michael

    2013-06-01

    A cooking skill scale was developed to measure cooking skills in a European adult population, and the relationship between cooking skills and the frequency of consumption of various food groups were examined. Moreover, it was determined which sociodemographic and psychological variables predict cooking skills. The data used in the present study are based on the first (2010) and second (2011) surveys of a yearly paper-and-pencil questionnaire (Swiss Food Panel). Data from 4436 participants (47.2% males) with a mean age of 55.5 years (SD=14.6, range 21-99) were available for analysis. The cooking skills scale was validated using a test-retest analysis, confirming that this new scale is a reliable and consistent instrument. Cooking enjoyment was the most important predictor for cooking skills, especially for men. Women had higher cooking skills in all age groups. Cooking skills correlated positively with weekly vegetable consumption, but negatively with weekly convenience food consumption frequency, even while holding the effect of health consciousness related to eating constant. In summary, cooking skills may help people to meet nutrition guidelines in their daily nutrition supply. They allow people to make healthier food choices. It is, therefore, important to teach children and teenagers how to cook and to encourage them to develop their cooking skills. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Yield gap analysis of feed-crop livestock systems

    NARCIS (Netherlands)

    Linden, van der Aart; Oosting, Simon J.; Ven, van de Gerrie W.J.; Veysset, Patrick; Boer, de Imke J.M.; Ittersum, van Martin K.

    2018-01-01

    Sustainable intensification is a strategy contributing to global food security. The scope for sustainable intensification in crop sciences can be assessed through yield gap analysis, using crop growth models based on concepts of production ecology. Recently, an analogous cattle production model

  20. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  1. Contribution of Food Crops to Household Food Security Among ...

    African Journals Online (AJOL)

    The study also showed that farmers in the study area are relatively food secure. Inputs such as fertilizer, processing and storage facilities, improved seedlings, tractor, access to credit loan etc. should be made available to encourage farmers to improve household food security and raise their living standard. In addition ...

  2. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  3. Application of nuclear techniques in food and agriculture: promoting world food security

    International Nuclear Information System (INIS)

    Salema, P.Manase

    1998-01-01

    Agriculture is the backbone of the economies of many countries, including Romania. The need to improve both quantity and quality of agricultural products and promote trade while at the same time preserving the natural resource base, and the environment in general, is paramount for achieving sustainable development. It was recognized at the World Food Summit held in Rome, Italy last year that, there was a need to break through the present yield/production barriers and to use natural resources in a more sustainable manner if there would be hope of eliminating hunger and associated poverty from the world in the foreseeable future. For this to happen, the world will have to rely on science and technology to provide new methods of farming, new varieties of crops, better ways of protecting crops and livestock etc. Nuclear techniques are efficient tools for research and development and will play an important and often indispensable role in the effort to achieve sustainable food security and development in the world. (author)

  4. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review.

    Science.gov (United States)

    Petrick, Jay S; Brower-Toland, Brent; Jackson, Aimee L; Kier, Larry D

    2013-07-01

    Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Surveillance of radioactivity in imported foods marketed in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Kosako, Maki; Tomita, Banichi

    2002-01-01

    To assess the effects of radioactive contamination by the Chernobyl nuclear plant accident, the authors examined imported foods marketed in Aichi Prefecture from 1988 to 1999 for residual radioactivity. The concentration of both 134 Cs and 137 Cs was determined with an NaI(Tl) detector in 940 samples, including cereals and processed cereals (23%), vegetables and processed vegetables (19%), fruits and processed fruits (17%), including wines (6%), cheese and dairy products (12%), drinking water (11%), confections (6%), and other foods (12%). The countries of origin were Italy (35%), France (2%), Germany (5%), Denmark (4%), the Netherlands (4%), other European Countries (21%), the United States (5%), and other Countries (5%). None of the imported foods tested contained a total residual 134 Cs and 137 Cs radioactivity exceeding 370 Bq/Kg, the preliminary limit set by the government, but 1.3% of the imported foods contained more than 5 Bq/Kg, the lower limit of detection. Both the numbers and rates of imported foods containing radioactivity have clearly been decreasing since the accident, but it was noteworthy that raspberry juice produced in the Netherlands in 1998, 12 years after the accident, contained the highest level of residual radioactivity in this survey (94 Bq/Kg). If it were processed to enriched juice and jam, its radioactivity might exceed the preliminary limit. Since processed and enriched fruits are not currently included among inspected foods, fruits in them whose radioactivity exceeds the limit can be marketed, and thus the present inspection system should be assessed. The preliminary radioactivity limit was determined based on the accident at the Chernobyl nuclear plant, and it will be necessary to set new preliminary limits if a new, unexpected nuclear accident occurs. This surveillance data is expected to served as reference data. (K.H.)

  6. Jerusalem artichoke as an agricultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Cosentino, G.P.; Wieczorek, A.; Duvnjak, Z.

    1984-01-01

    The Jerusalem artichoke (Helianthus tuberosus) is an agricultural crop which is of great potential for food, production of fuels, and industrial products. This crop gives a high yield in tubers, it grows better in poor soils than most crops, and it is resistant to pests and common plant diseases as well as to cold temperatures. In this article, the agronomic characteristics of this plant are discussed in detail. Special emphasis is given to the effects of various parameters on the production of both tubers and tops from the Jerusalem artichoke. 74 references.

  7. Improvement of new and traditional industrial crops by induced mutations and related biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    Industrial crops are an important source of income for many small landholders in developing countries and contribute directly or indirectly to food security in rural areas. Crop diversification, finding alternative crops, development of new uses for existing crops and introduction of new crops are important components in the efforts to meet the demand for food, pharmaceuticals, chemical raw materials, fibres and fuel in developing and developed countries. Plant breeding efforts combining genetic resources and induced mutations using classical, in vitro and innovative molecular approaches have been responsible for much of the development of industrial crops. This co-ordinated research project (CRP) was initiated in 1994. It focused on developing mutagenesis approaches for previously unstudied species, screening procedures for agricultural and industrial requirements and suitable genotypes of traditional industrial crops adapted to new areas and for new needs. The industrial crops selected for improvement under this CRP were oilseeds and fibre plants. The potential of induced mutations to affect critical steps in various biosynthetic pathways leading to oil quality and other metabolic modifications was investigated. The success of this CRP is evidenced by the application of mutation techniques, in combination with in vitro and molecular techniques in genetic improvement of oilseed crops such as soybean, rapeseed, sunflower, linseed, cuphea, meadowfoam and fibre plants such as cotton and jute. As a result, improved breeding lines are available in all the industrial crops that the CRP focused on. Novel oil types were developed in cuphea with potential use as a renewable, economical and safe energy source and in linseed with increased levels of saturated fatty acids. Genes of fatty acid synthesis were isolated from one species and used for modification of quality of other oilseeds. Disease and pest resistance was improved in oilseeds and fibre crops through transgenesis

  8. Improvement of new and traditional industrial crops by induced mutations and related biotechnology

    International Nuclear Information System (INIS)

    2003-08-01

    Industrial crops are an important source of income for many small landholders in developing countries and contribute directly or indirectly to food security in rural areas. Crop diversification, finding alternative crops, development of new uses for existing crops and introduction of new crops are important components in the efforts to meet the demand for food, pharmaceuticals, chemical raw materials, fibres and fuel in developing and developed countries. Plant breeding efforts combining genetic resources and induced mutations using classical, in vitro and innovative molecular approaches have been responsible for much of the development of industrial crops. This co-ordinated research project (CRP) was initiated in 1994. It focused on developing mutagenesis approaches for previously unstudied species, screening procedures for agricultural and industrial requirements and suitable genotypes of traditional industrial crops adapted to new areas and for new needs. The industrial crops selected for improvement under this CRP were oilseeds and fibre plants. The potential of induced mutations to affect critical steps in various biosynthetic pathways leading to oil quality and other metabolic modifications was investigated. The success of this CRP is evidenced by the application of mutation techniques, in combination with in vitro and molecular techniques in genetic improvement of oilseed crops such as soybean, rapeseed, sunflower, linseed, cuphea, meadowfoam and fibre plants such as cotton and jute. As a result, improved breeding lines are available in all the industrial crops that the CRP focused on. Novel oil types were developed in cuphea with potential use as a renewable, economical and safe energy source and in linseed with increased levels of saturated fatty acids. Genes of fatty acid synthesis were isolated from one species and used for modification of quality of other oilseeds. Disease and pest resistance was improved in oilseeds and fibre crops through transgenesis

  9. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  10. Household food waste separation behavior and the importance of convenience.

    Science.gov (United States)

    Bernstad, Anna

    2014-07-01

    Two different strategies aiming at increasing household source-separation of food waste were assessed through a case-study in a Swedish residential area (a) use of written information, distributed as leaflets amongst households and (b) installation of equipment for source-segregation of waste with the aim of increasing convenience food waste sorting in kitchens. Weightings of separately collected food waste before and after distribution of written information suggest that this resulted in neither a significant increased amount of separately collected food waste, nor an increased source-separation ratio. After installation of sorting equipment in households, both the amount of separately collected food waste as well as the source-separation ratio increased vastly. Long-term monitoring shows that results where longstanding. Results emphasize the importance of convenience and existence of infrastructure necessary for source-segregation of waste as important factors for household waste recycling, but also highlight the need of addressing these aspects where waste is generated, i.e. already inside the household. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Re-orienting crop improvement for the changing climatic conditions of the 21st century

    Directory of Open Access Journals (Sweden)

    Mba Chikelu

    2012-06-01

    Full Text Available Abstract A 70% increase in food production is required over the next four decades to feed an ever-increasing population. The inherent difficulties in achieving this unprecedented increase are exacerbated by the yield-depressing consequences of climate change and variations and by the pressures on food supply by other competing demographic and socioeconomic demands. With the dwindling or stagnant agricultural land and water resources, the sought-after increases will therefore be attained mainly through the enhancement of crop productivity under eco-efficient crop production systems. ‘Smart’ crop varieties that yield more with fewer inputs will be pivotal to success. Plant breeding must be re-oriented in order to generate these ‘smart’ crop varieties. This paper highlights some of the scientific and technological tools that ought to be the staple of all breeding programs. We also make the case that plant breeding must be enabled by adequate policies, including those that spur innovation and investments. To arrest and reverse the worrisome trend of declining capacities for crop improvement, a new generation of plant breeders must also be trained. Equally important, winning partnerships, including public-private sector synergies, are needed for 21st century plant breeding to bear fruits. We also urge the adoption of the continuum approach to the management of plant genetic resources for food and agriculture as means to improved cohesion of the components of its value chain. Compellingly also, the National Agricultural Research and Extension System of developing countries require comprehensive overhauling and strengthening as crop improvement and other interventions require a sustained platform to be effective. The development of a suite of actionable policy interventions to be packaged for assisting countries in developing result-oriented breeding programs is also called for.

  12. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops

    Directory of Open Access Journals (Sweden)

    Lunwen Qian

    2017-09-01

    Full Text Available In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP–trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately

  13. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    Science.gov (United States)

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool

  14. Effects of input uncertainty on cross-scale crop modeling

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input

  15. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Maine Agricultural Foods. Project SEED.

    Science.gov (United States)

    Beaulieu, Peter; Ossenfort, Pat

    This paper describes an activity-based program that teaches students in grades 4-12 about the importance of Maine agriculture in their lives. Specifically, the goal is to increase student awareness of how the foods they eat are planted, harvested, and processed. The emphasis is on crops grown in Maine such as potatoes, broccoli, peas, blueberries,…

  17. The relationship between extreme weather events and crop losses in central Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2017-09-01

    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  18. Rice Crop Monitoring and Yield Estimation Through Cosmo Skymed and TerraSAR-X: A SAR-Based Experience in India

    OpenAIRE

    Pazhanivelan, S.; Kannan, P.; Christy Nirmala Mary, P.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M.

    2015-01-01

    Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used...

  19. Food choice motives and the importance of family meals among immigrant mothers.

    Science.gov (United States)

    Marquis, Marie; Shatenstein, Bryna

    2005-01-01

    To determine the health and social benefits of the family mealtime, we examined the contribution of immigrant mothers' food motives to the importance placed on family meals, and cultural differences in mothers' food motives and the importance ascribed to family meals. Data were taken from a study on food choice factors among ten- to 12-year-old children from three cultural communities in Montreal. A 24-item, self-administered questionnaire was used to explore food choice motives. Each mother was also asked how important it was for her family to take the time to eat together, and if the child enjoyed sharing meals with his or her family. In all, 209 of the 653 questionnaires distributed were valid; 68 were from Haitian, 75 from Portuguese, and 66 from Vietnamese mothers. Five factors emerging from factor analyses explained 61.67% of the variance. Analysis of variance indicated significant differences between mothers' countries of origin for the importance placed on health, pleasure, familiarity, and ingredient properties (pmotivations emerged as the only significant predictor of the importance given to family meals, whereas for Vietnamese mothers, both health and eating familiar foods were predictors (p<0.05).

  20. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.

    Science.gov (United States)

    Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  1. The importance of mealtime structure for reducing child food fussiness.

    Science.gov (United States)

    Powell, Faye; Farrow, Claire; Meyer, Caroline; Haycraft, Emma

    2017-04-01

    The aim of this study was to explore how the structure of mealtimes within the family setting is related to children's fussy eating behaviours. Seventy-five mothers of children aged between 2 and 4 years were observed during a typical mealtime at home. The mealtimes were coded to rate mealtime structure and environment as well as the child's eating behaviours (food refusal, difficulty to feed, eating speed, positive and negative vocalisations). Mealtime structure emerged as an important factor which significantly distinguished children with higher compared with lower levels of food fussiness. Children whose mothers ate with their child and ate the same food as their child were observed to refuse fewer foods and were easier to feed compared with children whose mothers did not. During mealtimes where no distractors were used (e.g. no TV, magazines or toys), or where children were allowed some input into food choice and portioning, children were also observed to demonstrate fewer fussy eating behaviours. Findings of this study suggest that it may be important for parents to strike a balance between structured mealtimes, where the family eats together and distractions are minimal, alongside allowing children some autonomy in terms of food choice and intake. © 2016 John Wiley & Sons Ltd.

  2. Unraveling microbial biofilms of importance for food microbiology.

    Science.gov (United States)

    Winkelströter, Lizziane Kretli; Teixeira, Fernanda Barbosa dos Reis; Silva, Eliane Pereira; Alves, Virgínia Farias; De Martinis, Elaine Cristina Pereira

    2014-07-01

    The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

  3. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers

    DEFF Research Database (Denmark)

    Varshney, Rajeev K.; Chen, Wenbin; Li, Yupeng

    2012-01-01

    Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences...

  4. Transfer factor of the radionuclides in food crops from high-background radiation area of south west India

    International Nuclear Information System (INIS)

    Shanthi, G.; Thampi Thanka kumaran, J.; Allen Gnana raj, G.; Maniyan, C. G.

    2012-01-01

    It is necessary to obtain the transfer factor (TF) of long-lived radionuclides because soil type and vegetation can affect TF. We studied the food crops commonly consumed by the general public of Kanyakumari district of south India. The main focus was on rice, fruits, vegetables and tapioca because the consumption of these is high. The soil to rice TF for the radionuclides, 226 Ra, 232 Th, 238 U and 40 K are 8.8 x 10. -2 , 14.2 x 10. -2 , 5.8 x 10. -2 and 6.3 x 10. -2 , respectively. The TF of tapioca for 226 Ra, 232 Th, 238 U and 40 K are 6.2 x 10 -2 , 11 x 10 -2 , 1.9 x 10 -2 and 8.9 x 10 -2 , respectively. For fruits and vegetables, the TFs are low. In the majority of the crops the non-edible parts accumulate more radionuclides than the edible parts. (authors)

  5. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  6. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  7. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  8. Importance-satisfaction analysis of street food sanitation and choice factor in Korea and Taiwan.

    Science.gov (United States)

    Joo, Nami; Park, Sanghyun; Lee, Bohee; Yoon, Jiyoung

    2015-06-01

    The present study investigated Korean and Taiwan adults on the importance of and the satisfaction with street food sanitation and street food choice factor, in order to present management and improvement measures for street foods. The present study conducted a survey on 400 randomly chosen adults (200 Korean, 200 Taiwanese). General characteristics, eating habits, street food intake frequency, and preference by type of street food of respondents were checked. Respondents' importance and satisfaction of street food hygiene and selection attributes were also measured. In order to test for the difference between groups, χ(2)-test and t-test were performed. ISA was also performed to analyze importance and satisfaction. Results showed that the importance of sanitation was significantly higher than satisfaction on all items in both Korea and Taiwan, and the satisfaction with sanitation was higher in Taiwan than in Korea. According to ISA results with street food sanitation, satisfaction was low while importance was high in both Korea and Taiwan. In terms of street food choice factor, importance scores were significantly higher than satisfaction scores on all items. In addition, satisfaction scores on all items except 'taste' were significantly higher in Taiwan than in Korea. A manual on sanitation management of street foods should be developed to change the knowledge and attitude toward sanitation by putting into practice a regularly conducted education. Considering the popularity of street foods and its potential as a tourism resource to easily publicize our food culture, thorough management measures should be prepared on sanitation so that safe street food culture should be created.

  9. Development of a standard methodology for integrating non-food crop production in rural areas with niche energy markets. Proceedings

    International Nuclear Information System (INIS)

    1996-09-01

    This project was supported as a Concerted Action under the EC DGVI AIR programme from 1993-1996. It has successfully developed a standard methodology to help integrate non-food crop production in rural areas with niche energy markets. The methodology was used to compare the costs of different energy crop production and conversion options across the six participating nations. The partners provide a representative cross-section of European agriculture and energy expertise. All partners agreed on three niche markets favourable for biomass and biofuels: small-scale heat markets (less than 1 MW th ) for agro-industry, domestic and commercial buildings, medium-scale heat markets (1-10MW th ), including cogeneration for light industry and district heating, and liquid biofuels as substitutes for fossil fuels in transport, heat and power applications. (Author)

  10. Feeding nine billion: the challenge to sustainable crop production.

    Science.gov (United States)

    Gregory, Peter J; George, Timothy S

    2011-11-01

    In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.

  11. Application of scientific criteria to food allergens of public health importance.

    Science.gov (United States)

    Chung, Y J; Ronsmans, S; Crevel, R W R; Houben, G F; Rona, R J; Ward, R; Baka, A

    2012-11-01

    Scientific criteria for identifying allergenic foods of public health importance (Björkstén, B., Crevel, R., Hischenhuber, C., Løvik, M., Samuels, F., Strobel, S., Taylor, S.L., Wal, J.-M., Ward, R., 2008. Criteria for identifying allergenic foods of public health importance. Regulatory Toxicology and Pharmacology 51(1), 42-52) have been further refined to incorporate an assessment of the strength of available scientific evidence (van Bilsen, J.H., Ronsmans, S., Crevel, R.W., Rona, R.J., Przyrembel, H., Penninks, A.H., Contor, L., Houben, G.F., 2011. Evaluation of scientific criteria for identifying allergenic food of public health importance. Regulatory Toxicology and Pharmacology 60, 281-289). A multi-disciplinary group was invited to critically test the refined approach. They independently evaluated selected publications on coconut, soy and/or peanut allergy, scored them using the newly developed level of evidence criteria, and debated proposed approaches for combining and utilising the scores to measure the overall impact of an allergen in public health impact assessments. The evaluation of selected publications using the modified criteria produced a relatively consistent result across the experts. These refined criteria were judged to be a way forward for the identification of allergenic foods of public health importance, and for prioritisation of allergen risk management and future data gathering. The debate to combine available evidence when assessing whether an allergenic food is of sufficient public health importance to warrant active management led to proposals on how to weight and combine evidence on allergen severity, potency and prevalence. The refined criteria facilitate a debate to find a meaningful sequence of steps to summarise the available information in relation to a food allergen. Copyright © 2012 ILSI Europe. Published by Elsevier Inc. All rights reserved.

  12. Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.

    Science.gov (United States)

    Li, Jing; Wang, Jing; Li, Jing

    2017-12-01

    As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .

  13. Texas Panhandle soil-crop-beef food chain for uranium: a dynamic model validated by experimental data

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Wallwork-Barber, K.M.; Rodgers, J.C.; Gallegos, A.F.

    1982-01-01

    Long-term simulations of uranium transport in the soil-crop-beef food chain were performed using the BIOTRAN model. Experimental data means from an extensive Pantex beef cattle study are presented. Experimental data were used to validate the computer model. Measurements of uranium in air, soil, water, range grasses, feed, and cattle tissues are compared to simulated uranium output values in these matrices when the BIOTRAN model was set at the measured soil and air values. The simulations agreed well with experimental data even though metabolic details for ruminants and uranium chemical form in the environment remain to be studied

  14. Quinoa: An emerging new crop with potential for CELSS

    Science.gov (United States)

    Schlick, Greg; Bubenheim, David L.

    1993-01-01

    Chenopodium quinoa is being considered as a new crop for the Controlled Ecological Life Support System (CELSS) because of its high protein values (12 - 18%) and unique amino acid composition. Lysine, and essential amino acid that is deficient in many grain crops, is found in quinoa approaching Food and Agriculture Organization of the United Nations (FAO) standards set for humans. This 'new' crop, rich in protein and with desirable proportions of important amino acids, may provide greater versatility in meeting the needs of humans on long-term space missions. Initially, the cultivars CO407 x ISLUGA, CO407 Heat Tolerant Population 1, and Real' (a Bolivian variety) were examined. The first cultivar showed the most promise in greenhouse studies. When grown hydroponically in the greenhouse, with no attempt to maximize productivity, this cultivar produced 202 g m(exp -2) with a harvest index of 37%. None of the cultivars were greater than 70 cm in height. Initial results indicate that quinoa could be an excellent crop for CELSS because of the high concentration of protein, ease of use, versatility in preparation, and potential for greatly increased yields in controlled environments.

  15. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    Science.gov (United States)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  16. Nuclear Technologies Secure Food For Future

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: For nearly fifty years, applications of nuclear technology have been helping the world's farmers, contributing new varieties of crops, controlling pests, diagnosing livestock disease, improving soil and water management and increasing food safety. The significant role of nuclear technology in supporting agriculture will be the focus of this year's IAEA Scientific Forum in Vienna on 18-19 September. Food for the Future: Meeting the Challenges with Nuclear Applications is the theme of the Forum, which takes place during the annual IAEA General Conference. ''Demand for food is rising significantly as the world's population grows,'' IAEA Director General Yukiya Amano said. ''Fighting hunger is a key priority. It is essential not only that the world should produce more food. We must also protect crops and livestock and make sure that food is safe to eat. Nuclear applications can make a real difference in all of these areas.'' ''The goal of the Scientific Forum is to make Member States more aware of the very important work of the IAEA in nuclear applications related to food and to encourage more countries to make use of our services.'' Nuclear technology has many possible uses in food and agriculture. By irradiation, scientists can accelerate natural spontaneous mutation and improve crop varieties to suit particular conditions. Farmers are benefitting from rice that grows in salty conditions, barley that flourishes above 4 000 metres (13 000 feet) and hundreds of other crop varieties. The use of the sterile insect technique, in which males of a targeted species such as the tsetse fly or the Mediterranean fruit fly are sterilised by radiation and released into the wild, is expanding significantly. This effectively combats insect pests that damage crops and spread disease among humans and livestock, while limiting pesticide use. The world was last year declared free of the deadly cattle disease rinderpest after a campaign made possible by nuclear techniques. The

  17. The imprint of crop choice on global nutrient needs

    International Nuclear Information System (INIS)

    Jobbágy, Esteban G; Sala, Osvaldo E

    2014-01-01

    Solutions to meet growing food requirements in a world of limited suitable land and degrading environment focus mainly on increasing crop yields, particularly in poorly performing regions, and reducing animal product consumption. Increasing yields could alleviate land requirements, but imposing higher soil nutrient withdrawals and in most cases larger fertilizer inputs. Lowering animal product consumption favors a more efficient use of land as well as soil and fertilizer nutrients; yet actual saving may largely depend on which crops and how much fertilizer are used to feed livestock versus people. We show, with a global analysis, how the choice of cultivated plant species used to feed people and livestock influences global food production as well as soil nutrient withdrawals and fertilizer additions. The 3 to 15-fold differences in soil nutrient withdrawals per unit of energy or protein produced that we report across major crops explain how composition shifts over the last 20 years have reduced N, maintained P and increased K harvest withdrawals from soils while contributing to increasing dietary energy, protein and, particularly, vegetable fat outputs. Being highly variable across crops, global fertilization rates do not relate to actual soil nutrient withdrawals, but to monetary values of harvested products. Future changes in crop composition could contribute to achieve more sustainable food systems, optimizing land and fertilizer use. (letter)

  18. Importance-satisfaction analysis of street food sanitation and choice factor in Korea and Taiwan

    Science.gov (United States)

    Joo, Nami; Park, Sanghyun; Lee, Bohee

    2015-01-01

    BACKGROUND/OBJECTIVES The present study investigated Korean and Taiwan adults on the importance of and the satisfaction with street food sanitation and street food choice factor, in order to present management and improvement measures for street foods. SUBJECTS/METHODS The present study conducted a survey on 400 randomly chosen adults (200 Korean, 200 Taiwanese). General characteristics, eating habits, street food intake frequency, and preference by type of street food of respondents were checked. Respondents' importance and satisfaction of street food hygiene and selection attributes were also measured. In order to test for the difference between groups, χ2-test and t-test were performed. ISA was also performed to analyze importance and satisfaction. RESULTS Results showed that the importance of sanitation was significantly higher than satisfaction on all items in both Korea and Taiwan, and the satisfaction with sanitation was higher in Taiwan than in Korea. According to ISA results with street food sanitation, satisfaction was low while importance was high in both Korea and Taiwan. In terms of street food choice factor, importance scores were significantly higher than satisfaction scores on all items. In addition, satisfaction scores on all items except 'taste' were significantly higher in Taiwan than in Korea. CONCLUSIONS A manual on sanitation management of street foods should be developed to change the knowledge and attitude toward sanitation by putting into practice a regularly conducted education. Considering the popularity of street foods and its potential as a tourism resource to easily publicize our food culture, thorough management measures should be prepared on sanitation so that safe street food culture should be created. PMID:26060542

  19. Interception and translocation of radionuclides in major food crops for Koreans

    International Nuclear Information System (INIS)

    Choi, Y. H.; Lim, K. M.; Park, H. G.; Choi, H. J.; Lee, H. S.

    2002-01-01

    In order to investigate the direct plant contamination pathway of 54 Mn, 57 Co, 85 Sr, 103 Ru and 134 Cs in major food crops for Koreans, rice, soybean and radish plants at different growth stages were sprayed with radioactive solutions in a greenhouse. The interception factor and the translocation factor were quantified as the fraction of the total deposition that is initially retained on the aboveground plant surface and the fraction of the total initial plant activity that is contained in the edible part at harvest, respectively. In rice and radish, interception factors increased as plants grew old to harvest. In soybean, however, rapid defoliation in old plants made interception factors decrease with increasing age during the later part of the growth. There was little difference in the interception factor among radionuclides. Translocation factors decreased in the order of 134 Cs ≥> 57 Co > 54 Mn ≥ 85 Sr > 103 Ru in general and varied with radionuclides by factors of 6-4000, depending on application time and plant species. Translocation factors for rice seeds were the highest when radionuclides were applied at the active seed growth stage and those for soybean seeds were the highest following the application at the early pod-filling stage except for 103 Ru. For radish roots, translocation factors were on the whole the highest following the early- growth-stage application. The obtained data can be used for parameter values in food-chain dose assessment models especially for Koreans and many other Asian people

  20. Interception and translocation of radionuclides in major food crops for Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y. H.; Lim, K. M.; Park, H. G.; Choi, H. J.; Lee, H. S. [KAERI, Daejon (Korea, Republic of)

    2002-07-01

    In order to investigate the direct plant contamination pathway of {sup 54}Mn, {sup 57}Co, {sup 85}Sr, {sup 103}Ru and {sup 134}Cs in major food crops for Koreans, rice, soybean and radish plants at different growth stages were sprayed with radioactive solutions in a greenhouse. The interception factor and the translocation factor were quantified as the fraction of the total deposition that is initially retained on the aboveground plant surface and the fraction of the total initial plant activity that is contained in the edible part at harvest, respectively. In rice and radish, interception factors increased as plants grew old to harvest. In soybean, however, rapid defoliation in old plants made interception factors decrease with increasing age during the later part of the growth. There was little difference in the interception factor among radionuclides. Translocation factors decreased in the order of {sup 134}Cs {>=}> {sup 57}Co > {sup 54}Mn {>=} {sup 85}Sr >{sup 103}Ru in general and varied with radionuclides by factors of 6-4000, depending on application time and plant species. Translocation factors for rice seeds were the highest when radionuclides were applied at the active seed growth stage and those for soybean seeds were the highest following the application at the early pod-filling stage except for {sup 103}Ru. For radish roots, translocation factors were on the whole the highest following the early- growth-stage application. The obtained data can be used for parameter values in food-chain dose assessment models especially for Koreans and many other Asian people.